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ABSTRACT
We consider social resource allocations that deliver an array of

scarce supports to a diverse population. Such allocations pervade

social service delivery, such as provision of homeless services and

assignment of refugees to cities, among others. At issue is whether

allocations are fair across sociodemographic groups and intersec-

tional identities. Our paper shows that necessary trade-offs exist

for fairness in the context of scarcity; many reasonable definitions

of equitable outcomes cannot hold simultaneously except under

stringent conditions. For example, defining fairness in terms of

improvement over a baseline inherently conflicts with defining

fairness in terms of loss compared with the best possible outcome.

Moreover, we demonstrate that the fairness trade-offs stem from

heterogeneity across groups in intervention responses. Administra-

tive records on homeless service delivery offer a real-world example.

Building on prior work, we measure utilities for each household

as the probability of reentry into homeless services if given three

homeless services. Heterogeneity in utility distributions (condi-

tional on received services) for several sociodemographic groups

(e.g. single women with children versus without children) gener-

ates divergence across fairness metrics. We argue that such hetero-

geneity, and thus, fairness trade-offs, pervade many social policy

contexts.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; • Gen-
eral and reference→ Metrics; Evaluation.
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1 INTRODUCTION
Many social interventions that allocate resources to individuals

are challenging because individuals have heterogeneous utilities.

Thus, the design and analysis of allocation policies for social inter-

ventions in terms of efficiency and fairness is critical [44], as seen

in many domains including child protection (e.g. [12]), healthcare

(e.g. [47]), and homeless services (e.g [9, 36]). A particular concern

for the use of machine learning posits that the tools systematically

disfavor some sociodemographic or intersectional groups (see [13]

for a review). For example, a growing body of work has documented

racial disparities in credit lending, recidivism risk assessment [42],

education [27], healthcare [41], and policing [21]. In this paper, we

explore how to measure these potential disparities in the context of

allocating resources given a limited budget. The literature on fair

resource allocation has typically come from the areas of fair divi-

sion and cooperative game theory. In that literature, one typically

thinks of individuals as having preferences, and tries to define mea-

sures of fairness and allocation mechanisms that demonstrate these

properties with respect to individual preferences. Recent notions

of group fairness coming from the fair division line of literature

strengthen the requirements for individual fairness [15] and are

thus too strong for situations of scarce resource allocation, where

allocations by definition must be unfavorable to some individuals.

So how should one measure fairness across groups in the alloca-

tion of scarce societal resources, where decisions often are made

on the basis of multiple criteria? To ground our considerations

in a specific case, consider homelessness service provision, where

federal policy makes serving the most vulnerable an explicit goal,

and at the same time, the effectiveness of services is measured by

returns to homelessness among those served [1]. Such examples

motivate us to consider how different notions of what role social

services should play lead to different conclusions about the fairness

of potential allocations across demographic groups.

For example, we could analyze how much better off members of

a group are compared with how well they would have done under

some minimal baseline allocation, or we could look at how much

worse-off members of a group are than they would have been under

the allocations that serve them the best. Fairness could then be

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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defined as equitable performance of groups according to these mea-

sures, and indeed, the existing literature on fair allocation of both

divisible and indivisible resources has looked at measures along

both of directions, of improvement (or gain) and regret (or short-

fall). Although both are reasonable definitions of a fair allocation,

we consider two important factors that arise in many real-world

problems. First, instead of the problem simply focusing on a set of

identical resources that need to be allocated amongst agents, there

is often a whole set of different interventions, each with capacity

constraints (for example, different types of homelessness resources

or different cities that refugees can be matched to). Second, individ-

uals may respond heterogeneously to the different interventions

(for example, homeless individuals with disabilities may benefit

disproportionately from intensive housing supports, or refugees

may assimilate and find jobs more easily in places where there is

already a substantial population from their place of origin).

We show that when there is a multiplicity of possible services,

and groups are heterogeneous in the distributions of utilities they

receive from different services, it becomes impossible to satisfy

simultaneously improvement and regret oriented definitions of

group fairness. Even more dramatically, an allocation policy that

appears to favor one group according to improvement fairness

can favor another group according to regret fairness. The results

yield insights on inherent trade-offs that policymakers face when

attempting to achieve a fairness objective. How we measure im-

provement or regret also matters when assessing the fairness of

an allocation policy. For example, we could measure improvement

by the ratio of realized utility over baseline utility (a multiplicative

measure); or by the difference between realized utility and baseline

utility (an additive measure). Depending on the application, it is

not always clear which of these additive or multiplicative normal-

izations makes more sense. We establish, in a stylized framework,

that fairness in terms of additive normalization and fairness in

terms of multiplicative normalization cannot hold simultaneously

except when the distribution of individual responses to different

allocations is similar across demographic groups.

These trade-offs are not theoretical corner-cases and have sub-

stantive implications for social policy. We use administrative data

from a regional homeless system to explore the fairness of a ca-

pacitated assignment of community-based services that address

housing needs. Services include transitional housing, rapid rehous-

ing, and emergency shelter; three programs that vary in intensity

and availability. We measure the utility of a service to a household

as the probability estimated in prior work by [36] that the house-

hold would make a successful exit from homelessness given the

delivery of that service. We first document significant differences

in utility distributions across different groups (e.g., disabled versus

not disabled households, families with children versus households

without children, single females with versus without children). We

then confirm our theoretical results that the differences in utility

distributions across groups generate trade-offs when assessing the

fairness of an allocation. For example, we consider the original

allocation as recorded in the administrative data and we find that

improvement and regret disagree on whether the policy favors

households with or without children, as well as other groups.

In addition to contributing to our understanding of how the

definition and measurement of fairness is affected by heterogeneity

in how members of different groups may respond to interventions,

these findings can inform practice in homeless and social services

that allocate scarce resources across diverse populations. Policies

frequently attempt to maximize public welfare by targeting avail-

able supports towards heterogeneous groups based on competing

notions of fairness (e.g., vulnerability, efficiency, equality). Under-

standing the fairness trade-offs and measurement sensitivity allows

for more intentional policy-making and better evaluation.

2 RELATEDWORK
2.1 Group Fairness
Prior research has led to many definitions of fairness to compare

algorithmic outcomes across demographic groups. Popular defini-

tions include statistical parity [19], equalized odds and opportu-

nity [28]. However, these definitions only apply to binary settings

and implicitly assume that the utility of an individual is equal to one

when the algorithm’s outcome is one and equal to zero otherwise.

Few papers consider more general definitions of utilities [29]. In

this paper, we argue as in [32] that in many societal applications

of machine learning, utilities are heterogeneous across individuals

and that this heterogeneity could be systematic across demographic

groups.

The fair division literature offers a framework to compare utili-

ties across individuals. Envy-freeness, proportionality or equitabil-

ity [10] are common utility-based definitions of a fair allocation of

goods. The literature strengthens these notions of fairness to control

for envy-freeness to arbitrary segments of the population [6, 15].

