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ABSTRACT
Recurrent Neural Networks (RNNs) are important tools for process-
ing sequential data such as time-series or video. Interpretability is
defined as the ability to be understood by a person and is different
from explainability, which is the ability to be explained in a mathe-
matical formulation. A key interpretability issue with RNNs is that
it is not clear how each hidden state per time step contributes to
the decision-making process in a quantitative manner. We propose
NeuroView-RNN as a family of new RNN architectures that explains
how all the time steps are used for the decision-making process.
Each member of the family is derived from a standard RNN archi-
tecture by concatenation of the hidden steps into a global linear
classifier. The global linear classifier has all the hidden states as
the input, so the weights of the classifier have a linear mapping to
the hidden states. Hence, from the weights, NeuroView-RNN can
quantify how important each time step is to a particular decision.
As a bonus, NeuroView-RNN also offers higher accuracy in many
cases compared to the RNNs and their variants. We showcase the
benefits of NeuroView-RNN by evaluating on a multitude of diverse
time-series datasets.
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1 INTRODUCTION
Recurrent neural networks (RNNs) [19] are ubiquitous in deep
learning, because their design enables them to process arbitrary
length sequential data. For example, RNNs and their variants like
the Gated Recurrent Unit (GRU) [9] and Long Short-Term Memory
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(LSTM) [19] have been core components in numerous applications,
such as machine translation [8], image/video captioning [43, 46],
and action recognition [14, 27]. There are other works in studying
the dynamics of generalization, learning, and initializations of RNNs
using neural tangent kernels [1, 2]. However, even though RNNs
are powerful tools, they are challenging to interpret and explain.

From [15], they state that interpretability has many definitions.
The definition of interpretability [15] that we will use is the ability
to be understood by a person. In addition, the term, explainability
is different from interpretability and will be defined as the ability
to be explained in a mathematical formulation.

Deep learning interpretability has become an important topic
since RNNs and their variants have become useful in several appli-
cations. The minimal amount of interpretability and explainability
does not reveal why they have this performance on their tasks.
With more interpretability with these models, it can explain why
they are performing well on their respective tasks. Plus, if the model
is not performing well, it is difficult to assess which specific parts
of the signal contribute to the final decision. Since the model is
opaque and hard to interpret, this creates a black-box effort for a
practitioner.

There are works that have contributed to providing interpretabil-
ity/explainability about how these RNNs perform. For instance,
the work from [18] explores the connection of the input variables
to the RNN in order to interpret the performance. Other works
such as [17, 20, 23] focus on the interpretability of RNNs within
their respective task, hence limiting the ability to interpret other
tasks. [13, 20, 31] create their own type of RNN in order to provide
interpretability in their application. The works of [3, 17, 23] use
some metrics to provide interpretability with the RNN/LSTM that
they use for their application.

With the works that created an interpretable RNN ([13, 20, 31]),
the main issue is that the definition of interpretability is focused on
their application, which would make it difficult to adapt to another
application for interpretability. For instance, [20] creates a finite-
automaton RNN for text classification. This work would be hard to
adapt to other applications. Another issue is that with the works
mentioned, they cannot provide a mathematical formulation that
explains the prediction with the hidden states.

Contributions. We propose NeuroView-RNN (NV-RNN) as a
novel general framework that provides enhanced interpretability
and explainability to classification.

(1) We introduce the NV-RNN framework, which consists of
a concatenation of all of the hidden states to be the input
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to the linear classifier. This linear classifier is a linear layer
that performs the classification where the input to it is the
concatenation of the hidden states. This allows a linear map-
ping to all of the hidden states to the classes. This linear
mapping allows interpretability and explainability since the
prediction for each class is in a dot product of the weights
from the linear classifier with the hidden states.

(2) Influenced from the work of [4], we provide interpretability
and explainability defined in the Introduction to showcase
how NV-RNN, NV-GRU, and NV-LSTM can provide more
understanding especially with applications and architectures
of RNNs, GRUs, and LSTMs. This is in stark contrast to
the work of [4] that used convolutional neural networks
(CNNs) for image classification which cannot on its own be
used in specific RNN architectures like bidirectional RNNs
or variable length input.

(3) We have better performance on most of the datasets from
Table 1 to show why this NV-RNN framework should be
used. In addition, we have on par performance on some of
the datasets from Table 1 and 2. The results show that we
have the accuracy performance compared to typical RNNs
and are able to interpret and explain the performance.

(4) We use numerous case studies about weight initialization,
bidirectional GRUs, semantic analysis, video action recogni-
tion, and counterfactuals to show the benefit of NV-RNN.

2 BACKGROUND
2.1 Recurrent Neural Networks
Given an input sequence data x = {xt }Tt=1 of length T with data at
time t , xt ∈ Rm , an RNN performs the following recursive block
computation at each time step t

h(t )(x) = Fθ (h
(t−1)(x),xt ) ∈ R

n , (1)

where h(0)(x) = 0 and n is the number of parameters for the hidden
state. Fθ : Rn × Rm → Rn is the hidden time steps mapping
with time-agnostic parameters θ . Each recurrent architecture has a
different Fθ . For a simple RNN [12] we have this formulation,

Fθ (h
(t−1)(x),xt ) = h

(t )(x) = ϕ
(
Wh(t−1)(x) +Uxt + b

)
, (2)

where ϕ : R→ R is the activation function that act point-wise on a
vector and θ = vect

[
{W ,U ,b}

]
contains the mapping parameters.

In case of simple RNNs, we use the sigmoid function ϕ(α) = 1
1+e (−α ) .

Other RNNs variants such as GRU [8] and LSTM [19] have a more
complex mapping Fθ . See Supplementary Material Section A.1 for
more details.

