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ABSTRACT
The prevalence of artificial intelligence (AI) and machine learning
(ML) technologies in digital ecosystems has led to a push for AI
literacy, giving everybody, including K-12 students, the necessary
knowledge and abilities to engage critically with these new tech-
nologies. While there is an increasing focus on designing tools and
activities for teaching machine learning, most tools sidestep engag-
ing with the complexity and trade-offs inherent in the design of ML
models in favor of demonstrating the power and functionality of the
technology. In this paper, we investigate how a design perspective
can inform the design of educational tools and activities for teach-
ing machine learning. Through a literature review, we identify 34
tools and activities for teaching ML, and using a design perspective
on ML system development, we examine strengths and limitations
in how they engage students in the complex design considerations
linked to the different components of machine learners. Based on
this work, we suggest directions for furthering AI literacy through
adopting a design approach in teaching ML.

CCS CONCEPTS
• Social and professional topics → Computing literacy; K-12
education; Computational thinking; •Human-centered comput-
ing→HCI theory, concepts andmodels; •Computingmethod-
ologies →Machine learning.
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1 INTRODUCTION
Machine learning (ML) has become a pervasive technology, driving
most of the impressive technological breakthroughs within the field
of artificial intelligence (AI) in recent years. A child growing up
with the current digital ecosystems will likely meet ML models in
both public and private spheres, as ML systems increasingly advise
doctors inmedicine [18], play important roles in criminal justice and
terrorism prevention [82], curate media intake and advertisements
on streaming sites, social media, and news platforms [35], and even
enter our homes in the form of digital assistants [48]. However,
as the complexity and size of ML models increase to meet these
diverse challenges, so do their opaqueness, and the resulting lack of
understanding combined with pervasiveness and power is deeply
problematic for those living in this ML-infused world, children and
adults alike [12]. In addition, there is a growing concern regarding
how the opacity and complexity of ML systems can lead to systemic
racial and gender biases [72], and unfair decision processes [5].

These concerns have driven a range of research, e.g., to improve
the transparency of ML models [21, 78], increase accountability
[1, 22], ensure fairness [24], protect privacy [17], increase robust-
ness [63], and to give users of ML-based systems opportunities for
understanding the underlying computational processes in order to
trust them and feel in control [1].

In addition, these concerns have led to an increased focus on how
ML systems are part of larger social and political systems [2, 44];
how concepts such as fairness and ethics should be understood
and measured in the context of these larger systems [67, 73]; and
how ML system designers’ decisions must be communicated and
discussed to make them accountable for how their systems impact
these larger systems [40].

In line with the above concerns, criticism has been raised regard-
ing existing ML curricula in higher education for not engaging with
the ethical issues of ML [6, 60] and suggestions have been made
for new ways to teach implications of ML (e.g., [68]). However,
having ML system designers engage with the social implications
of ML is not sufficient to ensure more fair and just systems. Since
we are all (in one way or another) users of, or at least affected by,
ML systems we are all part of judging how and when a system
is beneficial, and to whom. This calls for a new, broad AI literacy
which develops users’ critical reflection and understanding of these
systems. One approach to do so is through addressing AI literacy in
kindergarten to 12th grade (K-12) education, and researchers have
recently begun exploring what an AI literacy curriculum for K-12
education should look like [47, 74].

https://doi.org/10.1145/3531146.3534634
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With the high stakes outlined above, it is clear that we need
to improve the understanding of ML systems also for those us-
ing them and those who are affected by them. To address this, we
look to the Computational Thinking [80] (CT) research community,
which provides an influential perspective on the teaching of com-
puting in general in K-12 education around the world [36]. This
community has emphasized how thinking like a computer scien-
tist is more than understanding computational concepts, but also
involve understanding and development of computational practices
and perspectives [10].

In this paper, we align with the more critical voices in the CT
community (e.g., [19, 39, 41]), who argue that in order to empower
and engage students, they should be taught how to decode the
intentions, choices and trade-offs embedded by developers and cor-
porations in technological artefacts and systems more generally,
and how to code their own intentions and choices into such arte-
facts and systems [19]. In line with this, we argue that to truly
understand ML systems, students must engage not just with the
technical components of ML models but also with their design, the
rationales behind their construction, and the context of their use
and deployment.