In this paper, we focus on notions of group equitability that vary

by their normalization, but leaves it for future research to explore

the role of normalization on group envy-freeness.

A standard assumption in the fair division literature is that utili-

ties, although heterogeneous, are unit-normalized [5]. The rationale

for unit-normalization is that it allows one to make more reason-

able interpersonal comparisons of utility by converting all utilities

to a common scale. Unit-normalization implies that the maximum

utility gain is equal to one for all individuals [5]. Our notions of

shortfall or regret rely on a similar assumption, which is reasonable

in many settings (e.g. voting [8]). However, we argue that other

reasonable choices of normalization are possible and more relevant

in different types of allocation problems. For example, in the case of

homeless services delivery, a policymaker would want to account

for the fact that families with children have on average more to

gain from rapid rehousing programs [43]. In this case, our measures

of improvement and gain, which normalize by comparison with

the worst utility that an individual can expect from an allocation,

are also reasonable notions of fairness. This paper relates closely

to the work of [32], who introduce utility-based notions of group

fairness for classification problems. However, they assume away the

need to normalize utilities to a similar scale / support. One of our

contributions is to show that different normalization approaches

can lead to conflicting assessments of the fairness of an allocation

policy.

2.2 Impossibility Results
The binary outcome setting admits some fundamental impossibil-

ity results [11, 35]. Except under very restrictive conditions, it is
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impossible for a classifier to simultaneously equalize false positive

rates and false negative rates across groups and also guarantee that

predictions are calibrated within each group. Kleinberg et al. [35]

show that the impossibility emerges whenever demographic groups

differ systematically in the distribution of features used by the clas-

sifier as inputs. In this paper, we demonstrate new impossibility

results in the case of utility-based notions of fairness. As in [35], we

obtain a paradox where fairness guarantees that seem to share the

same objective – that the allocation of resources will be as effective

for all demographic groups – are nonetheless incompatible.

Our results on the incompatibility of different fairness principles

is also reminiscent of Arrow’s impossibility theorem [3]. In the

presence of heterogeneous preferences, there is no way to aggregate

individual preferences into a social welfare function that would

satisfy unanimity, non-dictatorship and informational parsimony.

The theory of fair allocation [25, 46] that selects a subset of policies

on basis of their fairness and efficiency obtains possibility results by

relaxing informational parsimony [24]. However, in this paper, we

show that we cannot avoid negative results when notions of fairness

based on different normalizations have to hold simultaneously.

2.3 Algorithmic Allocation of Societal
Resources

There has been recent interest in the specific setting where scarce

resources that are collective or societal are algorithmically allocated

by a centralized institution to individual members of society (see

[17] for a recent review). The design of algorithmic approaches has

typically focused on increasing the efficiency of social interventions,

including kidney exchange [37, 45], housing assistance [36, 38], HIV

awareness campaigns [47] and refugee resettlement [18]. In this

paper, we investigate how to assess the fairness of resulting alloca-

tions. Empirically, we find evidence of our impossibility results in

the context of capacitated one-sided matching, which involve a set

of services with fixed capacities, a set of agents with heterogeneous

preference orderings (see e.g. [38] for an application to the house

allocation problem) and a social worker that assigns a service to

each agent.

3 INHERENT FAIRNESS TRADE-OFFS IN
RESOURCE ALLOCATION

In this section we describe our theoretical framework, first defining

the problems we are concerned with, and then outlining both gen-

eral and illustrative results on inherent group fairness trade-offs in

the allocation of scarce resources.

3.1 Setting
We considerK services, withmaximum capacities ck fork ∈ {1, ...,K},

and N individuals i = 1, ...,N .
1
We can thus describe individuals

by their utility vector u = (u1, ...,uK ) over each program k and

their sensitive attribute s ∈ S. S describes the set of groups for

which we want to study the fairness of service allocation. For ease

of exposition, we assume that group characteristics are binary and

S = {0, 1}; however, our results readily extend to more complex

1
We follow the convention of denoting vectors in bold type and random variables with

capital letters.

definitions of groups, and the empirical section will show that our

results hold for intersectional groups. We denote by Ns the number

of individuals with sensitive attribute s = 0, 1.

For each individual u, we denote byumin
the utility derived from

receiving the least beneficial program: umin = min{uk |k = 1, ..,K}.

We denote by umax
the utility derived from receiving the most

beneficial program: umax = max{uk |k = 1, ..,K}. Best and worst

programs might vary among individuals. umin
could potentially

characterize a “do nothing option”, i.e. the individuals’ utility with-

out the intervention. We assume that u is drawn from a joint distri-

bution Gs (u) over R
K
that depends on the value s of the sensitive

attribute. We denote the random utility vectorU .

An allocation policy a : RK → {0, 1}K assigns each individual

with utility u to a programk if and only ifak (u) = 1. We assume that

individuals are assigned to only one program:

∑K
k=1 ak (u) = 1. We

denote by a.u the inner product between the policy assignment and

the individual utility: a.u =
∑K
k=1 ak (u)uk . Given N individuals i

with utility ui , the allocation is feasible if and only if for all programs

k ,
∑N
i=1 ak (ui ) ≤ ck (the maximum capacity for the k-th service).

3.2 Fairness, Baselines, and Normalization
In this section, we consider four notions of fairness to compare

the average realized utility between groups: improvement, regret,

shortfall, and gain. The definitions differ along two dimensions (1)

how they normalize individual utility (additive or multiplicative),

and (2) which baselines they compare individual realized utility to

(worst case or best case).

The improvement and gain metrics use as a baseline the minimal

or worst utility that an individual can expect from any service they

receive. To be fair, the definitions say that the average increase in

utility relative to the least beneficial intervention should be equal

across groups. They differ in how they normalize realized utility rel-

ative to the baseline; improvement uses an additive normalization,

while gain uses a multiplicative normalization.

Definition 1. Improvement fairness. An allocation policy a
satisfies fair improvement if and only if

E

[
1

N0

∑
i,s=0

a.(ui − umin

i )

]
= E

[
1

N1

∑
i,s=1

a.(ui − umin

i )

]
, (1)

where the expectation is taken over samples of size Ns for the group
with sensitive attribute s = 0, 1.

Definition 2. Gain fairness. An allocation policy a satisfies
fair gain if and only if

E

[
1

N0

∑
i,s=0

a.
ui

umin

i

]
= E

[
1

N1

∑
i,s=1

a.
ui

umin

i

]
. (2)

We denote by ∆I (a) the difference in improvement between

groups:

∆I (a) = E

[
1

N1

∑
i,s=1

a.(ui − umin

i )

]
− E

[
1

N0

∑
i,s=0

a.(ui − umin

i )

]
.

(3)

If ∆I (a) is positive, the policy a favors group 1; if ∆I (a) is negative,
the policy favors group 0. We define similarly differences in gain

as ∆G(a).
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Regret fairness and shortfall benchmark the realized utility in

comparison to the best outcome individuals can hope for from

any service (as such they are related to the classical definition of

equitability in fair division, albeit with differences in normalization).

