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ABSTRACT
A growing body of work uses the paradigm of algorithmic fairness
to frame the development of techniques to anticipate and proac-
tively mitigate the introduction or exacerbation of health inequities
that may follow from the use of model-guided decision-making. We
evaluate the interplay between measures of model performance,
fairness, and the expected utility of decision-making to offer prac-
tical recommendations for the operationalization of algorithmic
fairness principles for the development and evaluation of predictive
models in healthcare. We conduct an empirical case-study via de-
velopment of models to estimate the ten-year risk of atherosclerotic
cardiovascular disease to inform statin initiation in accordance with
clinical practice guidelines. We demonstrate that approaches that
incorporate fairness considerations into the model training objec-
tive typically do not improve model performance or confer greater
net benefit for any of the studied patient populations compared
to the use of standard learning paradigms followed by threshold
selection concordant with patient preferences, evidence of inter-
vention effectiveness, and model calibration. These results hold
when the measured outcomes are not subject to differential mea-
surement error across patient populations and threshold selection
is unconstrained, regardless of whether differences in model per-
formance metrics, such as in true and false positive error rates,
are present. In closing, we argue for focusing model development
efforts on developing calibrated models that predict outcomes well
for all patient populations while emphasizing that such efforts are
complementary to transparent reporting, participatory design, and
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reasoning about the impact of model-informed interventions in
context.
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1 INTRODUCTION
The use of machine learning to guide clinical decision-making and
resource allocation can introduce or perpetuate inequities in care
access and quality, ultimately contributing to health disparities
[64, 97]. Aiming to detect and mitigate such harms, recent works
leverage the algorithmic fairness paradigm [10] to define evalua-
tion criteria and model development procedures that quantify and
constrain the magnitude of statistical differences in model behav-
ior or performance across patient subgroups [8, 9, 19, 22, 67, 70,
74, 81, 82, 108]. Within this paradigm, numerous criteria, metrics,
and algorithms have been proposed, and both major and minor
incompatibilities and trade-offs among them have been identified
[21, 25, 32, 51, 53, 71].

The purpose of this work is to synthesize, contextualize, and
validate underappreciated limitations of the algorithmic fairness
paradigm to contribute to the development of best practices for
appropriately operationalizing algorithmic fairness principles in
healthcare [99]. We do so in a setting where observational data
stored in an electronic health records or claims database is used
to fit a patient-level predictive model for a clinical outcome where
the score output by the model informs the allocation of a clinical
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intervention, typically through comparison of the score to a decision
threshold. For our analysis, we assume that the observed outcomes
are not subject to unobserved differential measurement error across
patient subgroups [45, 64], that the choice of decision threshold
used to allocate a clinical intervention on the basis of the output
of a predictive model is not constrained by resource or operational
constraints [47], and that the values embedded in the data collection
and problem formulation processes are transparently reported and
reflect those of the patient populations affected by the use of the
model [12, 18, 33, 60, 68, 80].

For the development of predictive models to inform clinical
decision-making, we argue for aiming to maximize the expected
utility that the model-informed intervention confers to each patient
subgroup of interest. The notion of expected utility that we consider
depends on the values and preferences of affected stakeholders
and can be quantified in terms of the expected costs or utilities
associated with false positive and false negative errors in binary
classification settings or in terms of the expected benefits and harms
of the intervention conditioned on risk in more general settings [86,
96]. We hypothesize that, in practice, model development strategies
that nominally promote fairness, by constraining for parity inmodel
performancemetrics across subgroups or bymaximizing worst-case
model performance over subgroups, do not confer greater expected
utility for any patient subgroup than the approach of identifying
a set of calibrated models that predict the outcome well for each
subgroup, followed by threshold selection reflecting the contextual
assessment of the benefits and harms of the intervention. The key
observations motivating this hypothesis are detailed in section 2
and largely follow directly from related work [7, 25, 32, 51, 53, 71,
72, 83, 86, 94–96, 102].