A critical question then becomes how ML can be conceptualised
to scaffold students’ engagement with, design of, and reflection
about ML. Existing popular tools for teaching K-12 students about
ML and AI, such as Teachable Machine [15], Cozmo1, ML4kids2,
sidestep complexity and trade-offs inherent in the design of ML
models in favor of demonstrating the power and functionality of
the technology. It enables students to explore the capabilities of
ML systems and even to use ML to design and construct their
own systems, but rarely expose the complex and difficult design
questions and considerations in the process of constructing and
deploying ML systems in the real world, such as designing and
representing training data sets or choosing one model type and
architecture over another. Thus, we argue that without involvement
in the design of ML systems, it will be difficult for students to
understand the trade-offs and rationales embedded in such systems
in addition to understanding the role of ML systems in their wider
context of use.

This argument is well in line with recent research in the field
of Explainable Artificial Intelligence (xAI), promoting evaluation
criteria which also focus on real users and tasks [21]. Notably, this
re-orientation of xAI aligns well with how the field of Human-
Computer Interaction (HCI), over time, has been increasingly com-
mitted towards real users, real tasks, and the broadening of use-
contexts from work to everyday lives [9], and as a result has em-
braced design as a discipline in the field [13, 81].

This paper addresses how to develop children’s AI literacy in K-
12 education. We do so by presenting a design approach to teaching
ML that complements the demo approach outlined above. First, we
outline what a design approach means for teaching ML by present-
ing and discussing design literature and design models characteris-
ing the ML process. Next, we review existing literature on activities
and tools for teachingMLwith regards to how they engage students
in design questions within ML. Based on this review, we discuss

1cozmo.com
2https://machinelearningforkids.co.uk/

our approach and present a set of sensitising concepts3 [8] aimed
at helping K-12 educators and designers of tools and activities for
teaching ML with directing their work. Thus, the paper makes the
following contributions:

(1) A framing of ML development as a design endeavour and
the consequences of this for teaching ML in K-12 education.

(2) Sensitising concepts for a design approach to teaching ML
in K-12 education, based on a review of existing literature in
conjunction with the framing above.

In summary, we propose a shift in the way we teach ML from
demo to design.

2 TOWARDS A DESIGN APPROACH TO
MACHINE LEARNING

Before turning to teaching ML, we take a step back and investigate
more specifically what a design approach to machine learning im-
plies. For this we first look towards the field of HCI which, over
time, has embraced lessons from the discipline of design in order to
strengthen its approach to dealing with users, implications, choices,
and rationales in the construction process of interactive systems.
Next, we look towards the field of machine learning to understand
how it has approached ML as a design process.

2.1 Learning from HCI
In the following, we highlight three sets of fundamental assump-
tions and approaches within the discipline of design, as it has come
to inform the field of HCI more generally, and which seem particu-
larly pertinent to the challenges facing AI literacy.

2.1.1 A contextualized approach. One of the hallmarks of design is
the creation of systems that are useful for people in their everyday
lives [81]. Fundamentally, design is dedicated to the construction
of objects and systems which really work for people, producing
quality results and satisfying experiences. Moreover, design is dedi-
cated to a holistic perspective of understanding systems as they are
used in their contexts, by users with needs and values. Users are
conceived of as those who directly use a system, but also as those
indirectly affected by its use and those who make decisions regard-
ing the acquisition and use of the system [25]. Thus, constructing
systems from a design perspective implies a dedication towards
understanding systems in their full context of use. Applying this
to ML, we can term this a contextual approach to the construction
and evaluation of ML models. This view resonates with recent ar-
guments put forth in xAI which promotes the integration of social
sciences in our understanding of the role of explanations [53] and
the recent calls for applying situated and socio-technical frames in
ML system design [44, 67].

2.1.2 Exploring alternatives and identifying rationales. Historically,
people such as Winograd and Buxton have been highly influential
in bringing the lessons from design to bear on how we build soft-
ware [13, 81]. These initiatives have been motivated by concerns
regarding how design of software previously focused primarily on
incremental improvements of systems (getting the design right),
rather than exploring alternatives (getting the right design) [13].

3See section 5 for an explanation of the term
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What is often emphasised from the practice of design is the role
of reflection in action - the need for designers to work in cycles of
creating and reflecting [66] and rather than working towards one
solution, working in an iterative process of exploring alternative
solutions and evaluating these [13]. For ML, this perspective means
exploring alternatives and identifying rationales for choosing one
solution over another. Recent research has highlighted how ML sys-
tem designers should be confronted with the normative choices in
their systems [54], and how the rationales behind a ML systemmust
be made explicit to hold the system (and the system’s designers)
accountable for its actions [40].