Bidirectional recurrent architectures [38], use two separated
forward and reverse direction

h(t )f (x) = Fθf (h
(t−1)
f (x),xt ) (3)

h(t )r (x) = Fθr (h
(t+1)
r (x),xt ), (4)

where θf and θr are independent of each other and together form
the network parameters θ = {θf ,θr }. The final hidden state is
obtained by concatenation of each direction hidden states,

h(t )(x) =
[
h(t )f (x)⊤,h(t )r (x)⊤

]⊤
∈ R2n . (5)

The output of a many to one recurrent architecture is generally
a linear transform of the last hidden state T :

fθ (x) = Vh
(T )(x) ∈ Rd . (6)

Many-to-one recurrent architecture refers to when the input is a
sequence of data but the output is decided at the end. They are used
in applications like sentiment analysis or time-series classification
when the input is a sequence and the output is to decide which
class it is. For recurrent architectures with average pooling [40],
the output is a linear transform of the sum of all hidden states:

fθ (x) =
t∑

t=1
Vh(t )(x) ∈ Rd . (7)

3 NV-RNN: INTERPRETABLE AND
EXPLAINABLE RECURRENT NEURAL
NETWORK

NV-RNN is inspired by the work in [4] except in that work the
authors only focused on 2D CNNs. The work in [4] focuses on the
spatial filters of CNNs whereas our work is adapted to use for RNNs.
This paper focuses on RNNs with their variants and the hidden
states per time. [4] could only be used for CNN architectures and we
adapt it to the RNN architecture which is different since CNNs focus
on spatial features while RNNs focus on temporal features. In addi-
tion, the applications to RNNs have not been explored to specific
RNN architectures like bidirectional RNN or varying input length
which scenario is not present with CNNs and image classification.
Therefore, adapting the work from [4] is non-trivial and brings
merit into interpretability and explainability in the definitions that
we denoted in the introduction.

3.1 NV Architecture Description
Given the sequences of hidden states calculated in Equation 1 for
any recurrent network, the output from NV-RNN is obtained first
by acquiring the hidden states for all time steps

q(t )(x) = ReLU
(
h(t )(x)

)
, (8)

where ReLU(α) = max(α , 0). In the next step, the output is calcu-
lated using

fθ (x) =
T∑
t=1

(
V (t )

)⊤
q(t )(x) =

T∑
t=1

f (t )(x) ∈ Rd . (9)

This is equivalent to concatenate all the hidden states per time
step into a large hidden state vectorQ(x), where

Q(x) =
[
q(1)(x)⊤,q(2)(x)⊤, . . . ,q(T )(x)⊤

]⊤
∈ RnT , (10)

and concatenate all linear output weights into one large matrix

V =
[
V (1),V (2), . . . ,V (T )

]
∈ RnT×d . (11)

and calculate the output as the following

fθ (x) = V
⊤Q(x) ∈ Rd . (12)

Where unlike commonly used recurrent architectures, the NV-
RNN concatenates all of the hidden states as the input to the linear
classifier. This is different from a typical RNN where the last hidden
state is the input to the linear classifier. This concatenation does
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increase the size of the input but is needed for both interpretabil-
ity/explainability and the performance in Table 1.

Figure 1 depicts our NV-RNN where it displays how the hidden
states are aggregated in order to provide a classification decision.
Note that this network is applied to many-to-one applications.

The use of new weights for the linear classifier at each time
step limits the NV-RNN to datasets where all data sequences have
the same length. In the case where the data sequences have vari-
able length, then zero padding will be used. This interpretability
especially in terms of which time steps are resonating with the
class helps explain which time steps are contributing the most. The
entries ofV will state in a numeric manner how much each weight
is contributing to classification.

3.2 Interpretable and Explainable Linear
Classifier

Recall that the final input to the linear classifier is the concatena-
tion of the hidden states from all the time steps. When training is
complete, we look at the weights per class and since we have the
linear relationship of the linear classifier to all the hidden states, we
have this ordered mapping of the weights to the hidden states. This
ordering is done by concatenating the first hidden state starting
from the first time step and concluding with the final time step’s
hidden state. Hence, we inspect which of the hidden states per time
are contributing to the decision-making process for every class. Re-
call that from Equation 12 we have NV-RNN denoted in that form.
Then we can substitute the right hand side to have in it in this new
form (Equation 9). The classification depends on the concatenation
of all the hidden states,Q , and the weights from the linear classifier.
For each class of the output we get

[fθ (x)]i = v
⊤
i Q(x) ∈ R, ∀ i ∈ [d], (13)

where vi ∈ RnT is the ith row of V that corresponds to class i .
Since each class output is obtained by inner product ofQ(x) andvi ,
each class acquires a set of distinct learnedvi weights and we can
interpret their values for each class. The goal is that in the training
phase, the weights of V are generalized well for a test set and we
can inspect which time steps are contributing the most by looking
at the values. Each row of V corresponds to a class, so for every
input that is sent, the softmax will choose the class with the highest
score when each of the class’s weights are multiplied by the time
steps’ hidden state activations.

In addition to interpretability, we provide explainability of the
classification. For each class, theirv explain the classification since
Q(x) is constant for each class and the determining factor are each
class’sv since the highest dot product from Equation 13 will deter-
mine which class is chosen.

This interpretability and explainability can provide more un-
derstanding of the training dynamics of NV-RNN. This provides
additional analysis to why some models perform better than others.
In Figures 2, 4, 5, and 7 we can see which time steps are critical
based on their weight values from looking at each class’sv . In this
work, we focus mostly on the weights from each class,v to assess
the explainability. The concatenation of the hidden state values is
constant and it is each class’s v that determines which class the

network chose based on dot product of the hidden state values and
the weights.

3.3 Experimental Setup
We demonstrate the performance of NV-RNN, NV-GRU and NV-
LSTM against other RNN, GRU, and LSTM architectures that are
difficult to interpret/explain. The premise is that if we are on par
or better than these models it is beneficial to use. The RNN models
that are used besides RNN are GRU and LSTM. Also we monitor
the effect of average pooling with RNNs, LSTMs, and GRUs in our
comparison. The idea to benchmark against average pooling RNNs
came from these works, [21, 47], since they have better performance
than the standalone RNNs, LSTMS, and GRUs. Datasets that were
used are the UCR repository [10], Large Movie Review [28], and
UCF11 [25]. Do note that these tasks fall under the many-to-one
regime for RNN classification. The UCR datasets had the input of
the same length while the Large Movie Review dataset has vary-
ing input length. For UCF11, we use a sampler that we sample 50
sequential frames from each video. For the UCR and Large Movie
Review datasets, we choose the best accuracy from each model
where we vary the hidden state size to 32, 64, and 128. For UCF11,
we use the hiddens state size of 32. All of the hyperparameters for
the experiments are detailed in the Supplementary Material Section
in A.2. Also since the input for the NeuroView-RNN network is
the concatenation of all the hidden states for all time steps, we
were still able to use the same GPUs that we used with the typical
RNNs. The concatenation added some additional overhead but it
did not require that significant overhead. We train all aspects of
the NeuroView-RNN from scratch and do not use any pre-trained
weights from a typical RNN. For future work that can be consid-
ered but if the hidden states are used from a trained RNN, then the
NeuroView-RNN will be a linear model and in empirical studies, a
linear model does not perform as well as a deep network like an
RNN.

