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ABSTRACT
Gerrymandering is the practice of drawing congressional districts

to advantage or disadvantage particular electoral outcomes or pop-

ulation groups. We study the problem of computationally auditing

a districting for evidence of gerrymandering. Our approach is novel

in its emphasis on identifying individual voters disenfranchised

by packing and cracking in local fine-grained geographic regions.

We define a local score based on comparison with a representative

sample of alternative districtings and use simulated annealing to al-

gorithmically generate a witness districting to show that the score

can be substantially reduced by simple local alterations. Unlike

commonly studied metrics for gerrymandering such as propor-

tionality and compactness, our framework is inspired by the legal

context for voting rights in the United States. We demonstrate

the use of our framework to analyze the congressional districting

of the state of North Carolina in 2016. We identify a substantial

number of geographically localized disenfranchised individuals,

mostly Democrats in the central and north-eastern parts of the

state. Our simulated annealing algorithm is able to generate a wit-

ness districting with a roughly 50% reduction in the number of

disenfranchised individuals, suggesting that the 2016 districting

was not predetermined by North Carolina’s spatial structure.

CCS CONCEPTS
• Theory of computation→ Random search heuristics; •Applied
computing→ Law.
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1 INTRODUCTION
Representative democracy in the United States operates by defin-

ing winner-take-all districts. The representative of the individuals

in that district is typically elected by plurality vote. The district

boundaries can thus impact the representation of individuals. Ger-

rymandering is the act of drawing districts to favor a particular

political outcome or population group. It has the potential to cause

social harm in the form of disenfranchisement to political and de-

mographic groups [30]. Many studies in the quantitative sciences

have attempted to characterize gerrymandering in terms of opti-

mization criteria such as geographic compactness and proportional

representation with respect to political parties [3, 10, 29, 31], and

many algorithms have been proposed to generate districts that

optimize one or more of these criteria [4, 5, 11, 13].

Less attention has been paid to the question of auditing: How

to provide evidence that a particular district plan is in fact gerry-

mandered. Compactness and proportional representation are not

required by law, so we begin by asking what constitutes illegal

gerrymandering. Our goal is not to engage in the legal interpreta-

tive discourse directly, but rather to use that context to inform our

technical contribution in the form of a quantitative framework for

auditing gerrymandering.

1.1 Historical and Legal Background
There have been several attempts at reining in gerrymandering

through the passage and enforcement of legislation. Specifically,

the Equal Protection Clause of the Fourteenth Amendment to the

United States Constitution enforces the doctrine of “one person,

one vote” [20], and the Voting Rights Act of 1965 prohibits ger-

rymandering on the basis of race [1]. Most legal challenges to

gerrymandering are based on interpretations of these provisions

[21, 23, 24]. Most straightforwardly, it is understood that districts

must have very nearly exactly the same populations, and the court

has interpreted the Voting Rights Act to mean that states with sig-

nificant concentrations of minority populations must guarantee

some form of representation to those populations, often by means

of so-called “majority-minority” districts.

https://doi.org/10.1145/3531146.3533174
https://doi.org/10.1145/3531146.3533174
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There is less consensus about what constitutes illegal partisan
gerrymandering, other than that proportional representation (that

the proportion of representatives of a party should approximate

the proportion of voters of that party) is not required [22]. Two

commonly discussed notions of partisan gerrymandering are vote

concentration (or packing) and vote dilution (or cracking). Packing
attempts draw asmany voters of the opposing party into one district

as possible, thereby decreasing the opposing party’s chance of

winning in neighboring districts. Cracking operates in an inverse

fashion. If a large number of voters who would constitute a majority

in one district can be divided into several districts, they can be

deprived of a representative while setting up a series of “easy wins”

for the other party.

Gill v. Whitford was the first major partisan gerrymandering

case to be reviewed by the US Supreme Court in the last decade.

The plantiffs attempted to use the idea of the “efficiency gap,” which

compares each party’s “wasted” votes—votes cast for a losing candi-

date or votes for a winning candidate in excess of 50 percent of total

votes—to demonstrate their Fourteenth Amendment right to equal

protection was violated. But the Supreme Court found that the

efficiency gap was merely a “single statewide measure of partisan

advantage," and thus the plantiffs’ case was about “group politi-

cal interests, not individual legal rights,” which the Court is not

responsible for “vindicating.” Rather, “the Court’s constitutionally

prescribed role is to vindicate the individual rights of the people

appearing before it” [25].

In a concurring opinion joined by Justice Ginsburg, Justice Breyer,

and Justice Sotomayor, Justice Kagan provided more details for how

an individual voter may be able to show that he or she has been

gerrymandered. As Justice Kagan puts it: “Among other ways of

proving packing or cracking, a plaintiff could produce an alterna-

tive map (or set of alternative maps)—comparably consistent with

traditional districting principles—under which her vote would carry

more weight.” Once such justification is met, plaintiffs may then

wish to use statewide evidence to demonstrate their charges of

statewide packing and cracking in order to seek a statewide remedy

from the Court [25].

1.2 Characterizing Local Gerrymandering
Drawing from Justice Kagan’s statement in Gill v. Whitford on

the shortcomings of previous justifications of gerrymandering, we

take a local—rather than statewide—approach. We devise a metric

for how gerrymandered a certain districting is by measuring the

number of people disenfranchised through packing or cracking

in each voting tabulation district (VTD). A VTD is a generic term

for describing precincts or wards [7], and they are the smallest

geographic region for which aggregate voting records are available.

In this section we introduce our framework conceptually; formal

definitions are deferred to Section 3.