2.1.3 Exploring possible futures. Design is a matter of “intentional
change in an unpredictable world” [57]. It is emphasised how the
role of design is not to predict the future, but rather to explore
possible futures, and ask what-if questions [23]. The field deploys
a recurring notion of possible, plausible, probable, and preferable
futures [23], emphasizing the need to investigate and articulate for
whom a solution is a preferred future and in what sense. In addition,
speculative design [23] is particularly concerned with broadening
this debate beyond industry and politicians towards citizens capable
of partaking in such debates. Finally, within the discipline of design,
there is also a rich discourse on how the designers’ intentions
influence design. Verbeek [76] highlights how designers’ intentions
are inscribed in technologies, and how technologies mediate how
users perceive the world and steer how they act in the world, by
inviting certain uses and inhibiting others. These arguments align
with recent criticism of attempts to discuss ML technologies as
neutral and efforts to ’de-bias’MLmodels and datasets [73]. Bias and
intentions are inherent entities in ML models and systems, hence
they should be understood and discussed in ethical and political
terms.

To summarize, what we take from the design perspective to re-
frame how we can engage with teaching ML includes the following
three design considerations:

(1) Taking a contextualised approach to the construction and
evaluation of ML systems and considering the expected con-
text of use.

(2) Exploring alternatives and emphasizing design rationales
throughout the ML design process.

(3) Being mindful of how intentions are embedded in ML sys-
tems and reflecting on future implications.

In the following analysis, we explore how these design consid-
erations can be investigated more particularly in the process of
developing Ml systems. But first, we outline the current state of
the art in the intersection of ML and design and present a recent
design model that will guide our analysis.

2.2 Machine Learning as Design
In this section, we look towards the field of ML for perspectives
which can serve to inform a design approach for teaching ML.
While ML has a strong theoretical background in statistical learn-
ing theory, making ML systems work in practice often involves
a large degree of tacit knowledge and discretionary action [59],
that some derogatorily have termed ’black art’ [20] or ’folklore and
magic spells’ [14]. This critique implies that ML is often approached

LEARNER

Training data

Data representation

Model type

Optimization objective

Learning algorithm

Output

Evaluation

DESIGN CHOICES

High-level objective

What are good examples of
desired behavior?

DESIGN QUESTIONS

Which types of patterns is the
model expected to use and how

complex are they?

What are the relevant and
irrelevant features of the chosen

examples?

How are competing models
compared?

How is the search for models
performed?

How should the output be
presented?

How is the performance of the
model evaluated in its actual

context of use?

What is the model meant to
achieve?

Figure 1: Design model of the different components in cre-
ating a machine learner along with the questions that guide
this design. From [26].

without the critical reflection suggested by a design-oriented per-
spective. As a response, a number of recent papers in the ML field
suggest new ways of reflecting on and documenting the ML pro-
cess [45, 52, 55, 59, 61].

In one of these recent papers, Enni and Assent [26] present the
design model for ML seen in Figure 1). It consists of eight separate
components of machine learners4 that have to be implemented in
a ML project. This model furthermore articulates a set of design
questions which are addressed (either explicitly or implicitly) in the
choices made for each of these components, and invites reflection
on how these choices impact the behavior of the resultingMLmodel.
The questions emphasize howmodel design and -evaluationmust be
understood with respect to its context of use, how choices and trade-
offs must be made in the particular design of the machine learner,
4Enni and Assent distinguish between machine learners, which are programs, typically
coded in high-level programming languages such as Python, and the ML models, that
the learner programs produce as they train on data, which are often represented as
computer generated data files or collections of learned model parameters. [26].
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and how desired behavior and relevant features are examples of
intentionality being embedded in the design of the machine learner.
As such, Enni and Assent’s design model serves to operationalise a
design perspective in terms of the particular details of creating a
ML model.

Enni and Assent’s design model is focused on the way machine
learners are designed around knowledge of the statistical relation-
ship between input and output data modelled by the ML model.
It acknowledges that ML solves problems not by explicitly pro-
grammed computational solutions, but by designing a learner to
learn a solution from examples. Thereby the design of the machine
learner is the indirect design of the ML model. Thus, their design
model helps articulating how ML requires not just computational
thinking but also design, which is reflected in the model’s design
questions; each motivated by the effect it is ultimately expected to
have on the ML model [26].

As we analyze the tools for teaching ML covered in the following
sections we will use the model illustrated in Figure 1 as a key to
investigate which parts of the ML design process these tools engage
with.

