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ABSTRACT
Bias-mitigating techniques are now well established in the super-

vised learning literature and have shown their ability to tackle

fairness-accuracy, as well as fairness-fairness trade-offs. These are

usually predicated on different conceptions of fairness, such as de-

mographic parity or equal odds that depend on the available labels

in the dataset. However, it is often the case in practice that unsu-

pervised learning is used as part of a machine learning pipeline (for

instance, to perform dimensionality reduction or representation

learning via SVD) or as a standalone model (for example, to derive

a customer segmentation via k-means). It is thus crucial to develop

approaches towards fair unsupervised learning. This work inves-

tigates fair unsupervised learning within the broad framework of

generalised low-rank models (GLRM). Importantly, we introduce

the concept of fairness functional that encompasses both tradi-

tional unsupervised learning techniques and min-max algorithms

(whereby one minimises the maximum group loss). To do so, we de-

sign straightforward alternate convex search or biconvex gradient

descent algorithms that also provide partial debiasing techniques.

Finally, we show on benchmark datasets that our fair generalised

low-rank models (“fGLRM”) perform well and help reduce disparity

amongst groups while only incurring small runtime overheads.

CCS CONCEPTS
• Theory of computation→Unsupervised learning and clus-
tering; • Social and professional topics → User characteris-
tics.
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1 INTRODUCTION
Using unsupervised learning algorithms, such as PCA, k-means or

non-negative matrix factorisation – which is prevalent in recom-

mender systems – without paying attention to fairness may lead
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to adverse outcomes in some particular demographic groups (e.g.,

customer segmentation or facial recognition). Indeed, we verify

on a number of datasets that there are discrepancies, sometimes

important, between the average cost (such as reconstruction error

or distance to a centroid) born by a group versus another. Thus,

the fairness metric that emerges in these applications is that of

(average) cost parity amongst groups.

More broadly, recent advances have been made recently in the

space of fair unsupervised learning, in particular by introducing

fairlets [9], leading to fair PCA [36, 37], fair k-medoids [3, 17, 25]

and fair spectral clustering [27]. Since fairness in this context is not

obvious to tackle, there have been multiple attempts to define it.

A recent overview of fair clustering has been given in [8]. On the

other hand, in supervised learning, multiple technical definitions

of fairness co-exist and have been reviewed in-depth [4, 23, 32, 40],

bringing to the fore impossibility theorems [10, 24] that proved that

these different acceptations of fairness cannot be satisfied at once.

In addition, it has been shown that [2, 23, 34] fully debiased models

could fail to generalise out-of-sample, which we would expect to

also apply to the case of unsupervised learning.

Our contributions. Our main result is a framework that encom-

passes many applications such as fair PCA [36], fair k-medoids [17],

fair non-negative matrix factorisation and other models whose

standard versions can be expressed as generalised low-rank models

[38], and provides added flexibility.

• First, we develop a general fair generalised low rank frame-

work that reduces disparity across group-wise average cost

in an unsupervised learning task (such as reconstruction

error in PCA).

• Second, we show that a particular group functional, namely

weighted Log-Sum Exponential, has interesting properties

(such as convexity, differentiability, etc.) that make it partic-

ularly appropriate.

• Third, we build on [38] to develop generic algorithms that

take advantage of biconvexity. This generality in specifying

a fair GLRM model makes this framework a very flexible

one, also including partial debiasing.
• Fourth, we apply our methodology to multiple datasets,

benchmark it against fair PCA and fair k-means algorithms,

and show its performance out-of-sample, thus highlighting

the role of partial debiasing.

We also note that a number of extensions are possible by considering

relative costs or outcome-based fairness.

2 GENERALISED LOW RANK MODELS
We start by recalling some concepts linked to generalised low rank

models (“GLRMs”). A textbook exposition of GLRMs is given in

[38]. The term itself, generalised low rank models refers –in general–

https://doi.org/10.1145/3531146.3533197
https://doi.org/10.1145/3531146.3533197
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to the approximation of a data matrix by the product of two low-

dimensional factors.

Definition 1. A generalised low rank model is defined based on

the following elements:

(1) An n × p data matrix A and a (lower) dimension d ;
(2) Element-wise (usually biconvex) loss functions ℓi, j , (usu-

ally convex) penalty functions ri and r̃ j for all i, j, and an

objective function
˜L written as

˜L(X ,Y ) =
1

|Ω |

∑
(i, j)∈Ω

ℓi, j (xi ·yj ,Ai, j )+
n∑
i=1

ri (xi )+

p∑
j=1

r̃ j (yj ), (1)

where xi ∈ R
d
and yj ∈ R

d
for all i, j. The matrices X and

Y correspond to the stacked vectors.