Informally, a districting is a partition of VTDs that satisfies cer-

tain constraints such as approximate population balance and con-

tiguity. Any claim that a VTD is packed or cracked in a given

districting must refer to a counterfactual districting that shows

how the voting power of the VTD could be increased by dispersion

or concentration respectively. We call such counterfactual district-

ings comparators. A comparator is not necessarily derived from an

(a) The central blue VTD with 4 voters in the left districting is
cracked relative to the comparator at the right. The blue VTD
in question receives blue representation under the comparator
but not in the original districting.

(b) The top-left red VTD with 1 voter in the left districting
is packed relative to the comparator at the right. In both the
left districting and the comparator, the red VTD is located in
a district in which red wins, but the win in the comparator is
achieved with a much lower margin of victory.

Figure 1: Examples of local gerrymandering in the form of
packing and cracking. There are 16 VTDs arranged in a 4 by
4 grid. There are two parties, one colored solid red and one
speckled blue. For simplicity, each VTD has only voters for
one party and the number of voters is labeled for each VTD.
The total population is 27, 14 of whom support red and 13
of whom support blue. We want to compute three districts,
so we place 9 individuals in each district to maintain equal
population among districts.

input districting, and there is not necessarily any correspondence

between districts in the original map and in the comparator. Instead,

a comparator is simply another valid districting.

A claim of packing or cracking must also refer to individuals

of a particular partisan preference within that VTD. We say that

members of a given party in a VTD are cracked in a given districting

relative to some comparator if they do not win representation under

the districting but do win representation under the comparator.

Similarly, we say that they are packed if they win representation

in both the districting and the comparator, but with a much larger

margin of victory in the districting than in the comparator. Note

that the two are disjoint in that members of a given party cannot

be simultaneously cracked and packed in the same VTD.

Our notions thus take the form of justified complaints. Individuals
who are cracked may complain that they do not win representation

under their preferred partisan affiliation because of an arbitrary se-

lection between valid geographic partitions. Complaints of packing
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are inherently less local—that some members of a packed district

could perhaps help other neighboring districts to win representa-

tion. In either case, the complaint is justified by reference to an

alternative valid districting known as a comparator. Note that a

comparator need not necessarily claim to be “better” overall than

the districting to which it is being compared.

We give a toy example identifying justified complaints of crack-

ing and packing in Figures 1a and 1b respectively (we formally

quantify these notions in Section 3.2). Note that these are local

complaints of gerrymandering, referencing the individuals of a

particular VTD rather than parties writ large across the entire

districting. For example, in Figure 1a, the original districting is

both proportional and has no efficiency gap (each party has the

same number of wasted votes), but nonetheless there is a justified

complaint of cracking for some (but not all) of the blue voters.

In Figure 1, there is no districting that will be free from any

justified complaints of cracking or packing (one can exhaustively

list out all the possible contiguous and equal-population districtings

to see this). Indeed, for any given region, there may not exist a

districting that is free from any complaints of cracking or packing.

The provision of a single comparator is not by itself very compelling

evidence that a given VTD has been gerrymandered. How then can

we evaluate the magnitude of a justified complaint?

Our basic idea is to simply count the number of comparators for

a given partisan affiliation and VTD that demonstrate cracking or

packing. More correctly, as the number of comparators may vary,

we count the fraction of comparators that demonstrate cracking or

packing. This fraction gives the magnitude of a justified complaint:

If members of a given party in a given VTD are cracked relative to

all comparators then they surely have a valid complaint. A VTD

that is cracked relative only to some comparators may still have a

legitimate complaint, but the justification is not as strong.

Our measure is of course dependent on the nature of the sample

of valid districtings accepted as comparators. This is defined by

whatever explicit constraints are placed on the districting process

such as approximate population balance and contiguity, but possibly

including additional constraints such as not splitting municipal or

county borders, ensuring a minimum number of majority-minority

districts, or maintaining at least a certain level of compactness or

“simplicity” of shapes. Given any such explicit characterization, one

can obtain a large representative sample of comparators and our

notions of cracking and packing are well-defined.

When auditing for gerrymandering by measuring the local crack-

ing and packing scores, it may be insufficient to simply state the

scores. Since there is no single districting that is free from all local

cracking and packing in general, how should one interpret what

appears to be high levels of gerrymandering in a region? Those

wishing to defend the current districtingmay claim that there would

be as many justified complaints no matter what they did in terms of

drawing districts—i.e., that it is a necessary result of the distribution

of voters in the state. To examine this defense, we introduce the

idea of a witness districting that can be computed by small pertur-

bations of a given districting. Specifically, we compute a witness

by a simulated annealing VTD swapping algorithm to find an al-

ternative districting that reduces the number of gerrymandered

individuals locally while maintaining global constraints such as

population balance and compactness at approximately the same

level as the districting under audit. If there exists such a witness that

dramatically decreases the number of gerrymandered individuals,

it constitutes evidence against such a defense of a gerrymandered

districting.

1.3 Contributions and Results
Our primary conceptual contribution is a framework for auditing

gerrymandering. This framework involves a precise quantitative

score of local packing and cracking in Section 3 along with the

concept of a witness against those levels of packing and cracking.

Our score is motivated by the legal framework of partisan gerry-

mandering and can be computed on real data as part of an audit for

gerrymandering. Our method of measurement allows us to identify

individual impacted voters and gerrymandered regions of voters

with “heat maps,” as shown in Figure 2a.