3 REVIEW OF ML TEACHING TOOLS &
ACTIVITIES

To investigate how the design perspective presented above can
inform the design of educational tools and activities for teaching
ML at a K-12 level, we have conducted a systematic literature review
on existing research on such tools and activities. The aim is not to
provide a comprehensive report on the state of a well-established
research field but to provide a snapshot of this emerging topic
which can be used to inform future directions for ML teaching.
By using the design model in Figure 1 as a key perspective, and
systematically analysing existing work with the design perspective,
we examine:

(1) Which ML design components existing tools and activities
engage students in.

(2) How existing tools and activities conceptualize the ML de-
sign questions linked to each component.

Below, we account for our review method, followed by a discus-
sion of the results from the analysis.

3.1 Review method
Our literature search started out quite broadly using the SCOPUS
database by Elsevier5 which includes publications in AAAI (includ-
ing the symposium on education) and ACM, as well as other key
venues such as the International Journal of Child-computer Inter-
action (IJCCI) and International Journal of Artificial Intelligence in
Education (IJAIED). The search was conducted in August of 2020
and yielded 1947 results. The search query can be found in Figure 2.
To retrieve papers with a main focus on ML, we searched for both
ML and AI in the title. Both terms were used, since they are used
interchangeably in some cases. Next, we searched for mentions of
K-12 students (and synonyms) in the title, abstract and keywords
to find papers focusing on teaching such students. Last, since the

5https://www.scopus.com

TITLE ( "Machine learning" OR "ML" OR "AI" OR "arti-
ficial intelligence" ) AND TITLE-ABS-KEY ( "children"
OR "young" OR "Youth" OR "students" OR "pupils"
OR "k-12" OR "kids" OR "teenagers" OR "teens" OR
"youngsters" OR "adolescents" ) AND ( LIMIT-TO (
SUBJAREA , "COMP" ) OR LIMIT-TO ( SUBJAREA ,
"ENGI" ) )

Figure 2: Search query used in the SCOPUS database for the
review of existing ML learning tools.

SCOPUS database searches for publications between several disci-
plines, we limited the search to computer science and engineering
to find publications focusing on the design of educational tools and
activities. Computer Science, as a subject category in the SCOPUS
database, also covers CS Education research venues and journals
such as Computers and Education, and International Journal of
Educational Technology in Higher Education.

To review these publications, we underwent a systematic pro-
cess following three rounds of elimination and a final step of data
analysis and coding of selected papers: In step (1), we eliminated
papers that were not scientific publications in English, and papers
that did not focus on teaching ML to K-12 students, by reviewing
the meta information (title, abstract and keywords) of the 1947 pa-
pers (153 publications remained). For step (2), we retrieved the full
texts of the remaining papers and eliminated papers using the same
criteria as in step 1 but based on the the full texts (76 publications
remained). In step (3), we eliminated all papers that did not describe
activities or tools for teaching K-12 about ML. This resulted in 34
publications published from 1987 to 2020. Finally, in step (4), the
papers were analyzed and coded based on the questions 1 and 2
from above.

The review process was conducted by two of the authors. Fol-
lowing the elimination rounds, in order to reduce individual biases
in the analysis, ten papers of the final 34 were divided between
the two authors who separately analysed the papers. To align the
analysis, four authors discussed the ten papers and reached con-
sensus. Finally, the two authors divided the remaining 24 papers
between them. The findings from the analysis are presented in the
next section.

4 FINDINGS
In this section, we unfold our analysis of the tools reviewed above by
going through each designed component in Enni and Assent’s [26]
model in Figure 1. Table 1 provides an overview of which compo-
nents were addressed in the analysed papers. As can be seen in
Table 1, overall, the analysis shows a tendency to emphasis the
beginning and end of the ML design process. In the following, we
unfold and discuss how the components are addressed in the papers.
For each component we a) unfold the design question, b) analyse
how design perspectives are addressed in current tools and activi-
ties, and c) reflect on how they can be addressed in future tools and
activities.
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ML component n= References
High-level Objective 16 [4, 7, 11, 15, 27, 31, 33, 56, 62, 64, 69, 70, 75, 79, 83, 84]
Training Data 21 [3, 4, 15, 16, 30, 31, 33, 37, 38, 42, 46, 49, 56, 58, 64, 69, 75, 77, 79, 83, 84]
Data Representation 9 [4, 7, 16, 27, 30, 49, 58, 62, 69]
Model Type 9 [4, 16, 28–30, 46, 49, 58, 77]
Optimization Objective 1 [28]
Learning Algorithm 1 [15]
Output 16 [3, 4, 7, 15, 34, 37, 38, 42, 49, 64, 69, 75, 77, 79, 83, 84]
Evaluation 10 [3, 15, 27, 31, 33, 34, 42, 56, 83, 84]

Table 1: Review of how existing literature engage students in in the components of ML. It illustrates how existing educational
tools and activities mainly focus on components related to the input and output of ML learners and less so on the inner
components.

