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ABSTRACT
Much of machine learning research focuses on predictive accuracy:

given a task, create a machine learning model (or algorithm) that

maximizes accuracy. In many settings, however, the final prediction

or decision of a system is under the control of a human, who uses

an algorithm’s output along with their own personal expertise in

order to produce a combined prediction. One ultimate goal of such

collaborative systems is complementarity: that is, to produce lower

loss (equivalently, greater payoff or utility) than either the human

or algorithm alone. However, experimental results have shown that

even in carefully-designed systems, complementary performance

can be elusive. Our work provides three key contributions. First,

we provide a theoretical framework for modeling simple human-

algorithm systems and demonstrate that multiple prior analyses

can be expressed within it. Next, we use this model to prove condi-

tions where complementarity is impossible, and give constructive

examples of where complementarity is achievable. Finally, we dis-

cuss the implications of our findings, especially with respect to

the fairness of a classifier. In sum, these results deepen our un-

derstanding of key factors influencing the combined performance

of human-algorithm systems, giving insight into how algorithmic

tools can best be designed for collaborative environments.
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1 INTRODUCTION
Consider a prediction task where the goal is to take a set of features

about the world as input and predict an outcome of interest. A

typical machine learning approach to such a task is to attempt to

select a model with low (generalization) loss for the problem at
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(a) Scenario 1: Combined system has
higher loss than either unaided hu-
man or algorithm.

(b) Scenario 2: Combined system has
lower loss than unaided human, but
higher loss than algorithm.

(c) Scenario 3: Complementary perfor-
mance: lower error than either un-
aided human or algorithm.

Figure 1: Three possible scenarios for human-algorithm col-
laboration, each with the same algorithmic and unaided hu-
man loss. However, the loss of the combined system (hu-
man using the algorithm) might vary substantially. Section
4 gives a more detailed analysis.
hand. If such a model is applied directly to the prediction task, it

will minimize expected loss.

However, this standard approach does not necessarily reflect

the way that machine learning tools are actually implemented. Of-

ten, algorithmic predictions are presented to humans, who then

make a final decision by additionally relying on their own expertise

https://doi.org/10.1145/3531146.3533221
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[1, 17, 35, 38]. For example, consider a doctor looking at a medical

record and trying to make a determination of whether disease is

present. An algorithmic prediction based on the record may be

useful, but it almost certainly will not be the sole factor influencing

the doctor’s diagnosis. For example, the doctor may have access

to different data, such as conversations with the patient. The doc-

tor may also have access to different knowledge, such as distilled

expertise from years of practice. The doctor’s decision will be a

function of the algorithm’s prediction, as well as their own inherent

belief. Note that the doctor’s decision-making may be imperfect,

such as relying on their own judgement when the algorithm may

have better performance. A successful outcome occurs when the

combined system (the doctor using algorithmic output) has low

loss, not when the algorithm alone has low loss. Figure 1 illustrates

three scenarios where a combined human-algorithm system could

have differing levels of loss.

In particular, one especially valuable goal is complementarity (or

complementary performance). Complementarity (originally defined

in Bansal et al. [2]) is achieved whenever the combined human-

algorithm system has strictly lower expected loss than either the

human or the algorithm alone (Figure 1c). Complementarity is

not necessary for a combined system to be deemed successful: for

example, a combined system that does better than the human alone,

but not necessarily better than the algorithm alone, would still

reflect an improvement from a human-alone status-quo. However,

complementarity creates the strongest incentive for adoption of a

combined human-algorithm system, which is why it is the focus of

our analysis.

Contributions: At a high level, we address the following prob-

lems: (i) How do we formally and tractably model human-algorithm
collaborative systems? (ii) When can human-algorithm collaborative
systems produce higher accuracy than either the human or algorithm
alone? (iii) What are the fairness implications of such collaborative
systems?

The contributions of this work are three-fold. First, in Section 3,

we introduce a simple theoretical framework for analyzing human-

algorithm collaboration, and demonstrate the richness of this frame-

work by showing that it can encapsulate models from previous

works analyzing human decision-making. In Section 4, we provide

a simple, concrete motivating example using this framework that

illustrates the core results of this paper.

Next, in Section 5, we use this approach to analyze complementar-

ity. First, we present several impossibility results that characterize

regimes in which human-algorithm collaboration can never achieve

complementarity. We then give concrete conditions for when com-

plementarity can be achieved. In particular, our results suggest that

complementarity is easier to achieve when loss rates are highly

variable: when the unaided human (or algorithm) has very low loss

on some inputs and very high loss on inputs. Disparate levels of

loss raises issues of fairness, which we turn to next.

In Section 6 we conclude our analysis by examining the fairness

impacts of complementarity. The variability in loss rates implied

by our results has implications for fairness, since types of inputs

with very high error rates may correspond to protected attributes,

such as race, gender, or ethnicity. To investigate this concern, we

propose and analyze three types of fairness relating to human-

algorithm systems, giving conditions for when they can and cannot

be achieved. One of main results shows that when complementarity

is achieved, at least one group does worse in the combined system

than under the human-only status quo. Additionally, we give a

simple condition where the combined human-algorithm system

will guarantee that loss disparity between different protected groups

will not increase.

2 RELATEDWORK
2.1 Human-Algorithm Collaboration
A series of papers have explored issues related to human-algorithm

collaboration. For example, Poursabzi-Sangdeh et al. [28] and Yin

et al. [38] analyze how explainability and accuracy, respectively,

influence how humans use algorithmic predictions. Similarly, Di-

etvorst and Bharti [8] hypothesize that humans may prefer algo-

rithmic predictions that are more variable in their loss rates and

Dietvorst et al. [9] suggests that allowing algorithmic predictions

to be modified may make humans more likely to use them.

Other papers center more on in-depth qualitative assessments of

how professionals incorporate tailor-made algorithmic tools into

their workflow. For example, Lebovitz et al. [21, 22] studies how

doctors in major US hospitals use AI predictions in their daily work.

Similarly, Okolo et al. [27] studies how community healthcare work-

ers in India believe AI tools could influence their work. Finally, Yang

et al. [37] studies how UX designers work with machine learning

tools and the data scientists who create them.

Some research teams that develop tools for human-in-the-loop

settings have run experiments analyzing how their tools perform

with human collaboration. For example, Beede et al. [3], Raghu et al.

[29] both study how an AI tool for predicting diabetic retinopathy

fits in with a broader ecosystem (human doctors and the overall

healthcare system). Similarly, De-Arteaga et al. [6] studies how child

welfare call screeners incorporate algorithmic predictions in their

risk assessments. Tan et al. [33] studies how human and algorithmic

distributions of loss rates differ for recividism predictions for the

COMPAS dataset (but not in ways that allowed for complementary

performance by combined systems). Similarly, Geirhos et al. [13]

compares the similarity (consistency) of loss in predictions made

by humans and a deep learning algorithm.

Some computer science papers specifically analyze models of

human-algorithm interaction, such as [1, 4, 17, 30, 31, 35]. Of these,

Bansal et al. [2] is especially relevant because it is framed through

the goal of complementarity. Bansal et al. [1] also highlights the

fact that the optimizing for the algorithm’s error may not minimize

the loss of the combined system. In Section 3, we show how human

decision-making processes rules inspired by analyses Bansal et al.

[1] and Vodrahalli et al. [35] can be represented in our model. Some

papers show how to build models optimized for a human-algorithm

deferral system, where the final decision is made by either the

human or the algorithm [5, 25, 26]. Straitouri et al. [32] studies

a variant of this problem for classification where the algorithm

presents a subset of possible labels to the human, who selects the

final decision from among them.
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2.2 Fairness in Human-Algorithm
Collaboration

Some papers specifically consider the fairness implications of com-

bined human-algorithm systems. For example, Madras et al. [23]

studies fairness and accuracy in deferring to a human expert, while

Keswani et al. [18, 19] extends this analysis to deferring to multiple

different human experts. For example, Gillis et al. [14] takes a theo-

retical approach towards modeling the human-algorithm system

and gives conditions where adding a biased (unfair) human can

change the fairness properties of the overall system. Valera et al.

[34] studies a system with multiple biased “experts”, where assign-

ing the correct expert to each task can improve accuracy while still

satisfying fairness requirements.

