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ABSTRACT
Machine learning models in safety-critical settings like healthcare

are often “blackboxes”: they contain a large number of parameters

which are not transparent to users. Post-hoc explainability methods

where a simple, human-interpretable model imitates the behavior

of these blackbox models are often proposed to help users trust

model predictions. In this work, we audit the quality of such ex-

planations for different protected subgroups using real data from

four settings in finance, healthcare, college admissions, and the US

justice system. Across two different blackbox model architectures

and four popular explainability methods, we find that the approxi-

mation quality of explanation models, also known as the fidelity,
differs significantly between subgroups. We also demonstrate that

pairing explainability methods with recent advances in robust ma-

chine learning can improve explanation fairness in some settings.

However, we highlight the importance of communicating details

of non-zero fidelity gaps to users, since a single solution might

not exist across all settings. Finally, we discuss the implications

of unfair explanation models as a challenging and understudied

problem facing the machine learning community.
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1 INTRODUCTION
Machine learning (ML) models are increasingly used in safety-

critical settings like healthcare [23, 104, 107], college admis-

sions [55], and law [6]. Several studies have shown that human

decisions can become more accurate when assisted by such ML

models [16, 106, 111]. However, manyMLmodels are “blackboxes”—

they might have too many parameters or be proprietary—and can-

not explain their predictions in ways humans understand [99]. In

such scenarios, users may struggle to understand a model’s outputs

enough to trust and use its predictions [34, 36, 65].

Post-hoc explainability methods have recently begun helping

users better understand why blackbox models make certain pre-

dictions [62, 93, 94]. A popular post-hoc approach is to train sim-

ple, human-interpretable models to imitate a blackbox model’s

behaviour [92] by maximizing the congruity between simple ap-

proximations and blackbox model predictions. Such approximation

quality is known as fidelity [30]. Then, the simpler model can be

used either as a new stand-alone model or to explain one predic-

tion at a time [92, 105]. By highlighting important inputs, these

explainability methods provide a path towards helping users trust

machine learning models in high-impact settings [93].

However, it remains unknown when and if these models approxi-

mate behavior fairly. If fidelity differs between different pre-defined
groups (e.g., demographics) in a dataset, explainability methods

may perpetuate machine bias by encouraging users to trust model

predictions for some people but not others. In this work, we study

to what degree do gaps in fidelity exist between subgroups?
To answer this question, we measure group-wise fidelity for

different post-hoc explanation methods on real tabular datasets

that include group membership. Intuitively, an explanation model

is fair if it has equally high fidelity for all protected groups. This

definition is similar to common group fairness definitions which

seek to eliminate gaps in predictive performance across groups [48,

83, 119]. We introduce two definitions of fidelity gaps, or disparities
in fidelity across different subgroups. Using these measures, we

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3531146.3533179
https://doi.org/10.1145/3531146.3533179
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groups healthy/unhealthy blackbox boundary explanation boundary
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good     explanation bad     explanation

disease classification for
males (   ) and females (   )

linear explanation model
approximating decision boundary
with good average performance

group-specific explanations
can be worse for some groups

Figure 1: An example of an unfair global explanation model. Orange and Blue circles indicate predicted classes, healthy or
unhealthy, respectively. □ and △ denote group membership. The red dashed line is a linear explainability model fit to approx-
imate the black blackbox decision boundary. The two figures on the right show that the linear approximate is worse for the □
group.

benchmark two popular families of post-hoc explanation models:

local methods, which imitate the boundary of a blackbox around

one instance [71, 92, 94], and global methods, which imitate the

blackbox across all instances [62, 98]. We also motivate fidelity gap

measurements by showing mathematically that measuring fidelity

gaps across subgroups directly connects with prior work on fairness

preservation for explainability [32]. With a comprehensive audit

of explanation fairness, we find that significant fidelity gaps exist

between subgroups.

A popular way to train fairer models is through robust optimiza-

tion [66, 89, 100]. To see how robust training impacts large fidelity

gaps, we also study a simple technique for retraining explainability

methods to improve their fairness. We also study potential causes

for these fidelity gaps, and highlight mechanisms by which group

information can indirectly be used in post-hoc explanations as an

important contributing factor. Lastly, we assess the impact of the

observed fidelity gaps on real-world decision-making accuracy with

a carefully designed simulation study. The major findings of our

evaluation are as follows:

Explanation fidelity varies significantly between sub-
groups: We find that fidelity gaps grow up to 7% between sub-

groups in our experiments using four popular datasets. In com-

parison to average fidelity across all data points, the fidelity of

explanations for disadvantaged groups is often significantly lower

(up to 21%). These findings indicate that judging the quality of

explanations by their average fidelity alone—a common approach—

overestimates explanation quality for some subgroups, potentially

leading to worse downstream decision making. This effect is illus-

trated in Fig. 1.

Balanced and robust training can reduce but not eliminate
fidelity gaps: We use robust training by adaptively reweighting

or balancing groups in training data while training explanation

models. This turns out to be a promising direction: fidelity gaps

improve across subgroups, though this depends on both the dataset

and exact method utilized.

Fidelity gaps have an impact on decision-making in the
real-world: Using a simulation study, we observe that larger fi-

delity gaps may lead to disparities in decision making accuracy

for different subgroups. This implies that ignoring fidelity gaps

between subgroups can have detrimental effects to decisions made

for members of protected groups.

Finally, we categorize and discuss promising directions for evalu-

ating and improving post-hoc explainability methods. In summary,

our work is a step towards training fair and reliable explanations.

2 RELATEDWORK
2.1 Explainable Machine Learning
WhileMLmodels achieve outstanding performance, users often find

them too complex to trust in practice [34]. To make such blackbox
models more useful, users require that they be understandable,

often due to laws [13] or preference [12, 51, 95]. To fill this gap,

recent approaches “explain” a blackbox model’s behavior after it

is trained [18, 37]. These post-hoc explainability methods are now

used in safety-critical settings like healthcare [3] and finance [19].

Several explainability methods are increasingly-popular because

they make no assumptions about a blackbox model’s architecture

[93], also known as model-agnostic. In contrast, some methods

are designed exclusively for deep learning, requiring their internal

structure and gradients [8, 57, 63, 103, 103]. We consider model-

agnostic methods, which can be used for a wider family of blackbox

models, including deep learning.