4.1 High-level Objective
The initial design choice in creating a machine learner is the high-
level objective for the resulting model [26], and designers need to
ask themselves what the model is meant to achieve? From a design
perspective, this entails investigating the context in which the
model is to be deployed, whom its users and stakeholders are, and in
turn what their goals are. Is ML the correct choice for this situation,
or are there more appropriate alternatives?

16 out of the 34 papers address the high-level objective of ma-
chine learners. A few of these let students explore the context in
which a model is to be employed, most often as part of a design
case, in which students go through a design process for developing
ML systems. This is achieved through e.g., card-based workshops,
where students are given different cards representing stakeholders,
data sources, interaction methods, etc., and design their own ML
system [7]; or by engaging children in designing a “fair” AI librar-
ian, through exploring the context and discussing what fairness
means [70]. Other papers use predetermined objectives, where stu-
dents create ML models to predict e.g., athletic moves for use in
high-school physical education [84].

While we find good examples among the 16 papers, where they
effectively contextualise ML systems, there is a lack of engagement
with the rationales behind the systems, and with exploration of
different alternatives. This would allow students to consider pros
and cons of different objectives, and to make deliberate decisions
as to how a potential ML system should be implemented. Last, it
could support students in reflecting more generally on when and
why ML is a good solution to a problem.

4.2 Training Data
Training data should provide diverse examples which adequately
represent the problem space in which the model will be used. This
emphasises the context inwhich the data is collected and the context
in which the ML system will be implemented. Designers must
ask themselves, given the intentions of the system, what are good
examples of desired behavior that we can show to the learner and
how do we sample this data?

Training data is explored in 21 of the papers with great diversity
among activities and tools. Some papers use computer-generated
data (e.g. [28]), others use mock-data tied to real-world artefacts
such as screws, cookies, smileys (e.g. [46, 77]) which give some
meaning to the data but without providing a context (e.g., why
are we sorting cookies?). There are also examples where students
generate data themselves through e.g., gestures [84].

We find examples among the papers where they take a contextu-
alised approach and have students engage directly with generating
and collecting examples of desired behavior. This provides the data
with a context for students to explore, and highlights the subjectiv-
ity of the data which can support students in rationalizing about
the credibility and limitations of data. However, most of the papers
instruct students very specifically about which data to collect and
how to do it, whereas reflections on the critical design questions in
this process are rarely scaffolded in the tools and activities. We see
a need for engaging students in questions such as: What are good
examples of desired behavior in the given context? How can they
be collected? And is the data-set representative of the problem it
describes?

4.3 Data Representation
The ‘examples of desired behavior’ identified in the previous step
must be represented in a way that highlights what is important and
what is not to model the problem accurately and as intended by the
designer. The designer must ask, depending on the context what
are the relevant and irrelevant features of the chosen examples, and
how can they be represented to illustrate this?

Of the nine papers which engage students in data representation,
a few papers use simplified visual examples to illustrate how data
can be represented in different ways, such as geometric objects,
screws, or cookies (e.g [49]). Others provide more contextualized
examples, like choosing the most important factors in a wildlife
environment [69] or physical attributes of basketball players [4].
These activities are used to scaffold discussions about which fea-
tures may be important to make accurate models and how different
representations can change ML models’ performance.
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The nine papers do, however, put little emphasis on differences
between features (other than the model’s performance), how such
information relates to those it represents, and how some features
may be more sensitive than others. Such considerations could be
included in students’ choice of features and when comparing dif-
ferent models. One model may be preferable to another because it
is built with less sensitive or more accessible data. Last, activities
and tools could scaffold reflections on fundamental questions about
which information is worth collecting to build a given model, and
if certain application areas have features that should generally be
avoided, such as race, gender, and religion when modeling human
behavior.