2.3 Related Papers From Other Areas
Finally, some papers in seemingly unrelated areas end up being

relevant to our analysis. For example, ensemble learning studies

how to incorporate predictions from multiple algorithms into a

unified (more accurate) system [20]. Ensemble learning differs from

our analysis in that each expert (predictor) is assumed to be an

algorithm, and predictions are assumed to be combined by some ad-

ditional algorithm under our control (rather than a human decision-

maker we cannot control). However, certain factors identified in

the ensemble learning literature as affecting overall performance,

such as diversity, are relevant for our analysis [7]. Additionally,

multiple works study how fairness properties of predictors change

when they are composed [10, 11, 36]. These works are relevant

to our analysis in Section 6 of the fairness of a combined human-

algorithm system, but differ somewhat from ours: in general, these

other papers tend to study fairness of allocating or achieving some

desired prediction, while our analysis describes fairness as equal

loss across groups. Finally, Meehl [24] compares statistical and clin-

ical methods of reasoning, a framing that parallels to our analysis

of algorithmic versus human prediction methods.

3 MODEL AND ASSUMPTIONS
3.1 Model
Our model considers a prediction task: given some element x ∈ X,

make a predictiony ∈ Y that minimizes some loss functionL, with

loss bounded ≥ 0. This loss could reflect any error rates for any

type of learning problem—for example, regression and classification

tasks could both be represented by this loss function. We model

the input space X as being made up of N discrete regimes: all

inputs within the same regime are identical from the perspective

of algorithmic and human loss. This is without loss of generality,

given that N could be arbitrarily large. We are not assuming that

either the human or algorithm has knowledge of these regimes,

simply that they exist. We will denote the probability of seeing

regime i is given by pi , with
∑N
i=1 pi = 1.

The human-algorithm system consists of three components:

(1) An algorithm, which for each regime in the input space

xi ∈ X makes a prediction ŷai with some loss rate ai . The

average loss is given by

∑N
i=1 pi · ai = A. We can write

ai = A+δai , with
∑N
i=1 pi · δai = 0. The term δai represents

how much ai varies (differs from the average loss A).

(2) A unaided human, which similarly for each regime in the

input space xi ∈ X makes some prediction ŷhi . The average

loss of the human is given by

∑N
i=1 pi ·hi = H . Similarly, we

write write hi = H + δhi , with
∑N
i=1 pi · δhi = 0.

(3) Finally, some combiner (a human using algorithmic input)

д(ŷai , ŷ
h
i ), which takes predictions given by the algorithm

and unaided human and returns a combined prediction, ŷci .
The combining function reflects human decision-making: it

could select the algorithm’s prediction, the unaided human’s

prediction, or interpolate between the two of them.We could

also view this as a (loss) combining function c(ai ,hi ) that
takes the algorithmic loss and human loss on a particular

instance and returns some combined loss.

In general, we may not have control over all (or even any) of

these components. For example, the combining function reflects

human judgement, which typically can’t be directly manipulated.

A primary goal of our analyses is to determine when a human-

algorithm system displays complementarity, defined in Definition

1 below.

Definition 1 (From Bansal et al. [2]). A human-algorithm
system displays complementary performance when the combined
system has (strictly) lower loss than either the human or algorithm:

N∑
i=1

pi · c(ai ,hi ) < min

( N∑
i=1

pi · ai ,
N∑
i=1

pi · hi

)
= min(A,H )

3.2 Assumptions
The combining functionmodels the key question in human-algorithm

collaboration: how do humans incorporate algorithmic predictions

with their own expertise? In this work, we will make two main

assumptions about how such combination occurs. First, throughout

this paper, we will find it useful to work in the space of combining

losses, rather than combining predictions. Specifically, we will use

the c(ai ,hi ) loss combining function. Assumption 1 describes the

assumption this implies.

Assumption 1. The loss of a combined human-algorithm system
can be modeled by a combining rule relying only on the loss rates of
the unaided human and algorithm in a particular regime: c(ai ,hi ).
That is, regimes with identical (unaided human, algorithm) pairs of
loss rates are treated identically.

This assumption reflects the case where the level of accuracy in

the algorithm and (unaided) human is the only feature influencing

the accuracy of the combined system. An example of a situation

that might violate this assumption is if regime 1 and 2 both have

loss of 3% for the unaided human and 5% for the algorithm, but

the human using the algorithm (combined system) has loss of 3%

for regime 1 and 4% for regime 2. Considering the case where this

assumption is relaxed could be an interesting avenue for future

work: however, it would likely result in much more complicated

analysis.

Next, Assumption 2 below, describes the assumption that the

combining rule’s outputs are bounded.
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Assumption 2. For each regime, the loss of the combined system
is bounded between the loss of the human and algorithm:

min(ai ,hi ) ≤ c(ai ,hi ) ≤ max(ai ,hi )

This assumption reflects a case where the combiner operates by

interpolating between the predictions made by the human or algo-

rithm. An example of a situation that might violate this assumption

is if the combined system has loss 3% in a certain regime, where

the human has loss 4% and the algorithm has loss 6% in that regime.

A bounded combining rule makes modeling human-algorithm col-

laboration more realistic: complementarity is trivial to achieve if

the combining rule’s loss can be arbitrarily disconnected from the

loss of the human and algorithm.

It’s worth considering why a system may satisfy bounded inputs

(Assumption 2) and still exhibit complementarity. Assumption 2

refers to bounds at the level of each regime, while complementarity

refers to overall average loss. For example, Scenario 3 (Table 3) in

Section 4 obeys the bound in Assumption 2, and yet also achieves

complementarity.

3.3 Weighting function
In this work, we will find it helpful to think about the combined

human-algorithm system as involving a weighting function 0 ≤

wh (ai ,hi ) ≤ 1 controlling how much the human influences the

final prediction:

c(ai ,hi ) = (1 −wh (ai ,hi )) · ai +wh (ai ,hi ) · hi (1)

Lemma 1, below, shows that using a weighting function requires

no new assumptions.

Lemma 1. Any combining rule relying only on loss rates (Assump-
tion 1) with bounded output (Assumption 2) can be written as a
combining rule with a weighting function 0 ≤ wh (ai ,hi ) ≤ 1.

One simple (ideal) combining function is given by Example 1:

it simply selects whichever of the unaided human or algorithm

has lower loss. While this is the best possible combining function

(given our assumptions), it is likely not a realistic model of how

human decision-makers incorporate algorithmic advice.

Example 1 (Min). The combining function becomes c(a,h) =
min(a,h) is represented by the weighting function:

wh (a,h) =

{
1 h ≤ a

0 otherwise

While our framework is simple, it is also sufficiently flexible to

capture models of human-algorithm collaboration studied in mul-

tiple previous papers (described in greater detail in Appendix A).

Examples 2 and 3 demonstrate this in reference two particular mod-

els suggested by prior literature. First, Example 2 selects whichever

of the human or algorithm has lower loss rate with probability ps .
For high ps , this reflects a decision-maker who accurately trusts

whichever has lower loss.

Example 2 (Bansal et al. [1]). The analysis in Bansal et al. [1]
suggests the weighting function:

wh (a,h) =

{
ps h ≤ a

1 − ps otherwise

Next, in Example 3, the decision-maker first decides whether

to consider algorithmic advice at all: it does so only if the loss

rate is ϵ lower than the human loss rate. Then, the decision-maker

incorporates algorithmic advice with some probability ps (·) that is
a function depending on the gap between human and algorithmic

loss rates.

Example 3 (Vodrahalli et al. [35]). The two-stage model in
Vodrahalli et al. [35] could be written as:

wh (a,h) =

{
1 a ≥ h − ϵ

ps (h − a) otherwise

3.4 Research Ethics and Social Impact
While our paper is primarily theoretical, its application area prompts

a number of ethical considerations. For example, in this work, we

are primarily concerned with building better prediction functions.

In general, such functions could be used for positive means (helping

a doctor correctly diagnose a disease) or negative ones (enabling

the identification and repression of minority groups). Additionally,

even if a function is being used for positive goals, it could be the

case that factors besides the loss rate are ultimately more important.