Model-agnostic explainability methods are primarily either local
or global [39]. Local methods justify one model prediction at a time,

typically by approximating the decision boundary around one data

point [14, 71, 84, 91, 92, 94]. Then, the weights learned by the local

models are used to rationalize the blackbox model’s prediction.

Some of the best-known local methods are LIME [92], which learns

a sparse linear classifier on a dataset of perturbed samples, and

SHAP [71], which uses feature-wise Shapley values [97]. Global
methods, on the other hand, train interpretable surrogate models
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of the blackbox model’s behavior on an entire dataset, which is

then used in lieu of the blackbox. These methods primarily use tree-

based models [70], rule lists [62, 88], sparse linear models [108, 120],

and generalized additive models [69] as surrogates.

2.1.1 Explainable ML in Safety-critical Settings. The need for ex-

plainability in safety-critical applications is a nebulous and con-

tested topic for several reasons:

Interpretability vs Explainability. Some prior works advocate

for interpretability over explainability [43, 77, 99]. An explanation

model without perfect fidelity is by definition incorrect for some

data points [99]. Our work extends this point; these errors can occur

for some groups more than others. Since explanations influence

trust [16], it is important to conduct user studies on the impacts

of explanations on algorithmic aversion [68] and over-reliance on

algorithmic advice [35].

Anchoring Effects. Explanations can fool people into trusting

incorrect models [9, 85]. For example, Poursabzi-Sangdeh et al. [85]

find that when people are shown explanations from a bad model,

they become more likely to trust the model, even when it is clearly

wrong. In cases like this, people use the explanations while judging

the quality of the blackbox models, even though the explanations

themselves can be misleading [10].

Mismatched end-user and model-designer goals. Many ex-

plainability methods aim to assist model debugging, while non-

engineer users only choose when to accept a blackbox’s deci-

sions [59, 86, 93]. This mismatch can have downfalls. For instance,

Buçinca et al. [17] find that the explanations people find most useful

are also the ones they trust incorrectly. Resolving this mismatch

requires goal-aware explainability methods along with education

to ensure end-users are properly trained in using these methods.

2.1.2 Desiderata for Post-hoc Explanations. Most post-hoc explain-

ability methods have three goals:

Reliability. Explanations must be accurate for the right rea-

sons. People often trust explained models [85, 96], so ensuring

that explanations are faithful to the original model and not simply

easy-to-rationalize is essential [43].

Robustness. Explanation models should not overfit to spurious

patterns in the data [44, 60] and must be robust in the presence of

small distribution shifts at test time [60].

Simplicity.Models should be sparse, and leave little room for

effects for human cognitive biases such as the anchoring effect [85].

Ideal explanations will highlight only the key information needed

to understand a model’s behavior, encouraging users to engage

with explanations in predictable ways [17]. However, there is often

a trade-off between an explanation’s faithfulness and its simplic-

ity [61]. Recent work on cognitive forcing—where users explicitly

interact and understand explanations—appears to be a promising

direction to address this trade-off [17].

Along with other recent efforts [10, 44, 60, 85], we promote a

fourth goal: Fairness. Explanation quality should not depend on

groupmembership.We find that this requirement is not yet satisfied

by popular explainability methods.

2.2 Algorithmic Fairness
Formalizing fairness is a flourishing research area [11, 22, 26, 27,

41, 48, 67, 75, 116, 117]. Recent works define fairness at either the

individual- or group-level. Individual fairness [41] requires similar

predictions for similar individuals; group fairness requires similar

predictions for different groups (sex or race, for example). We con-

sider group-level fairness for binary classification, which we quan-

tify using demographic parity (DP) gap [48, 83], a standard group-

fairness metric. We describe this metric probabilistically, allowing

calculation of gaps across groups: DP = E[Ŷ |A = a] − E[Ŷ |A =
b] ∀a,b ∈ A, where Ŷ is a predictor and its DP gap is measured

with respect to attribute A.
There are three main strategies for encouraging group fair-

ness [20]: pre-processing data to find less-biased representa-

tions [81]; enforcing fairness while training a model, typically

through regularization [72, 118]; and altering a model’s predictions

to satisfy fairness constraints after it is trained [2, 24, 48, 83]. In

this paper, we utilize the inprocessing method proposed by Zhang

et al. [118] for training fair blackbox models. Further, recent work

has demonstrated that group-robust training can increase fairness

by improving the worst-group accuracy [101].

2.3 Bias in Model Compression and Risks of
Fairwashing

Several recent works study the effects of model and data compres-

sion on fairness [52, 102]. For example, Samadi et al. [102] observe

that reconstruction error associated with data dimensionality re-

duction via principal component analysis is higher for some pop-

ulations. Hooker et al. [52] show that average accuracy after ML

model compression hides disproportionately high errors on a small

subset of examples. In a similar vein, we study post-hoc explanation

models, which are often compressed blackbox models, and assess

how they transmit bias. Another related topic is “fairwashing”:

the act of overlooking a model’s unfair behavior by rationalizing

its predictions via explanations [4]. Our paper instead considers

fairness in how well explanation models imitate blackbox models

(rather than the ground-truth), regardless of blackbox model fair-

ness. In concurrent work, Dai et al. [31] showed that explanation

quality may differ between subgroups, further validating our find-

ings. However, the metrics and methodological focus in their work

is on feature-based variations to fidelity. We encourage readers

to review their work for an alternate approach to measuring the

fairness of explanations.

3 MEASURING THE FAIRNESS OF
EXPLANATIONS

Here, we introduce metrics for measuring fairness of explanation
models or fidelity gaps across subgroups.

3.1 Notation
Consider a dataset D = {(xi ,yi )}ni=1 that contains n training data

points. xi ∈ Rd is the d-dimensional feature vector of the i-th data

point in D and yi ∈ {0, 1} is its associated binary label. We assume

binary classification for simplicity. Let дi ∈ {1, . . . ,G} be a variable

defining group membership with respect to the protected attribute
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for every data point for a total ofG subgroups. In all cases, дi serves
as auxiliary information and is not used during any model training,

unless specified otherwise. A blackbox classifier B : Rd → {0, 1}

predicts one binary label per input x . Given classifier B, we wish to

explain its prediction given some query point x∗. To achieve this,
an explanation model E is chosen from a set of interpretable models

(e.g., linear models or decision trees). Then, E is trained to imitate
B either locally (for the feature space near x∗) or globally (for all

data points in D).