We evaluate our hypothesis through a case study of estima-
tors of the risk of atherosclerotic cardiovascular disease (ASCVD)
within ten years to inform the initiation of cholesterol-lowering
statin therapy [3, 35, 38, 54, 87]. We conduct experiments to as-
sess which model development strategies confer maximal expected
utility for subgroups defined in terms of race, ethnicity, sex, or
co-morbidities (type 1 and type 2 diabetes, chronic kidney dis-
ease (CKD), or rheumatoid arthritis (RA)). We compare pooled and
stratified unconstrained empirical risk minimization (ERM) to regu-
larized fairness objectives and distributionally robust optimization
(DRO) objectives that aim to minimize differences in or improve the
worst-case area under the receiver operating characteristic curve
(AUC) or log-loss across subgroups. We further conduct an analy-
sis to investigate the impact of constraints on differences in true
and false positive rates. To evaluate the utility that the model con-
fers, we use the notion of net benefit [94, 96] to define normalized
expected utility measures that parameterize the relative value of
the harms and benefits of statin initiation on the basis of decision
thresholds recommended by clinical practice guidelines. To eval-
uate net benefit in this setting, we adopt the assumption that the
intervention induces constant relative risk reduction (section 3.3).

2 BACKGROUND AND PROBLEM
FORMULATION

2.1 Supervised learning for binary outcomes
and algorithmic fairness

Here, we introduce the formal notation and key assumptions used
throughout the work. Let X ∈ X = Rm be a variable designating a
vector of covariates and Y ∈ Y = {0, 1} be a binary indicator of an
outcome. We consider data that may be partitioned on the basis of a
discrete indicator of a categorical attribute A ∈ A = {Ak }Kk=1 with
K categories. In some cases, A may correspond to an attribute that
describes partitions of the population, where the value of A = Ak
refers to a specific partition defined by the attribute. Examples of
attributes used to partition the population include demographic
attributes (e.g. race, ethnicity, gender, sex, age subgroup) or strata
defined by complex clinical phenotypes or comorbidity profiles. We
use the shorthandDAk , when referring to the subset corresponding
to the subgroup Ak .

The objective of supervised learning with binary outcomes is
to use data D = {(xi ,yi ,ai )}Ni=1 ∼ P(X ,Y ,A) to learn a function
fθ ∈ F : Rm → [0, 1] parameterized by θ . The function fθ can
be considered to be a risk estimator that, when optimal, estimates
E[Y | X ] = P(Y = 1 | X ). We designate the random variable
resulting from the application of the model fθ to X to be given by
S , such that S = fθ (X ). Given S , a predictor Ŷ may be derived by
comparing S to a threshold τy ∈ [0, 1] to produce binary predictions
Ŷ (X ) = 1[fθ (X ) ≥ τy ] ∈ {0, 1}.

The calibration curve c : [0, 1] → [0, 1] is defined as a function
that describes the expected value of Y given S , such that c(s) =
E[Y | S = s] = P(Y = 1 | S = s). A model is said to be calibrated
if c(s) = s for all s . The calibration curve can be used to assess
the extent to which a model over or underestimates the risk of the
outcome Y . For instance, if c(s ′) > s ′ then the observed event rate
for the set of patients with scores of s ′ is greater than s ′, implying
that the model underestimates risk for patients with scores of s ′.

Assessments of algorithmic fairness rely on fairness criteria, i.e.
statistical properties reflecting moral or normative judgements as
to the principles that constitute fairness. A broad class of fairness
criteria can be described in terms ofmetric parity (дj (·) ⊥ A), which
requires that one or more metrics дj : F × (X,Y) → R+ be equal
across the subgroups defined byA. Common instantiations of metric
parity include equalized odds (Ŷ ⊥ A | Y or S ⊥ A | Y ) [39], which
requires both the true positive rates and the false positive rates to
be equal across subgroups, demographic parity (Ŷ ⊥ A or S ⊥ A)
[16], which requires the rate at which patients are classified as
belonging to the positive class is equal across subgroups, predictive
parity (Y ⊥ A | Ŷ = 1) [21], which requires parity in the positive
predictive values, as well as criteria defined over other performance
metrics [17, 27], including the AUC [13, 63] or the average log-loss
or empirical risk [100]. Another important class of fairness criteria
is defined over the calibration curve. Within that class, we focus
on the sufficiency condition (Y ⊥ A | S) [10, 53], which requires
the calibration curves for each subgroup be equal, and the group
calibration condition (E[Y | S = s,A] = s) [51, 73], which requires
the model to be calibrated for each subgroup.
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2.2 Assessing the utility and net benefit of
decision-making at a threshold

To contextualize the presentation of algorithmic fairness, we present
a utility-theoretic perspective on clinical decision-making. For this
framing, we consider a decision rule that implies intervention allo-
cation on the basis of a binary predictor Ŷ (X ) = 1[fθ (X ) ≥ τy ].