Technically, we show how to compute our scores by reference

to a sample of comparators in Section 3. These can be generated

by Markov Chain Monte Carlo techniques as shown in prior work

[14]. Given a scoring for a particular districting, we show how

to compute a witness against that districting with a lower score,

demonstrating how lower levels of gerrymandering are possible

with small perturbations. Our simulated annealing algorithm is

described in Section 4. Our framework is highly flexible and allows

for mixing-and-matching of sampling and witness generation meth-

ods. One could use a different method to sample comparators or a

different procedure to generate a witness districting but still use

our general auditing framework.

Empirically, in Section 5, we demonstrate the use of our frame-

work to audit the congressional districtings of the state of North

Carolina in 2012 and 2016. We find a total score of over 1.5 mil-

lion (recall that each individual voter is cracked or packed—but

not both—at a value between 0 and 1) for the 2012 districting and

over 1.1 million for the 2016 districting. Figure 2a plots the gerry-

mandering score by capita at the VTD level from 2016. The impact

is not equal across parties or geographic regions. The score for

Democrats is more than 2.9 times as high in the 2012 map as for

Republicans and more than 5 times as high in the 2016 map. The

effect is heavily concentrated in the central and north-eastern parts

of the state. Democratic voters in the Charlotte and Raleigh metro

areas are heavily packed, and Democratic voters in Greensboro and

suburban areas of Raleigh are heavily cracked in the official 2016

districting.

We show that the level of gerrymandering we observe in the

2016 districting of North Carolina is not a necessary result of the

distribution of voters. Our simulated annealing algorithm produces

a witness districting with a gerrymandering score of less than 0.6

million based on small perturbations to the original 2016 district-

ing and maintaining comparable levels of population balance and

compactness—as illustrated in Figure 2b, where we plot the ger-

rymandering score by capita at the VTD level with respect to the

resulting districts of our best run of our algorithm. We also consider

two additional witnesses, one nonpartisan and the other bipartisan.
The former is produced by another algorithm for districting that

does not take partisan affiliation into account, only geometry and

population [19]. This districting achieves a score of less than 1 mil-

lion. The latter was generated by a bipartisan panel of 10 retired
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(a) Official 2016 North Carolina districting (b) Computer generated witness against official districting

Figure 2: Total per capita gerrymandering score in each VTD

North Carolina judges. This districting achieves a gerrymander-

ing score of just over 1 million, but the gerrymandering scores for

Democrats and Republicans are within a factor of 1.2, as compared

to the factor of 5 difference for the real 2016 districting.

Our approach offers an interpretable, informative metric for

gerrymandering in terms of people impacted, and it allows one to

precisely pinpoint which populations are gerrymandered and to

what extent, satisfying the stipulations for Article III standing from

Gill v. Whitford.

2 RELATEDWORK
The study of districting and gerrymandering is highly interdisci-

plinary, with contributions being made from mathematics, com-

puter science, political science, law, and other fields. Here, we briefly

survey some of the recent work more directly relevant to our con-

tribution relating to the specific issues of algorithmic districting

and quantiative metrics.

2.1 Redistricting Algorithms
One branch of algorithms has focused solely on creating districts

that are compact and have valid population deviations, ignoring

electoral and demographic data. Altman [2] shows that the problem

of computing legal districtings in this sense is NP-complete. Thus,

various algorithms based on heuristics have been proposed.

Levin and Friedler [19] devise a divide and conquer algorithm

that achieves a population deviation that is less than 0.005% for

42 out of 43 multi-district states, one of the best in the literature.

A simulated annealing algorithm by Brian Olson [27] produces

population deviations under 1% in all U.S. states but produces better

compactness scores compared to the Levin and Friedler algorithm.

Another branch of algorithms does incorporate electoral data

into the algorithmic problem of redistricting. Gurnee and Shmoys

[13] create a two-part linear programming algorithm that allows

users to pick and choose a fairness metric to optimize. Garg et

al. [11] uses Gurnee and Shmoys’ algorithm to create maps that

optimize for either partisan benefit or proportionality in the case of

multi-member districts (MMD). They find that MMDs using single-

transferable vote can curtail legislators’ ability to perform partisan

gerrymandering and can allow for redistricting commissions to

potentially create consistently proportionally representative maps.

Becker et al. [5] specifically focus on creating maps that satisfy

the Voting Rights Act (VRA). They use a Markov chain procedure

to propose successive modifications to districting plans, combining

that with an ecological-inference procedure (inferring informa-

tion about the individual from ecological, or aggregate, data) and

a benchmark plan to identify districtings that give minority can-

didates effective opportunities to elect their preferred candidates.

While they show a proof of concept of their method in Texas, they

also emphasize their contribution to be the overarching protocol

rather than any single design choice.

2.2 Quantifying Gerrymandering via Metrics
Another direction of work has focused on quantifying gerrymander-

ing. This is more in linewith ourwork on auditing. One immediately

thinks of proportionality, where the number of seats held by each

party reflects the partisan lean of the state, but the courts do not

require nor mandate proportionality in a map [18].

Stephanopoulos and McGhee define a metric called the efficiency
gap, which is calculated as the difference between two parties’

wasted votes (votes that are either in excess of the majority needed

to win or that go towards a losing candidate) in an election, divided

by the total number of votes cast [31]. They argue this metric im-

proves upon the simple idea of proportionality and the widely-used

metric of partisan bias, which measures the difference in seats won

by each party in the counterfactual case where each party received

equal vote share. But Duchin and Bernstein criticize the efficiency

gap for penalizing proportionality (instead preferring double pro-

portionality) and fetishizing three-to-one landslide districts [6, 32].