Both fairness notions are satisfied when the average loss of utility

compared to receiving the most beneficial program is equalized

across groups.

Definition 3. Regret fairness. An allocation policy a satisfies
regret fairness if and only if

E

[
1

N0

∑
i,s=0

a.(umax

i − ui )

]
= E

[
1

N1

∑
i,s=1

a.(umax

i − ui )

]
. (4)

Definition 4. Shortfall. An allocation policy a satisfies shortfall
if and only if

E

[
1

N0

∑
i,s=0

a.
ui

umax

i

]
= E

[
1

N1

∑
i,s=1

a.
ui

umax

i

]
. (5)

Like differences in improvement or in gain, we denote differences

in shortfall and regret as ∆S(a) and ∆R(a), respectively. Note that
∆R(a) ≥ 0 means that the policy a favors group S = 0 over group

S = 1 for regret fairness. All four definitions represent reasonable

and desirable properties of a fair allocation. However, the following

results show that a decision-maker faces trade-offs when choosing

which fairness notion to target. Not only might the notions not be

satisfied simultaneously, it is possible to generate explicitly contra-

dictory conclusions across the relatively similar fairness metrics

regarding which group is under-served.

3.3 Improvement versus Regret
Our first result shows that improvement and regret fairness cannot

be satisfied simultaneously, unless we impose strong restrictions

on how groups differ. Consider two random variables Umax
and

Umin
defined on individual most and least beneficial utility. The

maximum individual utility gain that can be delivered by a service

is then a random variable ∆U = Umax −Umin
.

Theorem 1. If an allocation policy a satisfies both improvement
and regret fairness then the average maximum utility gain ∆U must
be equal across groups: E[∆U |S = 0] = E[∆U |S = 1]. Moreover,
∆I (a) + ∆R(a) = E[∆U |S = 1] − E[∆U |S = 0].

Proof. The proof is based on the following identities:

∆I (a) = E

[
1

N1

∑
i,s=1

a(u).(ui − umax

i + ∆ui )

]
− E

[
1

N0

∑
i,s=0

a(u).(ui − umax

i + ∆ui )

]
= E

[
1

N1

∑
i,s=1

K∑
k=1

ak (u)∆ui

]
− E

[
1

N0

∑
i,s=0

K∑
k=1

ak (u)∆ui

]
− ∆R(a)

= E

[
1

N1

∑
i,s=1

∆ui

]
− E

[
1

N0

∑
i,s=0

∆ui

]
− ∆R(a),

(6)

where the last equality comes from the fact that

∑K
k=1 ak (u) = 1 for

all u. Therefore, if ∆I (a) = 0 and ∆R(a) = 0, then E[∆U |S = 0] =

E[∆U |S = 1]. □

The result in Theorem 1 implies that regardless of the allocation

policy, for both improvement and regret fairness to hold it is nec-

essary that groups would gain on average similarly if they were

always allocated their most beneficial intervention. Thus, a trade-

off exists when defining what a fair assignment should look like: for

example, a policy satisfying improvement fairness would always

violate regret fairness unless E[∆U |S = 0] = E[∆U |S = 1]. Since

∆I (a) + ∆R(a) = E[∆U |S = 1] − E[∆U |S = 0], the closer a policy is

to satisfying improvement fairness, the worse its regret fairness,

and vice-versa. A follow up question is whether improvement and

regret fairness tell a different story about the fairness of an alloca-

tion policy a. The next result shows that whenever E[∆U |S = 0]

and E[∆U |S = 1] differ, unless all policies favor one group, there

exists a policy that favors one group for improvement fairness and

favors the other one for regret fairness.

Theorem 2. Suppose that E[∆U |S = 1] > E[∆U |S = 0]. Suppose
that there exists a policy that favors group S = 0 for improvement
fairness and another policy that favors group S = 1 for improve-
ment fairness. Then, there exists a policy a∗ such that ∆I (a∗) >
0 and ∆R(a∗) > 0. That is, there exists a policy that favors S = 1

with respect to improvement fairness (larger is better), but favors
S = 0 with respect to regret fairness (lower is better).

The proof of Theorem 2 relies on the fact that the set of differ-

ences in improvement/regret is a continuous interval:

Lemma 1. Suppose that there exist two allocation policies a and
a
′

with differences in improvement δ and δ
′

> δ . Then, for any
δ∗ ∈ [δ ,δ

′

], there exists an allocation policy a∗ with difference in
improvement equal to δ∗. A similar result holds for difference in regret.

Proof. We show the result for differences in improvement. The

proof can be readily extended to differences in regret. We choose

λ = δ
′
−δ ∗

δ ′
−δ

∈ [0, 1]. We define an allocation policy aλ as follows:

• Partition randomly the individuals into two populations Gλ
and G

1−λ of size λN and (1 − λ)N , respectively.

• For each program k , assign λck of them to the population

Gλ ; and (1 − λ)ck of them to the population G
1−λ .

• Apply the allocation policy a to the population Gλ and a
′

to

the population G
1−λ .

By construction the policy aλ satisfies the resource constraints.

Moreover,

∆I (aλ) = ∆I (a)P(Gλ)+∆I (a
′

)(1−P(G
1−λ) = δλ+δ

′

(1−λ) = δ∗, (7)

where the last equality comes from our choice for the value of λ. □

Proof. Theorem 2. We choose ϵ = E[∆U |S=1]−E[∆U |S=0]
2

. ϵ > 0

by assumption. Using the assumption of Theorem 2, there exist

a and a
′

such that ∆I (a) < 0 and ∆I (a
′

) > 0. We apply Lemma

1 with δ = ∆I (a) < 0, δ
′

= ∆I (a
′

) > 0 and δ∗ = min{ϵ,δ
′

/2}:

there exists a policy a∗ such that ∆I (a∗) = δ∗ > 0. Moreover,

∆R(a∗) = E[∆U |S = 1] − E[∆U |S = 0] − ∆I (a∗) ≥ ϵ > 0. □
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Thus, regret fairness and improvement fairness cannot hold si-

multaneously unless populations are homogeneous in terms of their

best response to the allocation (Theorem 1). Moreover, assessing

which group is favored by a given policy can lead to contradictory

results depending on whether we measure the fairness properties

of the policy in terms of differences in improvement or regret. The

result in Theorem 2 illustrates that decision-makers cannot expect

that improvement and regret notions tell a similar story about

whether an allocation policy under-serves a given group. Results

Theorem 1 and Theorem 2 are general, since they hold for any set

of capacities c1, ..., cK and for distributions of utilities provided

that E[∆U |S = 1] > E[∆U |S = 0]. Both illustrate the central role

of the difference between E[∆U |S = 0] and E[∆U |S = 1] in driving

wedges between improvement and regret fairness. Additionally,

Theorem 2 is not very restrictive in its assumptions, since it only

requires that no group is under-served regardless of the policy.