We define Ucond(s) = U 1
cond(s) −U

0
cond(s) as the conditional ex-

pected utility of the decision rule, where U 1
cond(s) designates the

expected utility associated with treating patients whose predicted
scores S = fθ (X ) are s , and U 0

cond(s) is the expected utility of not
treating patients whose scores are s . We define the aggregate ex-
pected utility Uagg(τy ) of the decision to be the average utility
over the population, given that the intervention is allocated for all
patients with scores at or above the threshold τy :

Uagg(τy ) =E[U
1
cond | S ≥ τy ]P(S ≥ τy )

+ E[U 0
cond | S < τy ]P(S < τy ).

(1)

The optimal decision rule for a fixed predictive model is one
where the intervention is allocated to patients with scores for which
Ucond(s) > 0 and not allocated to those for which Ucond(s) < 0. If
Ucond(s) is strictly monotonically increasing in s and has a root in
[0, 1] then the optimal threshold τ ∗y is given by the point at which
Ucond(s = τ

∗
y ) = 0. WhenUcond(s) is strictly monotonic but has no

root in [0, 1], then either the treat-all (τy = 0) or treat-none (τy = 1)
strategies is optimal.

In some cases,Ucond can be written as a simple function of the
calibration curve. For example, if the costs and benefits of decision-
making can be written as fixed expected costs or utilities of true
positive (uTP), false positive (uFP), true negative (uTN), and false
negative (uFN) classification, then Ucond(s) = (uTP − uFN)c(s) +
(uFP −uTN)(1 − c(s)) and the optimal threshold is given by [25, 86]

τ ∗y = c
−1

( uTN − uFP
uTN − uFP + uTP − uFN

)
. (2)

It follows that when a model is calibrated, the optimal threshold
is given by τ ′y =

uTN−uFP
uTN−uFP+uTP−uFN . When the model is miscalibrated,

but the calibration curve is strictly monotonic, the optimal thresh-
old is given the point at which the calibration curve intersects τ ′y .
Furthermore, given the relationship between the c(s) and Ucond,
monotonicity in the calibration curve implies monotonicity in the
conditional utility, and setting a threshold on the basis of the cali-
bration curve can be interpreted as setting a threshold onUcond.

To assess the expected utility of the decision rule over a popula-
tion, it is typically not necessary to evaluateUagg(τy )with equation
(1). Instead, a chosen decision threshold can be used to parameterize
the net benefit [94, 96] of the decision rule under the assumption
that the chosen threshold is optimal, for a calibrated model, based
on the values of the decision maker and the effectiveness of the
intervention. The net benefit under the assumption of fixed costs
or utilities of classification errors is given by [94, 96]

NB(τy ;τ ∗y ) =P(S ≥ τy | Y = 1)P(Y = 1)

− P(S ≥ τy | Y = 0)P(Y = 0)
τ ∗y

1 − τ ∗y
,

(3)

where τy is the evaluated decision threshold and τ ∗y parameterizes
the net benefit. This metric is fundamental to decision curve analysis
[94, 96], as a decision curve is the curve that results from evaluating
net benefit for a range of thresholds for which τy = τ ∗y . Both the
net benefit and Uagg are maximized at the threshold that results
from the application of equation (2) when the assumptions outlined
above are met.

We introduce the notion of the calibrated net benefit (cNB) to
assess the net benefit under the assumption that the decision thresh-
old used is adjusted on the basis of observed miscalibration. If c(s)
is the calibration curve, then the calibrated net benefit evaluated at
a threshold τy is given by the net benefit evaluated at a threshold
τc = c−1(τy ) on the score S . The calibrated net benefit under the
assumption of fixed classification costs is given by

cNB(τy ;τ ∗y ) =P(S ≥ c−1(τy ) | Y = 1)P(Y = 1)

− P(S ≥ c−1(τy ) | Y = 0)P(Y = 0)
τ ∗y

1 − τ ∗y
.