4.4 Model Type
For this component, designers must explore different model types
and architectures, asking which types of patterns is the model ex-
pected to use and how complex are they? Choosing to use ML to solve
the problem at hand implicitly assumes statistical dependencies,
and the designer must consider how the model should generalize
beyond the finite training data. Choosing the wrong model type
has major implications that may result in the model relying on
spurious correlations that are not stable over time or can result
socially discriminatory generalizations.

Nine papers engage students with model types and, in some
cases, let them tinker with hyperparameters (e.g. [49, 77]). One
approach, is to engage students in comparing and discussing the
pros and cons of different model types [28]. Another approach, is
to have students inspect data-sets and identify patterns, which they
can use to make assumptions about the task [46, 77]. These papers,
however, provide no or little context, and reflections and discussions
are mainly centered around optimization of model performances.
One paper focuses on xAI and has students creating explainable
models in the form of decision tress, and inspect why their models
make wrong predictions [4].

The nine papers only briefly address design implications for this
component. Some of the tools and activities let students compare
different model types but focus only on the technical differences
between the models and do not explore advantages and disadvan-
tages of each model type from a broader, contextualised perspective.
Comparing model types can scaffold students’ reflections about
how different features are related, how difficult this relation is to
model, and how increased complexity may increase the predictive
power of a model but may also make the model overfit to the train-
ing data. A simple model that is more robust, easier to train, and
more transparent may, depending on the context, be preferable to
a more complex powerful model, even at a cost in performance.
These considerations could constitute the basis for reflections on
and discussions about the possibilities and limitations of MLmodels
among students.

4.5 Optimization Objective
For this component, the designer must consider what a successful
model is and ask; How are competing models compared? It is nec-
essary to formulate an optimization problem to train a ML model,
and this is typically achieved by designing a loss-function on the
training data that measures the total error of the model.

We found only one paper which presents students to loss func-
tions and let them reflect on and reason about them. In the paper,
students use linear and polynomial regressions, and calculate the
root mean square error, while comparing it to other definitions for
calculating errors [28].

We do, however, see opportunities for engaging students in the
design questions related to this component. Prioritizing one type
of error over another, or setting up a hard constraint on a measure
incurs trade-offs with different implications for different contexts
that need to be discussed and evaluated. Take, for example, some
methods for avoiding discrimination and unfairness in ML models
which alter the optimization objective to favor fairness in the objec-
tive function [51]. However, such interventions typically come with
a cost in predictive accuracy. A number of salient normative dis-
cussions about the intentions and contexts of the ML model could
emerge as a result, which could become the focus of ML teaching
exercises at the K-12 level.

4.6 Learning Algorithm
Searching for the best possible model is an important component
in creating a ML model, and choosing how to do it is dependent on
the choices made in the other components. The designer must ask
how is the search for models performed? This includes setting up the
algorithm properly and considering which resources are available
to perform this search.

We found one paper which let students change the learning rate
of a neural network in order to explore the effects on the resulting
model [15].

Reasoning about the best choice among many possible learning
algorithms requires competencies that cannot be expected of K-12
students. However, the merits of the different algorithms and the
settings of their hyperparameters could potentially be explored in
a trial-and-error setting, where students choose and tweak algo-
rithms to observe the results in the behavior of the final model,
much like engineers do in ML practice. Such tinkering could impart
important lessons about over- and underfitting as well as the logic
behind common optimization algorithms such as gradient descent.
In a similar vein, tinkering with learning algorithms might spur
discussions of the material and environmental cost of training ML
models, thereby revealing important and often forgotten issues in
the ML discourse [71]. Considering the increasingly dire prospects
of global warming, such discussions could be an important addition
to the classroom.

4.7 Output
Deploying machine learning in real world contexts is challenged by
the difficulty of understanding its reasoning [1]. Thus it is important
to consider the context and stakeholders who are affected by a
ML model when designing its output. Opaque ML models run the
risk of leaving users feeling disempowered and make it next to
impossible for affected stakeholders to question their influence
in decisions made about them. On the other hand, users might
feel overwhelmed if confronted with the full complexity of a ML
model. Thus, designers must ask themselves how should the output
be presented?
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15 papers engage students in analysing and considering the out-
put of ML models. In many cases, students are shown only the
classification result (e.g. [49, 84]), while some also expose more
detailed information such as the probability of a classification (e.g.
[15]). There are also more contextualized examples, where stu-
dents explore how the output of ML models can be integrated in
interactive systems (e.g, in [65, 69, 84]). For example, the system
Any-Cubes allows users to control an actuator using image recog-
nition by e.g., starting a motor when a toy giraffe is shown to the
camera [65].