3.4 Shortfall versus Gain
In this section, we show that the fairness trade-offs between im-

provement and regret exist also with multiplicative notion of fair-

ness, gain and shortfall. Unlike trade-offs between improvement and

regret where our results are general, in the case of shortfall versus

gain, we derive results in a stylized framework and leave it to future

work to extend our results to more general settings. Nevertheless,

this section captures the essence of the problem in the multiplica-

tive setting. We denote for each individual by r = umin/umax
the

ratio between the lowest and highest utility obtained from the in-

tervention. This serves as a multiplicative counterpart of ∆u. We

consider the following framework (SF1):

• There are two types of individuals: type A with high value r
for the ratio r ; type B with a low value r < r for r .

• Conditional on r , the distribution of utility is similar across

programs and types.

In this stylized framework, assigning to an individual their most

beneficial program delivers either a large increase r over umin
(type

A) or a lower one r (type B). We characterize the heterogeneity

across groups by differences in the distribution of type A and B

within each group. We denote by π0 the proportion of type B indi-

viduals for group S = 0; and, π1 the proportion of type B for group

S = 1.

Theorem 3. In the stylized framework (SF1):
• A policy satisfies both shortfall and gain fairness if and only
if π0 = π1.

• If π0 , π1, a policy a that achieves gain (shortfall) fairness,
favors, according to shortfall (gain) fairness whichever group
has the lowest proportion of type A individuals.

Proof. In this proof, let α denote E
[
a(u).u
umin

|r = r
]
and α denote

E
[
a(u).u
umin

|r = r
]
. Then, we write (for any policy) differences in gain,

∆G(a) =
{
π1α + (1 − π1)α

}
−

{
π0α + (1 − π0)α

}
= (π0−π1)(α −α)

(8)

and differences in shortfall as

∆S(a) =
{
π1αr + (1 − π1)αr

}
−

{
π0αr + (1 − π0)αr

}
= (π0 − π1)(αr − αr ).

(9)

Therefore, gain and shortfall fairness are equivalent to (π0−π1)(α −
α) = 0 and (π0 − π1)(αr − αr ) = 0. Hence, if π0 , π1, α = α and

α r = α r , which is not possible since r , r .
To show the second part of Theorem 3, we use the fact that gain

fairness implies that α = α (equation (8)) and that the difference

in shortfall between group S = 1 and S = 0 can be then written

∆S(a) = (π0−π1)(r −r )α , which have the same sign as π0−π1 since
r > r . Therefore, if π0 > π1, the policy favors group S = 1 with

respect to shortfall fairness; otherwise, it favors group S = 0. □

Theorem 3 states that shortfall and gain can be satisfied simul-

taneously if and only if populations have similar fractions of type

A individuals. It is similar in spirit to the results above, showing

that unless populations meet stringent requirements of similarity

in utility distributions between groups (in this case instantiated by

the fractions of the two types in each population), the versions of

fairness characterized by comparing with the min versus the max

cannot be simultaneously satisfied.

3.5 Multiplicative versus Additive
Normalization

Improvement and gain fairness aim at capturing a similar fairness

concept: groups receive on average the same increase in utility

relative to assigning the least beneficial service. Both fairness met-

rics differ only by whether the normalization relative to the lowest

utility that an individual can derive from the overall intervention

is additive or multiplicative. In this section, we show that even the

choice of normalization generates inherent fairness trade-offs.

We consider the following stylized framework (SF2):

• There are two types of individuals: type C for which umin

takes a low value u; and type D for which umin
takes a larger

value u > u.

• Conditional on umin
, the distribution of utility is similar

across programs and types.

Although stylized, both assumptions allow us to characterize the

heterogeneity across groups by differences in their distribution

over umin
. Let ps denote the fraction of type C for group S = s .

Differences in ps across groups imply differences in the distribu-

tion of utility P(U |S) within each group, even if the conditional

distribution P(U |Umin) is similar across types.

Theorem 4. In the stylized framework (SF2) with types C and D,
a policy a satisfies both improvement fairness and gain fairness for
group S = 0 and S = 1 if and only if one of the following conditions
holds:

• p0 = p1;
• the policy a assigns the least beneficial program to everyone
(i.e. a.u = umin).

Proof. Let β denoteE[a.u|Umin = u] and β denoteE[a.u|Umin =

u]. Then, we write differences in improvement as

∆I (a) =
{
p1β + (1 − p1)β − p1u − (1 − p1)u

}
−

{
p0β + (1 − p0)β − p0u − (1 − p0)u

}
= (p1 − p0)(β − β + u − u)

(10)
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Favors Group 1Favors Group 0

(a) Distribution of ∆U

Favors Group 1Favors Group 0

Utilitarian 

Random

(b) Improvement vs. Regret

Favors Group 1Favors Group 0

(c) Gain vs. Shortfall

Figure 1: Simulation results when groups have different mean of utilities. Panel (a) shows the distribution of the maximum
utility gains ∆U = Umax −Umin for group 0 (blue), and group 1 (orange). Panel (b) shows the differences in improvement and
regret, Panel (c) shows the differences in gain and shortfall. Error bars show the 95% confidence interval of each fairnessmetric
over 100 instantiations of the random allocation.

(a) Distribution of ∆U

Favors Group 1Favors Group 0

(b) Improvement vs. Regret (Utilitarian)

Favors Group 1Favors Group 0

(c) Gain vs. Shortfall (Utilitarian)

Figure 2: Simulation results when groups have the samemean utilities for the services, but different variances. Panel (a) shows
the distribution of the maximum utility gains ∆U = Umax −Umin for group 0 (blue), and group 1 (orange). Panel (b) shows the
differences in improvement and regret, Panel (c) shows the differences in gain and shortfall. Group 1 is favored strongly by
all the fairness measures when allocations are utilitarian.

and differences in gain as

∆G(a) =

{
p1

β

u
+ (1 − p1)

β

u

}
−

{
p0

β

u
+ (1 − p0)

β

u

}
= (p1 − p0)

(
β

u
−

β

u

) (11)

Therefore, improvement fairness and gain are equivalent to (p0−

p1)(β − β + u − u) = 0 and (p0 − p1)

(
β
u −

β
u

)
= 0. If p0 , p1,

improvement and gain fairness imply β =
u
u β and β = u. The latter

equality leads to a.u = u if umin = u and the former equality leads

to a.u = u if umin = u. □

Theorem 4 demonstrates a simple, yet general, setting where

improvement fairness and gain fairness cannot be obtained simul-

taneously unless either the distribution of utilities are the same

across groups (p0 = p1) or the policy does not create any utility

improvement relative toUmin
.