(4)

2.3 Implications for algorithmic fairness
A key consequence of the analysis presented thus far is that, subject
to the assumptions detailed in section 2.2, the optimal threshold
rule applied to a predictive model that outputs a continuous-valued
risk score is based directly on the calibration characteristics of the
model and the assumed expected costs or utilities of classification
errors that encapsulate the effectiveness of the intervention and
the preferences for downstream benefits and harms. As has been
argued in related work [7, 24, 25, 32], it follows that if the model is
calibrated for each subgroup, the decision threshold that maximizes
expected utility and net benefit for each subgroup is the same when
the expected utilities associated with each classification error do
not change across subgroups. We verify this claim in simulation
in supplementary section A1 (Supplementary Figure A1). Further-
more, in this case, sufficiency implies that the use of a consistent
threshold on the risk score for all subgroups corresponds to the
use of a consistent threshold on the conditional utilityUcond across
subgroups, corresponding to an intuitive notion of fairness even
in the case that the chosen decision threshold is not necessarily
optimal [7, 25]. However, we note that this can still be a misleading
notion of fairness given that it does not account for heterogeneity
in the outcome not accounted for by the model under consideration
[25].

As is described in prior work [21, 25, 51, 53, 83], one should
expect models that minimize the empirical risk for the population
overall, with respect to a data distribution containing features X
that encodeA, to be calibrated overall and for each patient subgroup
but to violate equalized odds, demographic parity, and predictive
parity when such models exhibit differences across subgroups in
the distribution of the risk score S or when the prevalence or in-
cidence of the outcome Y differs across subgroups. Consequently,
approaches undertaken to constrain the model training objective
[2, 17, 26, 27, 71, 105] to minimize violation of fairness criteria such
as equalized odds or demographic parity typically reduce utility
through some combination of explicit threshold adjustment [39]
towards a threshold unrelated to the one selected on the basis of
preference solicitation in the context of the intervention, induced
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miscalibration that analogously implies decision-making at a thresh-
old unrelated to the utility-maximizing one [32], or reduction in
model fit [71]. Given the relationship between the calibration curve
and the conditional utility described in section 2.2, induced miscali-
bration that results in sufficiency violation implies that the use of a
consistent threshold on the score across subgroups results in the
use of different thresholds onUcond across subgroups.

2.4 Algorithmic fairness training objectives
In our experiments, we evaluate training objectives that incorpo-
rate algorithmic fairness goals and constraints into their speci-
fication. We do so not to advocate for the use of their use, but
rather to develop evidence as to the extent to which theoretical
properties and trade-offs manifest empirically. We focus our efforts
on “in-processing” approaches [2, 17, 26, 27, 105] rather than on
pre- [43, 55, 56, 84, 106] or post-processing [10, 39] (e.g. threshold-
adjustment) approaches because in-processing approaches are well-
suited to learning models that achieve the minimum achievable
trade-off between measures of model performance and fairness in
practical finite-sample settings [101] and further allow for explo-
ration of smooth trade-offs induced by relaxation of the constraint
[2, 27]. We specifically focus on scalable gradient-based learning
procedures that use regularized objectives to penalize violation of
fairness criteria in a minibatch setting, to enable the use of these
procedures for deep neural network models learned with large-
scale datasets. We also investigate approaches that, rather than
constraining for parity in a metric across subgroups, attempts to
improve the worst-case value of the metric over subgroups using
distributionally robust optimization (DRO) [20, 30, 58, 72, 79].

Following Pfohl et al. [71], the regularized training objective is
ERM that incorporates a non-negative penalty term R that assesses
the extent to which a fairness criterion of interest is violated and a
non-negative parameter λ that may be tuned to control the extent
to which violation of the criteria is penalized:

min
θ ∈Θ

N∑
i=1

wi ℓ(yi , fθ (xi )) + λR, (5)

wherewi are sample weights. In our experiments, we use this for-
mulation to penalize violation of equalized odds and differences
in AUC and log-loss across subgroups. To penalize violation of
equalized odds, we primarily use a term that penalizes the Maxi-
mum Mean Discrepancy (MMD) [37] between the distribution of
scores between each patient subgroup and the overall population
conditioned on the observed values of the outcome Y , as in Pfohl
et al. [71]. A full specification of the MMD-based training objective
is included in supplementary section A.4.

We further use a regularized objective defined on the basis of
a penalty that assesses violation of metric parity to penalize dif-
ferences in the AUC or log-loss between each subgroup with the
overall population:

min
θ ∈Θ

N∑
i=1

wi ℓ(y, fθ (x)) + λ

J∑
j=1

∑
Ak ∈A

(
дj (fθ ,DAk ) − дj (fθ ,D)

)2
.