The efficiency gap was used in Gill v. Whitford and was ultimately

unsuccessful at striking down Wisconsin’s legislature districts [25].

In response to the double-proportionality nature of the efficiency

gap, Warrington created a metric called declination [34]. A line

drawn through a plot of districts ordered by increasing percent of

Democratic (or Republican) voters should make a relatively straight

line if districts were not gerrymandered. However, if districts were

gerrymandered, one might see a sharp kink at the 50% line on the

y-axis. The angle of this kink is thus the declination.

Chen and Rodden use a simulation procedure to generate ran-

dom, partisan-blind maps that only consider equal population, con-

tiguity, and compactness constraints [8]. Herschlag et al. generate

an ensemble of valid comparator maps to analyze the likelihood

of the outcome of a given state map compared to the outcomes in

the comparators [14]. Using Markov Chain Monte Carlo (MCMC)

methods, they are able to show that the electoral outcomes of North

Carolina’s districtings used in the 2012 and 2016 elections are out-

liers relative to the ensemble of comparators, while a bipartisanmap

drawn by retired judges is more representative (in probability space
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and in the partisan sense). Their analysis was used in Rucho v. Com-
mon Cause, where the courts ruled that partisan gerrymandering is

not a matter for the federal courts.

2.3 Limitations of Existing Approaches
Advances in algorithms have allowed for the cheap and scalable

generation of maps that can optimize for fairness. However, what

metric of fairness to use is still an open question. A common issue

with these statewide, aggregate approaches like outlier analysis

and declination is that they are unable to identify which people in

the state are most gerrymandered and to what degree; they simply

identify how badly a party has been affected by gerrymandering.

This is a problem because courts care about disenfrachisement

of people, not parties. For example, Gill v. Whitford exemplified

that in order to advance vote dilution arguments, individual voters

must show that they have been packed or cracked [35]. Instead of

focusing on metrics at the statewide level, we take a local approach

and devise a metric for how gerrymandered a certain districting is

by measuring the number of people gerrymandered.

3 GERRYMANDERING SCORE FUNCTION
In this section we define our gerrymandering score function and

discuss its calculation from a sample of comparators.

3.1 Legal Districting Problem Definition
We assume a two-party, winner-takes-all electoral system, like that

found in the United States. Following Levin and Friedler [19], we

consider the redistricting problem to be a set partition problem.

Let G = (V ,E) be a connected graph that represents the geogra-

phy of a state. Pick a particular historical election from which to

draw voter data. Each vertex v ∈ V represents a voting tabulation

district (VTD), the smallest local level at which aggregate voting

records are available (typically a voting precinct). We define func-

tions d(v), r (v), and t(v) to return the number of Democratic votes,

Republican votes, and total votes cast in VTDv in electionh, respec-
tively, and we definew(v) to be the population of the VTD. Note

that t(v) , w(v) because only citizens age 18 and above can vote,

and not all voting age citizens participate in every election. Due to

third party candidates, t(v) also need not equal r (v) + d(v). There
is an edge between vertices v,w ∈ V if the associated population

units’ boundaries are adjacent to each other.

A districting D = {G1,G2, ...,Gk } is a partition of G into k con-

nected subgraphs, each representing a district. The districts are

denoted by Gi = (Vi ,Ei ) where Vi ⊂ V ,Ei ⊂ E. The total popula-
tion of a state is n =

∑
v ∈V w(v), and the total population of each

district Gi , denoted population(Gi ), equals
∑
v ∈Vi w(v). The load

capacity C is the number of people per district if each district has

equal population, so C = n/k .
We can define several relevant normative properties for a district-

ing. At aminimum, it is typically the case that each subgraphGi ∈ D
must be connected; this constraint ensures that all districts in D are

contiguous. Furthermore, the population deviation from C , defined
as ϵ = (maxi {|population(Gi ) −C |})/C), is typically constrained to

be some small constant (e.g., 0.01). This ensures that each district

has approximately the same population. We can characterize how

"compact" a district Gi ∈ D is based on how “simple” the shape is

geometrically. We use the Polsby-Popper compactness score: The

ratio of the area of the district to the area of a circle that has the

same perimeter as the district, i.e. 4π × (area(Gi )/perimeter (Gi )
2)

[28]. Scores closer to zero are considered less compact. Our meth-

ods are not specific to this particular measure of compactness, and

alternatives could be substituted into our framework.

We conduct an audit against a particular districting D using a

sample F of valid alternative districtings. For intuition, you can

imagine that F is defined to be the set of all contiguous district-

ings with population deviation at most 0.015 and each district con-

strained to have Polsby-Popper compactness of at least some con-

stant lower bound. There could be additional constraints imposed

on F such as not splitting counties, including a minimum num-

ber of districts with large minority popuations, etc. In general, F

simply defines a large representative sample of valid districtings.

3.2 Gerrymandering Score
We build on Warrington’s definition of cracking and packing to

precisely define a gerrymandering score [35]. Cracking and packing

can only be quantified by comparing a candidate districting (i.e., the

one under audit) to a comparator districting. We define a voter to

be cracked if they are in a district where their preferred party loses,

but in the comparator they are in a district where their preferred

party wins.