For example, it could be that the process of coming to a prediction,

rather than the prediction itself, is more important. This is espe-

cially salient for our discussion of fairness, which assumes that the

fairness of outcomes (of loss rate disparities) is the relevant factor

to consider, rather than fairness of the prediction process. The issue

of explanation of algorithmic predictions, which is orthogonal to

our main analysis, could be relevant for this consideration.

4 MOTIVATING EXAMPLE
To further motivate the analysis, let us revisit the medical applica-

tion from the introduction (Figure 1) and introduce further specifics.

Consider the medical prediction task of using information from a

patient’s medical record to predict disease severity (on a scale from

0 to 5, as in [29]). As illustrated in Figure 1, we will assume that

doctors relying on their medical training (unaided humans) have

an average loss rate of 0.75: they are off by 0.75 grades, on average.

A data science team has created a machine learning algorithm that

has average loss of 0.5.

Even though the algorithm has lower loss, doctors won’t simply

rubber-stamp algorithmic suggestions. Because they have special-

ized training and access to additional information (such as conver-

sations with patients), a doctor might reasonably incorporate algo-

rithm advice only partially, or only sometimes. However, this leaves

open a crucial question: what is the combined human-algorithm

loss? That is, what is the average loss once doctors start incorporat-

ing the newmachine-learning algorithm into their decision-making

process?

4.1 Three scenarios
To help build intuition before delving into our formal theoretical

results, we will consider three different example scenarios for how

a human-algorithm collaborative system might look like, given

in Tables 1, 2, 3. Each scenario has the same average loss for the

unaided human and for the algorithm (0.75 and 0.5, respectively).

However, each scenario differs in 1) the way (unaided) human and
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(Unaided) human Algorithm Combined
(human using algorithm)

Weight
(on unaided human)

Regime 1 1 0.35 0.94 0.9

Regime 2 0.5 0.65 0.64 0.1

Average 0.75 0.5 0.79 0.5

Table 1: Scenario 1 Loss rates: An example of a combined human-algorithm system. There are two regimes, each making up
equal proportions of the input space (p0 = p1 = 0.5). Note here that complementarity is not satisfied: in fact, the combined
system has higher loss than either the human or algorithm alone!

(Unaided) human Algorithm Combined
(human using algorithm)

Weight
(on unaided human)

Regime 1 1 0.35 0.51 0.25

Regime 2 0.5 0.65 0.54 0.75

Average 0.75 0.5 0.53 0.5

Table 2: Scenario 2 Loss rates: A second example of a combined human-algorithm system, but with different loss distributions.
Here, the combined system (human using algorithm) has average loss which is lower than the loss of the unaided human, but
higher than the loss of the algorithm alone.

(Unaided) human Algorithm Combined
(human using algorithm)

Weight
(on unaided human)

Regime 1 1.15 0.2 0.44 0.25

Regime 2 0.35 0.8 0.46 0.75

Average 0.75 0.5 0.45 0.5

Table 3: Scenario 3 Loss rates: A third example of a combined human-algorithm system. Here, the combined system (human
using algorithm) displays complementary performance: its average loss of 0.45 is lower than the loss of either the unaided
human (0.75) or algorithm alone (0.5).

Table 4: Three possible scenarios for human-algorithm collaboration. In each, the algorithm and unaided human have the
same average loss. However, the loss of the human using the algorithm varies. Figure 1 gives a visual description of these
scenarios.

algorithm loss is distributed and 2) the way the human combines

algorithmic advice. Specifically, these three scenarios illustrate the

simplified case where patient records (“regimes”) come in one of

two types: regime 1 and regime 2, each of which makes up 50% of

the total input space. These regimes might differ in multiple ways:

say disease progression, data quality, or patient characteristics. We

will treat observations from within the same regime as identical:

the doctor or algorithm or combined system each has uniform loss

for every record within the same regime. (In later sections, we

will relax this consider arbitrary numbers of regimes, reflecting

arbitrarily complex distributions of loss).

Scenario 1 (combined loss higher than unaided human or
algorithm): For example, in Table 1, the unaided human has loss

1 on instances of type 1, but loss 0.5 for instances of type 2. The

algorithm’s loss rate distribution differs: 0.35 for type 1, and 0.65

for type 2. Finally, the combined loss (loss of the human using

algorithmic input) for a particular regime is a function of the loss of

the unaided human and the algorithm: for this example, it’s 0.94 in

regime 1, and 0.64 in regime 2. Note that this results in an average

loss of 0.79—the human using the algorithm has a strictly greater
loss rate than either the unaided human or the algorithm! This

unfortunate case could result from inappropriately relying on the

algorithm: for example, the doctor might mistakenly incorporate

algorithmic advice more frequently in regimes where it happens to

have higher loss. The fourth column concretely reflects this cause:

it calculates the weighting function for each regime (reliance on

the unaided human, as opposed to the algorithm). In this case, the

regime 1 weighting function is 0.9, meaning the combined system

is relying heavily on the unaided human for this instance, even

though it has higher loss than the algorithm. Similarly, in regime 2,

the weighting function is 0.1, indicating that the combined system

is relying more on the algorithm, even though (for this regime),

the algorithm has higher loss than the human. This inappropriate

reliance explains why the combined system has higher loss than

either the unaided human or algorithm alone.

Scenario 2 (combined system lower error thanhuman, higher
error than algorithm): Table 2 presents a slightly more optimistic

Scenario 2. Here, the distribution of loss rates for the unaided human
and the algorithm are the same as in Scenario 1, but the combined
loss differs: the average loss of the human using the algorithm is

0.53—lower than the loss of the unaided human (0.75), but higher

than the loss of the algorithm alone (0.5). This reflects a common

scenario in human-algorithm collaboration: the combined system

ends up improving over the human alone, but still falls short of

the loss rate achievable by the algorithm alone [2]. In this case, the

reason is because the combined system is doing a better job than in
Scenario 1 of appropriately relying on the unaided human or algo-
rithm. Note that the weighting function is lower in regime 1 (when

the unaided human has higher loss) and higher in regime 2 (where

the unaided human has lower loss). This more appropriate reliance

explains why the combined system has better performance than

Scenario 1.

Scenario 3 (complementarity: lower than unaided human
or algorithm): Finally, Table 3 presents Scenario 3. In this case, we
keep the weighting function the same as in Scenario 2, as well as the
average loss of the unaided human and the algorithm. However,
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we change the distribution of loss rates across the regimes: we make
them more variable. For example, the unaided human now has loss

1.15 in regime 1 and 0.35 in regime 2, while the algorithm has

loss 0.2 in regime 1 and 0.8 in regime 2. While average (unaided)

human and algorithmic loss are the same as in Scenarios 1 and 2,

the combined human-algorithmic system ends up having average

loss of 0.45, which strictly lower than either the unaided human

or algorithm alone. Complementarity arises here because diversity

of errors and appropriate reliance when algorithmic error is lower

than the human’s. As we show in Section 5, these conditions are

necessary for complementarity to arise.

Let’s return to our motivating example: a doctor using algorith-

mic input to make predictions about patients. These three exam-

ples illustrate different possible overall loss rates from a doctor

and algorithm with the same average loss rates alone. It is clearly

important for overall performance (including patient well-being)

to determine whether the human-algorithm system will result in

something like Scenario 1 (with higher loss than either the doc-

tor or algorithm alone) or Scenario 3 (with lower loss than either

alone). In the coming sections we lay out a theoretical framework

for analyzing combined human-algorithm systems more generally

to understand their implications for fairness and complementary

performance. Our analysis formalizes the observations made in the

scenarios above by precisely characterizing the role that “appro-

priate” reliance on the algorithm and variability in performance

across regimes plays in complementarity and fairness.

4.2 Complementarity and fairness
Complementarity is the best-case scenario for human-algorithm

collaboration, and much of our paper will revolve around proving

when it can and cannot exist. For instance, in Section 5 we will

give theoretical results describing the kinds of factors necessary

for complementarity to be achievable. In particular, we will give

conditions on the distributions of loss rates as well as the way

predictions are combined. We will show that, all else being equal,

complementarity is easier to achieve when distributions of loss for

the algorithm and unaided human are highly variable. For example,

the algorithm’s loss rates are less variable in Tables 1 and 2 (ranging

from 0.35 to 0.65) than they are in Table 3 (where they go from

0.2 to 0.8). However, variable loss rates naturally have fairness

implications.