(6)
We also evaluate the use of this objective to penalize violation of
equalized odds at relevant thresholds by plugging surrogates of the

true and false positive rates into equation (6). A full specification of
the relevant objectives is provided in supplementary section A.4.

Beyond regularized objectives for algorithmic fairness, we eval-
uate distributionally robust optimization [11, 42, 79] procedures
that encode the goal of maximizing worst-case performance over
subgroups as one of learning to be robust over marginal shifts in
the proportion of data available from each subgroup. The use of
these objectives reflects a shift in perspective from the goal of re-
quiring that some statistic be equal across subgroups towards one
of aiming to identify models that perform well for each subgroup
[30, 42, 58, 72, 79]. In this work, we leverage the GroupDRO frame-
work (hereafter referred to as DRO) developed in Sagawa et al. [79]
and extended in Pfohl et al. [72]. The algorithm is implemented as
the following alternating updates conducted over minibatches:

λk ← λk exp
(
ηд(fθ ,DAk )

)
/

K∑
k=1

exp
(
ηд(fθ ,DAk )

)
(7)

and

min
θ ∈Θ

K∑
k=1

λk

nk∑
i=1

wi ℓ(yi , fθ (xi )), (8)

where η is a non-negative scalar hyperparameter, {λk }Kk=1 are non-
negative scalars that sum to 1, and д is a performance metric where
lower values of the metric indicate better performance. In our ex-
periments, we evaluate the use of the log-loss and 1 − AUC as the
choice of metric д, as in Pfohl et al. [72].

3 CASE STUDY IN ATHEROSCLEROTIC
DISEASE RISK ESTIMATION

3.1 Background on ASCVD risk estimation for
statin initiation

Clinical practice guidelines for the primary prevention of cardiovas-
cular disease recommend the use of estimates of ten-year atheroscle-
rotic cardiovascular disease (ASCVD) risk to inform the initiation of
cholesterol-lowering statin therapy [3, 35, 38, 54, 87]. These guide-
lines primarily recommend the use of risk estimates provided by the
Pooled Cohort Equations [35] and its extensions [104]. However,
these estimates have been reported to systematically over-estimate
or under-estimate risk in ways that are consequential for the appro-
priateness of downstream treatment decisions. This misestimation
has been reported to occur both overall [23, 28, 69, 75] and for
subgroups defined on the basis of race/ethnicity [1, 29, 48], sex
[23, 28, 62], socioeconomic status [54], or for patients with comor-
bidities which influence ASCVD risk or the expected benefit and
harms of statin therapy, including diabetes [1, 75], chronic kidney
disease (CKD) [1, 40, 46], and rheumatoid arthritis (RA) [66, 92].
Approaches undertaken to address these issues include the devel-
opment of new risk estimators from large, diverse observational co-
horts using modern machine learning methods [49, 70, 98, 104, 107],
revisions to guidelines to encourage follow-up testing when the
benefits of statin therapy are unclear and shared patient-clinician
decision-making to incorporate patient preferences and other con-
text [54], and the incorporation of fairness constraints into the
model development process [9, 32, 70].
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3.2 Supervised learning with censored binary
outcomes

To address systematic censoring of ten-year ASCVD outcomes, we
adopt an inverse probability of censoring weighting (IPCW) ap-
proach during model training and evaluation [14, 44, 61, 78, 91, 93].
Intuitively, the appropriate weights scale with the probability of
remaining uncensored at the earliest of the ASCVD event time,
the censoring time, and the ten-year follow up horizon. In our ex-
periments, we use flexible neural network models in discrete time,
such as those described in Kvamme and Borgan [52], to estimate
a conditional model for the censoring survival function. A tech-
nical specification of the problem formulation and assumptions
necessary to motivate the IPCW approach is provided in supple-
mentary section A.2. In supplementary section A.4, we extend each
of the metrics used for evaluation and or as components of the
training objectives presented in section 2.4 to account for censoring
by incorporating IPCW weights.

3.3 Assessing net benefit in terms of risk
reduction

For the evaluation of models that predict the risk of ASCVD to
inform statin initiation, we introduce an alternative formulation of
the net benefit that is defined in terms of the population absolute
risk reduction after subtracting out harms represented on the same
scale. We use the guideline-concordant thresholds of 7.5% and 20%,
which correspond to the bounds of the intermediate and high-risk
categories, respectively in clinical practice guidelines [3, 35, 54]. We
do so to parameterize the net benefit in terms of clinically-plausible
benefit-harm trade-offs. Here, we summarize the key aspects of the
formulation, but include a full derivation in supplementary section
A.3.