3.4 Results
We see from Table 1 that for most of the datasets, any of the NV-
RNN, NV-GRU, and NV-LSTM models outperform the traditional
RNN, GRU, and LSTM and its variants. For the exact accuracies
among the different hidden state sizes look into the Supplemen-
tary Material Section A.3. It is interesting to note that with the
datasets that have a smaller amount of timesteps, the RNNs will
perform better compared to their gating variants. In addition, with
the Adiac dataset, the results show that using average pooling on
the hidden states is not the optimal solution. This is why NV-RNN
was developed to have the linear classifier learn which of the time
steps should have higher positive or negative weight values for the
different classes. From Table 2 we apply NV-GRU to a dataset where
the input has varying length and we perform on par. The reason
is that the maximum length we set is 1000 and any reviews under
that maximum length will have zero padding. From Table 3, we
outperform on another application called video action recognition.
Note, that in this application, we have to use CNN filter units and
RNN hidden state units as input to the linear classifier.

With the great performance, there is a cost associated with it.
The cost is that the input for the linear classifier greatly increases.
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Figure 1: Depiction of the NV-RNN framework. Every RNN can be converted to a NV model by having every hidden state
concatenated to the linear classifier. The input to the linear classifier is the concatenation of all the hidden states. This provides
a mapping to evaluate which time steps are the most relevant to each class.

Table 1: The best performing NV-RNN, NV-GRU, and NV-LSTM models against the best performing RNN, GRU, and LSTM
models. For most of the datasets, the NV-RNN, NV-GRU, and NV-LSTM models outperform especially on datasets that have
more time steps.

Data set RNN GRU LSTM RNN-AVG GRU-AVG LSTM-AVG NV-RNN NV-GRU NV-LSTM
Adiac 35.8% 37.08% 49.61% 10.23% 31.45% 16.87% 69.56% 68.28% 74.68%
BME 88.66% 94.66% 80% 84% 84.66% 84.66% 99.3% 98.66% 98.66%
CBF 60.66% 94.55% 90% 97.33% 98.66% 99.77% 97.77% 98.44% 98.55%
Chinatown 74.34% 97.37% 97.66% 98.83% 98.25% 98.54% 97.95% 97.08% 98.54%
Chlorine Concentration 58.17% 60.1% 57.73% 55.39% 57.05% 55.88% 83.95% 78.15% 72.39%
Fungi 49.46% 58.6% 68.81% 60.21% 58.6% 75.26% 96.77% 98.92% 99.46%
Ham 69.52% 68.57% 69.52% 74.28% 81.9% 80.95% 78.09% 80.95% 78.09%
Haptics 42.2% 41.55% 41.88% 33.76% 44.48% 41.88% 46.42% 46.1% 45.77%
Herring 67.18% 67.18% 68.75% 67.18% 65.62% 68.75% 68.75% 73.43% 68.75%
Insect Regular 100% 100% 100% 100% 100% 100% 100% 100% 100%
Insect Small 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 28.93% 49.34% 43.58% 28.48% 46.41% 39.94% 64.29% 64.54% 63.88%
Meat 48.33% 50% 50% 66.66% 86.66% 81.66% 96.66% 96.66% 96.66%
OliveOil 46.66% 50% 40% 40% 80% 40% 93.33% 93.33% 93.33%
Plane 89.52% 79.04% 95.23% 65.71% 98.09% 70.47% 99.04% 100% 99.04%
Rock 64% 74% 68% 56% 62% 60% 80% 76% 82%
SmoothSubspace 91.33% 89.33% 90.66% 90.66% 91.33% 86.66% 91.33% 96% 94%
Synthetic Control 99.66% 98.66% 98.33% 94.33% 95.66% 97.33% 99.66% 99.3% 99.3%
UMD 74.3% 99.3% 86.8% 75% 92.36% 72.22% 100% 100% 100%
Wine 59.25% 59.25% 62.96% 75.92% 79.62% 74.07% 100% 100% 100%

Table 2: The best performing NV-GRUmodels against the best performing non NV-GRUmodels with the Large Movie Review
dataset. The dataset has sentences of reviews of variable length. NV-GRU performs close to on par despite zero padding.

Data set Embedding GRU NV-GRU
Large Movie Review Word2Vec 91.87% 90.12%
Large Movie Review FastText 91.46% 89.56%
Large Movie Review GloVe 89.98% 87.76%

Table 3: The best performing NV-CNN-RNN, NV-CNN-GRU, and NV-CNN-LSTM models against the best performing CNN-
RNN, CNN-GRU, and CNN-LSTM models. The dataset is UCF11 where the task is video action recognition.

Data set NV-CNN-GRU NV-CNN-RNN NV-CNN-LSTM CNN-GRU CNN-RNN CNN-LSTM
UCF11 76.4% 74.3% 78.3% 69.3% 72.1% 72.4%
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The input of the linear classifier size greatly increases since we
concatenate all the hidden states from the input. This is in stark
contrast from the input being the last hidden state or the averaging
of the hidden states. Yet, even with the additional memory overhead,
we can still run these NV-RNN, NV-GRU, and NV-LSTM models
with an 8 GB GPU.

4 NV-RNN TIME ANALYSIS
4.1 Interpreting the Time Steps
Now with the experimental results showing that the NV-RNN, NV-
GRU, and NV-LSTM models outperform RNNs, GRUs, and LSTMs
amongmultiple datasets, the next step is to explain which time steps
are pivotal for the classification portion. This is something that is
lacking with the models that we compared. The weights from the
linear classifier have a linear mapping between the different hidden
states per time in order to directly observe which hidden states are
responsible for each class’s decision. Each class will have its own
distribution of linear classifier weights. In the following section, we
will observe different classes’ linear weights for different datasets,
different hidden state and weight initializations, and other case
studies.

This interpretation is lacking from RNNs and their variants since
the input to the linear classifier is the last hidden state. Then for
the RNNs with average pooling, the notion of averaging the hidden
states does not produce the best results as shown. Hence, by having
all the hidden states as the input for the linear classifier, we learn
the weights for each class to prioritize all the time steps. Each class
will have a set of learnable weights that can be different from other
classes. Figures 2, 4, and 5 show the weights from different NV-RNN
models for different classes.