Remark 1. In this work, we understand the matrix Y made up of

the row entries yj (j = 1, · · · ,p) as the dictionary to be learnt and

the matrix X made up of the row entries xi (i = 1, · · · ,n) as the
individual weights.

Let us now provide some examples:

(1) By choosing ℓi, j (u,a) = (u − a)
2
, one recovers PCA.

(2) Similarly, robust PCA can be obtained by picking ℓi, j (u,a) =

|u − a | with r (x) = γ/2∥x ∥2
2
and r̃ (y) = γ/2∥y∥2

2
.

(3) On the other hand, setting r (x) = 0 if x ≥ 0 and +∞ other-

wise, with the same definition for r̃ leads to non-negative

matrix factorisation (“NNMF”).

(4) Finally, picking r (x) = 0 if x = el for some l ∈ {1, · · ·d} and
+∞ otherwise, while r̃ (y) = 0, leads to the usual k-means

clustering problem.

Many more applications (such as subspace clustering) can be shown

to fit the generic GLRM form [38].

3 FAIRNESS IN UNSUPERVISED LEARNING
3.1 Literature review
The relationship between fairness in supervised and unsupervised

learning is not straightforward. Many notions of fairness in super-

vised learning (such as classification and scoring [11, 19, 24]) focus

on a single learning task, whereas unsupervised learning considers

a generic transformation of the data. While fairness in unsupervised

learning has recently become a major theme of research, fair PCA

–for instance– can be seen directly in the line of earlier attempts to

reduce the correlation between a protected (or sensitive) attribute

[6, 41].

For the sake of brevity, we do not give an exhaustive account of

fairness in unsupervised learning. It is tempting to consider [31] as

an early attempt at introducing (invidual) fairness in clustering. By

adapting the notion of disparate impact to clustering and introduc-

ing the notion of fairlets (i.e., minimal sets that satisfy fair represen-

tation while approximately preserving the clustering objective), [9]

paved the way for much of the work in the field. [36, 37] explore

PCA and dimensionality reduction with multiple constraints, with

an application to fairness. In [27], the authors tackle the case of

spectral clustering. [1] proposes a generic approach to fair cluster-

ing, including k-medoids and considers a minmax criterion across

groups. On a different note, [7] tackles the issue of data summari-

sation via a determinantal measure of diversity.

Furthermore, work in fair recommender systems (which include

some matrix factorisation techniques) has grown due to the bet-

ter understanding of certain phenomena such as echo chambers

or filter bubbles. In addition to biases linked to certain protected

characteristics (such as poor performance of recommender systems

to serve under-represented minority groups), specific issues have

appeared such as user under-representation [29] and item under-
recommendation (also known as popularity bias) [42].

3.2 Fairness criteria
As a result of unsupervised learning’s diversity and breadth, multi-

ple notions of fairness have been put forward for (or adapted to)

unsupervised learning, including social fairness, balance fairness
and individual fairness. Let us now give a brief account of these

different criteria.

(1) The social fairness criterion was introduced in unsupervised

learning in [17], where it was applied to a clustering problem

and further developed in [1, 30]. In short, it requires that the

average cost (e.g., reconstruction loss in PCA or distance to

medoid in clustering) be the same across groups. This can be

tackled byminimising themaximum of groups’ average costs.

Note that it has had a long history since it was introduced

by philosopher John Rawls in his Theory of Justice [35] as a
justice criterion (“maximin”) applied to the usual utilitarian

framework.

(2) Similarly, the principle according to which different groups

should have the same distribution across clusters can be

traced back to [9], where the authors posit the notion of bal-
ance fairness, which they attack through so-called “fairlets”.

A related concept is that of bounded representation [3], which
requires that the proportion of a group in each cluster be

between two pre-specified values. The maximum fairness
cost [17] is the maximum of the sum of all deviations from

the ideal proportion for each protected group in a cluster.

(3) Last, individual fairness compares the statistical distance

between two points obtained from their inputs and the algo-

rithm’s output distribution and mandates that two similar

inputs should have similar outputs. This paradigm was first

used in [31] for clustering and further adapted by [26].

Many more concepts exist [8] (the reader is also referred to [32] for

an overview of such concepts in supervised learning) but this paper

focuses primarily on social fairness-type of metrics. Note, however,

that –as pointed out in Section 6– the proposed framework can be

easily adapted to other fairness notions.