4 SIMULATIONS WITH UTILITARIAN AND
RANDOM ALLOCATIONS

Thus far, we have not needed to define an allocation policy explicitly,

since we were focused on existence results. In this section, we con-

sider two natural allocation policies – utilitarian (maximizing the

sum of utilities of all agents) and random. Both must respect capac-

ity constraints. We simulate a simple environment with two groups

and three services. In one setting, members of the two groups have

different mean utilities from receiving the three services, while the

variances are the same. In the second, members of the two groups

have the same mean utilities from receiving the three services, but

different variances. We are interested in understanding (1) how the

different fairness measures behave in these two settings; (2) the

role played by utilitarian objectives in the assignment problem.

In our setting, there are three (k = 1, 2, 3) services with fixed

capacities (c1 = c2 = c3 = 1000) and 3000 applicants divided into

two groups of equal size: group 0 and group 1. We sample individual

utilities for service k from a normal distribution with mean µsk and

standard deviation σsk , s = 0 for group 0 and s = 1 for group 1.
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4.1 Groups with Different Means
In this set of simulations, we study the behavior of fairness mea-

sures when individual utilities are sampled from group-dependent

distributions. The groups have different sample means µ but the

same variances σ 2
. For group 0, the means of the three services

are µ01 = 0.2, µ02 = 0.3, and, µ03 = 0.4. For group 1, the means

are µ11 = 0.4, µ12 = 0.5, and, µ13 = 0.63 The variances of the

three services for both groups are equal, σ 2

01
= σ 2

11
= 1 × 10

−4
,

σ 2

02
= σ 2

12
= 4 × 10

−4
, and, σ 2

03
= σ 2

13
= 9 × 10

−4
. Individuals in

group 1 have on average higher utilities for all services.

As pointed out in section 3.3, we observe in Figure 1 that the

difference in ∆U leads to a trade-off between the improvement

and regret fairness metrics. Figure 1 shows that even for a random

assignment, different metrics lead to conflicting fairness assessment.

The improvement fairness metric favors the group with higher

mean ∆U (group 1), and regret favors the groups with lower mean

∆U (group 0). To complicate fairness assessment further, switching

from additive to multiplicative normalization reverses which group

is favored.

Moreover, the utilitarian allocation appears to favor group 1
according to improvement, regret and gain, but favors group 0 in
terms of shortfall. These results confirm in a simulated environment

that utility normalization has profound implications on how we

assess the fairness of an allocation.

4.2 Groups with Equal Means and Different
Variances

In our second set of simulations, we study the effects of groups

having similar means but different variances, a situation that is

commonly discussed, for instance in the context of gender differ-

ences in student performance [7]. In this case, we hypothesize that

the higher variance group is likely to be favored by utilitarian allo-

cations. For both groups, the means for the three services are equal,

µ01 = µ11 = 0.4, µ02 = µ12 = 0.5, and µ03 = µ13 = 0.6. For group 0,
the variances for the three interventions are set to σ 2

01
= 9 × 10

−5
,

σ 2

02
= 2 × 10

−3
, σ 2

03
= 1 × 10

−2
, while for group 1, the variances for

the three interventions are set to σ 2

11
= 9 × 10

−3
, σ 2

12
= 2 × 10

−2
,

σ 2

13
= 3 × 10

−2
. Thus, group 0 has lower variance.

Our results in Figure 2 show that, as hypothesized, the group

with larger variance (group 1) is indeed favored according to all

fairness metrics. When maximizing the sum of utilities, it is optimal

to assign their best services to individuals with utilities in the tail of

the distribution. We find that a larger fraction (65%) of individuals

in group 1 than in group 0 (46%) receive the service that maximizes

their utility.

5 FAIRNESS TRADE-OFFS IN HOMELESS
SERVICE DELIVERY

Our theoretical analysis suggests that heterogeneity in service re-

sponses across groups drives fairness metrics in opposite directions.

In this section, we investigate whether the fairness tradeoffs emerge

in the capacitated assignment of homeless services across several

sub-populations. We hypothesize that if sociodemographic group

differences exist in the utilities received from allocations (and in par-

ticular, between the differences in the best versus worst allocations),

then we should see tradeoffs between improvement versus regret

fairness, shortfall versus gain, and improvement versus gain. We

provide evidence for both the antecedent (heterogeneity in responses
across groups) and the consequent (inherent fairness trade-offs be-
tween groups).

5.1 Background
Homelessness represents a socioeconomic and public health chal-

lenge for many communities in the United States. Approximately

1.5 million people experience homelessness for at least one night

every year [23, 30]. Homelessness has short- and longer-term im-

plications on health, employment, and crime [14, 26, 34]. Guided by

federal policies, communities offer an array of services for house-

holds lacking stable and permanent living accommodations. We

study three main homeless services: Transitional Housing (TH);

Rapid Rehousing (RRH) and Emergency Shelter (ES). Transitional

Housing provides accommodation for up to 24 months with compre-

hensive case management to address barriers toward stable housing,

such as substance abuse and issues related to behavioral health.

Rapid Rehousing offers access to rental units for six months without

intensive case management. Emergency Shelter provides a bed to

sleep at night for no more than one or two months. On a daily basis,

caseworkers assign homeless households seeking assistance to an

available service, reserving the most intensive TH for those with

greater needs.

5.2 Data
Our main dataset is based on estimated probabilities of households

re-entering homelessness services within two years after initial re-

ceipt of services. This data, collected by [36] is publicly available.
2

The estimates are based on applying a machine learning model

(BART [31]) to administrative records that tracked service provision

in a metropolitan area from 2007 through 2014. Service providers

collected demographic and household characteristics upon entry

into the system, and data capture the intervention assigned and

whether households subsequently requested additional assistance

[36]. The model estimates counterfactual probabilities pik of a

household i to re-enter the homeless system within 2 years given

the assignment of a specific service k , where k ∈ {TH ,RRH ,ES}.
The original data also tracks responses to homelessness prevention

– time-limited monetary assistance that differs from the other three

interventions that allocate actual bed space. Given that the con-

straints on homelessness prevention are different, we focus here

only on households that needed actual bed space (and were there-

fore not eligible to receive prevention services). Therefore, our final

data contains 3, 375 households and they received either TH, RRH,

or ES.

We compute the utility of servicek to individual i asuik = 1−pik .
We obtained from Kube et al additional sociodemographic charac-

teristics for each household, including race, gender, age, disability

status, presence of spouse and/or children, and household size. We

note that our analysis takes the counterfactual probability estimates

as given. These estimates are based on an ignorability assumption

implicit in using BART in this manner [31, 36].

2
https://github.com/amandakube/Allocating-Homelessness-Interventions---

Counterfactual-Predictions

https://github.com/amandakube/Allocating-Homelessness-Interventions---Counterfactual-Predictions
https://github.com/amandakube/Allocating-Homelessness-Interventions---Counterfactual-Predictions
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Figure 3: Distribution of the maximum utility gain ∆U that individuals can derive from the homeless system across various
demographic groups. We obtain the probability density function of ∆U = Umax −Umin via Gaussian kernel density estimation
with a bandwidth of 0.2. Differences in probability density functions between households with and without disability (Panel
a)) and with and without spouse (Panel b)) illustrate heterogeneous responses to housing assistance.