Fairness concerns are especially salient if the regimes are corre-

lated with sensitive attributes, such as race, ethnicity, sex, gender, or

socioeconomic status. One fairness question could revolve around

the “loss disparity” - the difference in loss rates between multiple

regimes. Many papers in algorithmic fairness focus on loss dispar-

ity (also called accuracy parity or disparate mistreatment [12, 39]),

making them a natural focus in our work. In Table 3, there’s a loss

disparity (difference in loss rates between regimes) of 0.8 for the

unaided human and 0.6 for the algorithm. However, the combined

system has an loss disparity of 0.02—much lower than either the

human or algorithm! Can we guarantee that combined systems will

always have lower loss disparities? In Section 6 we will show that,

under some conditions, complementarity implies a bounded loss

disparity. Another fairness concern could revolve around whether

the benefits of incorporating an algorithm are shared among all

groups. For example, in Table 3, regime 2 sees a reduction in loss

when the algorithm is incorporated, going from 1.15 (unaided hu-

man) to 0.44 (combined human with algorithm). However, regime

1 sees an increase in loss, from 0.35 to 0.46. Ideally, a combined

system should benefit all regimes—but (when) is this possible? In

Section 6, we will show that, unfortunately, any system exhibit-

ing complementarity can’t be one where all regimes see their loss

decrease from what it was with the unaided human.

5 COMPLEMENTARITY
In this section, we analyze complementarity: when will a combined

human-algorithm system have lower average loss than either the

unaided human or algorithm? First, we give general results for when

complementarity is impossible to achieve. Secondly, we build on

these previous results in order to give constructive examples where

complementarity is possible. Finally, we discuss some implications

of our findings. All proofs are given in Appendix B.

5.1 Cases Where Complementarity is
Impossible

This section gives cases where complementarity is impossible to
achieve. These results help to narrow the scope of cases that we

must consider for future analysis. They could also be helpful for

practitioners: if any of their cases is addressed by these lemmas, then

they can immediately know that their system can never achieve

complementarity.

We begin by presenting two lemmas that concern the distribu-

tion of loss rates for the unaided human or the algorithm. Lemma

2 considers a case where the loss of the algorithm and unaided

human are constant across regimes. Constant loss is of course un-

likely to arise in practice, but is often a setting considered in the

computational science literature.

Lemma 2. A human-algorithm system where unaided human and
algorithm loss rates are constant over regimes can never achieve
complementary performance.

The next result, Lemma 3, considers the setting where one of the

components outperforms the other in every regime. Specifically,

it says that if one of the unaided human or algorithm always has

lower loss than the other, then complementarity is impossible.

Lemma 3. Complementarity is impossible if one of the human or
algorithm always weakly dominates the loss of the other: that is, if
ai ≤ hi for all i , or ai ≥ hi for all i .

This result may have implications for tasks where the algorithm has

extremely high performance, achieving lower loss than the human

for all types of inputs. While this could mean that the combined

system will have lower loss than the human alone, Lemma 3 tells us

that it can’t achieve lower loss than both the human and algorithm.

Next, we will consider two lemmas that concern properties of

the combining rules (the way the human incorporates advice from

the unaided human and the algorithm). First, Lemma 4 analyzes a

case where the combining function is convex in its arguments.

Lemma 4. A combining function c(ai ,hi ) that is convex in ai ,hi
can never achieve complementary performance.
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Recalling that themaximum function,max(a,h), that returnswhichever
of the unaided human or algorithm has higher loss, is convex, this

result is very intuitive.

A simple but important corollary (Corollary 1) is that comple-

mentarity is impossible whenever the weighting functionwh (ai ,hi )
is constant (independent of the algorithm or human’s loss rate).

This might reflect a situation where the decision-maker either is

ignorant of the loss rates by the human or algorithm, or else decides

to ignore them.

Corollary 1. A combining function with a constant weighting
functionwh (ai ,hi ) = wh can never achieve complementarity perfor-
mance.

Proof. Note that c(a,h) = wh ·h + (1−wh ) ·a is convex in both

a and h. □

These results, taken together, show that any system that could

potentially achieve complementarity must have weighting function

that varies with the inputs, must have human or algorithmic loss

that varies, must have a combining function that is not convex, and

cannot have either the human or algorithm dominate the loss of

the other.

5.2 Cases Where Complementarity is Possible:
N = 2 regimes

Having shown cases where complementarity is impossible, in this

section we give conditions where complementarity is possible. As

we described in Section 3, our notation describes the loss of the

unassisted human in regime i by hi = H + δhi and the loss of the

algorithm by ai = A + δai , where H and A are the average losses

of the unassisted human and algorithm, respectively. Additionally,

wh (ai ,hi ) (as defined in Equation 1) is the weighting function—

the weight that the human places on themselves in making a final

prediction.

We will first build intuition with theN = 2 case: there are exactly

two regimes, with regime 1 having probability p of occurring. By

assumption,

∑N
i=1 pi · δai = 0 (and similarly for unaided human

loss). This allows us to simplify the N = 2 loss distributions into:

unaided human loss:

{
h1 = H + δh
h2 = H −

p
1−p δh

algorithmic loss:

{
a1 = A + δa

a2 = A −
p

1−p δa

This formulation is without loss of generality because we allow

δa ,δh to be positive, negative, or zero. In the case that δa ,δh are the

same sign, loss rates for the human and algorithm are correlated.

If they are of a different sign, then loss rates are anti-correlated.

δa ,δh values of larger magnitude correspond to a more variable

distribution of losses.

Lemma 5 gives a condition for when aN = 2 example can achieve

complementarity. Note that the condition gives a lower bound on

the magnitude of |δa − δh |, terms which reflect the variability in

human and algorithmic loss. This bound depends on A and H , the

average loss rates of the algorithm and human. It also depends on

wh (a1,h1),wh (a2,h2), the weighting functions for the human in the

1st and 2nd regime, respectively. Recall that Corollary 1 tells us that

any system exhibiting complementarity cannot havewh (a1,h1) =
wh (a2,h2), because that would imply a constant weighting function.

Figure 2: Low combined loss occurs for high variability
(large |δa − δh |). The plot displays combined loss for a N = 2

system, for four combining functions. The black dashed line
gives loss of algorithm alone: since for this setting the al-
gorithm has lower error than the unaided human, comple-
mentarity occurs below this line. Note that for all four com-
bining functions, complementarity occurs where |δa − δh | is
large. For details on the combining functions, including the
exemplar function (original to this work), see Appendix A.

Lemma 5. Consider the case where N = 2, and WLOG assume that
A ≤ H : the algorithm has lower average loss than the human. Then,
the combined system exhibits complementarity whenever:

(H −A) ·
wh (a1,h1) +

1−p
p ·wh (a2,h2)

|wh (a2,h2) −wh (a1,h1)|
< |δa − δh |

Figure 2 displays the loss of the combined system for four differ-

ent possible combining functions (models of how humans incorpo-

rate algorithmic advice). For each of them, complementarity occurs

when |δa −δh | is high, as Lemma 5 suggests. However, as Lemma 6

states, this does not mean that unaided human and algorithm loss

need to be anti-correlated.

Lemma 6. A system can exhibit complementarity even if the un-
aided human and the algorithm have correlated loss (both have higher
loss in the same regime).

This is a reassuring result because, otherwise, complementarity

would not be possible in settings where a given regime is funda-

mentally harder than another. For example, one regime might be

low-resolution images while another might be high-resolution im-

ages, so both humans and algorithms are expected to performworse

in the low-resolution regime. In our notation, if δa > 0 and δh > 0,

then both the unaided human and algorithm have lower loss in

regime 2. If |δa −δh | is large, complementarity still may be possible.

However, because δa ,δh have the same signs, the variability must

be larger in order to make |δa − δh | satisfy the lower bound.

Tables 5 and 6 prove Lemma 6 through an example. Table 5 is a

copy of Scenario 3 (Table 3) from the motivating example in Section

4. The values in the table correspond to δa = 0.4,δh = −0.3 (giving
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(Unaided) human Algorithm Combined
(human using algorithm)

Weight
(on unaided human)

Regime 1 1.15 0.2 0.44 0.25

Regime 2 0.35 0.8 0.46 0.75

Average 0.75 0.5 0.45 0.5

Table 5: (Reproduced version of Table 3). The unaided human has loss 0.75, the algorithmhas loss 0.5, and the combined system
has loss 0.45 (complementary performance). In this table, we have δa = 0.4,δh = −0.3, for |δa − δh | = 0.7. Note that here, losses
are anti-correlated: the unaided human has higher loss in regime 1, while the algorithm has higher loss in regime 2.