However, none of the papers engage students in considerations
about the implications different output types have on how users
and systems perceive a ML model’s predictions in real-world de-
ployments. E.g. some systems might actively try to hide how ML
works behind the scenes to make an interaction as fluid as possible,
where others might wish to make processes behind the decisions
more transparent to allow for inspection. Such considerations could
spur and inform discussions, among students, about the role of ML
systems in society and their personal lives.

4.8 Evaluation
In this last component, designers must ask how is the performance
of the model evaluated in its actual context of use? Deciding on eval-
uation metrics for determining a models performance in use is not
a straightforward task. The context of use is important to deter-
mine how a model should be evaluated, e.g., if a model is used to
aid medical practitioners with cancer detection, merely measuring
predictive accuracy is not appropriate, as the number of negative
examples (i.e. those without any cancer) vastly outnumber the num-
ber of positive examples. Furthermore, getting a testing data-set of
high quality requires intimate knowledge of the application area.

Of the 10 papers which engage students in evaluations of ML
systems, a few let students experience how a model performs by
playing with its application afterwards, e.g playing rock-paper-
scissor against the computer [43] or test an RC car’s ability to
navigate on a track [56]. There are also more contextualised exam-
ples, where students test a ML system in its intended use setting,
for example by letting students build models for improving athletic
moves which can be used in practice by the students [84].

However, the way evaluation is addressed in the 10 papers is
narrow in scope as they do not engage students in considering
different stakeholders, deeper reflections on what constitutes a
’good’ system or in having deeper reflections on different evaluation
metrics in relations to different application contexts. In general,
future educational tools and activities could have more focus on
how ML systems are tested in real-world contexts and how users
experience the systems.

5 DISCUSSION
Here, we discuss how the findings above can constitute a design
approach for teaching ML in K-12 education, what educators should
be mindful of when taking this approach, and what future work is
needed to further substantiate it.

Across all components from the ML model in Figure 1 existing
tools and activities mostly focus on demonstrating how ML is used
and on creating the best performing model possible. Furthermore,

as seen in Table 1, they mainly focus on components related to
the input and output and less so on the inner components such as
optimization objectives and learning algorithms. While most papers
focus on the different components from a technical, demonstrative
point of view and skim over the social contexts and the decisions
related to these (e.g. [30, 32]), we do find some examples where
choices about training data, representation, etc., are contextualised,
and where students explore alternatives (e.g. [4, 28]). However, they
are rare and do not emphasize the design rationales and intentions
behind, nor the future implications of the ML systems, which stu-
dents are engaged in constructing. The examples we found that
did engage students in how ML systems intervened in existing
social context and the ethical choices connected to implementing
such systems (e.g. [7, 70]) mostly did not engage students, or en-
gaged them only to a limited degree, in the inner components of
ML systems. As we have argued, it is crucial that students, to some
degree, understand and engage with the inner components in order
to decode [19] the intentions hidden deep within ML systems.

Acknowledging that developing and designing ML systems is
more than understanding and applying computational and math-
ematical concepts, but also includes engaging with and interven-
ing in complex socio-technical systems [2, 44] and making ethical
choices [73] poses new challenges from an educational point of
view. From a design perspective, all components should be ad-
dressed with attention to these concerns, as the design of every
one of them includes value-judgements and considerations with
implications for how the system is used and how successful it is. If
students are not engaged in these technical aspects and choices in
ML systems they risk not being confronted with the difficult dilem-
mas and choices inherently encountered when developing these
systems. The challenge thus becomes how to design educational
activities and tools which tie these different ends together such that
they expose the full complexity of ML systems in a comprehensible
manner. To address this, we argue that design has an important role
to play. By combining the model in Figure 1, which splits ML devel-
opment into a set of designed components, with the understanding
of design as described in section2, we arrive at a design approach
for teaching ML which can expose students to the concerns with
ML systems described in section 1.