Figure 4: Same as Figure 3 but for intersection groups single female with and without children (Panel c)); youth under 25 with
and without disability (Panel d)); and, youth under 25 with and without children (Panel e)).

Figure 5: Same as Figure 3 but for groups defined by perceived racial background.

We define a series of sociodemographic groups and intersec-

tional identities expected to exhibit substantial heterogeneity in

responses to homeless services. First, households with disabilities

are considered more vulnerable, and prior research shows that more

vulnerable households do best with more intensive services [4, 40].

Therefore, we expect households with disabilities to benefit more

from TH and less from ES. Second, families with children under the

age of 18 experience homelessness due to socioeconomic reasons

rather than disability and vulnerability, and thus, we anticipate

families will respond better to rapid rehousing than more intensive

TH [16, 22, 43]. Third, we examine the intersection between gender

and family status, assuming that single female households with-

out children do better in TH compared with single female-headed

families with children, who are more likely to benefit from RRH.

Fourth, we look within households headed by youth aged 18 to 24

years to compare disability status (versus no disability) and family

status (children versus no children), hypothesizing that those with

disabilities benefit more from TH and families with children from
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Table 1: Distribution of services that deliver to each household the highest utility across demographic groups. This shows the
fraction of households in each demographic group for which ES, TH or RRH leads to the lowest probability to re-enter the
homeless system.

TH RRH ES Size TH RRH ES Size

All 0.68 0.27 0.05 3375

With disability 0.73 0.23 0.03 601 Without disability 0.66 0.28 0.06 2699

Without children 0.85 0.14 0.01 2533 With children 0.16 0.67 0.17 842

Single female with children 0.15 0.7 0.15 761 Single female without children 0.7 0.3 0.01 885

Less than 25 with disability 0.62 0.37 0.01 78 Less than 25 without disability 0.47 0.49 0.05 501

Less than 25 without children 0.83 0.17 0.0 275 Less than 25 with children 0.19 0.73 0.08 308

Female - Black 0.46 0.46 0.08 1414 Female - White 0.34 0.62 0.04 241

Male - Black 0.95 0.02 0.03 1254 Male - White 0.8 0.14 0.06 406

RRH [39]. Lastly, given the over-representation in homelessness

of minorities and especially Black households, we test how race

affects homeless service utilities [30].

Prior research suggests the causes of homelessness vary for

White people experiencing disabilities, versus Black people expe-

riencing greater housing discrimination [33]. Moreover, race in-

tersects with gender (males vs females) and family status (with

children versus without children) in ways that could drive variation

in homeless service outcomes.

5.3 Heterogeneity across Demographic Groups
In this section, we document heterogeneity in the distributions of

utility across various groups. For each household, we compute the

difference ∆U between its best and worst utility. Figure 3 shows

heterogeneity in response to homeless services across households

with and without reported disabilities; with and without children.

The distribution of ∆U for households with a disability skews to

the right (panel a); assigning the best service to a disabled client

has a larger impact in terms of re-entry probability than assign-

ing a client without a disability to their most beneficial service.

The difference in distribution means is statistically significant with

a t-statistic of 8.5 and p-value infinitesimally small. This finding

aligns with prior research that shows vulnerable households do

best with more intensive services [4, 40]. The distribution of ∆U
for households without children skews strongly to the right com-

pared with households with children (panel b). The mean of ∆U
for households without children is 0.07, while it is only 0.04 for

household with children. The difference is statistically significant

with a t-statistic of 29.0 and a p-value infinitesimally small. This

result illustrates how families with children differ in their responses

to housing assistance compared to homeless individuals.

Figure 4 looks at intersectional sociodemographic groups. Panel

c shows that the impact of different homeless services for a sin-

gle female depends strongly on whether there are children in the

household. Similarly, youth with and without disability respond

differently to homeless services (panel d). For both intersections,

the difference in means is statistically significant (t-statistic of 25.7

for single female vs single mother and 5.1 for youth with vs without

disability).

Figure 5 explores differential responses to housing assistance by

race and shows substantial differences in the distribution of ∆U
between Black and White males (Panel g). Black homeless popula-

tions may on average benefit more from more intensive homeless

services. Prior research [33] suggests that social discrimination and

socio-economic disadvantage could increase the risk for homeless-

ness among populations with perceived Black background and that

housing assistance could mitigate some of these vulnerabilities.

Results from Figures 3, 4 and 5 suggest that heterogeneity in

utility is pervasive. Table 1 explains some of this heterogeneity by

identifying which of the three services (TH, RRH and ES) benefits

the most households within each group. For the homeless popu-

lation studied in this paper, TH is the most preferred service for

68% of the population, followed by RRH (27%) and ES (5%). This

preference for more intensive care is exacerbated for households

with disability (73% prefer TH), in line with prior findings that most

vulnerable populations benefit from more integrated care. The pref-

erences of households with a disability toward TH contrasts with

the preferences of families with children toward RRH: 67% of house-

holds with children benefit most from RRH, while TH is best for

only 16% of families. This holds true for all intersectional groups

that include children and could explain differences between males

and females, since females are more likely to live with children.

Regardless of gender, TH is likely most beneficial for the Black

homeless population: TH is the most beneficial service for 46% of

Black females but only for 34% of White females; and, for 95% of

Black males but only for 80% of White males.

5.4 Fairness Trade-Offs in the Observed
Allocation of Homeless Services

Our theory suggests that heterogeneity in the distribution of the

maximum gain ∆U would drive fairness metrics in opposite direc-

tions: (i) there exist assignments of homeless services with con-

flicting fairness assessment depending on choosing improvement,

regret, gain or shortfall as the fairness metric (Theorem 2); (ii) as-

signments that satisfy improvement fairness could violate regret

fairness and vice-versa (Theorem 1). Given the substantial hetero-

geneity among the sociodemographic and intersectional groups
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Figure 6: Fairness trade-off in the observed assignment of homeless services. This compares which demographic group is
favored by the assignment depending on the fairness metric. Trade-offs occur when improvement favors one group and regret
the other one (left panel) or when shortfall favors one group and gain the other (right panel).

documented in section 5.3, Theorem 2 implies that ambiguous fair-

ness assessments can arise for some policies. However, Theorem

2 is not constructive. Are such policies realistic in the context of

homeless services delivery? Here we test whether the observed

assignment as reported in the administrative records is subject

to contradictory fairness assessments depending on the choice of

fairness metric.

Figure 6 (Panel a) plots the difference in improvement ∆I and
the negative of difference in regret −∆R. Positive values indicate
that the policy favors group S = 1, while negative values mean the

policy favors group S = 0. According to improvement, the observed

assignment favors households without children, while according

to regret, it favors households with children: ∆I = −0.013, while

−∆R = 0.016. A similar ambiguity emerges for households with

and without disability. Moreover, choosing improvement or regret

flips the conclusion on whether the assignment is unfair to Black

males relative to White males: Black males derive higher utility

gains according to improvement (∆I = −0.02) but lower according

to regret (−∆R = 0.009). The results provide empirical evidence

that policies that lead to contradictory fairness assessment are not

just theoretical oddities, but do occur in real world applications.