One dataset from Table 1 is the Chinatown dataset that has 2
classes and the number of time steps is 24. Figure 2 shows the
NV-GRU weights for both classes. The weights for each class are
drastically different from each other. This notion makes sense be-
cause for binary classification, the objective would be to have the
weights drastically differ. The positive weights for class 0 become
the negative weights for class 1. Figure 3 shows the individual hid-
den state weights for more granular information. Since this dataset
only has 24 time steps, it is easy to view the individual weights for
every hidden state as opposed to other datasets. With the input
size being one, there is not a lot of activity with the hidden states
for every time step. It is interesting that for every time step there
seems to be a gradual change when looking at the nearby hidden
states at neighboring time steps.

Another dataset from Table 4 is the Fungi dataset that has 18
classes and the number of time steps is 201. This dataset is very dif-
ferent from the Chinatown dataset, since we have multiple classes.
Hence, one idea is to assess if there are weights from one class that
is similar to another class and if there are weights from one class
that is dissimilar to another class. To do this, we acquire the weights
from each class and calculate the cosine similarity between all the
classes. The cosine similarity is defined as w⊤

1 w2
| |w1 | |2 | |w2 | |2

wherew1 is
the weights of one class andw2 is the weights of another class. In
this scenario, class 5 is similar to class 16 while dissimilar to class
9. Figure 4 shows the weights for each of these classes. Based on

the cosine similarity, it is easier to perceive why class 5 and class
16 are similar. Plus, it is easy to identify that class 5 and class 9 are
dissimilar in their weights. Hence, if there is a prediction that was
meant for class 5 but went to class 9, this notion makes sense by
looking at the weights.

We show different weights from different classes of the same
dataset, but now we want to assess if NV-RNN, NV-GRU, and NV-
LSTM prioritize on different time steps. This is done by using the
Chlorine Concentration dataset, which has 3 classes and 166 time
steps. From Table 1, each of these NV models had different test
accuracies. Figure 5 shows the different weights from these NV
models for class 0. From Figure 5, all of these NV models have
a similar positive trend for the last few time steps. However, the
middle time steps are where each of these NV models starts to differ
in prioritizing certain time steps. Hence, a benefit of the NV-RNN,
NV-GRU, and NV-LSTM models is that you can interpret which
time steps are critical based on the weight value.

We use three datasets on how to interpret the NV-RNN models
after they are trained. In addition, they can also explain their pre-
dictions since for each class, the weight values are provided and
linked to all of the hidden states. Hence, with each NV-RNN model
there is a formal manner to explain the predictions since we can
acquire the hidden state values for each time step and the weights
for each class.
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Figure 2: (Left) NV-GRUweights for class 0. (Right) NV-GRU
weights for class 1. For the Chinatown dataset, there are two
classes and the weights for each class are drastically differ-
ent. Hence each class’s prediction focuses on different time
steps. In regard to class 0, the most important time steps are
4, 5, 6, and 7. In regard to class 1, the most important time
steps are 0, 1, 2, and 3.
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Figure 3: (Left) NV-GRU hidden state weights for class 0.
(Right) NV-GRUhidden stateweights for class 1. For theChi-
natown dataset, it has 24 time steps and the first hidden state
starts at the top left and going from left to right where the
last hidden state is in the bottom right.

4.2 Case Studies
We provide different case studies on how to use NV-RNN to inspect
which time steps are prioritized within the application. With this
insight, we observe how it provides additional understanding from
the application.

DifferentWeight Initializations RNNs can be difficult to train.
From [35], they state that early in the development of RNNs they
would experience the vanishing gradient or exploding gradient
problems. This led to the advent of GRUs and LSTMs. Even with
the new gating architectures of GRUs and LSTMs, they can experi-
ence issues of learning. This discovery leads others to figure out
how to improve the performance. Others such as [22, 44] found
that initializing theW weight matrix of the RNN can help in perfor-
mance. Hence, we can use NV-RNN to inspect what is happening
with the time step prioritization in regards to classification.

On the InsectWingbeat dataset, we perform an experiment to
vary the weight initialization on the hidden-to-hidden matrix. This
matrix is different from the V that is the linear classifier. We use
the NV-GRU network to inspect how that can affect the decision-
making process. The three different weight initializations are or-
thogonal, identity, and normal distributed. Figure 6 shows the three
different weight initialization schemes and you can notice that the
weight initialization scheme using a normal distribution is focusing
on different time steps compared to the same NV-GRU model but
with different weight initializations.

The twoweight initializations, orthogonal and identity, look very
similar in terms of time step prioritization with Figure 7. In Figure 7,
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Figure 4: (Left) NV-GRU weights for class 5. (Middle) NV-
GRU weights for class 9. (Right) NV-GRU weights for class
16. For the Fungi dataset, there are a total of 18 classes. Com-
pared to class 5’s weights, class 9’s weights are one of the
most different based on the cosine similarity of the weights
for each of these classes. For class 16, it is one of the most
similar classes to class 5 based on the cosine similarity of
the classes. Inspecting the NV-GRU weights from the linear
classifier can aid in interpreting which classes are similar or
dissimilar to each other.

it is the default weight initialization for NV-RNN, NV-GRU, and
NV-LSTM, which is uniform initialization. Thus it is interesting
that even with two different weight initializations, those weight
initializations look similar to each other. Yet, the normal initializa-
tion is vastly different in regard to the time step prioritization. Plus
with the NV-RNN model, it can explain why the performance is
bad by looking at the time step weight prioritization. Hence, even
if the NV-RNN model is performing in a sub-optimal manner, we
can inspect why it is performing in that manner. Using a traditional
RNN, GRU, or LSTM cannot provide this information.

Increasing the Depth (More Layers) [34] was one of the first
works to take RNNs and make them deeper by stacking RNNs
to increase the depth. In [34], unfortunately in their work, they
did not show any interpretation towards how each depth aids in
classification. There was one work [16] that used a deeper GRU for
a chemical task. They provide interpretability through a mask but
unfortunately it lacks sufficient detail in how each RNN in the deep
RNN is aiding in classification. This is where NV-RNN can aid and
show how each RNN (layer) is prioritizing the time steps in terms
of classification.
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Figure 5: (Left) NV-GRU weights for class 0. (Middle) NV-
RNN weights for class 0. (Right) NV-LSTM weights for class
0. From Table 1, each of the NV models had different test
accuracies and by inspecting each of the models, the prior-
itization of the time steps are different. The last time steps
seem to have a similar trend for all of the NVmodels but the
middle time steps have different prioritizations.