4 GROUP FUNCTIONALS
In this Section, we introduce the key insight of our proposal, namely

that of a group function. Suppose that there are K (distinct) groups,

k = 1, · · · ,K , corresponding, say, to the K categories of the pro-

tected characteristic s . We can thus introduce the corresponding

partition of Ω

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ ΩK , (2)

such that the intersection between any Ωk and Ωk ′ is empty.
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4.1 Motivation
It is immediate to notice that Equation 1 is simply

˜L(X ,Y ) =
K∑
k=1

|Ωk |

|Ω |
zk (X ,Y ) +

n∑
i=1

ri (xi ) +

p∑
j=1

r̃ j (yj ), (3)

where we use the shorthand notation

zk (X ,Y ) :=

∑
(i, j)∈Ωk ℓi, j (xiyj ,Ai, j )

|Ωk |
,

which can be rewritten as L(X ,Y ) = T (z1(X ,Y ), · · · , zK (X ,Y )) +

Penalty terms, and T (z1, · · · , zK ) =
∑K
k=1

|Ωk |
|Ω | zk . In particular, T

is simply a linear combination of the average cost in each group

weighted by this group’s proportion in the sample.

Fair GLRMs thus consist in finding functionals that are more

suited to the task of reducing disparities. Finally, note that, by

definition, this setup applies to any model that can be expressed as

a generalised low rank model, and thus encompasses not only PCA

and k-means, but also sparse PCA (sPCA), non-negative matrix

factorisation (NMF), etc.

4.2 Fair GLRMs
Recalling the assumptions defining generalised low rank models,

this leads us to the definition of fair GLRMs by modifying the loss

function:

Definition 2. Suppose that T : RK → R is a non-decreasing

function in each of its arguments, thenwe define the fair generalised

low rank model with respect to T as minimising the following

objective function:

L(X ,Y ) = T (z1(X ,Y ), · · · , zK (X ,Y ))+
n∑
i=1

ri (xi )+

p∑
j=1

r̃ j (yj ). (4)

While this definition can apply to all functional T , the ones we
consider aim at reducing disparities across groups. Let us nowmove

to some concrete cases.

Remark 2. Last, note that some extreme cases are possible:

(1) If K = 1 (such that only one group is present), then the

fGLRM is equivalent (up to a non-decreasing transformation)

to the standard GLRM one.

(2) If K = |i ∈ Ω | = n (i.e., each row of the data matrix A is a

group), then the fairness functional ensures that the maximal

individual cost is minimised.

4.3 Examples
Let us introduce here some well-known fairness functionals, mostly

stemming from the supervised learning literature.

Standard and reweighed loss function. Setting T (z1, · · · , zK ) =∑K
k=1wkzk , wherewk ≥ 0 ad

∑K
k=1wk = 1. Whenwk = |Ωk |/|Ω |,

we recover the usual generalized low rank model. If, on the other

hand, wk =
1

K , then this corresponds to the reweighed GLRM.

Reweighing is This is akin to some pre-processing techniques used

in [22] for example.

Minmax. Choosing T (z1, · · · , zK ) = maxk=1, · · · ,K zk = ∥z∥∞
leads to a min-max problem. Note that this is the functional implic-

itly chosen in [36] (cf. Lemma 4.8 and Proof of Theorem 4.5 therein)

to tackle fair PCA and in [17] to handle k-means. The minmax

approach has the intuitive justification

(Weighted) Lp norms. A possible choice is a weighted Lp norm

T (z1, · · · , zK ) =
(∑K

k=1wkz
p
k

) 1

p
= ∥z∥p,w. If the weights are uni-

form, then it follows that T (z1, · · · , zK ) ∝ ∥z∥p , which is –up to a

simple transformation– a setup used in [28]. In particular, since the

limit of the ∥ · ∥p norm is the ∥ · ∥∞ norm as p → +∞, one recovers
the minmax formulation as an extreme case.

Penalised learning. Adding a term penalising unfairness and dis-

parities is fairly common to (partially) debias supervised learning

algorithms [13, 39] and leads to fairness functionals of the type

T (z1, · · · , zK ) =
∑K
k=1wkzk + λ

∑
k,k ′ d (zk , zk ′), where d is a cho-

sen distance (such as L1 or L2) and λ > 0 tunes the trade-off be-

tween the statistical loss and the disparity penalty term. One may

avoid the double sum in the penalty term by considering instead∑K
k=1wkzk + λ

∑
k ′ d

(
zk ′ ,

∑K
k=1wkzk

)
.

Building new fairness functionals from old ones. From J existing
fairness functionals T1, · · · ,TJ , one can create a new functional V

V (z1, · · · , zK ) =M
(
T1(z1, · · · , zK ) · · · ,TJ (z1, · · · , zK )

)
, (5)

whereM : RJ 7→ R is a function that is non-decreasing in each

of its components. The most straightforward example is to pick a

convex combination of fairness functionals

V (z1, · · · , zK ) =

J∑
j=1

λjTj (z1, · · · , zK ),

where λj ≥ 0 and

∑J
j=1 λj = 1. For instance, one may consider

functions V that “interpolate” between the usual average loss and

the minmax case, as one may wish to control the fairness-accuracy

control. For instance, one can pick γ ∈ (0, 1) such that

V (z1, · · · , zK ) = λ

( K∑
k=1

wkzk

)
+ (1 − λ)max(z1, · · · , zK ) (6)

However, in this work, we consider a specific group functional (but

most considerations apply to any T ).