Empirically, similar trade-offs occur for shortfall versus gain (Figure

6, Panel b). Moreover, in Figure 6, we find one pairwise comparison,

youth with versus without a disability, for which the observed

policy satisfies improvement fairness. This instance of improvement

fairness allows us to test whether Theorem 1 holds here. We find

that the policy does not satisfy regret fairness, consistent with the

heterogeneity in ∆U found in section 5.3 between youth with versus

without a disability.

6 CONCLUSION
How do we judge whether an approach to allocation of scarce so-

cietal resources is fair for different sociodemographic groups of

public concern? The problem lies at the intersection of recent work

in fair machine learning and a long history of work from economics,

social choice, and algorithmic game theory on fair division. It also

brings into question concerns of local justice [20], which studies

how individuals are prioritized in the allocation of scarce resources

by local institutions. The key point we make in this paper is that

baselines matter when we measure outcomes for different groups. The
exact same allocation may favor one group over another when

assessed against the baseline intervention of doing nothing, but

the group it favors could invert when measured against the base-

line of giving each group the best intervention it could get in a

scenario with no resource constraints. The social objective being

optimized also can drive fairness results – for example, utilitarian

allocations typically favor groups with higher variance in utilities

across different types of services, even if the means are the same.

Our results are more than theoretical. We show that the pattern

arises in homeless service delivery, where outcomes vary by and

within sociodemographic groups. For instance, returns to home-

lessness vary by service allocation more for households without

children compared to families with children. Naive policy applica-

tions that fail to consider baseline variation may negatively impact

some groups. Aiming to reduce overall homelessness, for example,

by prioritizing households without children for intensive services

disproportionately excludes households with children from receiv-

ing their best service, whereas an alternative policy that matches

households with children to their best service fails to reduce overall

homelessness. The data illustrate similar fairness tradeoffs across

intersecting sociodemographic groups, including disability status,

gender, age, and race. Failing to consider carefully the underlying

distributions and metrics for success threatens counterproductive

policy initiatives. Current national advocacy to reduce veteran and

chronic homelessness to zero ask communities to shift resources in

ways that may undermine other goals [2]. Moreover, federal and
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local policies simultaneously strive for system efficiency and equity,

which prove antithetical in many contexts [26]. Our findings raise

serious questions for institutions when designing homeless policies

and social policy more generally.

ACKNOWLEDGMENTS
We thank Nisarg Shah for helpful conversations. We are grateful

for support from the NSF through awards 2127752, 2127754, and

1939677, and from Amazon through an NSF-Amazon Fairness in AI

award. Special thanks go to the homeless service consumers and

providers represented in the data.

REFERENCES
[1] [n.d.]. HUD System performance measures. https://www.hudexchange.

info/programs/coc/system-performance-measures/#guidance Published

online at https://www.hudexchange.info/programs/coc/system-performance-

measures/#guidance.

[2] 2021. Functional zero. https://community.solutions/built-for-zero/functional-

zero/ By Community Solutions, available at https://community.solutions/built-

for-zero/functional-zero/.

[3] Kenneth J Arrow. 1950. A difficulty in the concept of social welfare. Journal of
Political Economy 58, 4 (1950), 328–346.

[4] Tim Aubry, Gary Bloch, Vanessa Brcic, Ammar Saad, Olivia Magwood, Tasnim

Abdalla, QasemAlkhateeb, Edward Xie, ChristineMathew, Terry Hannigan, Chris

Costello, Kednapa Thavorn, Vicky Stergiopoulos, Peter Tugwell, and Kevin Pottie.

2020. Effectiveness of permanent supportive housing and income assistance

interventions for homeless individuals in high-income countries: A systematic

review. The Lancet Public Health 5 (2020), e342–e360. https://doi.org/10.1016/

S2468-2667(20)30055-4

[5] Haris Aziz. 2020. Justifications of welfare guarantees under normalized utilities.

ACM SIGecom Exchanges 17, 2 (2020), 71–75.
[6] John J Bartholdi III, Craig A Tovey, and Michael A Trick. 1992. How hard is it to

control an election? Mathematical and Computer Modelling 16, 8-9 (1992), 27–40.

[7] Ariane Baye and Christian Monseur. 2016. Gender differences in variability and

extreme scores in an international context. Large-scale Assessments in Education
4, 1 (2016), 1–16.

[8] Sylvain Bouveret and Michel Lemaître. 2016. Characterizing conflicts in fair

division of indivisible goods using a scale of criteria. Autonomous Agents and
Multi-Agent Systems 30, 2 (2016), 259–290.

[9] Molly Brown, Camilla Cummings, Jennifer Lyons, Andrés Carrión, and Dennis P

Watson. 2018. Reliability and validity of the Vulnerability Index-Service Prior-

itization Decision Assistance Tool (VI-SPDAT) in real-world implementation.

Journal of Social Distress and the Homeless 27, 2 (2018), 110–117.
[10] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg

Shah, and Junxing Wang. 2019. The unreasonable fairness of maximum Nash

welfare. ACM Transactions on Economics and Computation (TEAC) 7, 3 (2019),
1–32.

[11] Alexandra Chouldechova. 2017. Fair prediction with disparate impact: A study

of bias in recidivism prediction instruments. Big Data 5, 2 (2017), 153–163.
[12] Alexandra Chouldechova, Diana Benavides-Prado, Oleksandr Fialko, and Rhema

Vaithianathan. 2018. A case study of algorithm-assisted decision making in child

maltreatment hotline screening decisions. In Conference on Fairness, Accountabil-
ity and Transparency. PMLR, 134–148.

[13] Alexandra Chouldechova and Aaron Roth. 2018. The frontiers of fairness in

machine learning. arXiv preprint arXiv:1810.08810 (2018).
[14] Elior Cohen. 2020. Housing the Homeless: The Effect of Housing Assistance on

Recidivism to Homelessness, Economic, and Social Outcomes. Technical Report.
mimeo.

[15] Vincent Conitzer, Rupert Freeman, Nisarg Shah, and Jennifer Wortman Vaughan.

2019. Group fairness for the allocation of indivisible goods. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 33. 1853–1860.

[16] Mary Cunningham, Sarah Gillespie, and Jacqueline Anderson. 2015. Rapid re-

housing. Urban Institute: Washington, DC, USA (2015).

[17] Sanmay Das. 2022. Local Justice and the Algorithmic Allocation of Scarce Societal

Resources. Proceedings of the AAAI Conference on Artificial Intelligence (2022).
To appear.

[18] DavidDelacrétaz, Scott Duke Kominers, Alexander Teytelboym, et al. 2019.Match-
ing mechanisms for refugee resettlement. Technical Report. Working paper.

[19] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard

Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. 214–226.