Definition 3.1 (Cracking). LetD = {G1,G2, ...,Gk } be the current

districting andD0 = {H1,H2, ...,Hk } be a comparator districting. A

VTD u ∈ Vi ,Wj where Gi = (Vi ,Ei ) and Hj = (Wj , Fj ) is cracking
Democrats relative to D0 if∑

v ∈Vi

d(v) <
∑
v ∈Vi

r (v) and
∑
v ∈Wj

d(v) >
∑
v ∈Wj

r (v)

and cracking Republicans relative to D0 if∑
v ∈Vi

r (v) <
∑
v ∈Vi

d(v) and
∑
v ∈Wj

r (v) >
∑
v ∈Wj

d(v)

Note that this definition reflects how the same VTD v may be

experiencing different outcomes under D and D0 because v is as-

signed to different districtsGi and Hj respectively under the two

districtings.

Similarly, we define a voter to be p-packed if their preferred party

wins in both maps, but with a margin of victory that decreased by

p or more in the comparator relative to the candidate. For example,

if p = 0.05, the margin of victory would have to decrease by 5 or

more percentage points to signal packing. For our experimental

analysis in Section 5, we use a threshold of p = 0.05 to moderate

the sensitivity of the packing criteria. The particular value of p is

not important to our general framework and can be changed to

whatever is deemed sufficient evidence of packing.

Definition 3.2 (Packing). Let D = {G1,G2, ...,Gk } be the current

districting and D0 = {H1,H2, ...,Hk } be a comparator districting.

Let p ∈ (0, 0.5). Given D0, a VTD u ∈ Vi ,Wj where Gi = (Vi ,Ei )
and Hj = (Wj , Fj ) is p-packing Democrats relative to D0 if

∑
v ∈Wj

d(v) >
∑
v ∈Wj

r (v) and

∑
v ∈Vi d(v)∑
v ∈Vi t(v)

−

∑
v ∈Wj d(v)∑
v ∈Wj t(v)

≥ p
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and p-packing Republicans relative to D0 if

∑
v ∈Wj

r (v) >
∑
v ∈Wj

d(v) and

∑
v ∈Vi r (v)∑
v ∈Vi t(v)

−

∑
v ∈Wj r (v)∑
v ∈Wj t(v)

≥ p

For a given comparator map in F , we compare it against the

districting under audit and sum up the number of people cracked

and packed for each of the districting’s VTDs. For each VTD, if it

is cracking or p-packing Republicans, we include the number of

Republican voters in the sum, and if it is cracking or p-packing

Democrats, we include the number of Democratic voters in the sum.

We average over F to obtain the overall gerrymandering score for

each VTD. The gerrymandering score of the entire state is then just

the sum of the score over all VTDs.

Definition 3.3 (Gerrymandering Score). We are given the current

districting D, a sample of comparators F , and a graph of the state

G = (V ,E). For each comparator D ′ ∈ F and VTD v ∈ V , let
e(D ′,v) = 1 if v is either cracking or p-packing Democrats relative

to D ′ and 0 otherwise. Similarly, let s(D ′,v) = 1 if v is either

cracking or p-packing Republicans relative to D ′ and 0 otherwise.

Define the gerrymandering score of a VTD v with respect to

comparators F to be

д(v,F ) =
1

|F |

∑
D′∈F

(
e(D ′,v)d(v) + s(D ′,v)r (v)

)
.

The gerrymandering score of the entire districting with re-

spect to comparators F is simply the sum of gerrymandering scores

of each VTD ∑
v ∈V

д(v,F ).

In Figure 3 we walk through a simple example of our process.

We can compute the gerrymandering score for each VTD in this

toy state. Consider the specific VTD v in the upper right corner of

the original districting, consisting of one voter who supports the

blue party. Let the district containing v in the original districting

be d . In d , the red party is winning with a
4

7
− 3

7
= 1

7
margin of

victory (in terms of fractions of the total votes casted).

To compute the gerrymandering score for VTDv , we then iterate
through each comparator districting in F—there are seven in this

example—and sum up e(Di ,v)d(v) + s(Di ,v)r (v) for the i’th com-

parator. Consider Comparator 1 and let the district that contains

VTD v be district d1. In district d1, the blue party is winning with

a
6

7
− 1

7
= 5

7
margin of victory. Since the blue party was losing in

d , but is winning in the Comparator 1 district d1, the blue party
is cracked in VTD v relative to Comparator 1. On the other hand,

there is no evidence of cracking or packing against the red party in

this case. Thus, the gerrymandering score for VTD v with respect

to Comparator 1 is just the number of blue voters, 1.

One can repeat this calculation for the other six comparators.

Ultimately, the sum of gerrymandering score for v relative to each

comparator in turn from 1 to 7 is just 1 + 0 + 0 + 1 + 0 + 1 + 1 = 4.

The final gerrymandering score for the VTD v is just the average

of the gerrymandering score against each comparator, yielding

4

7
. The total gerrymandering score for the whole state is the sum

of the gerrymandering score for each VTD. In this example, the

gerrymandering score for the state would be
6

7
+ 4

7
+ 12

7
+ 3 = 6

1

7
.

Subfigure 3b also demonstrates that individuals in the dark-green

VTD (with 3 individuals gerrymandered) have the strongest justifi-

cation to complain that they are victims of partisan gerrymandering.

Out of all 8 possible districting plans (the original districting plus 7

comparators) their preferred party (the blue party) wins in every

scenario except in the districting under audit.

3.3 Obtaining Comparator Maps
In general, the set of all feasible districtings–subject only to minimal

nonpartisan constraints such as contiguity, compactness, and equal

population–is a large combinatorial object of VTDs. We cannot

expect it to be enumerated exactly and so cannot expect F to be

exhaustive of all possibilities or given explicitly up front. Instead, we

follow recent work on sampling from some nonpartisan distribution

on F [14]. In principle the distribution could be uniform, though in

practice onemaywish to put additional weight on “nice” districtings

that are highly compact or exhibit other desirable nonpartisan

properties. Given such a distribution, [14] shows that Markov Chain

Monte Carlo techniques can be employed to efficiently generate a

sample of comparators.