4.4 Bayesian interpretation
The traditional GLRM framework offers a natural Bayesian inter-

pretation, following [15]. Indeed, the minimisation of an fGLRM

objective in Equation 4 can be seen as a maximum a posteriori
problem, such that the hierarchical Bayesian model reads:

e−T (z1(X ,Y ), · · · ,zK (X ,Y )) ·

n∏
i=1

e−ri (xi ) ·

p∏
j=1

e−r̃ j (yj ), (7)

where the prior distributions on xi and yj have probability density

functions proportional to e−ri (xi ) and e−r̃ j (yj ) respectively. In the
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case of T (z1, · · · , zK ) =
∑K
k=1wkzk , we recover

e−T (z1(X ,Y ), · · · ,zK (X ,Y )) =
∏
(i, j)∈Ω

e
−

wk (i )
|Ωk (i ) |

ℓi, j (xi ·yj ;Ai j )
.

In short, in this example, each entryAi, j is taken to be independent,

but not necessarily identically distributed, depending on the values

of the ratio

wk (i )
|Ωk (i ) |

.

However, generally, the product structure is not preserved and

the group functional T introduces some dependence across obser-

vations, so that the observations Ai j are not independent anymore.

Similarly, if one adopts the outcome-based version of fGLRMs in

Equation 29 in Appendix E.3, then the prior distributions are not

independent either. To summarise, fair GLRMs induce a dependent
hierarchical Bayesian model.

4.5 Log-Sum Exponential Functional
Throughout this work, the main fairness functional that we use is

the weighted Log-Sum Exponential (LSE) due to its many desirable

properties and its ability to interpolate between the standard GLRM

and the minmax programme.

4.5.1 Defining wLSE. We introduce the weighted (scaled) Log-

Sum Exponential, that is a (small) generalisation of the usual Log-

Sum Exponential, which is widely used in other machine learning

applications (see [33]).

Definition 3. The weighted Log-Sum-Exponential (“wLSE”) is

defined as

T (z1, · · · , zK ) =
1

α
log

( K∑
k=1

wk eαzk

)
, (8)

where α > 0,wk ≥ 0 for all k and

∑K
k=1wk = 1.

Remark 3. First, let us point out that the weight normalisation

requirement is not strictly necessary but useful. Second, one can

pick the natural choice wk =
|Ωk |
|Ω | , but can also perform some

sample reweighing simultaneously.

4.5.2 Properties. The wLSE has a number of properties of interest

(both theoretically and practically).

Proposition 1. Suppose thatα > 0,wk ≥ 0 for allk and
∑K
k=1wk =

1, then the weighted Log-Sum Exponential verifies the following prop-
erties:

(1) T is (jointly) convex in (z1, · · · , zK ).
(2) The weighted average and the maximum functions are recov-

ered as limiting cases:

lim

α→0

T (z1, · · · , zK ) =
K∑
k=1

wkzk (9)

lim

α→+∞
T (z1, · · · , zK ) = max(z1, · · · , zK ) (10)

(3) A shift property holds for every z ∈ R: T (z1, · · · , zK ) = z +
T (z1 − z, · · · , zK − z).

Proof. See Appendix C.1. □

Remark 4. The shift property has a very natural explanation when

thinking about fairness, as it decomposes the objective into the

usual average cost, z, (possibly reweighed), and a term that penalises

disparityT (z1−z, · · · , zK −z). Based on this insight, one could tune
the objective further: Tγ (z1, · · · , zK ) = z + γT (z1 − z, · · · , zK − z),
for γ > 0.

4.5.3 Choosingα and fairness implications. The hyper-parameterα
enables one to “interpolate” between the traditional GLRM problem

and its fair min-max formulation. Given that a number of articles

use min-max formulations, it is worth justifying why one may wish

to choose α , +∞. Indeed, α , +∞ introduces partial debiasing in

unsupervised learning and helps relax assumptions of strict equal

average costs amongst groups.

(1) wLSE is a soft maximum and enables modellers to approxi-

mate the maximumwith a differentiable function [33], which

is an advantage in many circumstances, including when

gradient descent-type algorithms are used to minimise the

objective function.

(2) Constraints may exist in the application of an algorithm,

such as a minimal overall statistical performance, leading a

modeller to debias an algorithm as much as possible while

keeping the overall average loss below a given threshold.