3.2 Fidelity of Explanations
Given a blackbox B and explainability model E, we seek to describe

how well E approximates B’s behavior. Fidelity, as detailed in Defi-

nition 3.1 below, is a powerful measure for this approximation error

[5, 61, 62], though it disregards group information.

Definition 3.1 (Explanation Fidelity [30]). Given blackbox model

B and explanation model E, the explanation fidelity on data points

(xi ,yi )
N
i=1 is

1

N
∑N
i=1 L(B(xi ),E(xi )), where L is a performance met-

ric.

For L, we use accuracy, AUROC1
, and mean error, denoted as

FidelityAcc , FidelityAUROC
, FidelityErr , respectively.

In the following sections, we build up to a definition of explana-

tion fidelity that considers group information. First, we motivate

the need for a metric that measures fidelity across groups (Sec-

tion 3.3), then define two new notions for measuring the fairness

of explanations (Section 3.4).

3.3 Fidelity Gaps are Critical to Fairness
Preservation

Dai et al. [32] recently introduced fairness preservation in surrogate

explanation models. Fairness is preserved when the fairness prop-

erties of the blackbox model and explanation model are identical.

For example, consider Figure 1. A linear explanation E is a high-

fidelity approximation of the blackbox B’s decisions for one group
(△), but not the other (□). Here, B seems unfair in predicting the

“unhealthy" class for the two groups. Meanwhile, E appears fairer.

In this example, B’s degree of (un)fairness—the demographic parity

gap—is not preserved by the explanation model. For demographic

parity, fairness preservation in explanations implies that B and E
should have similar DP Gaps (Section 2.2).

To reliably judge a blackbox’s fairness using only its post-hoc ex-

planations, preserving fairness is essential. If fairness is preserved,

then when an explanation seems unfair, we can be confident that

the blackbox model is likely similarly unfair as well. Next, we prove

that fairness preservation is directly linked to fidelity gaps across

subgroups. While Dai et al. [32] briefly intuit that fairness preser-

vation impacts explanation fidelity via an illustrative example, only

a group-conditional blackbox model’s decision boundary under im-

balanced group sizes is considered. In contrast, we do not make any

assumptions about the relative sizes of groups or group-dependence

of blackbox model and instead show that fairness preservation is

related to fidelity gaps (more so than overall explanation fidelity).

1
AUROC cannot be written directly as a sum but we slightly abuse notation for

readability.

3.3.1 Fidelity Gaps are related to Fairness Preservation.

Theorem 3.2. Let E be a post-hoc explanation model trained to
imitate predictions of blackbox model B, and mean residual error for
a set of N data points in dataset D is 1

N
∑
x ∈D (E(x) − B(x)). Then,

the difference between the Demographic Parity Gaps of E and B, both
with respect to binary valued-protected attribute д, is equal to the
difference in mean residual error of data points with д = 1 and д = 0.

The full proof of this theorem is in Appendix A.1; the key idea

is to expand E(xi ) = B(xi )+ ϵi where ϵi is a residual for each point

xi . This is valid when E is trained to imitate B with high fidelity

(e.g., minimizing mean squared error or cross-entropy loss). We

also empirically validate this theorem on explanation models in

Appendix A.2.

From Theorem 3.2, a sufficient condition for DP gap preservation,
as computed over instances xi and their local linear classifiers Ei (xi )
or a global model E (where Ei = E∀i) is ensuring that the mean

residual errors for each group is comparable. This is the same as

low fidelity gaps across subgroups where L is the mean error. Note

that this does not correspond to mean absolute difference between

predictions of E and B, but instead their mean difference. Theorems

of similar form could be derived for other group fairness definitions,

but the ϵ values and data points considered would depend on the

ground truth as well (e.g., for equal-opportunity, the ϵ difference
would only contain terms for data points with positive-class ground

truth). With this motivation in mind, we next introduce two new

metrics that measure fidelity gaps across subgroups.

3.4 Measuring the Fairness of Explainability
Methods

Building on the definition of average fidelity across groups

(Defn. 3.1), we introduce two new measurements for the fairness

of explanation models by evaluating their fidelity gaps between

subgroups. The first metric (Definition 3.3) addresses the question:

by what degree would relying on the average fidelity alone be detri-

mental to subgroups of data? The second metric estimates the mean

difference in fidelity of explanations between subgroups of data

(Definition 3.4).

Inspired by past work [30, 66], the maximum fidelity gap from
average (Definition 3.3) computes the difference between the overall,

average fidelity and the worst-case subgroup fidelity. This way, we

quantify the maximum degree to which an explanation model’s

fidelity is lower for disadvantaged groups compared to the average

across all subgroups.

Definition 3.3 (Maximum Fidelity Gap from Average: ∆L). Let the
maximum fidelity gap from average be

∆L = max

j


1

N

N∑
i=1

L(B(xi ),E(xi )) −
1

Nj

∑
i :д ji =1

L(B(xi ),E(xi ))

 ,
where д

j
i = 1 denotes that point xi belongs to the jth subgroup

defined by a specific protected attribute д (e.g., data points from
females), and Nj is the number of data points with дj = 1.

Next, the mean fidelity gap amongst subgroups (Definition 3.4)

computes how much an explanation model’s fidelity differs over
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subgroups. Here, we only consider groups defined by the same

sensitive attribute (e.g., дk is male, дj is female).

Definition 3.4 (Mean Fidelity Gap Amongst Subgroups: ∆дroupL ).
Let the mean fidelity gap amongst subgroups be

∆
дroup
L =

2

G(G − 1)

G∑
k=1

G∑
j=k+1

��Lk − Lj
�� ,

where

Lk =
1

Nk

∑
i :дki =1

L(B(xi ),E(xi ))

where дj denotes the jth subgroup defined by a specific sensitive

attribute (e.g., datapoints from females), and Nj is the number of

datapoints in дj .