[20] Jon Elster. 1992. Local justice: How institutions allocate scarce goods and necessary
burdens. Russell Sage Foundation.

[21] Danielle Ensign, Sorelle A Friedler, Scott Neville, Carlos Scheidegger, and Suresh

Venkatasubramanian. 2018. Runaway feedback loops in predictive policing. In

Conference on Fairness, Accountability and Transparency. PMLR, 160–171.

[22] Angela R Fertig and David A Reingold. 2008. Homelessness among at-risk

families with children in twenty American cities. Social Service Review 82, 3

(2008), 485–510.

[23] Cassie Fisher, Brandon Sorenson Gray, Karen Quackenbush, Tamera Kohler, and

Jonathan Hardy. 2018. Homelessness in the United States. Development (2018),
14.

[24] Marc Fleurbaey, Kotaro Suzumura, and Koichi Tadenuma. 2005. The informational

basis of the theory of fair allocation. Social Choice and Welfare 24, 2 (2005), 311–
341.

[25] Duncan Karl Foley. 1966. Resource allocation and the public sector. Yale University.
[26] Patrick J Fowler, Peter S Hovmand, Katherine E Marcal, and Sanmay Das. 2019.

Solving homelessness from a complex systems perspective: insights for preven-

tion responses. Annual Review of Public Health 40 (2019), 465–486.

[27] Josh Gardner, Christopher Brooks, and Ryan Baker. 2019. Evaluating the Fairness

of Predictive Student Models Through Slicing Analysis. In Proceedings of the 9th
International Conference on Learning Analytics & Knowledge. ACM, 225–234.

[28] Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in

supervised learning. Advances in Neural Information Processing Systems 29 (2016),
3315–3323.

[29] Hoda Heidari, Michele Loi, Krishna P Gummadi, and Andreas Krause. 2019. A

moral framework for understanding fair ML through economic models of equality

of opportunity. In Proceedings of the Conference on Fairness, Accountability and
Transparency. 181–190.

[30] Meghan Henry, Anna Mahathey, and Meghan Takashima. 2020. The 2018 Annual
Homeless Assessment Report (AHAR) to Congress: PART 2: Estimates of Homelessness
in the United States. Technical Report. The U.S. Department of Housing and

Urban Development.

[31] Jennifer L Hill. 2011. Bayesian nonparametric modeling for causal inference.

Journal of Computational and Graphical Statistics 20, 1 (2011), 217–240.
[32] Safwan Hossain, Andjela Mladenovic, and Nisarg Shah. 2020. Designing fairly

fair classifiers via economic fairness notions. In Proceedings of TheWeb Conference
2020. 1559–1569.

[33] Marian Moser Jones. 2016. Does race matter in addressing homelessness? A

review of the literature. World Medical & Health Policy 8, 2 (2016), 139–156.

[34] Jill Khadduri, Josh Leopold, Brian Sokol, and Brooke Spellman. 2010. Costs

associated with first-time homelessness for families and individuals. Available at
SSRN 1581492 (2010).

[35] Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. 2016. Inherent

trade-offs in the fair determination of risk scores. In Conference on Fairness,
Accountability and Transparency. PMLR.

[36] Amanda R Kube, Sanmay Das, and Patrick J Fowler. 2019. Fair and Efficient

Allocation of Scarce Resources Based on Predicted Outcomes: Implications for

Homeless Service Delivery. (2019).

[37] Zhuoshu Li, Kelsey Lieberman, William Macke, Sofia Carrillo, Chien-Ju Ho,

Jason Wellen, and Sanmay Das. 2019. Incorporating compatible pairs in kidney

exchange: A dynamic weighted matching model. In Proceedings of the 2019 ACM
Conference on Economics and Computation. 349–367.

[38] David F Manlove and Colin TS Sng. 2006. Popular matchings in the capacitated

house allocation problem. In European Symposium on Algorithms. Springer, 492–
503.

[39] Matthew HMorton, Shannon Kugley, Richard Epstein, and Anne Farrell. 2020. In-

terventions for youth homelessness: A systematic review of effectiveness studies.

Children and Youth Services Review 116 (2020), 105096.

[40] Heather Menzies Munthe-Kaas, Rigmor C Berg, and Nora Blaasvær. 2018. Ef-

fectiveness of interventions to reduce homelessness: A systematic review and

meta-analysis. Campbell Systematic Reviews 14, 1 (2018), 1–281.
[41] Stephen Pfohl, Ben Marafino, Adrien Coulet, Fatima Rodriguez, Latha Palaniap-

pan, and Nigam H Shah. 2019. Creating fair models of atherosclerotic cardiovas-

cular disease risk. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics,
and Society. 271–278.

[42] ProPublica. 2016. How We Analyzed the COMPAS Recidivism Algorithm. ProP-
ublica (2016).

[43] Debra J Rog, C Scott Holupka, and Lisa C Patton. 2007. Characteristics and

dynamics of homeless families with children. Washington, DC: US Department of
Health and Human Services (2007).

[44] Alvin Roth. 2015. Who gets what-and why: The hidden world of matchmaking and
market design. HarperCollins UK.

[45] Alvin E Roth, Tayfun Sönmez, andMUtku Ünver. 2005. Pairwise kidney exchange.

Journal of Economic theory 125, 2 (2005), 151–188.

[46] Hal R Varian. 1974. Equity, envy, and efficiency. Journal of Economic Theory 9, 1

(1974), 63–91.

[47] Amulya Yadav, Hau Chan, Albert Xin Jiang, Haifeng Xu, Eric Rice, and Milind

Tambe. 2016. Using Social Networks to Aid Homeless Shelters: Dynamic Influ-

ence Maximization under Uncertainty.. In Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, Vol. 16. 740–748.

https://www.hudexchange.info/programs/coc/system-performance-measures/#guidance
https://www.hudexchange.info/programs/coc/system-performance-measures/#guidance
https://community.solutions/built-for-zero/functional-zero/
https://community.solutions/built-for-zero/functional-zero/
https://doi.org/10.1016/S2468-2667(20)30055-4
https://doi.org/10.1016/S2468-2667(20)30055-4

	Abstract
	1 Introduction
	2 Related Work
	2.1 Group Fairness
	2.2 Impossibility Results
	2.3 Algorithmic Allocation of Societal Resources

	3 Inherent Fairness Trade-Offs in Resource Allocation
	3.1 Setting
	3.2 Fairness, Baselines, and Normalization
	3.3 Improvement versus Regret
	3.4 Shortfall versus Gain
	3.5 Multiplicative versus Additive Normalization

	4 Simulations With Utilitarian and Random Allocations
	4.1 Groups with Different Means
	4.2 Groups with Equal Means and Different Variances

	5 Fairness Trade-offs in Homeless Service Delivery
	5.1 Background
	5.2 Data
	5.3 Heterogeneity across Demographic Groups
	5.4 Fairness Trade-Offs in the Observed Allocation of Homeless Services

	6 Conclusion
	Acknowledgments
	References