From Table 1, we focused on one layer RNNs and NV-RNNs, but
now we want to assess how increasing the depth of an NV-GRU
model will show which time steps are prioritized. The question
to inspect is if for every layer, will the time step prioritization be
similar to the previous layers? Also, at a certain depth, will the time
step prioritization be different from the previous layers? We can do
this by looking at the weights of a NV-RNN model. In this analysis,
we used the Rock dataset which has 2844 time steps and 4 classes.
We have 4 different NV-GRU models where each one has varying
depth. The first one starts at a depth of one and each additional
model increases by an additional depth. Hence the last NV-GRU
model has a depth of 4.

When comparing the test accuracy of the different depths of
NV-GRU to GRU and average pooling GRU, the NV-GRU models
would outperform the GRU and average pooling GRU.When testing
the performance among different hidden states like 32, 64, and 128,
NV-GRU would have a test performance of 76%, 76%, and 76% for
the depths of 2,3,4. This is the same performance as noted for a
one-layer NV-GRU for the same dataset. For the GRU and average
pooling GRU, the best test performance for depths of 2, 3, and 4
were 68%, 72%, and 66%. Thus, for different depths, NV-GRU is
outperforming.

Figure 8 shows the time step weights for four different NV-GRU
models with different depths. With NV-GRU, we can answer that
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Figure 6: (Left) Orthogonal. (Middle) Identity. (Right) Nor-
mal. With the same NV-GRU model but having 3 differ-
ent weight initializations for W of the NV-GRU network.
With different weight initializations, the distribution of the
weights mapping to the time steps is shown to be different.
Hence weight initialization is important because even with
similar performance, by looking inside of the linear weights
can provide insight into what the network is deciding for
classification in regards to class 2.

question in a quantitative manner if the time step prioritization
is similar among the different layers of the NV-GRU model. The
answer is no and this makes sense since the input to the next layer
is the previous layer’s representation. For some time steps, there is
some manner of consistency like with the NV-GRU models of 2, 3,
or 4 layers where the beginning time steps are close to zero. Then
the time step prioritization will vary towards the end of the time
steps.

Bidirectional RNNs There are some RNNs that were developed
that are bidirectional such that the RNN will learn in two directions.
One direction is in a causal manner (forward) going from the begin-
ning of the input to the end of it. While the other direction is in a
non-causal manner (reverse) where it begins at the end of the input
and ends at the beginning of the input. Equation 5 details how an
RNN will use both the forward and reverse hidden states. Thus the
aspect for NV-RNN is to adapt it to the bidirectional variant and to
inspect the weights. By inspecting the weights, we can assess how
the time steps are prioritized in either direction. One question to
answer is if the time steps of either direction will be symmetrical
to each other?

There are works from [26, 39] that have used bidirectional RNNs
to aid performance in their respective task. For interpretability,
they use the attention weights to show how a given input is being



FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

0 50 100 150 200 250
Time Step #

0.01

0.00

0.01

0.02

0.03

0.04

0.05

W
ei

gh
t V

al
ue

s

NV-GRU Class 2

0 50 100 150 200 250
Time Step #

0.04

0.02

0.00

0.02

0.04

0.06

0.08

W
ei

gh
t V

al
ue

s

NV-RNN Class 2

0 50 100 150 200 250
Time Step #

0.01

0.00

0.01

0.02

0.03

0.04

0.05

W
ei

gh
t V

al
ue

s

NV-LSTM Class 2

Figure 7: (Left) NV-GRU weights across time. (Middle)
NV-RNN weights across time. (Right) NV-LSTM weights
across time. All three different NV-RNN models display the
weights of time to show for this class which time steps are
themost significant. NV-GRU and NV-LSTM seem to behave
in a similar manner while NV-RNN has a different way of
prioritizing the time steps.

classified. Yet in their interpretability, they cannot provide how
each direction in the RNN is aiding for the classification. This lack
of directional interpretability is where NV-RNN will help and can
answer the questions mentioned above.

For the bidirectional analysis, we use an NV-GRU model that
allows the bidirectional nature. We use the Rock dataset which has
2844 time steps and 4 classes.

When comparing a bidirectional NV-GRU with a bidirectional
GRU and average pooling GRU, the bidirectional NV-GRU outper-
formed in test accuracy. Among the different hidden state sizes of
32, 64, and 128, the best test accuracy for bidirectional NV-GRU is
76% while for GRU is 72% and average pooling GRU is 66%. Even
for the bidirectional variant, NV-GRU is outperforming.

Figure 9 shows the time step prioritizations for the bidirectional
NV-GRU. With this NV-GRU model, we can assess if the time steps
prioritized from both directions will be symmetrical. The answer is
that there is evidence that we do not see this notion and we can see
that in a visual and quantitative manner (Figure 9). Looking at the
vertical columns for each direction, each direction does not have
the same prioritization.

Sentiment Analysis The previous datasets that were shown
consisted of time-series data. Now we will use a movie review
dataset [28] with three embedding techniques, Word2Vec [30], Fast-
text [6], and GloVe [36], to convert each word into an embedding
vector. Since NV-RNN is versatile, we can inspect how the weights
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Figure 8: (Top Left) NV-GRU weights for class 0. (Top Right)
NV-GRU (2 Layers) weights for class 0. (Bottom Left) NV-
GRU (3 Layers) weights for class 0. (Bottom Right) NV-GRU
(4 Layers) weights for class 0. By increasing the number
of layers for the NV-GRU model, the prioritization of time
steps is not consistently the same among all the layers. Each
vertical column is the weight value at that time step.

for each class are prioritized for text data. In this dataset, the task is
sentiment classification where one class is positive sentiment and
the second class is negative sentiment.
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Figure 9: (Left) NV-GRU weights for class 0. (Right) Bidirec-
tional NV-GRU weights for class 0. The forward and reverse
prioritizations of time steps looks very similar. Each vertical
column is the weight value at that time step.

Other works have provided different forms of understanding the
differences of these embedding techniques. [41] show the similari-
ties of GloVe and a skip-gram Word2Vec in a mathematical manner.
[33] use a couple of evaluation tasks like correlation to show the
differences or similarities of these embedding techniques. [42] uses
eigenvector analysis to compare the embedding vectors to assess
how the words cluster together. Yet, all of these techniques cannot
link the time steps to the class, which is what NV-RNN will show.