We argue that it is sufficient for the purpose of approximating

our gerrymandering score defined on some large number of feasible

districtings F to to have access to a random sample
ˆF .

Theorem 3.4. Let ˆF be an i.i.d. random sample of districtings
from F . Let v ∈ V be a VTD. Then

Pr

(
|д(v, ˆF ) − д(v,F )| ≥ p · t(v)

)
≤ 2e−2 |

ˆF |p2 .

Proof. The statement follows from a simple application of Ho-

effding’s inequality, see Theorem 2 in [15]. Note that д(v,F ) =

E
[
д(v, ˆF )

]
. Furthermore, note that д(v, ˆF ) is the sum of | ˆF | inde-

pendent random variables—one for each D ′ ∈ ˆF—of the form

1

| ˆF |

(
e(D ′,v)d(v) + s(D ′,v)r (v)

)
.

Each such random variable is bound between 0 and t(v)/| ˆF |. The
theorem statement follows directly. □

This allows us to derive a confidence interval for an estimate of

the gerrymandering score based on a random sample.

Corollary 3.5. Let γ (v, ˆF ) = 1.358
t (v)√
| ˆF |

. With probability at

least 95% over the random draw of ˆF , д(v,F ) lies in the range
д(v, ˆF ) ± γ (v, ˆF ).

In practice, we obtain a sample of 1055 comparator maps from

a study by Herschlag et. al [14]. So, for our data empirical results,

γ (v, ˆF ) ≈ 0.00129t(v). This implies, in particular, that we have

reasonable confidence in our gerrymandering scores plus or minus

one for a typically sized VTD of hundreds of individuals.

To sample from the space of congressional redistricting plans in

NC, Herschlag et. al [14] construct a probability distribution that

is weighted toward districting plans adhering to non-partisan de-

sign criteria. There are four non-partisan design criteria: requiring

equal population among NC’s 13 districts, having compact districts,

minimizing split counties, and ensuring African-American voters
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(a) Original districting (b) Gerrymandering scores

(c) Comparator 1 (d) Comparator 2

(e) Comparator 3 (f) Comparator 4 (g) Comparator 5 (h) Comparator 6 (i) Comparator 7

Figure 3: Example calculation of gerrymandering score. There are 12 VTDs arranged in a 4 by 3 grid. There are two parties,
one colored solid red and one speckled blue. For simplicity, each VTD only has voters for one party and the number of voters
is labeled for each VTD. The total population is 21, 12 of whom support red and 9 of whom support blue. We want to compute
k = 3 districts, so 7 individuals comprise a population equal district. 7 alternative equal population contiguous comparators
are shown.

are sufficiently concentrated in two districts to affect the winner.

They capture these criteria in a score function and use this to define

a Gibbs distribution. Using a Monte Carlo Markov chain (MCMC)

algorithm combined with a simulated annealing procedure, they

generate compliant redistricting plans by sampling from this prob-

ability distribution. Critically, partisan voting data or demographic

data is not used when sampling redistricting plans. Analysis based

on this sampling method has been presented as evidence in nu-

merous court cases, including before the Supreme Court in the

2019 case Rucho v. Common Cause [14]. However, we note that one
can substitute any sampling procedure of their choosing into our

framework and calculate a gerrymandering score.

4 GENERATING AWITNESS
Suppose one computes a gerrymandering score for each VTD as

outlined in the previous section. The results may be concerning in

many ways including high scores overall, regional variation, or very

different levels of impact when broken down by partisan affiliation

or demographics. However, the designer of the districting under

audit may respond to such concerns by claiming that it is a natural

consequence of the distribution of voters in the state. There is no

guarantee that there exists a districting with a gerrymandering

score of 0, so this defense may seem plausible.

In this section, we describe an algorithm to compute a witness
against a districting being so defended. Computing such a wit-

ness is necessary to contextualize the gerrymandering score by

showing how small perturbations to the districting under audit

can substantially reduce the gerrymandering score. This witness

is not necessarily intended to be used as an alternative “improved”

map. Rather, the existence of this witness simply weakens the argu-

ment that partisan gerrymandering in the original districting was

“unavoidable.”

We propose a simulated annealing swapping algorithm (Algo-

rithm 1) that, given an initial districting, continually swaps VTDs

that border two districts to reduce the gerrymandering score.

Simulated annealing is a metaheuristic, defined by a temperature
variable. As the algorithm runs its course, the temperature decreases

geometrically by a tempFactor multiplier. While the temperature

is high (i.e., during the initial steps of the algorithm), it allows

swaps that are non-beneficial to be made. While the temperature

is low (i.e., nearing the end), it will greatly prefer beneficial swaps.

We use a generic simulated annealing framework such as in [17]

and modify it to fit our purpose. We use this simulated annealing

approach instead of a simpler greedy local search algorithm because

the problem is highly constrained and there are many local optima.

We begin the algorithm with the initial districting. At the be-

ginning of each iteration of the algorithm, on line 3, we calculate

candidate VTDs for swaps as all VTDs that border any district in

the districting. If the candidate VTD is currently in district Gi and

borders a districtG j , a swap adds the candidate vertex to districtG j
and removes the candidate vertex from district Gi . We randomly

iterate through these candidates looking for a swap that is valid
(line 4).