Similar to average fidelity, we choose L to be Accuracy, AUROC,

and Mean Error for both fidelity gap measurements (e.g., ∆AUROC
and ∆

дroup
AU ROC ). In all cases, we do not consider intersectional groups

due to sample size concerns.

3.5 Experiments Overview
Since fidelity gaps across subgroups are closely linked to fairness

preservation and risks of fairwashing, we design experiments to

audit this quantity. We conduct the following experiments in the

sections below
2
:

Measuring Fidelity Gaps Between Subgroups:We measure

fidelity gaps using metrics defined in 3.3 and 3.4 for four different

post-hoc explanation models, and two different blackbox model

classes. The aim of this experiment is to study the presence and de-

gree of fidelity gaps in standard explainability methods (Section 4).

Assessing the Impact of Robust Training: We use robust

training strategies to train explanation models, and repeat the fi-

delity gap audits to study if robust training can provide reduced

fidelity gaps (Section 5).

Studying Possible Causes for Fidelity Gaps: We analyze the

impact of blackbox fairness and presence of protected attribute in-

formation in feature representations on the fidelity gap (Section 6).

Simulation Showing Impact of Fidelity Gaps: We conduct

a simulation and study the quality of decisions made for groups to

examine the impacts of unfair explanation models on real-world

decision making (Section 7).

4 EXPLANATION FIDELITY VARIES
SIGNIFICANTLY BETWEEN SUBGROUPS

Experimentally, we find that fidelity gaps indeed vary by group

in many settings. To show this, we train four post-hoc explain-

ability methods (two local, two global) to explain two different

blackbox models trained on the four standard fairness benchmark

tabular datasets described in Table 1. Following Aïvodji et al. [5],

we randomly split each dataset into four subsets: a training set for

blackbox models (50%), a training set for explanation models (30%),

a validation set for explanation models (10%), and a held-out test

set for evaluating both blackbox and explanation models (10%). For

each dataset, we train both a Neural Network (NN) and a Logistic

2
Code: https://github.com/MLforHealth/ExplanationsSubpopulations

Regression (LR) model to serve as blackboxes. See Section B.3 in

the Appendix for details on the training regimes, hyperparameter

settings, and evaluation metrics for each. In the following sections,

we describe the explainability models and fidelity gaps observed.

4.1 Local Explanation Models
Local explanation models explain individual predictions from classi-

fiers by learning an interpretable model locally around each predic-

tion. In our experiments, we consider LIME [92, 93] and SHAP [71],

which are popular methods that use linear models to elicit each

feature’s contribution to the blackbox model’s prediction. More

details are in Appendix B.1.

Experiment Setup. We measure fidelity gaps between sub-

groups using the two key metrics introduced in Section 3.4 (see

Definitions 3.3 and 3.4). For each, we select three performance mea-

sures: Accuracy (∆
group

Acc.
) following prior work [4], mean residual

error (∆
group

Err.
), and also include AUROC (∆

group

AUROC
) as a threshold-

independent metric. A full table with all metrics can also be found

in the Appendix. For accuracy, we use a threshold of 0.5. Since the

four datasets are imbalanced, we use AUROC for model selection

while tuning all hyperparameters. Non-zero fidelity gaps indicate

disparities across groups in the explanation models.

Results. First, we find that LIME disproportionately favors dif-

ferent groups, as shown in Table 2, where the maximum accuracy

gap ranges from 0.1-21.4%. This confirms that explanation quality

can dramatically differ by subgroup, even without access to group-

membership data. Furthermore, the AUROC/Accuracy between

protected groups also ranges significantly (0-6.6%/0.3-20.6%), indi-

cating that some members of protected groups are disadvantaged in

terms of explanations. Hence, when explanations are judged to be

“high quality" based on average fidelity, it might be misleading and

lead to errors in decision-making. Bolded non-zero fidelity gaps

are also significantly greater than 0 with a one-sided Wilcoxon

signed-rank test at p < 0.05.

Second, as expected, SHAP’s gaps are consistently zero. This

is because the blackbox and explanation models are trained using

identical features, in which case consistency is guaranteed [71].

However, using a subset of features to train the explanation model

often leads to more useful explanations [115]. This increases the

gaps significantly, as shown in Figure 2, indicating that SHAP may

also suffer from significant gaps in fidelity when used in practice.

Since LIME considers sparsity as well, we also run this same exper-

iment for LIME and find that fewer features are indeed associated

with larger fidelity gaps (Fig.2). Increasing sparsity is a common

approach in training explanation models and these experiments

indicate that this technique alone may contribute to substantially

worse fidelity gaps.

Third, we observe that the fidelity gaps in AUROC tend to be

lower for the logistic regression blackbox, possibly because the

linearity of the local surrogate models matches logistic regression

better than the neural network. Note that the overall fidelity of all

models are greater than 84% (see Table 6 in the Appendix).

4.2 Global Explanation Models
Global explanation methods train one new surrogate model that ap-

proximates the behavior of a blackbox model. This surrogate model

https://github.com/MLforHealth/ExplanationsSubpopulations
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Dataset Outcome Variable n d d ′ Protected Attribute (д)

adult [40] Income > 50K 48,842 9 33 Sex (2 groups)

lsac [114] Student passes the bar 20,427 8 14 Race (5 groups)

mimic [49] Patient dies in ICU 21,139 49 49 Sex (2 groups)

recidivism [87] Defendant re-offends 6,150 6 7 Race (2 groups)

Table 1: Binary classification datasets used in our experiments. n is the number of samples, d is the number of variables in the
original dataset, and d ′ is the number of features after one-hot encoding categorical variables.