Table 2 shows the performance and in this scenario, NV-GRU
performs on par. Note that for this dataset, there are reviews of
variable length so for a GRU the last hidden state per review is the
input to the linear classifier. However, for NV-GRU, padding has
to be applied since the input for the linear classifier has to be of
fixed size. Hence, it does explain the small drop in performance. As
for padding, we only used the first 1,000 words of the review. With
reviews that are smaller than 1,000 words, zero padding would be
applied. Hence, there can be a good parameter to pad the reviews.
Even with this disadvantage, NV-GRU is still on par and only loses
one to two percent of test accuracy.

Figures 10, 11, and 12 display the weights for each class. Even
though there are three different embedding techniques, Word2Vec,
FastText, and GloVe, it seems that the prioritization for the time
steps in each embedding looks to be quite similar in the broad
general sense. For the negative sentiment class, it is interesting
how with all the embedding inputs, the last time steps are negative.
This does make sense since FastText is a continuation of Word2Vec
except for the case that FastText will approximate words that are
not in the dictionary of words that it had learned. It is interesting

how the GloVe embedding looks to have similar broad time step
prioritization since it is a matrix factorization technique compared
to Word2Vec and FastText. There are very specific differences based
on the magnitudes but in a general manner all the embedding
techniques for the input will result in the same general trend for
each class in terms of the weights.

From Figures 10 and 11, we provide another experiment to see
which words are tied to the highest weights based on the time step
index. To reduce the amount of reviews, we only look at the top 5
reviews for each class based on the pre-softmax score. In addition,
we look at the top 10 weights per class. When inspecting the words
for each class, we find pronouns and prepositions. However, one
particular notion we inspect is particular words for each class. For
the negative sentiment class, we observe the words, bad, dodgy,
unpleasant, and pointless from the time steps with the highest
weights. For the positive sentiment class, we observe the words,
mature, happy, perfect, and top. We would hope to observe this
notion because if the class is centered around negative sentiments,
then the words that should be linked to the class would be bad
words. The same notion applies to the positive sentiment class.
Also, we did observe that for the positive sentiment class, we did
not notice any negative sentiment words like bad or terrible.
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Figure 10: (Left) NV-GRU weights for class 0. (Right) NV-
GRUweights for class 1. For theMovie Review dataset, there
are two classes and the weights for each class are drastically
different. In addition, the input is theWord2Vec embedding
of each word per time step. Compared to continuous time-
series data, the prioritization of time steps is not as smooth
compared to datasets with continuous data.

Video Action Recognition In this application, the input to
the network is a collection of images from a video. The task is to
predict which of the actions is presented in the video where the
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Figure 11: (Left) NV-GRU weights for class 0. (Right) NV-
GRUweights for class 1. For theMovie Review dataset, there
are two classes and the weights for each class are drastically
different. In addition, the input is the FastText embedding
of each word per time step. Compared to continuous time-
series data, the prioritization of time steps is not as smooth
compared to datasets with continuous data.

dataset is UCF11 [25]. In Table 3, we show that the NV models are
outperforming and we inspect the NV-CNN-GRU model. Note that
in this scenario we are concatenating both the CNN filter units and
the GRU hidden states.

There have beenworks such as [11, 29] to provide interpretability
with video action recognition with CNN-LSTM models. Yet, one of
the main issues is that they cannot explain which part, the CNN or
LSTM is contributing to the classification. This is where NV-CNN-
GRU is able to provide both interpretability and explainability.

In Figure 13, we see that the mean positive weights are towards
the CNN filter units as opposed to the GRU hidden states. This is
interesting to notice that most of the hidden state time step mean
weights are negative. This does make sense since the model is se-
quential and the NV-GRU is depending on the CNN’s features. In
addition, the dataset sampler is sampling 50 sequential frames and
most of the videos contain more than 50 frames. Thus, the impres-
sion is that the hidden states may not be providing as much useful
information as the CNN. From this work, [24], there is evidence that
video action recognition datasets tend to have visual bias so it does
make sense that with the NV-CNN-GRUmodel, it has more positive
weights towards the spatial information. Given this information,
there could be future work to mitigate the CNN/GRU prioritization
while retaining the accuracy. Ideas from this work, [32], could aid
in mitigating the prioritization.
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Figure 12: (Left) NV-GRU weights for class 0. (Right) NV-
GRUweights for class 1. For theMovie Review dataset, there
are two classes and the weights for each class are drasti-
cally different. In addition, the input is theGloVe embedding
of each word per time step. Compared to continuous time-
series data, the prioritization of time steps is not as smooth
compared to datasets with continuous data.

Table 4: Performance of the model with Time Analysis.
From NV-GRU we inspect which time steps contribute to
each class by their weight value. In the Chinatown dataset,
we remove the top weights for each class and calculate the
overall class accuracy. Immediately, the test accuracy drops
but then will come back up.

Network # of Time Steps Test Accuracy
NV-GRU 0 96.4
NV-GRU 1 72.7
NV-GRU 5 43.87
NV-GRU 10 89.5

Counterfactuals There have been works [5, 7, 37, 45] in using
counterfactuals to understand how the RNN is performing. [5, 7,
37] use the counterfactuals for regression applications with RNNs.
While [45] uses the counterfactuals for classification applications
with RNNs.

From the interpretability and explainability that NV-RNN pro-
vides, we can create counterfactuals called Time Analysis. With
each class having a unique set of weights per time step, we look
at the mean hidden state weights per time step and set the top K
time steps to zero. The idea is that the performance should drop
if the information from the time-series data related to the time
step is omitted. it will make it harder for the classifier to perform
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Figure 13: Time step prioritization and filter unit prioritiza-
tion (Class 5) for the NV-CNN-GRU model for UCF11. For
this model, the positive mean weights are for the first layer
of the CNN portion. Here the time step mean weights are
negative.

adequately. We set the top K time steps to zero to evaluate the
degradation of the per-class accuracy.

For Time Analysis, we utilize the information we learned from
Figure 2, which shows that for each class there were about 5 top
positive time steps. In Table 4, this confirms that if we set those
time steps to 0, then the class accuracy will drop. The interesting
aspect is that after we remove more time steps, the class accuracy
will increase but never get to the level of the original test accuracy.
Note that this accuracy is for one of the NV-GRU models that did
not achieve the best accuracy listed in Table 1. The reason for this

dip is that we are now eliminating the negative time steps so it will
affect the classification decision. Additional experiments are in the
Supplementary Material Section in A.4 where there are individual
class performance results.