(Unaided) human Algorithm Combined
(human using algorithm)

Weight
(on unaided human)

Regime 1 1.48 0.53 0.77 0.25

Regime 2 0.02 0.47 0.13 0.75

Average 0.75 0.5 0.45 0.5

Table 6: Correlated loss: The combined system (human using algorithm) displays complementary performance even though
the unaided human and the algorithm both have higher loss for regime 1. In this table, we have δa = 0.73,δh = 0.03, for
|δa − δh | = 0.7.

|δa − δh | = 0.7). Here, the losses are anti-correlated: the unaided

human has higher loss in regime 1, while the algorithm has higher

loss in regime 2.

Table 6 gives an example where the losses are correlated: both

the unaided human and algorithm have higher loss for regime 1.

The values in the table are given by δa = 0.03,δh = 0.73, which

again gives |δa − δh | = 0.7. Even though losses are correlated, the

overall system still displays complementarity because |δa − δh | has
remained the same, as Lemma 5 suggests.

5.3 Cases Where Complementarity is Possible:
N > 2 regimes

Finally, we will consider the general N > 2 case.

Lemma 7. WLOG, assume thatA ≤ H : the algorithm has lower loss,
on average. Then, the condition below gives necessary and sufficient
conditions for complementarity of the human-algorithm system:

(H −A) ·
N∑
i=1

pi ·wh (ai ,hi ) <
N∑
i=1

pi ·wh (ai ,hi ) · (δai − δhi )

If we view wh (ai ,hi ) and δai ,δhi as random variables over the in-
stance space with probability mass governed the distribution of in-
stances given by {pi }, then we can interpret the condition as:

(H −A) · E[wh (ai ,hi )] < Cov (wh (ai ,hi ),δai − δhi )

where Cov(·) gives the covariance.

Lemma 7 gives conditions on complementarity, requiring that

the weighting function wh (ai ,hi ) have high covariance with the

difference between δai and δhi . Intuitively, this means that when

the algorithm is more above its typical loss than the unaided human

(when δai > δhi ), then the combined loss should rely more heavily

on the unaided human (wh (ai ,hi ) should be large). Conversely,

if the algorithm is more below its typical loss than the unaided

human (when δai < δhi ), then the combined loss should rely more

heavily on the algorithm (wh (ai ,hi ) should be small). The lefthand

side of the equation lower bounds how large this covariance must,

as a function of the gap between the average loss of the unaided

human and the algorithm, and the expected value of the weighting

function.

The results in this section imply that unaided human and algo-

rithmic error rates must be highly variable. One question this raises

is about achievability: is it even possible to arrange human and

algorithmic loss rates like this? For example, achieving a highly

variable loss rate for an algorithm may require retraining, and for

certain cases may not be possible. Manipulating the loss rate for

a human may be possible through re-assigning human effort: for

example, assigning multiple humans to certain portions of the input

space in order to reduce loss.

Even if highly variable loss rates are possible, they may not be

desirable for other reasons. In particular, the next section discusses

the fairness implications of complementarity.

6 FAIRNESS
There are numerous possible notions of fairness that could be rel-

evant for a human-algorithm classifier. In this section, we will

analyze three of them and describe how they relate to complemen-

tarity. (All proofs are given in Appendix B). In general, the notions

of fairness concern disparities in loss across different regimes. Dis-

parities in loss rates could be alarming (if they align or correlate

with sensitive attributes, such as race, gender, or socioeconomic

status) or innocuous (if they are unrelated to sensitive attributes). In

this paper, we will consider two general classes of fairness concerns:

fairness of benefit and loss disparity rates. Fairness of benefit relates

to which regimes see their loss rate decrease when the algorithm is

incorporated into the decision-making process. Ideally, all regimes

would benefit from human-algorithm collaboration. We will show

that is unfortunately not possible. Loss disparity rates relate to the

gap in loss rates between different regimes: ideally, this gap would

be small, which would reflect equal loss rates for all regimes. In

this work, we will show that complementarity can sometimes help

bound loss disparity.
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6.1 Fairness of benefit
First, Definition 2 says that a system has “fairness of benefit” if

all regimes experience a lower loss from the combined human-

algorithm system than they would experience with the unassisted

human.

Definition 2 (Fairness of benefit). A human/algorithm sys-
tem exhibits fairness of benefit if all regimes benefit from the com-
bined system (experience a lower loss than with the unaided human).

This notion captures the desideratum that the benefits resulting

from switching to a combined human-algorithm system are shared

by all. However, Lemma 8 shows that this notion of fairness is

incompatible with complementarity.

Lemma 8. Any system exhibiting fairness of benefits cannot have
complementary performance.

Proof. This result is largely due to Lemma 3. Note that we have:

c(ai ,hi ) = (1 −wh (ai ,hi )) · ai +wh (ai ,hi ) · hi

for si ∈ [0, 1]. Then, if we have fairness of benefits, we know:

(1 −wh (ai ,hi )) · ai +wh (ai ,hi ) · hi < hi ∀i ∈ [N ]

In order to achieve this, we needwh (ai ,hi ) < 1 and ai < hi , for all
i ∈ [N ]. However, this is exactly the condition addressed in Lemma

3: the algorithm always has lower loss than the unassisted human,

which means that complementarity is impossible. □

Note that Definition 2 could be defined symmetrically, defining

“benefit” as a reduction in loss as compared to the algorithmic

prediction. In this case, an analogous version of Lemma 8 would

hold, similarly showing that this notion of fairness is incompatible

with complementarity.

Lemma 8 tells us that there is an inherent tension between achiev-

ing complementarity and ensuring all people who use the system

see their loss rates decrease. For certain application areas, fairness

of benefit might be more important than complementarity, so prac-

titioners might consciously choose to prioritize it. On the other

hand, a practitioner who opts to achieve complementarity instead of

fairness of benefit might wish to consider alternate ways to support

any groups that see their loss increase in the combined system.

6.2 Loss disparity
Next, Definition 3 describes fairness as the disparity in loss rates

between different regimes. Intuitively, this notion relates to group-

based notions of fairness: loss rates should be relatively similar

between members of different groups. However, Lemma 9 again

describes how this notion of fairness is in tension with comple-

mentarity, which puts a lower bound on the level of this kind of

unfairness.

Definition 3 (Loss disparity). A prediction system exhibits ϵ-
loss disparity if the losses in different regimes differ by no more than
ϵ . We will use ϵh , ϵa , ϵc to refer to the loss disparity of the unaided
human, algorithm alone, and combined human-algorithm system,
respectively.

Lemma 9. WLOG assume that A ≤ H : the algorithm has lower
average loss than the human. Then, any system exhibiting comple-
mentarity has a lower bound on ϵa + ϵh : the combined loss disparity
of the unaided human and algorithm.

A −C + (H −A) ·
N∑
i=1

pi ·wh (ai ,hi ) < ϵa + ϵh

Lemma 9 should match our intuition from Section 5. There, re-

sults indicated that complementarity is easiest to achieve when loss

rates are highly variable. However, this directly contradicts with

the goal of minimizing loss disparity.

Next, we will consider the loss disparity of the combined human-

algorithm system. Unfortunately, it is possible for a system exhibit-

ing complementarity to exacerbate unfairness. Table 7 gives an

example where the combined system has a higher loss disparity

than either the unaided human or the algorithm, even though it

exhibits complementarity. This result (which parallels results from

[10, 11, 36]) means that practitioners must be careful when dis-

cussing fairness of combined systems: fairness guarantees from the

individual components don’t necessarily transfer to the combined

human-algorithm system. However, Lemma 10 gives a condition

where the loss disparity of the combined human-algorithm system

is upper bounded by the loss disparity of the unaided human or the

algorithm.