Dataset Blackbox Classifier ∆Acc. ∆
group

AUROC
∆
group

Acc.
∆
group

Err.

adult
Logistic Regression 0.8% ± 0.0% 0.1% ± 0.0% 2.4% ± 0.1% 1.9% ± 0.0%
Neural Network 6.9% ± 0.7% 3.0% ± 1.2% 20.6% ± 2.0% 0.8% ± 0.5%

lsac
Logistic Regression 2.0% ± 1.0% 0.0% ± 0.0% 1.5% ± 0.5% 1.5% ± 0.1%
Neural Network 21.4% ± 4.4% 6.6% ± 1.2% 12.2% ± 2.2% 3.8% ± 1.2%

mimic
Logistic Regression 0.4% ± 0.6% 3.0% ± 1.8% 1.1% ± 0.3% 2.0% ± 0.1%
Neural Network 0.8% ± 0.4% 1.7% ± 1.5% 1.4% ± 0.7% 1.7% ± 0.5%

recidivism
Logistic Regression 0.1% ± 0.1% 0.0% ± 0.0% 0.3% ± 0.2% 0.3% ± 0.0%

Neural Network 0.9% ± 0.3% 0.7% ± 0.3% 2.4% ± 0.7% 1.1% ± 0.1%
Table 2: Performance fidelity gaps across subgroups for LIME local explanations using all available features. ± denotes standard
deviation computed over 5 replications. Fidelity gaps are significant (one-sidedWilcoxon signed-rank tests at p < 0.05; marked
in bold) between all five groups in the lsac dataset, and between two sensitive groups in other three datasets. ∆Acc . denotes
the maximum fidelity gap of subgroups from average (in terms of accuracy at 0.5 threshold), and ∆

дroup
m is the mean fidelity

gap between subgroups using metricm.

should itself be easily understood, and can then be used instead of

the blackbox at test time (more background in Appendix B.1).

Experiment Setup. In this experiment, we generate global ex-

planations using two popular choices of interpretable surrogate

models: Generalized Additive Model (GAM) [50] and a sparse de-

cision tree (Tree) [82]. GAM combines linear models of different

variables during explanation [105], while Tree uses a low-depth,

sparse, decision tree. We evaluate the fidelity of each global method

with the original blackbox and compare across subgroups. As with

the local methods, we use both Accuracy and AUROC to evaluate

fidelity gaps.

Results. First, we find that the fidelity gap between subgroups

differs substantially from the average for the global explanation

models, as shown in Table 3 where the accuracy gap ranges from

0-13.5%. We again observe that AUROC and accuracy vary sub-

stantially between protected subgroups (0-8.1% and 0.1-7.4% for

protected groups such as sex and race groups in each dataset).

This is especially true for more imbalanced subgroup proportions:

having more subgroup categories leads to more disadvantage in

protected groups, particularly when the classes are imbalanced

themselves (e.g., lsac).
Second, we find that using fewer features (e.g., 15 in Fig. 2) may

lead to larger gaps in performance between subgroups in sparse

decision trees (Trees), bolstering prior findings on training trust-

worthy models [21]. Hence, the gaps shown in Tables 2 and 3 are

likely underestimates when using fewer dimensions in explanation

models, which is common. Interestingly, the subgroup with the

lowest-quality explanations is not always the minority subgroup—

which may be the most disadvantaged—in the datasets for fair ML.

We expand this finding in Table 12 in the Appendix. Additionally,

we see that subgroup gaps occur even after training blackbox mod-

els with a balanced number of data points from each subgroup for

both global and local explanation models (see Table 10).

5 BALANCED AND ROBUST TRAINING
REDUCES FIDELITY GAPS

Balanced and robust training methods could provide a path towards

improving fidelity gaps, thereby learning fairer explanations [1,

47]. We showcase two such robust training methods, one for local

methods and one for global methods. For both cases, we choose

hyperparameters that maximize the worst-case fidelity across all

groups.
3
Ultimately, our experiments indicate that while robust

training improves fidelity gaps sometimes, they remain pervasive.

5.1 Robust Local Explanation Models
Experiment Setup.We train a more-robust version of LIME, using

Just Train Twice (JTT) [66], a two-stage training paradigm for train-

ing robust ML Models. First, we train an identification model via

empirical risk minimization. Then, we extract its set of misclassified

training examples. A final model is then trained by upsampling

these misclassified examples, scaled by a hyperparameter λ. This
reweighted loss is designed to make the second model more robust.

3
The overall fidelity is not significantly affected by either training approach.
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Dataset Blackbox Classifier Expl. Model ∆Acc. ∆
group

AUROC
∆
group

Acc.
∆
group

Err.

adult

Logistic Regression GAM 0.1% ± 0.0% 0.0% ± 0.0% 0.3% ± 0.0% 0.1% ± 0.0%

Logistic Regression Tree 1.5% ± 0.1% 2.9% ± 0.4% 4.5% ± 0.2% 1.1% ± 0.1%
Neural Network GAM 0.8% ± 0.2% 0.5% ± 0.3% 2.4% ± 0.5% 0.3% ± 0.2%

Neural Network Tree 1.1% ± 0.1% 0.6% ± 0.4% 3.4% ± 0.2% 0.5% ± 0.4%

lsac

Logistic Regression GAM 0.9% ± 0.9% 0.0% ± 0.0% 0.6% ± 0.4% 0.7% ± 0.3%
Logistic Regression Tree 3.7% ± 3.1% 1.1% ± 0.4% 2.8% ± 0.7% 1.8% ± 0.5%
Neural Network GAM 13.5% ± 0.9% 5.2% ± 1.2% 7.3% ± 1.0% 3.9% ± 2.6%
Neural Network Tree 11.5% ± 2.7% 5.8% ± 2.1% 7.4% ± 1.2% 4.9% ± 2.0%

mimic

Logistic Regression GAM 0.5% ± 0.1% 0.4% ± 0.1% 0.9% ± 0.1% 0.4% ± 0.2%

Logistic Regression Tree 0.6% ± 0.0% 8.1% ± 0.8% 1.2% ± 0.1% 1.9% ± 0.0%
Neural Network GAM 1.2% ± 0.3% 1.8% ± 1.2% 2.2% ± 0.6% 0.9% ± 0.3%
Neural Network Tree 1.1% ± 0.5% 3.0% ± 1.5% 2.0% ± 0.9% 1.9% ± 0.9%

recidivism

Logistic Regression GAM 0.1% ± 0.0% 0.1% ± 0.0% 0.3% ± 0.0% 0.5% ± 0.0%

Logistic Regression Tree 0.0% ± 0.0% 0.4% ± 0.0% 0.1% ± 0.0% 1.2% ± 0.0%
Neural Network GAM 0.2% ± 0.2% 0.4% ± 0.2% 0.6% ± 0.6% 1.1% ± 0.4%
Neural Network Tree 0.9% ± 0.3% 1.0% ± 0.9% 2.3% ± 0.7% 1.4% ± 0.3%

Table 3: Fidelity gaps across subgroups for global explanation models GAM and Tree. ± denotes standard deviation computed
over 5 replications. Fidelity gaps are significant (one-sided Wilcoxon signed-rank tests at p < 0.05; marked in bold) for all five
groups in the lsac dataset, and between two sensitive groups in the other three datasets with both global explanation models.
∆Acc . denotes the maximum fidelity gap of subgroups from average (in terms of accuracy at 0.5 threshold), and ∆

дroup
m is the

mean fidelity gap between subgroups using metricm.