5 CONCLUSION
We propose a novel model, NV-RNN, as an alternative to traditional
RNNs that has superior to on par performance to RNNs under
multiple datasets. NV-RNN can provide interpretability and explain
the prediction in a mathematical formulation. NV-RNN has the
potential to be used in a wide array of different RNN applications.
With its generic framework, it is used to show the connection
between all of the hidden states and the classification. Thus, there
are other scenarios within the scope of RNNs where it can provide
additional understanding where typical RNNs are unable to provide.
Overall, this type of interpretability and explainability is helpful to
understand what is happening. In addition, with the concatenation
of all the hidden states, it enables us to understand more and in
most cases have higher performance.
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A SUPPLEMENTARY MATERIAL
A.1 Architecture descriptions
In this section, we provide the recursive block computation of other
recurrent architecture variants that has been used in this paper. To
convert each model to it’s NeuroView version, we concatenate all
hidden states h(t )(x) and calculate the output using as described in
Equation 12.

A.1.1 Gated Recurrent Unit (GRU).

r (t )(x) = ϕ(Wirxt + bir +Whrh
(t−1)(x) + bhr ) (14)

z(t )(x) = ϕ(Wizxt + biz +Whzh
(t−1)(x) + bhz ) (15)

n(t )(x) = tanh(Winxt + bin + r
(t )(x) ⊙ (Whnh

(t−1)(x) + bhn ))
(16)

h(t )(x) = (1 − z(t )(x)) ⊙ n(t )(x) + z(t )(x) ⊙ z(t−1)(x), (17)

whereϕ(α) = 1
1+e (−α ) is the sigmoid function and ⊙ is theHadamard

product.

A.1.2 Long Short-Term Memory (LSTM) .

i(t )(x) = ϕ(Wiixt + bii +Whih
(t−1)(x) + bhi ) (18)

f (t )(x) = ϕ(Wi f xt + bi f +Whf h
(t−1)(x) + bhf ) (19)

д(t )(x) = tanh(Wiдxt + biд +Whдh
(t−1)(x) + bhд) (20)

o(t )(x) = ϕ(Wioxt + bio +Whoh
(t−1)(x) + bho ) (21)

c(t )(x) = f (t ) ⊙ c(t−1)(x) + i(t ) ⊙ д(t )(x) (22)

h(t )(x) = o(t )(x) ⊙ tanh(c(t )(x)) (23)

A.2 Hyperparameter Optimization
FromTable 1, the results were taking the best model among different
hidden states sizes which were 32, 64, and 128. The optimizer used
is Adam. The learning rate is 0.001. The number of epochs is 1000.

For Large Movie Review dataset, we first preprocess the text
by converting it to lowercase, removing all numbers, punctuation
and special characters. Then for Word2Vec and Fasttext embedding
method, we use dimensionality of 100 for word vectors. We count
all words that appear at least once into our vocabulary, resulting
in a vocabulary of size 122,762. Within the model training, the
maximumdistance between the current and predictedwordwithin a
sentence is 5. Bothmodels are trained with the movie review dataset
itself without any pre-training process. For GloVe embedding, we
use a pre-trained model GloVe.6B whose embedding is trained on
Wikipedia 2014 andGigaword 5th Edition corporawith 6 billion word
tokens and 400,000 vocabulary size. We use the word embedding
dimension of 100 so that it is consistent with other embedding
methods.

In training the models in Table 2, the three different hidden state
sizes used were 32, 64, and 128. The models were trained for 20
epochs. The optimizer used is Adam. The learning rate is 0.001. The
batch size is 100.

In training the models in Table 3, the hidden state size is set to 32.
The number of epochs is 100. The learning rates for NV-CNN-RNN,
NV-CNN-GRU, and NV-CNN-LSTM were set to 0.001 while the
learning rates for CNN-RNN, CNN-GRU, and CNN-LSTM were set

to 0.0001. The CNN architecture used was a 3 layer CNN with each
CNN layer having a max-pooling layer placed after the CNN layer.
The first CNN layer had an input of 3 channels and an output of 32
channels with a kernel size of 3 and padding of 1. The second CNN
layer had an input of 32 channels and an output of 64 channels with
a kernel size of 3 and a padding of 1. The third CNN layer had an
input of 64 channels and an output of 64 channels with a kernel size
of 3 and padding of 1. The activation function used is a ReLU. Every
max pooling parameter would pool by a factor of 2. The input size
for all the RNNs, GRUs, and LSTMs would be 28*28*64.

A.3 Ablation Studies
We conduct ablation studies for different hidden state dimension of
32, 64, 128 for all the models mentioned in Table 1. The results can
be found in Table 5, Table 6 and Table 7.

A.4 Additional Counterfactuals
Table ?? shows the results of using Time Analysis on the test dataset.
By focusing on one class at a time, we can quantitatively assess how
perturbing the time steps within the data can affect the performance.
With one time step modified, the accuracy dropped by one percent.
When we started to set more of the input data at certain time steps
to zero, the accuracy would continue to drop.

One interesting observation is to see which time steps have a
negative mean value and to set the most negative weights to zero.
Table ?? displays the test accuracy for the negative Time Analysis.
The test accuracy will remain the same, but when ten input data
time steps are set to zero the test accuracy of that class has increased.
Hence the interpretability of this model can provide these insights
and practitioners can develop test cases for their data to understand
what happens if you perturb the data to certain degrees.
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Table 5: An ablation study of NV-RNN, NV-GRU, and NV-LSTM models with hidden state sizes of 32, 64, 128.