A valid swap is a swap that satisfies three constraints. First, we

do not allow the average or minimum Polsby-Popper compactness

score of all the state’s districts to decrease from the original district-

ing’s average and minimum Polsby-Popper scores by more than

a percentage which we call the compactness deviation, compDev.
Second, we limit the population deviation ϵ between districts to no

more than a parameter we call popDev. Finally, we require contigu-
ity. One district cannot fully enclose part of another district inside

of it, nor can they consist of two disjoint, unconnected elements,

except in special cases (e.g. when the district contains an island).

If a swap means the resulting districts satisfy these three condi-

tions—compactness, population deviation, and contiguity—then it
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Algorithm 1: Simulated Annealing Algorithm

1 frozenCount← 0, iterations← 0, T ← startTemp,

champScore←∞;

2 repeat
3 candidates← VTDs that border any district in current

districtShapes;

4 for swap in candidates do // Iterate through

candidates in random order
5 if iterations equals L then
6 T ← tempFactor * T ;
7 if number of accepted swaps/iterations <

minPercent then
8 frozenCount← frozenCount + 1;

9 if current gerrymandering score < champScore
then

10 frozenCount← 0;

11 champScore← current gerrymandering

score;

12 if frozenCount is 5 then
13 return districtShapes;

14 if the swap satisfies population deviation,
compactness, and contiguity then

15 iterations += 1;

16 if the swap improves the gerrymandering score
then

17 Accept the swap and update districtShapes;

18 else
19 ∆← post-swap score − pre-swap score;

20 Accept the swap and update districtShapes

with probability e−∆/T ;

21 if the swap was accepted then
22 break; // Recalculate candidates

is a valid swap. Note that additional desiderata (such as maintaining

county boundaries or majority-minority districts) could easily be

incorporated into this notion of a valid swap within the algorithm.

Out of these valid swaps, we always accept swaps which lower

the gerrymandering score (line 16). To avoid local optima, we also

accept swaps that increase the gerrymandering score with proba-

bility e−∆/T , where ∆ is the increase in gerrymandering score and

T is the current temperature (line 20). Upon accepting a swap, we

recalculate candidate VTDs for swaps and begin another iteration

of the algorithm.

We initially set T to be an input variable called startTemp. We

also define input variables tempFactor, the temperature length L,
and minPercent. After L valid swaps have been proposed (these

valid swaps do not necessarily have to be accepted and actually

swapped), we set T = T * tempFactor. Internally, the algorithm de-

fines a frozenCount variable that is initially set to 0. The algorithm

halts on line 12 if frozenCount reaches some threshold (we use 5 in

our implementation), which ends the algorithm once no progress is

being made. To determine when to halt, we define a variable called

champScore. After every L swaps at the specified temperature level,

on line 11, we set champScore to be the current districting’s gerry-

mandering score if it is better than the current champScore. After
every L swaps, we also increment frozenCount by 1 on line 8 if both

the number of accepted swaps divided by L is less than minPercent
and champScore does not improve (meaning the algorithm is not

making much progress). If champScore does improve, then we reset

frozenCount to 0 on line 10.

5 EMPIRICAL RESULTS
We performed all our coding in Python 3, relying on the geopandas
package for spatial data analysis and operations. Our code is pub-

licly available on GitHub.
1

5.1 Gerrymandering Score
We calculated the overall gerrymandering score of four different

districting plans for North Carolina: the official map used in the 2012

election (the 2012 map), the official map used in the 2016 election

(the 2016 map), the map generated using the Divide and Conquer

Redistricting Algorithm developed by Levin and Friedler (the ACR

map) [19], and the map drawn by a bipartisan panel of 10 retired

North Carolina judges (the Judges map). For readability, displayed

scores are truncated to the nearest whole number. When drawing

the Judges map, the judges focused “only on keeping each relatively

equal in population and in compliance with the federal Voting

Rights act,” without “considering political party registration or

voting history.” [9] Each of these four maps’ district numberings and

partisan leans are shown in Figure 4. The geographic distribution

of the gerrymandering score in the 2016 map can be seen in Figure

2a.

To generate the 2012, 2016, and Judges map districtings, we

used files compiled by Herschlag et al. [14]. We generated the

ACR map through our own Python implementation of Levin and

Friedler’s algorithm [19]. Population and demographic data was

drawn from the 2010 census [12]. We used 2016 presidential election

data as the underlying electoral data to simulate which party would

hypothetically win each district. This historical data was drawn

from that compiled by Herschlag et al. [14]. In the 2016 North

Carolina presidential election, there were 2,362,631 Republican

votes (49.8% of total) and 2,189,316 Democratic votes (46.2% of total)

[33].

Table 1 shows various characteristics of these four maps, includ-

ing how they fare on our gerrymandering metric. The Judges map

and the ACR map, which did not take party data into account in

the districting process, performed better overall, with lower ger-

rymandering scores than the 2012 and 2016 maps. Although both

the ACR and Judges maps do not take party data in account, the

Judges map can be thought of as a bipartisan gold standard (drafted

by experts from both parties), and our metric is able to capture this

by showing a better balance of the gerrymandering score between

Democrats and Republicans. On the other hand, the ACR map is

simply nonpartisan, so although it is able to achieve the lowest

score among all 4 maps, it is less balanced by party.

The 2012 map performed the worst, with a gerrymandering score

of 1,503,519. The score is 197% higher for Democrats than Republi-

cans. Since this districting plan was struck down by the Supreme

1
https://github.com/auditing-gerrymandering/gerrymandering
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(a) 2016 map (b) 2012 map

(c) ACR map (d) Judges map

Figure 4: District numberings and partisan leans for each of the four initial maps

Table 1: Gerrymandering scores (broken down by Democrats and Republicans), number of seats won by each party, efficiency
gap, and average compactness (using Polsby-Popper metric) for the 2012, 2016, ACR, and Judges maps prior to any swapping.