We use JTT to train LIME’s local linear approximations, using linear

models for both the identification and final models.

Results. JTT successfully reduces gaps on three datasets with a

NN blackbox model, as shown in Figure 3. Interestingly, this is not

the case for the recidivism dataset, where JTT does not reduce the

gap and performs the same as standard training.With LR blackboxes

(Figure 10 in Appendix), the fidelity gaps are already small, so JTT

is less impactful. However, non-zero gaps between 1-2% still persist

(e.g., NN blackbox on the adult dataset), indicating that the error-

prone regions did not generalize to the test setting. Measuring

fidelity gaps is therefore still critical, even if an explanation model

is trained to be robust.

5.2 Robust Global Explanation Models
Experiment Setup.We next study balanced training for the global

explanation method Tree. We rebalance the explainability training

sets for each dataset by randomly oversampling minority groups,

a common approach for improving test error on minority subpop-

ulations [47, 112]. This way, the training set in each case consists

of an equal number of examples from each protected group. Then,

we train a Tree model to explain each blackbox model using these

balanced datasets.

Results. As shown in Figure 3, we find that this common re-

balancing approach to does not reduce gaps significantly across

the board. Still, some cases look more promising than others. For

example, mimic with NN which indicates this may be a fruitful

direction for learning fairer explanations. This is especially true

for cases like mimic with LR, where rebalancing the training set

increases the fidelity gap substantially (see Figure 10 in Appendix).

6 ON POSSIBLE CAUSES FOR FIDELITY GAPS
In our fidelity gap audits in prior sections, we noticed that the fi-

delity gaps are largest for the least-fair blackboxes (adult and lsac
datasets; Tables 3 and 2). This indicates a potential relationship

between the fairness of the blackbox and explainability models. To

explore this further, we study the associations between blackbox

fairness and fidelity gaps across subgroups in this section. First, we

train fair models, and observe that significant non-zero fidelity gaps

still persist. Second, we study if protected group information – e.g.,

if a data point belongs to a Male or Female individual – can be pre-

dicted from the feature representations alone, following prior work

in fair representation learning [72, 118]. We find that mechanisms

by which protected group information can be indirectly predicted

could be contributing factors to the fidelity gaps observed.

6.1 Training Fair Blackbox Models
Our experiments in previous sections (see Tables 2 and 3) indicate

that fidelity gaps across subgroups occur regardless of the blackbox

model’s fairness with respect to groundtruth label predictions. For

example, a logistic regression model trained on the mimic dataset
is fair with respect to the sex (Table 4 in Appendix; DP gap of 1%).

However, fidelity gaps are non-zero across sex subgroups with a

sparse decision tree global explanation (8.1%). Strikingly, the gaps

in fidelity AUROC often exceed the gaps in AUROC of the blackbox

models themselves (e.g., mimic dataset with the Tree model, the

difference in classification performance of the blackbox between

Male and Female individuals is 3.6%, while the fidelity gap between

subgroups is 8.1%). However, we do observe larger fidelity gaps
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Figure 2: The effect of varying the number of features on
fidelity gaps using the mimic dataset with a neural net-
work blackbox model. For (a) local explanation models, us-
ing fewer features leads to worse fidelity gaps. We observe
larger fidelity gaps across subgroups with sparser models,
i.e., fewer features in (a) local explanation models. For (b)
global explanation models, the gap varies with number of
features. We also observe similar trends on other datasets
(Appendix F).

in datasets where blackbox models are more accurate but less fair

(e.g., adult with an absolute DP gap of 16-17%).

Experiment Setup. To investigate this further, we train debi-

ased neural network blackbox models for lsac and mimic: both
highly-imbalanced by class label, and characterized by the largest

and smallest gaps in blackbox model AUROC respectively. Adver-

sarial debiasing following methodology proposed by Zhang et al.

[118]
4
is utilized, wherein an adversary tries to predict the pro-

tected group information from classification predictions and labels,

while the main classification model (our blackbox model) jointly

predicts the primary classification outcome. We use demographic

parity as the desired fairness definition. Our results are shown in

4
With open-sourced implementation: https://github.com/Trusted-AI/AIF360

Table 13, which reports the performance of the fair(er) blackbox

classifiers.

Results.We debias neural network blackbox models to be fairer,

where a model is deemed to be fair if it has an absolute DP gap close

to 1% (9% and 0.6% after debiasing for lsac and mimic respectively;
improved from 14% and 2%). We find that despite fair training,

fidelity gaps remain (Table 4, though they are significantly reduced

in most cases: the fidelity gap in accuracy decreases from 2% to 1%

for mimic and 7.4% to 0.8% for lsac (Tree)). Note that these results

are dependent on our choice of fairness criterion: particularly, for

the lsac dataset we find that overall performance is reduced to

achieve parity (Table 13 in Appendix; for absolute DP gap close to

1%, over 99% of the blackbox predictions are that the student passes

the bar). This indicates that while fair blackboxes could potentially

reduce fidelity gaps across subgroups, there might be trade-offs and

more potential causes for such gaps. We explore this in Section 6.2.

6.2 Performance of Predicting Protected
Attributes from Feature Representations
Alone

Experiment Setup. One way to achieve group fairness is by re-

moving group information from or debiasing the representations

(e.g., with the use of an adversary [72, 109]). Here, we quantify the

amount of group information that is present in the data. This is rel-

evant as the absence of group information is a sufficient condition

to achieving fairness parity according to standard metrics in fair

machine learning. For example, consider equality of opportunity for

the positive class, which can be written as Ŷ ⊥⊥ G |Y = 1, where G
denotes the protected group and Y is the binary groundtruth label.