Lemma 10. Define i+ as the regime where the combined human-
algorithm system has highest loss and i− as the regime where it has
lowest loss. Then, the loss disparity of the combined system is upper
bounded by the loss disparity of the unaided human or algorithm, so
long as neither the unaided human or algorithm dominates the other
in both i+, i−. That is,

If either case is satisfied:

{
hi+ ≤ ai+ and hi− ≥ ai−

hi+ ≥ ai+ and hi− ≤ ai−

⇒ ϵc ≤ max(ϵa , ϵh )

This last lemma gives our first positive result for fairness: it gives

conditions where human-algorithm system exhibiting complemen-

tarity at least doesn’t exacerbate unfairness. Specifically, what it

requires is that neither the unaided human nor the algorithm dom-

inates the other for both of the most extreme regimes (where the

combined system has highest and lowest loss). As we would expect,

the scenario in Table 7 violates this: the unaided human dominates

in both regime 1 (highest loss) and regime 2 (lowest loss), which al-

lows the combined loss disparity ϵc to be greater than max(ϵa , ϵh ).
Interestingly, Lemma 10 is quite powerful: it only relies on the

losses within two specific regimes and holds regardless of whether

the overall system satisfies complementarity. Practitioners could

use Lemma 10 to guide their algorithm development: so long as the

preconditions are satisfied, they can guarantee that the combined

system will never exacerbate unfairness.

As we mentioned previously, these definitions are only a few of

the possible fairness concerns we could analyze. However, this anal-

ysis highlights the importance of considering fairness, especially

ways that it might be in tension with achieving complementarity.
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(Unaided) Human Algorithm Combined (human using algorithm)
Regime 1 0.95 0.85 0.895

Regime 2 0.95 0.02 0.05

Regime 3 0.15 0.45 0.255

Average loss 0.68 0.44 0.40

Table 7: This system exhibits complementarity, since average loss is lowest in the combined human-algorithm system. How-
ever, note that loss disparity is increased in the combined system: ϵh = 0.8, ϵa = 0.83, but ϵc = 0.84.

7 CONCLUSION AND FUTURE DIRECTIONS
In this work, we introduce a simple theoretical model of human-

algorithm collaboration, which we show is flexible enough to en-

compassmodels analyzed in prior work. Using thismodel, we obtain

theoretical impossibility results that characterize settings where

complementarity is not achievable. We also use this framework to

construct cases where complementarity is possible, given certain

conditions on the loss distributions. Finally, we consider the impli-

cations, especially fairness, of the requirements in order to achieve

complementarity.

Our approach admits multiple possible avenues for future work.

Our work highlights the importance of variable loss rates: algo-

rithmic loss that is not constant over the input space. However, as

mentioned previously, it may not be possible to achieve extremely

variable loss rates. Future work could model algorithmic loss rates

more explicitly, describing loss distributions that are both achiev-

able and lead to complementary performance. For example, some

prior work has demonstrated that, for many algorithms, reducing

loss becomes harder as the level of loss decreases, which could

make it more difficult to achieve highly variable loss rates [15, 16].

Similarly, future work could relax assumptions made in our work.

Relaxing Assumption 2, for example, could involve analyzing com-

bining rules that, on any individual regime, could do better or worse

than the human or algorithmic input loss rates. Relaxing Assump-

tion 1 could involve modeling cases where regimes with identical

human and algorithmic loss rates might be treated differently by

the combiner. Any of these future analyses could allow us to have

greater insight into a variety of ways human-algorithm systems

perform.
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A MODELING COMBINING FUNCTIONS
The definitions presented in Section 3 reflect multiple ways humans could incorporate algorithmic inputs. However, their functional forms

in some cases are less clean to analyze. Definition 4 gives an exemplar weighting function (original to this work) that we created in order to

illustrate common patterns in weighting functions, while also allowing for tractable theoretical analysis. In this function, form > 0, the

combining rule is more likely to select the algorithm when a < h (when the algorithm has lower loss rate). Form > 0, the reverse is true: the

combining rule “mistakenly” goes with the input with higher loss.

Definition 4 (Exemplar weighting function). The exemplar weighting function is given by:

wh (a,h) =


b −m · (h − a) 0 ≤ b −m · (h − a) ≤ 0

0 b −m · (h − a) < 0

1 b −m · (h − a) > 1

Figure 3 plots the weighting function for each of the selection rules presented. Note that, in general, as the human gets higher loss, the

weight on the human decreases.

Figure 3: The weight on the human, given a difference h − a between algorithmic and human loss, for multiple weighting
functions. Note that, in general, as the human gets higher loss than the algorithm, the weight on the human decreases.

Lemma 11, below, gives an analgous version of Lemma 5 for the exemplar function. Note that it similarly shows that complementarity

occurs when |δa − δh | is large (when losses are highly variable).

Lemma 11. Consider the exemplar weighting function with N = 2 andwh (a0,h0),wh (a1,h1) < 1, and whereA ≤ H . Then, the system exhibits
complementarity whenever:

√
H −A ·

√
1 − p

p
·

(
1 − b

m
− (H −A)

)
< |δa − δh |

B PROOFS
Lemma 12. Any combining rule relying only on loss rates (Assumption 1) with bounded output (Assumption 2) can be written as a combining

rule with a weighting function 0 ≤ wh (ai ,hi ) ≤ 1.

Proof. We will define a weighting function as follows:

wh (a,h) =

{
c(a,h)−a
h−a a , h

1

2
a = h

Note that if c(a,h) = h, thenwh (a,h) = 1 (the weighting function puts all weight on the unaided human), and if c(a,h) = a, thenwh (a,h) = 0

(the weighting function puts no weight on the unaided human).

First, we’ll show thatwh (a,h) ∈ [0, 1]. If a = h, this is true by construction (becausewh (a,h) =
1

2
). What we want to show is:

0 ≤
c(a,h) − a

h − a
≤ 1

If h > a, then this is equivalent to requiring:

0 ≤ c(a,h) − a ≤ h − a
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The lefthand inequality is satisfied because c(a,h) ≥ min(a,h) = a (in this case). The righthand inequality is satisfied because c(a,h) ≤
max(a,h) = h (in this case).

On the other hand, if h < a, then the inequality we want to show is:

0 ≥ c(a,h) − a ≥ h − a

Again, the lefthand inequality is satisfied because c(a,h) ≤ max(a,h) = a (in this case). The righthand inequality is satisfied because

c(a,h) ≥ min(a,h) = h (in this case).

Next, we’ll show that this weighting function is correct: that is, that:

c(a,h) = (1 −wh (a,h)) · a +wh (a,h) · h

Note that Assumption 2 means that if a = h, then c(a,h) = a = h, so anywh (a,h) ∈ [0, 1] would result in a correct weighting function. For

a , h, we can write:

(1 −wh (a,h)) · a +wh (a,h) · h

=a ·

(
1 −

c(a,h) − a

h − a

)
+ h ·

c(a,h) − a

h − a

=a ·
h − a − c(a,h) + a

h − a
+ h ·

c(a,h) − a

h − a

=a ·
h − c(a,h)

h − a
+ h ·

c(a,h) − a

h − a

=
a · h − a · c(a,h) + h · c(a,h) − a · h

h − a

=
c(a,h) · (h − a)

h − a
=c(a,h)

as desired. □

Lemma 13. A human-algorithm system where unaided human and algorithm loss rates are constant over regimes can never achieve comple-
mentary performance.

Proof. Constant loss rates means that ai = A and hi = H for all i ∈ [N ]. The combined system has loss:∑
i ∈[N ]

pi · c(ai ,hi ) =
∑
i ∈[N ]

pi · c(A,H ) = c(A,H ) ≥ min(A,H )

□

Lemma 14. Complementarity is impossible if one of the human or algorithm always weakly dominates the loss of the other: that is, if ai ≤ hi
for all i , or ai ≥ hi for all i .