Gerrymandering Score for
Districting Plan Total Dem. Rep. Rep. Seats Dem. Seats Eff. Gap Avg. Polsby-Popper

2012 map 1,503,519 1,124,669 378,850 10 3 R+24% 0.11867

2016 map 1,151,027 959,777 191,250 10 3 R+22% 0.24774

ACR map 931,975 250,247 681,727 7 6 D+9% 0.30971

Judges map 1,026,842 550,404 476,437 8 5 R+6% 0.33094

Court due to racial gerrymandering [16], this is not surprising,

and in general, our score measurements for these districtings are

consistent with our expectations.

5.2 Visualizing the Gerrymandering Score
Recall the definition of a VTD being cracked or packed in Defini-

tions 3.1 and 3.2. Using the method described in Warrington [35],

when iterating over all comparator districtings, we can calculate for

each VTD what percent of the time that VTD is cracked or packed

against Democrats, and what percent of the time the VTD is cracked

or packed against Republicans. Then, we can shade each VTD with

color based on what percent of the time it is cracked or packed, thus

creating a “heat map,” depicting which regions of the state are more

gerrymandered than others from different partisan perspectives.

This local approach allows us to clearly identify regions of voters

who have been impacted by cracking or packing.

Figure 5 is a heat map generated on the 2016map. It demonstrates

how Democratic voters in the Charlotte and Raleigh-Durhammetro

areas were heavily packed in the 2016 map, while Democratic voters

in Greensboro and suburban areas of Raleigh-Durham were heavily

cracked.

5.3 Algorithmically Generated Witness
We generated witnesses against multiple initial districtings, includ-

ing all those shown in Figure 4. Here, we report the witness against

the 2016 map, as it was in real use in North Carolina and its gerry-

mandered status has been disputed [26]. In one of our best runs on

the 2016 districting, our simulated annealing algorithm generates

a witness that decreases the gerrymandering score from 1,151,027

to 571,611, comprising a 50% reduction. We report results from

this one run for simplicity, but in 50 random trials we obtain a

gerrymandering score less than 627,050 at least half of the time. We

conclude that the high gerrymandering score of the 2016 congres-

sional districting of North Carolina is not a necessary feature of

the distribution of voters in the state. Though it was not an explicit

objective of our algorithm, we note that the resulting map has 4

instead of 3 Democratic districts, and multiple districts appear more

competitive, with parties winning by smaller margins of victory, as

can be seen in Figure 6. In this run, we used the following parame-

ters: popDev = 0.02, compDev = 0.1, startTemp = 800, tempFactor =
0.9747, L = 272, minPercent = 0.02, and the districting plan = 2016

map.

In the original 2016 heat map shown in Figure 5, Charlotte,

Raleigh, and the rural first district were heavily packed while the

Greensboro and suburban Raleigh areas experiencedmuch cracking.

The heat map in Figure 7 demonstrates how Democrats are much

less packed after swapping and cracking is reduced, though some

persists in suburban areas especially. Packing of Republicans has

decreased in far western North Carolina, but cracking has increased

slightly in the Charlotte and Raleigh areas.
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Figure 5: Percent of Democrats (left) and Republicans (right) packed and cracked in the original 2016 map relative to 1055
comparators. Packed individuals are shaded purple and cracked individuals are shaded orange (with hatches).

Figure 6: Partisan vote lean for the original 2016 map (left) and the new swapped map (right)

Figure 7: Percent of Democrats (left) and Republicans (right) packed and cracked in the computer generated witness relative
to 1055 comparators. Packed individuals are shaded purple and cracked individuals are shaded orange (with hatches).

Overall, there is a major net decrease in the total number of

gerrymandered voters, demonstrating that the level of gerryman-

dering we observe in the 2016 districting of North Carolina is not a

necessary result of the distribution of voters in the state. Our simu-

lated annealing algorithm is able to produce witness districtings

with total scores of less than 0.6 million based on only small pertur-

bations to the original 2016 districting and maintaining comparable

levels of population balance and compactness.

6 CONCLUSION AND FUTURE DIRECTIONS
Our paper provides an interpretable score for gerrymandering in

terms of people impacted that allows one to precisely pinpoint

which populations are gerrymandered and to what extent. We use

this score along with an algorithmically generated witness to audit

districtings for evidence of gerrymandering. We use our framework

in an audit demonstrating substantial levels of partisan gerryman-

dering in the 2016 congressional districting of North Carolina.

In the policy sphere, we hope that others can use our approach to

audit their own states’ districtings. We also hope this can encourage

the development of a justiciable standard for partisan gerryman-

dering legal cases, since it fulfills the courts’ desire outlined in Gill

v. Whitford to have individual voters show standing by showing

how they have been packed or cracked. This is a transition away

from statewide metrics like the efficiency gap in the gerryman-

dering literature and towards an analysis of localized effects of

gerrymandering.

With respect to the quantitative literature, this paper focuses

on the auditing problem: Given a set of comparators, how can

we quantify the level of gerrymandering observed and argue—via

an algorithmically generated witness—that these levels are not

necessary? Future work could focus on the algorithmic question

of optimizing for a map with the minimum gerrymandering score

using different approaches than simulated annealing.

We hope this work provides a new and more local way to think

about gerrymandering that allows lawmakers, litigators, and aca-

demics to work toward a more fair redistricting process.
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