If we have X ⊥⊥ G |Y = 1, then equality of opportunity is achieved

for any form of the classifier Ŷ = f (X ), including E the explanation

model and B the blackbox model. Therefore, if no protected group

information is present in the positive examples, then the explana-

tion fidelity would not differ between protected groups for positive

examples [72]. In this experiment, we first compute the accuracy of

detecting the protected group information from all datasets (with

a cross-validated model). Then, we select features that have zero

mutual information with respect to the protected attribute, and

only use these in training the blackbox and explanation model. We

expect that the performance of predicting group information from

these features will be low. Then, we compute the fidelity gaps –

this allows us to answer the question: do fidelity gaps exist when

there is low group information in the data?

Results: First, we observe that in all cases the prediction AU-

ROC is significantly greater than 0.5 (see Table 4) in identifying the

minority group. This indicates that the protected group information

– e.g., if the datapoint belongs to a Male/Female individual – can be

predicted with good performance from the feature representations

alone
5
. Since past work has shown that group information might

be indirectly constructed and used by explanations [60], this is

important to consider. Second, we only use features that have zero

mutual information with respect to protected group labels in the

lsac dataset for training blackbox and explanation models. We see

that all models output a single-class prediction which limits our

ability to make meaningful conclusions about the impact of group

5
This was also observed when conditioned on only positive or negative label classes

https://github.com/Trusted-AI/AIF360
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(a) Local Explanations (LIME) (b) Global Explanations (Tree)

Figure 3: AUROC Fidelity gaps across subgroups with and without robust training for (a) LIME and (b) Tree-based Models.
Improvements are significant with robust training for adult dataset in (a) with a Wilcoxon-signed rank test at p < 0.1 level.
However, balanced training does not help for most datasets in (b). Error bars indicate 95% confidence intervals.

information on this dataset – note the fidelity gaps are technically

zero, though the explanations are trivial. We repeat the same proce-

dure with the mimic dataset by selecting 10 features. The AUROC

of predicting protected attribute (sex) from these features is low

(0.54; also less than 0.57 for features from positive and negative

class). With this representation, we train both NN and LR black-

box models, and GAM/Tree global explanation models. We observe

that accuracy-based fidelity gaps (∆Acc . , ∆
дroup
Acc . ) decrease to low

values not much higher than zero (to 0-0.6% with GAM and Tree;

full table in Appendix M while blackbox model’s AUROC is greater

than 0.7). This indicates that fidelity gaps decrease when there is

less group information in data representations. However, non-zero

fidelity gaps in AUROC still persist for Tree-based models (up to

6.6%). This is due to low prevalence of positive class predictions

with the blackbox model on using the reduced data representation

(≈3% positive class at 0.5 threshold), which has a large impact on

AUROC (since it is a ranking-based metric, and sensitive to degree

of imbalance). We highlight that more experiments using inter-

pretable, completely group-independent representations (i.e., an

AUROC of 0.5 in predicting protected attribute labels) that still have

high groundtruth predictive capability are required to accurately

quantify the impact of group information on AUROC-based fidelity

gaps. We also note that class imbalance – and varying degrees of

class imbalance for data subgroups – may be an important factor.

Our findings indicate that fidelity gaps persist across a range of

class-imbalance ratios, but we leave the estimation of the effect of

varying degrees of class imbalance (or positive-class prevalence)

across subgroups on explanation fairness for future work.

7 SIMULATING THE REAL-WORLD IMPACT
OF BIASED EXPLANATIONS

Unfair explanation models can have negative effects on real-world

decision making. To demonstrate this, we conduct a simulation

study of ML-assisted law school admissions using the lsac dataset

[114]. Such systems are already being used in many cases [74, 79].

Our results clearly show that worse decisions are made for members

of disadvantaged groups when explanations are less fair.

Experiment Setup. To set up our simulation study, we consider

an admissions officer that uses a blackbox model that predicts

whether a student will pass the bar, though this prediction may

be incorrect. The admissions officer also has an explanation of the

model’s prediction, which may have low fidelity. The blackbox

model’s performance and the explanation fidelity can vary between

protected groups—we vary these parameters in this experiment.

We assume that the admissions officer then admits students solely

based on their perceived likelihood of the applicant passing the bar,

without any knowledge of the applicant’s demographics.We assume

parameters for the probability that the officer ultimately makes

the correct decision. We obtain these parameters from prior user

studies assessing the impact of explanations on human+AI decision

making accuracy for a different task [10], but believe they serve as

reasonable estimates to display the anchoring effect of decisions

with explanations observed across a variety of decision-making

settings [10, 80, 85]. For further details, please see Appendix K.

To simulate the effect of fidelity gaps on decision-making accu-

racy, we vary the maximum fidelity gaps between the two groups

(males and females) and the average from 0% to 15%, assuming

an average fidelity of ≈ 85% across groups. We then compute the

admissions officer’s resulting decision-making accuracy for males

and females. We use sex as the protected attribute of interest for

the simulation as both groups pass the bar equally in the dataset,

so decision-making accuracy is a fair performance metric.

Results. As shown in Figure 5, we find that larger fidelity gaps

lead to larger decision accuracy gap between groups. So when

explanations are less fair, disadvantaged groups may be targeted

by worse decisions. With over 60,000 law school applicants in the

U.S. in a typical year [29], over 200 applications would be wrongly

admitted/rejected based solely on the fairness of the explanation

model, according to this simulation. Fidelity gaps should therefore

be used as fairness metrics for explanation methods: minimizing

these gaps leads to fairer decisions. However, we emphasize that the

findings of this simulation are based on some strong assumptions

(e.g., reliance on parameters extracted, anchoring effect existence

in this admission setting, etc.). Real-world user studies are required

to validate these expected findings rigorously across a variety of

decision-making setups.
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Dataset Expl FidelityAcc . ∆
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AUROC ∆
group

Acc .

lsac
GAM 96.6 1.4 1.5

Tree 96.9 7.0 0.8

mimic
GAM 96.2 0.6 1.0

Tree 94.9 4.1 1.6

(b) Fidelity gaps with fair blackbox models

Figure 4: We find minoritized protected groups can be detected with high AUROC from feature representations alone in (a).
As a result, non-zero fidelity gaps persist even when underlying blackboxes are fair as seen in (b).
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Figure 5: Effect of fidelity gap size on a simulated admissions
officer’s decision accuracy between males and females us-
ing a neural network blackbox. Note that larger fidelity gaps
lead to larger decision accuracy gaps between males and fe-
males; fidelity gaps could disadvantage different groups in
practice. Each line is paired with 95% confidence intervals
across 20 simulations.