(3) Partial debiasing was used in [23] to account for the presence

of fairness-accuracy (or even fairness-fairness) trade-offs [24,

32]. The notion of a trade-off between an average statistical

performance metric (such as an empirical average loss) and

disparity metrics is illustrated empirically in Section 7.

(4) Issues regarding the out-of-sample performance of debiasing

algorithms have been investigated [2, 12] in the context of

supervised learning. [2], in particular, demonstrates the need

to carefully tune a debiasing algorithm as “total” debiasing

may lead to worse results out-of-sample. In other words,

picking an intermediate value of α may lead to superior

results on unseen data (such as the out-of-sample test set).

In other words, it may not be optimal from a fairness point

of view to choose α = +∞.

5 FITTING FAIR GLRMS
We now turn our focus to the minimisation of the objective func-

tion in Equation 4. At first glance, it may seem significantly more

complex than in the case of standard GLRMs, but it turns out that

–in most cases– the essential biconvex property of the objective

function still holds.

5.1 Biconvexity of fGLRMs
The attractiveness of fGLRMs comes from the fact that under mild

assumptions on the fairness functional T , they are biconvex func-

tions in X and Y and thus fairly straightforward to minimise. Note

that one cannot hope, in general, for something better than bi-

convexity since standard GLRMs are themselves biconvex. Note

that not all GLRMs are biconvex, but most matrix factorisation

techniques (such as SVD, PCA or NMF) are.

Proposition 2. Under the assumptions that T : RK → R is convex
and is non-decreasing in each argument, and each individual loss
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function ℓi, j is biconvex in xi and yj , then the application

(X ,Y ) 7→ T (z1(X ,Y ), · · · , zK (X ,Y )) (11)

is biconvex in X and Y . If, in addition, each penalty function ri or r̃ j
is convex, then the application

(X ,Y ) 7→ L(X ,Y )

= T (z1(X ,Y ), · · · , zK (X ,Y )) +
n∑
i=1

ri (xi ) +

p∑
j=1

r̃ j (yj ) (12)

is biconvex in X and Y .

Proof. See Appendix C.2. □

What this result shows is that the introduction of a group func-

tional does not change the fundamental structure of a generalised

low rank model. This has implications in terms of optimisation, as
existing algorithms can simply be tweaked and reused. While one

may use gradient descent algorithms and variants thereof on the

non-convex objective function (Equation 4), more bespoke algo-

rithms exist.

5.2 Alternating Minimisation (or Alternate
Convex Search)

Alternating minimisation is a well-known algorithm that minimises

the objective function one direction at the time. If the objective

function is multi-convex (i.e., convex in each direction when the

other ones are fixed), this is the same as alternate convex search.

The reader is referred to [5, 18, 20].

Algorithm 1 Alternating Minimisation for fGLRM D.1

Require: Matrix A, loss functions ℓi, j and penalty functions ri
and r̃ j .

Select initial values X0
and Y0

repeat
for i = 1, · · · ,n do
xi ← argminx L((X−i ,x),Y) + ri (x)

end for
for j = 1, · · · ,p do
yj ← argminy L(X, (Y−j ,y) + r̃ j (y)

end for
until convergence
return X,Y

We have used the shorthand X = (X−i ,xi ) for all i = 1, · · · ,n.
This algorithm is the adaptation to the fair set-up of Algorithm 1

in [38].

Remark 5. Let us make a couple of practical remarks at this stage.

(1) The for loop i = 1, · · · ,n in this algorithm may be replaced

with a standard GLRM for loop if the penalty function ri is
a set indicator penalty (for instance in the case of clustering,

ri (x) = 0 if x = el for some l ∈ {1, · · ·d} and +∞ otherwise).

(2) Due to overflow, it may sometimes be necessary to express

the fairness functional slightly differently. For instance, ∥z∥p,w =

∥z∥∞



 z
∥z∥∞





p,w

. Similarly,wLSEα (z) = ∥z∥∞+wLSEα (z1−

∥z∥∞, · · · zK − ∥z∥∞).

5.3 Biconvex Gradient Descent
We suppose here that all functions are differentiable and that the

penalty functions ri and r̃ j are convex. Then, thanks to the bicon-

vexity of L in X and Y , one can derive the following expressions:

∂L(X ,Y )

∂xi
=

∂T

∂zk (i)

∂zk(i)

∂xi
+ ∇ri (xi )

∂L(X ,Y )

∂yj
=

K∑
k=1

∂T

∂zk

∂zk
∂yj
+ ∇r̃ j (yj )

where

∂zk (i )
∂xi

= 1

|Ωk (i ) |

∑
j |(i, j)∈Ωk (i ) ∇ℓi, j (xi · yj ;Ai j )yj ,

∂zk
∂yj

=

1

|Ωk |

(∑
i |(i, j)∈Ωk ∇ℓi, j (xi · yj ;Ai j )xi

)
, and

∂T
∂zk
=

wk eαzk∑K
k=1wk eαzk

. This

leads to a biconvex gradient descent algorithm:

Algorithm 2 Biconvex Gradient Descent D.3

Require: Matrix A, loss functions ℓi, j and penalty functions ri
and r̃ j , step sizes (αt )t ≥1.