Data set NV-GRU32 NV-GRU64 NV-GRU128 NV-RNN32 NV-RNN64 NV-RNN128 NV-LSTM32 NV-LSTM64 NV-LSTM128
Adiac 68.28% 64.45% 68.03% 68.79% 64.96% 69.56% 68.03% 71.35% 74.68%
BME 98.66% 98.66% 98.66% 98.66% 99.33% 98.66% 98.66% 98% 98.66%
CBF 95.66% 98% 98.44% 97.77% 96% 97.44% 98.11% 98.22% 98.55%
Chinatown 96.5% 97.08% 97.08% 97.95% 97.08% 97.95% 98.54% 98.54% 98.25%
Chlorine Concentration 74.58% 75.44% 78.15% 80.33% 82.21% 83.95% 68.82% 69.01% 72.39%
Fungi 98.92% 97.84% 96.23% 96.77% 96.23% 94.08% 98.92% 99.46% 98.38%
Ham 80.95% 78.09% 79.04% 78.09% 75.23% 78.09% 77.14% 77.14% 78.09%
Haptics 46.1% 45.77% 45.45% 47.07% 45.12% 46.42% 45.45% 45.77% 44.8%
Herring 71.87% 73.43% 68.75% 68.75% 68.75% 68.75% 68.75% 68.75% 67.18%
InsectRT 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectST 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 64.54% 64.39% 64.04% 63.98% 64.19% 64.29% 63.58% 63.88% 63.73%
Meat 91.66% 96.66% 95% 95% 93.33% 96.66% 96.66% 93.33% 93.33%
OliveOil 93.33% 93.33% 90% 90% 93.33% 93.33% 90% 93.33% 93.33%
Plane 98.09% 98.09% 100% 99.04% 98.09% 97.14% 97.14% 99.04% 99.04%
Rock 68% 70% 76% 76% 80% 72% 82% 74% 80%
SmoothSubspace 96% 94.66% 95.33% 90.66% 91.33% 90.66% 94% 90% 90%
Synthetic Control 99.33% 98.66% 98.66% 99.33% 98.33% 99.66% 99.33% 98.33% 99%
UMD 100% 100% 100% 100% 100% 100% 100% 100% 100%
Wine 100% 98.14% 100% 100% 100% 100% 100% 100% 96.29%

Table 6: An ablation study of RNN, GRU, and LSTM models with hidden state sizes of 32, 64, 128.

Data set GRU32 GRU64 GRU128 RNN32 RNN64 RNN128 LSTM32 LSTM64 LSTM128
Adiac 30.69% 36.82% 37.08% 31.2% 35.8% 33.75% 39.13% 49.61% 48.33%
BME 93.33% 94.66% 92.66% 77.33% 88.66% 74% 80% 76.66% 78%
CBF 76.44% 81.66% 94.55% 60.66% 56.66% 57.22% 90% 87.11% 84.55%
Chinatown 96.79% 97.37% 97.37% 74.34% 72.59% 72.01% 97.66% 97.66% 97.66%
Chlorine Concentration 58.07% 60.1% 59.74% 56.48% 57.16% 58.17% 56.71% 57.31% 57.73%
Fungi 43.54% 50.53% 58.6% 49.46% 47.31% 46.23% 45.16% 67.2% 68.81%
Ham 68.57% 67.61% 68.57% 68.57% 69.52% 69.52% 69.52% 69.52% 67.61%
Haptics 41.23% 41.55% 40.25% 37.33% 40.58% 42.2% 38.31% 41.23% 41.88%
Herring 65.62% 65.62% 67.18% 65.62% 67.18% 67.18% 68.75% 65.62% 67.18%
InsectRT 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectST 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 44.34% 48.98% 49.34% 26.61% 28.93% 27.87% 38.68% 43.58% 28.73%
Meat 45% 45% 50% 48.33% 48.33% 45% 50% 46.66% 41.66%
OliveOil 50% 40% 40% 46.66% 40% 40% 40% 40% 40%
Plane 68.57% 67.61% 79.04% 59.04% 62.85% 89.52% 87.61% 91.42% 95.23%
Rock 68% 74% 64% 64% 62% 60% 62% 68% 66%
SmoothSubspace 89.33% 89.33% 89.33% 91.33% 90.66% 90.66% 88.66% 90% 90.66%
Synthetic Control 98% 98.66% 97.33% 79% 98% 99.66% 96.33% 98.33% 98.33%
UMD 66.66% 88.88% 99.3% 74.3% 65.97% 66.66% 65.27% 86.8% 67.36%
Wine 59.25% 55.55% 55.55% 57.4% 59.25% 50% 62.96% 53.7% 59.25%
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Table 7: An ablation study of RNN-AVG, GRU-AVG, and LSTM-AVG models with hidden state sizes of 32, 64, 128.

Data set GRU-AVG32 GRU-AVG64 GRU-AVG128 RNN-AVG32 RNN-AVG64 RNN-AVG128 LSTM-AVG32 LSTM-AVG64 LSTM-AVG128
Adiac 15.8% 19.1% 31.4% 10.2% 9.4% 7.9% 7.6% 16.8% 9.2%
BME 84% 84% 84.6% 84% 72% 81.3% 64% 84.6% 84%
CBF 98.3% 98.6% 97.6% 97.3% 96.2% 96.6% 98% 99.7% 97.4%
Chinatown 98.2% 97.6% 98.2% 98.5% 98.8% 98.8% 98.5% 98.5% 98.5%
Chlorine Concentration 56.3% 56.8% 57% 55.3% 55.4% 55% 55.6% 55.8% 55.2%
Fungi 39.7% 48.9% 58.6% 40.8% 46.2% 60.2% 58.6% 58% 75.2%
Ham 75.2% 81.9% 77.1% 74.2% 73.3% 71.4% 80.9% 75.2% 77.1%
Haptics 38.6% 42.5% 44.4% 32.7% 33.1% 33.7% 34.7% 41.8% 39.6%
Herring 62.5% 65.6% 65.6% 67.1% 64% 59.3% 60.9% 64% 68.7%
InsectRT 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectST 100% 100% 100% 100% 100% 100% 100% 100% 100%
InsectWingbeat 26.2% 46.4% 44.6% 28.4% 23% 26.1% 32.4% 32.7% 39.9%
Meat 66.6% 68.3% 86.6% 66.6% 66.6% 65% 81.6% 66.6% 65%
OliveOil 40% 40% 80% 40% 40% 40% 40% 40% 40%
Plane 65.7% 93.3% 98% 65.7% 59% 62.8% 69.5% 70.4% 68.5%
Rock 52% 54% 62% 52% 56% 50% 50% 56% 60%
SmoothSubspace 91.3% 88% 88% 89.3% 90% 90.6% 86.6% 84% 86%
Synthetic Control 94.6% 92.3% 95.6% 88% 85.3% 94.3% 96% 95.6% 97.3%
UMD 66.6% 84.7% 92.3% 66.6% 75% 72.9% 70.8% 72.2% 72.2%
Wine 79.6% 72.2% 66.6% 75.9% 61.1% 66.6% 74% 72.2% 66.6%
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