8 DISCUSSION
8.1 Takeaways for ML Practitioners
Analyze subgroup fidelities. Our results suggest that ML prac-

titioners using post-hoc explainable models to interpret blackbox

models should carefully analyse the fidelity of commonly-used ex-

planations for different groups separately. Especially if there is a

target subgroup of interest. If a fidelity gap exists, practitioners

should carefully consider its source [113], and, where possible, take

measures to minimize the impacts on downstream decision-making

[90]. We also highlight the importance of carefully choosing the

metric for measuring fidelity (e.g., accuracy, AUROC, precision,

etc.): different metrics may be affected by properties of the dataset

and hence predictions from a blackbox/explanation model (e.g.,

class imbalance, calibration [15]) differently.

Consider the explanation model. Overall, our findings indi-
cate the existence of fidelity gaps between subgroups is both a

model and a data issue. From Section 4, we find that fidelity gaps

can vary greatly for the same dataset depending on the explanation

model used, and our results in Section 5 show that algorithms that

seek to improve worst-case group performance may be a promising

direction in reducing fidelity gaps. As such, we recommend careful

selection and testing of various explanation models in order to

select an equitable model with high overall fidelity.

In addition, model hyperparameters should also be carefully

tuned. For example, in models like LIME, there are several hyperpa-

rameters that can affect fidelity gaps, such as the sampling variance

(Figure 9 in Appendix), the number of perturbations, or number

of features in the explanation. Exploring the effect of these hy-

perparameters on explanation quality and fairness is a promising

direction of future work. Lastly, extending prior work on methods

for fair supervised ML models [20, 66, 72, 81, 118], we call for sim-

ilar approaches to training fair and explainable local and global

explanation models which have reduced fidelity gap in addition to

high overall fidelity.

Consider the data.Our results in Section 6 indicate that fidelity
gaps also depend on data representations. Because some feature

representations cause smaller fidelity gaps, practitioners should

carefully consider the features used to learn both the blackbox and

explanation models [46]. As machine learning models can encode

historical biases present in the training corpora [38], it is crucial to

consider the source of such potential biases, and, if possible, take

actions to correct them by collecting additional data in a fairness-

aware way [7, 56].

8.2 Implications of Fidelity Gaps
AlgorithmicModifications to Train Fair ExplanationModels
with Low Fidelity Gaps. While we benchmark robust training

as an attempt to mediate the fidelity gaps across subgroups, we

posit that data distribution-aware methods could lead to lower, less

significant fidelity gaps. For example, recent work in causal boot-

strapping [54] shows the potential to reduce confounding biases in

ML model training given causal knowledge [45]. Similar strategies

relying on partial or complete knowledge of the data generation
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graph [42] could prove effective in selecting features and training

examples to train fair explanation models.

Post-processing solutions to standard explanationmodel training

could also prove effective, similar to recent work in the space of

improving worst-case generalization [76]. However, such solutions

need to be appraised carefully to ensure that the resulting models

are both fair and remain interpretable to users [110].

An interesting follow-up question is whether it is possible to

have zero fidelity gaps—perfect worst-case generalization—while

retaining good average fidelity under standard training settings.

Zero fidelity gaps are possible, of course, when the blackbox and

explanation models are identical. However in more-realistic scenar-

ios, fidelity gaps may simply depend on the data distributions [76].

For example, rare subgroups may be more diffidult to approximate,

and will naturally have lower fidelity than others [52, 102].

Fidelity Gaps as an Evaluation Metric.We focus mainly on

evaluating the fairness of explanation models using the fidelity gap
as a metric, assuming that models with smaller fidelity gaps are

more desirable. However, recent work in group fairness has found

that trying to achieve equal performance for all subgroups tends

to worsen welfare for all [28, 53, 119]. Such a fairness/accuracy

trade-off is well-documented in the algorithmic fairness literature

[58, 121]. We posit that there is likely a similar trade-off between

the fidelity gap and the overall fidelity of an explanation model.

In such cases, motivated by definitions such as minimax Pareto

fairness [33, 73], it may be more appropriate to select explanation

models that maximize the fidelity of the worst-case group.

Human Implications of Fidelity Gaps. Explainable ML mod-

els form an integral part of sociotechnical systems, given their

user-facing nature [16]. Several works have studied the utility of

explanations in human–AI joint decision-making [10]. However,

the potential failure modes we identify—fidelity gaps leading to

worse explanations for some groups—need to be studied further

in the context of real human decision-making (in addition to the

simulations we conduct). For accurate decision-making in practice,

like learning to defer decisions to an expert [78], it is important to

communicate clearly and provide end-users with details of perfor-

mance caveats [64]. This requires collaboration between computer

scientists and scholars working in the space of computer-mediated

communication. A more design-centric approach is required to

bridge the gap between researchers and consumers of these mod-

els [25].

9 CONCLUSION
In this work, we investigate fairness properties of post-hoc ex-

plainability methods. We ultimately find that significant gaps in

performance exist between groups, indicating that some groups

receive better explanations than others. First, we demonstrate ex-

perimentally that significant gaps occur in the two main branches

of explanation methods using four explainability methods on four

common datasets and two blackbox model architectures. Second,

we present a study of robust and balanced training methods for

improving these gaps. We find that these methods can improve

the fairness of explanation models in some cases. Third, using a

simulation study, we demonstrate that improving explanation fair-

ness could substantially improve decision making accuracy for

underserved groups. Finally, we pose promising directions enhanc-

ing post-hoc explainability methods; future work should focus on

ensuring explanation quality does not suffer according to group

membership while remaining reliable and accurate.
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