To help those educators and designers of educational tools and ac-
tivities for teaching ML, who want to apply this design perspective,
with directing their work, we present a set of sensitising concepts.
They are not intended to provide a prescriptive framework along
which to work, but instead to “suggest directions along which to
look” [8, p. 148]. Table 2 presnts our sensitising concepts which
synthesise the emphasis of a design approach based on the three
design considerations from section 2 and formed by our analysis of
current tools and activities. The design-oriented approach favors
reflexive engagement with the design of ML models over demon-
strating their power and use, and thus it shifts focus from describing
what the system does to reflecting on why and how this happens
while suggesting alternatives. Rather than providing answers up
front, the design-oriented approach aims to ask questions that allow
students to interrogate ML systems. Rather than presenting ML as
the solution to a given issue, the design approach asks students
to explore said issue, engage with trade-offs, and reflect on the
consequences of applying ML. Instead of presenting ML models
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Demo Design
Answer Question (1) Taking a contextualised approach to the construction
Abstract Contextualise and evaluation of ML systems and considering the
Demonstrate power Expose limitations expected context of use.
Describe Suggest
Make easy Expose complexity (2) Exploring alternatives and emphasising design rationales
Improve performance Engage in trade-offs throughout the ML design process.
Solve problems Explore futures
Find solutions Make judgements (3) Being mindful of how intentions are embedded in ML
Pursue objectives Reflect on consequences systems and reflecting on future implications.

Table 2: A table contrasting a demo-oriented approach to teachingMLwith our suggested design-oriented approach. The design
approach is described though three design considerations and nine sensitising concepts which suggests directions alongwhich
to look for educators and teachers who want to apply the approach.

as generic solutions that might be used to solve any number of
issues, it suggests that focus is put on the contextual nature of
constructing ML models and the many different choices engineers
and ML practitioners make underway. Finally, instead of making
ML “easy" by constructing scenarios in which success is a matter
of improving performance, we suggest that teachers create scenar-
ios that expose the complexity of the ML process and explore its
limitations, without overwhelming students with technical details.

Importantly, the design approach that we suggest is not a de-
parture from the demo-approach but an addition. As numerous
researchers have shown in the work we have reviewed, the demo
approach is effective in teaching and getting K-12 students excited
about ML. Instead, the design approach is a suggestion as to how
we might educate the public to take agency in dealing with the
issues that has followed and will continue to follow in the footsteps
of ML’s success, and which we will need to deal with eventually.

With this approach, we acknowledge that is necessary to hide
away, or ‘black-box’, aspects of ML to not overwhelm students [50],
and future work should engage with where to cut the cake, so to
speak. We suggest that deciding on which parts of the system to
black-box should be done with reference to a ML design model
such as the one in Figure 1, using the design questions to engage
with the remainder of the system. Some aspects and design choices
in ML systems may be more difficult to reflect on for novices and
different age groups, and this may require priming students with a
conceptual understanding of, e.g., computational optimization for
the optimization objective and learning algorithm components or
basic statistics for the evaluation component.

In summary, we suggest a reflexive approach to teaching ML that
empowers students to engage critically with ML to complement
the commonly used demo-oriented approach that presents a de-
contextualised and uncritical view of the power of ML. Through
this strategy, the agendas of AI literacy with a critical focus on
engaging students in how technology form their everyday life [19]
are more likely to succeed, as students participate directly in the
design and deliberation of ML development and, thereby, achieve
the knowledge and perspectives necessary to engage critically with
ML going forward.

6 CONCLUSION
This paper proposes a design approach to howML is conceptualized
and taught to support AI literacy in K-12 education. We recognize
the value of demoing capabilities of ML when teaching ML, but see
a lack of focus on exposing the design questions involved in making
ML systems as well as the complexity and trade-offs inherent in
real-world ML systems. Based on design and HCI literature, we
have identified three design considerations that could help expose
the complexity of, and concerns related to, the design of ML sys-
tems: 1) Taking a contextualised approach to the construction and
evaluation of ML systems and considering the expected context of
use; 2) exploring alternatives and emphasizing design rationales
throughout the ML design process; and 3) being mindful of how
intentions are embedded in ML systems and reflecting on future
implications.

With this perspective and in combination with the ML design
model in Figure 1 which conceptualize the ML process as a set of
designed components, we have reviewed how existing research-
based tools and activities engage students in learning about ML.
We found that most tools take a demo-approach that prioritises
showing the power of ML over exposing students to the complex
decisions that go into making, deploying and maintaining a success-
ful ML system. We suggest a complementary approach based on
design. Here, instead of demonstrating the power of ML, we aim to
expose its design process. We aim to suggest rather than describe,
asking why and how rather than what, question rather than answer,
explore futures rather than solve problems, engage with the context
rather than presenting ML systems as generic solutions, exposing
the complexity of ML rather than making it easy, and exploring its
limitations rather than improving its performance.

We hope that this approach will help educators and designers of
tools and activities for teaching ML in empowering future genera-
tions when engaging with, using, or being used by ML systems.
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