Select initial values X0
and Y0

t ← 1

repeat
for i = 1, · · · ,n do
дti ←

∂L(Xt−1,Yt−1)
∂x t−1i

xti ← xt−1i − αtд
t
i

end for
for j = 1, · · · ,p do
д̃tj ←

∂L(Xt ,Yt−1)
∂yt−1j

ytj ← yt−1j − αt д̃
t
j

end for
t ← t + 1

until convergence
return Xt ,Yt

The main difference between GLRMs and fGLRMS comes from

their particular gradient structure and the fact that an iterative

weighing scheme has implicitly been introduced, similarly to boost-

ing. Indeed, by denoting

δk =
∂T

∂zk
=

wke
αzk∑K

k=1wke
αzk
,

we obtain that δk ≥ 0 for all k’s and
∑K
k=1 δk = 1. When α → 0, we

simply recover δk = wk , and δk does not change at each iteration.

On the other hand, when α is non-zero, the weights are adaptive

and over-weigh the groups with higher average cost in the previous

iteration.

Remark 6. Some convergence properties of these algorithms are

discussed in the Appendix D.

6 OUTCOME-BASED FAIRNESS AND OTHER
EXTENSIONS TO FGLRMS

In this Section, we show how alternative notions of fairness can

be included in the fGLRM framework. Importantly, the alternating

minimisation algorithm can still be applied to these cases.
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6.1 Group functional on outcome disparity
Let us now adopt an outcome-based viewpoint on unsupervised

learning. Here, we consider that one wishes to apply notions of

demographic parity to the output of the unsupervised learning

algorithm, which we consider here to be xi · yj . In recommender

systems, for example, one may wish to ensure that all groups have

the same (predicted) average rating or satisfaction. One way to

tackle this issue is to penalise the disparity between each group’s

average output and the overall average and redefine the objective

function as

LO(X ,Y ) :=
1

|Ω |

∑
(i, j)∈Ω

ℓi, j (xi · yj ,Ai, j )

+ γT (u1(X ,Y ) − u(X ,Y ), · · · ,uK (X ,Y ) − u(X ,Y ))

+

n∑
i=1

ri (xi ) +

p∑
j=1

r̃ j (yj ), (13)

where uk (X ,Y ) :=

∑
(i, j )∈Ωk

xi ·yj
|Ωk |

is the average outcome in group

k and u(X ,Y ) :=
∑
(i, j )∈Ω xi ·yj
|Ω | is the (possibly reweighed) sample

average. In the case of wLSE, thanks to its shift property, this can

be rewritten as

1

|Ω |

∑
(i, j)∈Ω

(
ℓi, j (xi · yj ,Ai, j ) − γ (xi · yj )

)
+ γT (u1(X ,Y ), · · · ,uK (X ,Y )) +

n∑
i=1

ri (xi ) +

p∑
j=1

r̃ j (yj ), (14)

Importantly, this notion preserves the factorisation property of

fGLRMS in the sense that non-penalty terms only depend on the

dot product xi · yj and is still an fGLRM.

6.2 Integrating balanced notions of fairness
Let us focus here on additional notions of fairness [8], specific to

clustering and show how to tackle them. In the below, we consider

that we wish to cluster data points from K groups into C clusters.

6.2.1 Balance fairness [9]. The (reformulated) notion of balance

can be implemented in a slightly generalised version of our frame-

work. Indeed, the following objective encourages proportions of

points in cluster l to be similar across groups:

LB(X ,Y ) := L(X ,Y )

+ γ
C∑
l=1

T

(∑
(i, j)∈Ω1

1{xi=el }
|Ω1 |

, · · · ,

∑
(i, j)∈ΩK 1{xi=el }
|ΩK |

)
. (15)

6.2.2 Bounded representation [3]. Similarly, one can encode a no-

tion such as bounded representation by introducing a new penalty

term

LR (X ,Y ) := L(X ,Y ) + γ
K∑
k=1

C∑
l=1

rk,l

(∑
(i, j)∈Ωk 1{xi=el }
|Ωk |

)
, (16)

where rk,l (p) is worth 0 if b ≤ p ≤ a and +∞ otherwise. Note that

one needs to be careful with the initialisation of an algorithm with

Dataset Reference Binary Multivariate

Adult [14] sex; female (16,192), male (32,650)

race; (white (41,762), black (4,685), other (406)

asian-pac-islander (1,519), amer-indian-eskimo (470)

German Credit [14] sex; female (310), male (610)

sex & marital status; male : divorced/separated (50),

female : divorced/separated/married (392),

male : single (548); male : married/widowed (92)

Loan Defaults [21] sex; female (11,888), male (18,112) -

LFW [16] sex; female (2,962), male (10,270) -

Table 1: The details of binary and multivariate protected at-
tribute in each dataset.

bounded representation and may wish to perform stratified sam-

pling per group and per cluster and/or use a smooth representation

of rk,l (p).