Proof. WLOG, we will assume that A ≤ H . Then, complementarity occurs when:

N∑
i=1

pi · c(ai ,hi ) <A

N∑
i=1

pi · ((1 −wh (ai ,hi )) · ai +wh (ai ,hi ) · hi ) <
N∑
i=1

pi · ai

N∑
i=1

pi · (−wh (ai ,hi )ai +wh (ai ,hi ) · hi ) <0

N∑
i=1

pi ·wh (ai ,hi ) · (hi − ai ) <0

If the algorithm weakly dominates the unaided human (hi ≥ ai for all i), then this inequality can never be satisfied because the entire

lefthand side is positive or 0. If the unaided human weakly dominates the algorithm (ai ≥ hi for all i) then A ≥ H . From our previous

assumption that A ≤ H , which means that we must have that A = H : both have identical average losses.
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We will now show that further analysis means in the case that A = H , complementarity is still impossible. If A = H , we could have

equivalently written the complementarity condition as:

N∑
i=1

pi · c(ai ,hi ) <H = A

N∑
i=1

pi · ((1 −wh (ai ,hi )) · ai +wh (ai ,hi ) · hi ) <
N∑
i=1

pi · hi

N∑
i=1

pi · ((1 −wh (ai ,hi )) · ai + (1 −wh (ai ,hi )) · hi ) <0

N∑
i=1

pi · (1 −wh (ai ,hi )) · (ai − hi ) <0

In this case, we’ve assumed that ai ≥ hi . However, this means that the lefthand side of the above inequality is positive, which means

complementarity isn’t satisfied. □

Lemma 15. A combining function c(ai ,hi ) that is convex in ai ,hi can never achieve complementary performance.

Proof. The first inequality in this proof is by Jensen’s inequality and the last inequality is due to our construction of the combining

function: ∑
i ∈[N ]

pi · c(ai ,hi ) ≥ c
©­«

∑
i ∈[N ]

pi · ai ,
∑
i ∈[N ]

pi · hi
ª®¬ = c(A,H ) ≥ min(A,H )

□

Lemma 16. Consider the case where N = 2, and WLOG assume that A ≤ H : the algorithm has lower average loss than the human. Then, the
combined system exhibits complementarity whenever:

(H −A) ·
wh (a1,h1) +

1−p
p ·wh (a2,h2)

|wh (a2,h2) −wh (a1,h1)|
< |δa − δh |

Proof. If we assume that A ≤ H , then complementarity occurs whenever C < A, or: The system exhibits complementarity when:

p · c(a1,h1) + (1 − p) · c(a2,h2) <A

p · ((1 −wh (a1,h1)) · a1 +wh (a1,h1) · h1) + (1 − p) · ((1 −wh (a2,h2) · a2 +wh (a2,h2) · h2) <p · a1 + (1 − p) · a2

p ·wh (a1,h1) · (h1 − a1) + (1 − p) ·wh (a2,h2) · (h2 − a2) <0

We insert the values of ai ,hi , to get:

p ·wh (a1,h1) · (H + δh −A − δa ) + (1 − p) ·wh (a2,h2) ·

(
H −

p

1 − p
· δh −A +

p

1 − p
· δa

)
<0

(H −A) · (p ·wh (a1,h1) + (1 − p) ·wh (a2,h2)) + p ·wh (a1,h1) · (δh − δa ) − p ·wh (a2,h2) · (δh − δa ) <0

(H −A) · (p ·wh (a1,h1) + (1 − p) ·wh (a2,h2)) − p · (δa − δh ) · (wh (a1,h1) −wh (a2,h2)) <0

Note that we have assumed H ≥ A, so in order for this inequality to hold, we must have that the other term (involving δa ,δh ) be positive.
Note that by Lemma 2 we cannot havewh (a1,h1) = wh (a2,h2) if it exhibits complementarity. In order to have the inequality satisfied, one of

two conditions must hold:

• Case 1: δa > δh andwh (a1,h1) > wh (a2,h2) (the unaided human is weighted more heavily in regime 1). Note that in this case, we

must have h2 > a2, because:

h2 >a2

H −
p

1 − p
· δh >A −

p

1 − p
· δa

H −A −
p

1 − p
· (δh − δa ) >0

H −A +
p

1 − p
· (δa − δh ) >0
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which is satisfied because H − A ≥ 0 and δa > δh . By Lemma 3, we know that h2 > a2 implies that h1 ≤ a1. Taken together with

wh (a1,h1) > wh (a2,h2), this means that the combined system must weight the human more heavily in instance 1, where it has lower

loss than the human.

• Case 2: δa < δh andwh (a1,h1) < wh (a2,h2) (the unaided human is weighted more heavily in regime 2). In this case, we must have

h1 > a1, because:

H + δh >A + δa

H −A + δh − δa >0

This must be satisfied because H − A > 0 and δh > δa . By similar reasoning to above, this means that h2 ≤ a2. Taken with

wh (a1,h1) < wh (a2,h2), this again means that the system must weight the unaided more heavily in the regime where it has lower

loss.

Finally, we can simplify the inequality:

(H −A) · (p ·wh (a1,h1) + (1 − p) ·wh (a2,h2)) < p · (δa − δh ) · (wh (a1,h1) −wh (a2,h2))

If δa > δh , then we know thatwh (a1,h1) > wh (a2,h2), so we can rewrite this as:

(H −A) ·
wh (a1,h1) +

1−p
p ·wh (a2,h2)

wh (a1,h1) −wh (a2,h2)
≤ δa − δh

On the other hand, if δa < δh , we know thatwh (a1,h1) < wh (a2,h2), so we can rewrite this as:

(H −A) · (p ·wh (a1,h1) + (1 − p) ·wh (a2,h2)) <p · (δh − δa ) · (wh (a2,h2) −wh (a1,h1))

(H −A) ·
wh (a1,h1) +

1−p
p ·wh (a2,h2)

(wh (a2,h2) −wh (a1,h1)
<δa − δh )

Either way simplifies to:

(H −A) ·
wh (a1,h1) +

1−p
p ·wh (a2,h2)

|wh (a2,h2) −wh (a1,h1)|
< |(δa − δh )|

□

Lemma 17. WLOG, assume that A ≤ H : the algorithm has lower loss, on average. Then, the condition below gives necessary and sufficient
conditions for complementarity of the human-algorithm system:

(H −A) ·
N∑
i=1

pi ·wh (ai ,hi ) <
N∑
i=1

pi ·wh (ai ,hi ) · (δai − δhi )

If we viewwh (ai ,hi ) and δai ,δhi as random variables over the instance space with probability mass governed the distribution of instances given
by {pi }, then we can interpret the condition as:

(H −A) · E[wh (ai ,hi )] < Cov (wh (ai ,hi ),δai − δhi )

where Cov(·) gives the covariance.

Proof. If we assume that A ≤ H , then complementarity occurs whenever C < A, or:

N∑
i=1

pi · c(ai ,hi ) ≤
N∑
i=1

pi · ai

N∑
i=1

pi · ((1 −wh (ai ,hi )) · ai +wh (ai ,hi ) · hi ) ≤
N∑
i=1

pi · ai

N∑
i=1

pi · (−wh (ai ,hi ) · ai +wh (ai ,hi ) · hi ) ≤0

N∑
i=1

pi ·wh (ai ,hi ) · (hi − ai ) ≤0
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Plugging in for the values gives:

N∑
i=1

pi ·wh (ai ,hi ) · (H + δhi −A − δai ) ≤0

(H −A) ·
N∑
i=1

pi ·wh (ai ,hi ) <
N∑
i=1

pi ·wh (ai ,hi ) · (δai − δhi )

as desired. □

Lemma 18. WLOG assume that A ≤ H : the algorithm has lower average loss than the human. Then, any system exhibiting complementarity
has a lower bound on ϵa + ϵh : the combined loss disparity of the unaided human and algorithm.