7 EXPERIMENTAL EVALUATION
In this section, we demonstrate the following results.

• Multiple GLRMs. We consider PCA, k-means and non-

negative matrix factorisation (NMF) in our experiments.

• Reproducibility and convergence. Using our proposed

wLSE functional with a large positive α (10
5
), we are able to

reproduce results from [17, 36] (which can also be recovered

by simply picking T = max in our alternating minimisation

approach).

• Partial Debiasing. By varying the α hyperparameter in the

wLSE functional, we obtain a full spectrum of results ranging

from the standard GLRM, to intermediate states and the

min-max solution. This points to the usual fairness-accuracy

trade-off as the overall average cost tends to increase as

disparity decreases.

• Generalisation. For each level of α , we use the correspond-
ing solution calibrated on the train set (i.e., we keep the

yj ’s fixed), and simply compute the new set of weights xi
for all i’s in the test set. This is similar to online dictionary

learning. We find that, first, the performance on the test set

(expectedly) deteriorates and, second, that the completely

fair solution may have become sub-optimal. This reinforces

the the attractiveness of partial debiasing, which can thus

be interpreted as a fair regularisation.

7.1 Data, models and approaches presented
7.1.1 Datasets. We have considered three datasets (whose details

are indicated in Table 1):

• German Credit [14],

• Loan Default Credit [21],

• Adult [14].

Throughout our experiments, groups have been defined in terms

ofmembership to a class defined thanks to a protected characteristic,

as detailed in Table 1.

Remark 7. Results in Figures 1- 2 are based on the aforementioned

datasets and in Table 1 we provide additional details on the pro-

tected attribute used, as well as unique values and their counts. In

Appendix E.3, we provide some additional results that are based on

LFW (Labeled Faces in the Wild) dataset [16].

7.1.2 fGLRMs under consideration. In this paper, we have imple-

mented in the fGLRM framework the following objectives:

• k-Means (Figures 1-4),
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• Principal Component Analysis (PCA) (Figures 5-6),

• Non-Negative Matrix factorization (NMF) (Figures 7-8 in

Appendix E).

It has to be noted that the framework is flexible enough and allows

for different modifications.

7.1.3 Fairness functionals and benchmarks. In addition to the wLSE
functional, we have also considered a number of benchmarks:

• Standard GLRM (i.e., empirical average loss as in [38]);

• Reweighed GLRM (i.e., uniform weight 1/K for each group,

similar to [22]), see Figure 8 in particular;

• Minmax approach (where T = max) as in [17, 36];

• p-norm (or q-FFL) approach (in line with [28], see Figure 7);

We have shown that the proposed framework can handle cases

with two (see Figures 1-2) and more protected groups (see Figures

3-4). Figures 5 - 6 demonstrate results when using group functional

on outcome disparity presented in Section 6.1. For each aforemen-

tioned result we also illustrate the trade-off curve that is obtained

when varying α parameter of wLSE functional
1
.

Finally in Sections E.2 and E.3 we presented results based on su-

pervised GLRM and outcome-based fairness incorporating a penalty

term discussed in Sections B and E.3.1 respectively.

Remark 8. In experiments where a test set is needed, we have

used a 70%-30% train-test split. We have used stratified sampling

with respect to the protected attribute to ensure that both train

and test sets have the same proportion of observations belonging

to different groups. The algorithm used throughout these tests is

the standard alternating minimisation. When considering a grid of

values forα , we have considered the following values: 10−6, 10−5, 3∗
10
−3, 10−2, 10−1, 5 ∗ 10−1, 1, 5, 101, 2 ∗ 101, 6 ∗ 101, 102, 103, 104, 105.

7.2 Main observations
Before delving into the precise results, we wish to summarise our

key empirical findings.

First, considering a standard GLRM or a (partially) debiased one

makes a difference both in terms of average statistical performance

and disparity, thus indicating the presence of accuracy-fairness

trade-offs in unsupervised learning too.

Second, “interpolating” techniques such as wLSE or q-FFL tend

to offer similar results and converge to the minmax programme as

their respective hyperparameter goes to∞. In- and out-of-sample

behaviour indicates that it is not always preferable to use the min-

max formulation.

Third, using a reweighing scheme seems to help improve fairness

in general (but not always), especially when α is small. However,

as α increases, it becomes less relevant.

Fourth, the implementation within the fGLRM framework of the

minmax approach or the adaptation of the q-FFL logic to unsuper-

vised learning are straightforward and match results obtained via

other algorithms. This underlines the interest in having a generic

framework that accommodates easily many different functionals.

1
When q-FFL functional used q parameter is varied instead.

7.3 Varying the hyperparameter α
Having established that the fGLRM approach can replicate previ-

ous results, we demonstrate some of its further benefits, such as

its ability to interpolate between standard (i.e., no fairness consid-

erations) and min-max solutions, with the degree of interpolation

being controlled by a parameter α as shown in Equation 8. Figure 1

shows how both total loss and group disparity changes on the train

set, as we vary parameter α through a grid of values. The larger

values of α decrease group disparity, while smaller values bring

solution closer to the standard solution.

In Figures 1-6, we use the following notations: "average" point is

the solution of a standard algorithm, "min-max" point corresponds

to the solution of wLSE with the largest α = 10
5
, while all other

points are denoted as wLSEα and correspond to the remaining

values of α . The size of points is ordered according to the α used

and the dotted line is a local regression line through the points.

Figure 1: KMeans. Trade-off curve between the average loss
and group disparity on the train set with wLSEα functional
on adult, german credit, and loan defaults’ datasets. Each
point corresponds to a different α .

Key takeaway. Results presented in Figure 1 are intuitive: de-

creasing the disparity amongst groups increases the overall loss,
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and vice versa, which illustrates the fairness-accuracy trade-off [24]

in the case of unsupervised learning.

7.4 Generalisation
To check whether debiasing generalises in fGLRMs, we consider

out-of-sample behaviour and assess the performance of the fitted

fGLRMs on a test set. The idea here is to keep "archetypes"Y learned

on the train set fixed and solve for the best feature representations

Xtest of test set examples:
1

|Ω |

∑
j :(i, j)∈Ω ℓi, j (xi · y

train
j ,Atesti, j ) +∑m

i=1 ri (xi ). Once these are learned, computing average loss or

group disparity is straightforward. For the sake of brevity, we only

focus on k-means, and thus allocate test observations to the nearest

centroid obtained during training. Despite a clear pattern on the

train set, it is not always the case on the test set for different data sets

as shown in Figure 2, in line with results pertaining to supervised

learning [2].

Key takeaway. This suggests carefully choosing α and using

cross-validation techniques, depending on the exact use case.

Figure 2: KMeans. Trade-off curve between average loss and
group disparity on the test setwithwLSE functional on adult,
german credit, and loan defaults’ datasets.

Remark 9. Additional results are presented in the Appendix E.

Figure 3: KMeans. Trade-off curve between average loss and
group disparity on the train set with wLSE functional on
adult and german credit datasets. Protected attribute is a
multivariate feature (race in adult dataset, sex and marital
status in german credit dataset respectively).

Figure 4: KMeans. Trade-off curve between average loss and
group disparity on the test setwithwLSE functional on adult
and german credit datasets. Protected attribute is a multi-
variate feature (race in adult dataset, sex and marital status
in german credit dataset respectively).
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Figure 5: PCA. Trade-off curve between average loss and
group outcome disparity on the train set with wLSE func-
tional on adult, german credit, and loan defaults’ datasets.

8 DISCUSSION
In this paper, we have introduced the notion of fair generalised

low rank models by applying a fairness functional to group-wise

average losses, leading to a reduction in cost disparity across groups.

Building fair GLRMs has enabled us to devise a generic framework

encompassing fair PCA and fair k-means, but also applicable to

many other use cases, such as sparse PCA, non-negative matrix

factorisation, subspace clustering and many more.

We have also specified a particular choice of such fairness func-

tional, namely the weighted Log-Sum Exponential, which has many

desirable properties. This permits users to select a hyper-parameter

α that governs the fairness-accuracy trade-off. The importance

of debiasing is emphasised by some of our out-of-sample results,

showing that total debiasing in-sample may lead to very different

results out-of-sample. In addition, we have shown that straightfor-

ward algorithms based on biconvexity (or variants thereof) could be

efficiently leveraged to solve these fair objective functions. fGLRMs

thus inherit some properties of GLRMs.

Finally, some extensions are straightforward, such as including

orthogonality constraints between the learnt dictionary and the

Figure 6: PCA. Trade-off curve between average loss and
group outcome disparity on the test set with wLSE func-
tional on adult, german credit, and loan defaults’ datasets.

specified protected characteristic. However, further research is war-

ranted to understand how to transpose multiple fairness definitions

from classification or regression to unsupervised learning and how

to assess out-of-sample performance.
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