A −C + (H −A) ·
N∑
i=1

pi ·wh (ai ,hi ) < ϵa + ϵh

Proof. First, we will use the complementarity result from partway through the proof of Lemma 7. We calculate the difference between

the average algorithmic loss and the average combined human-algorithmic loss (which gives us the average benefit of collaboration):

A −C =
N∑
i=1

pi · ai −
N∑
i=1

pi · c(ai ,hi )

=

N∑
i=1

pi · ai −
N∑
i=1

pi · ((1 −wh (ai ,hi )) · ai +wh (ai ,hi ) · hi )

=

N∑
i=1

pi · (ai − ai +wh (ai ,hi ) · ai −wh (ai ,hi ) · hi )

=

N∑
i=1

pi ·wh (ai ,hi ) · (ai − hi )

=

N∑
i=1

pi ·wh (ai ,hi ) · (A + δai − H − δhi )

=(A − H ) ·

N∑
i=1

pi ·wh (ai ,hi ) +
N∑
i=1

pi ·wh (ai ,hi ) · (δai − δhi )

Rearranging gives:

A −C + (H −A) ·
N∑
i=1

pi ·wh (ai ,hi ) =
N∑
i=1

pi ·wh (ai ,hi ) · (δai − δhi )

Next, we will define:

ϵa = aa+ − aa− = A + δa+ −A − δa− = δa+ − δa−

ϵh = hh+ − hh− = H + δh+ − H − δh− = δh+ − δh−

where a+,a−,h+,h− are the indices of the maximum and minimum loss for the algorithm and unaided human, respectively. Note that we

require

∑N
i=1 pi · δai =

∑N
i=1 pi · δhi = 0, which implies that δa+,δh+ ≥ 0 and δa−,δh− ≤ 0. Then, we know that:

ϵa + ϵh = δa+ − δa− + δh+ − δh− > δa+ − δh−

Define P = {i | δai ≥ δhi and N = {i | δai < δhi . By definition, δa+ ≥ δai and δh− ≤ δhi for all i ∈ [N ]. Then, we know that:

δa+ − δh− ≥
∑
i ∈P

pi · (δhi − δai ) ≥
∑
i ∈P

pi ·wh (ai ,hi ) · (δhi − δai )

where we have used the fact thatwh (ai ,hi ) ≤ 1. Finally, we know that:∑
i ∈P

pi ·wh (ai ,hi ) · (δhi − δai ) ≥
∑
i ∈P

pi ·wh (ai ,hi ) · (δhi − δai ) +
∑
i ∈N

pi ·wh (ai ,hi ) · (δhi − δai ) =
N∑
i=1

pi ·wh (ai ,hi ) · (δhi − δai )

where the first inequality comes by the fact that δhi − δai for i ∈ N . Finally, we can combine this analysis with our previous analysis on the

gap in loss rate between the algorithm and the combined system:
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A −C + (H −A) ·
N∑
i=1

pi ·wh (ai ,hi ) =
N∑
i=1

pi ·wh (ai ,hi ) · (δai − δhi ) ≤ δa+ − δh− < ϵa + ϵh

as desired. □

Lemma 19. Define i+ as the regime where the combined human-algorithm system has highest loss and i− as the regime where it has lowest
loss. Then, the loss disparity of the combined system is upper bounded by the loss disparity of the unaided human or algorithm, so long as neither
the unaided human or algorithm dominates the other in both i+, i−. That is,

If either case is satisfied:

{
hi+ ≤ ai+ and hi− ≥ ai−

hi+ ≥ ai+ and hi− ≤ ai−
⇒ ϵc ≤ max(ϵa , ϵh )

Proof. We wish to upper bound ϵc , which is given by:

ϵc = c(ai+,hi+) − c(ai−,hi−)

such that:

i+ = argmaxi ∈[N ]c(ai ,hi ) i− = argmini ∈[N ]c(ai ,hi )

Note that by Assumption 2, we must have:

c(ai+,hi+) ≤ max(ai+,hi+) and c(ai−,hi−) ≥ min(ai−,hi−)

The statement of this lemma gives two cases, which we will consider in turn.

In Case 1, we assume that:

hi+ ≤ ai+ and hi− ≥ ai−

In this case, we know that:

c(ai+,hi+) − c(ai−,hi−) ≤ ai+ − ai− ≤ ϵa ≤ max(ϵa , ϵh )

In Case 2, we assume that:

hi+ ≥ ai+ and hi− ≤ ai−

In this case, we know that:

c(ai+,hi+) − c(ai−,hi−) ≤ hi+ − hi− ≤ ϵh ≤ max(ϵa , ϵh )

In either case, ϵc ≤ max(ϵa , ϵh ) □

Lemma 20. Consider the exemplar weighting function with N = 2 andwh (a0,h0),wh (a1,h1) < 1, and whereA ≤ H . Then, the system exhibits
complementarity whenever:

√
H −A ·

√
1 − p

p
·

(
1 − b

m
− (H −A)

)
< |δa − δh |

Proof. This lemma is a more specific version of Lemma 5, so we start with an intermediate result from that proof. Complementarity

occurs whenever:

p ·wh (a1,h1) · (h1 − a1) + (1 − p) ·wh (a2,h2) · (h2 − a2) < 0

For the exemplar combining rule, we have that:

wh (ai ,hi ) = b −m · (hi − ai )

Plugging in for the values ofwh (a1,h1),wh (a2,h2) gives:

p · (b −m · (h1 − a1)) · (h1 − a1) + (1 − p) · (b −m · (h2 − a2)) · (h2 − a2) <0

b · (p · (h1 − a1) + (1 − p) · (h2 − a2)) −m(p · (h1 − a1)
2 + (1 − p) · (h2 − a2)

2) <0

b · (p · h1 − p · a1 + (1 − p) · h2 − (1 − p) · a2) −m(p · ·(h1 − a1)
2 + (1 − p) · (h2 − a2)

2) <0

b · (H −A) −m(p · (h1 − a1)
2 + (1 − p) · (h2 − a2)

2) <0

We can analyze the term with them coefficient by plugging in for values of ai ,hi .

p · (h1 − a1)
2 + (1 − p) · (h2 − a2)

2

=p · (H + δh −A − δa )
2 + (1 − p) ·

(
H −

p

1 − p
· δh −A +

p

1 − p
· δa

)
2
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We expand out each to get:

=p · (H −A)2 + p · (δh − δa )
2 + 2p · (H −A) · (δh − δa ) + (1 − p) · (H −A)2

+ (1 − p) ·
p2

(1 − p)2
· (δa − δh )

2 + 2 · (1 − p) · (H −A) ·
p

1 − p
· (δa − δh )

We note that two of the terms cancel:

2p · (H −A) · (δh − δa ) + 2 · (1 − p) · (H −A) ·
p

1 − p
· (δa − δh )

=2p · (H −A) · (δh − δa ) + 2 · p · (H −A) · (δa − δh )

=0

Next, we can simplify the other terms:

=p · (H −A)2 + p · (δh − δa )
2 + (1 − p) · (H −A)2 + (1 − p) ·

p2

(1 − p)2
· (δa − δh )

2

=(H −A)2 + p(δh − δa )
2 +

p2

1 − p
· (δa − δh )

2

=(H −A)2 + (δh − δa )
2 ·

(
p +

p2

1 − p

)
=(H −A)2 + (δh − δa )

2 ·
p

1 − p

where we have used that p +
p2
1−p =

p−p2+p2
1−p =

p
1−p . We can combine this with the inequality we were analyzing earlier to get:

(1 − b) · (H −A) −m ·

(
(H −A)2 + (δh − δa )

2 ·
p

1 − p

)
<0

(1 − b) · (H −A) −m · (H −A)2 <m · (δh − δa )
2 ·

p

1 − p

1 − p

p

(
1 − b

m
· (H −A) − (H −A)2

)
<(δh − δa )

2

where we have used the assumption that 0 < p < 1 andm > 0. If the lefthand side of the inequality is positive, we can take the square root of

both sides to get:

√
H −A ·

√
1 − p

p

(
1 − b

m
− (H −A)

)
< |δh − δa |

Finally, we will show that the term under the square root, give the assumptions of this lemma. The term under the square root is negative if:
1 − b

m
− (H −A) < 0

or:

1 < b −m · (H −A) (2)

We will show that, if this happens, we must havewh (a1,h1) > 1 orwh (a2,h2) > 0 (either of which violate the assumptions of this lemma).

For this combining rule,

wh (a1,h1) = b −m · (h1 − a1) = b −m · (H + δh −A − δa ) = b −m · (H −A) +m · (δh − δa )

In the event that δh > δa , then the above equation is greater than Equation 2. Therefore, if Equation 2 is greater than 1, thenwh (a1,h1) is
also greater than 1, which violates the assumptions of the lemma. Similarly, we can write:

wh (a2,h2) = b −m · (h2 − a2) = b −m ·

(
H − δh ·

p

1 − p
−A + δa ·

p

1 − p

)
= b −m · (H −A) +m ·

p

1 − p
· (δa − δh )

In the event that δh < δa , then the above equation is greater than Equation 2. Therefore, if Equation 2 is greater than 1, thenwh (a2,h2) is
also greater than 1, which violates the assumptions of the lemma. □
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