For this case, the relevant utilities are defined by the absence
(uy0 ) and presence (uy1 ) of an ASCVD event within ten years. The
expected event rates conditioned on the score s are given by p0y (s)
and p1y (s) in the absence and presence of treatment, respectively.
The conditional absolute risk reduction is given byARR(s) = p0y (s)−
p1y (s). We assume that the expected harm of the intervention can
be represented as a constant kharm that is independent of the risk
estimate. With these assumptions, Ucond(s) =

(
u
y
0 − u

y
1
)
ARR(s) −

kharm and the optimal threshold is given by τ ∗y = ARR−1
( kharm
uy0 −u

y
1

)
.

We further assume that the intervention induces constant relative
risk reduction, such that ARR(s) = rc(s) for a constant r ∈ (0, 1) and
the conditional expected utility and optimal threshold are simple
transformations of the calibration curve, as was the case for the
fixed-cost setting. In this case, Ucond(s) =

(
u
y
0 − u

y
1
)
rc(s) − kharm

and τ ∗y = c−1
( kharm
r (uy0 −u

y
1 )

)
. We derive a formulation of the net benefit

in this setting as

NB(τy ;τ ∗y ) = − (1 − NPV(τy ))P(S < τy )

− P(S ≥ τy )
(
(1 − r )PPV(τy ) + rτ ∗y

)
+ P(Y = 1),

(9)

where NPV(τy ) and PPV(τy ) are the negative and positive predic-
tive values evaluated at a threshold τy . The calibrated net benefit is
defined analogously in equation (26).

To operationalize this notion of net benefit, as a proof-of-concept,
we use a simple model for the treatment effect of statin initiation
presented in Soran et al. [85]. Using that model and the properties
of our cohort, we derive a constant value of 27.5% for the expected
ten-year relative risk reduction following from moderate-intensity
statin initiation (supplementary section A.5).

3.4 Cohort definition
All data are derived fromOptum’s de-identifed Clinformatics®Data
Mart Database (Optum CDM), a statistically de-identified large com-
mercial and medicare advantage claims database containing records
from 2007 to 2019. We utilize version 8.1 of the database mapped to
the Observational Medical Outcomes Partnership Common Data
Model (OMOP CDM) version 5.3.1 [41, 57, 77]. Approval for the use
of this data for this study was granted by the Stanford Institutional
Review Board protocol #46829. Individuals wishing to access the
data used in this work may sign a data use agreement with Stan-
ford and Optum to access the data for replication or confirmatory
studies on the Stanford Secure Data Ecosystem.

We apply criteria to extract a cohort for learning estimators of
ten-year ASCVD risk that mirrors the population eligible for risk-
based allocation of statins based on clinical practice guidelines [3].
The characteristics of the extracted cohort are provided in Supple-
mentary Table B1. We consider as candidate index events all office
visits and outpatient encounters for patients between 40 and 75
years of age at the time of the visit for patients without a prior statin
prescription or history of cardiovascular disease (Supplementary
Table B2). We restrict the set of candidate index events to those
recorded as occurring at or before December 31, 2008 for which
least one year of historical data is available, and randomly sample
one of the resulting candidate index events per patient for inclusion
in the final cohort.

The times of ASCVD and censoring events are identified rel-
ative to the index event dates. ASCVD events are defined as the
occurrence of a diagnosis code for myocardial infarction, stroke,
or fatal coronary heart disease (Supplementary Table B2). We con-
sider coronary heart disease to be fatal if death occurs within a
year of the recording of the diagnosis code. Censoring events are
identified as the earliest date of statin prescription (Supplementary
Table B2), death, or the end of the latest enrollment period. From
the extracted ASCVD and censoring times, we construct composite
binary outcomes and censoring indicators at ten years, following
the logic of supplementary section A.2.

3.4.1 Subgroup definitions. We define discrete subgroups on the
basis of (1) a combined race and ethnicity variable based on reported
racial and ethnic categories, (2) patient sex, (3) intersectional cate-
gories describing intersections of racial and ethnic categories with
sex, (4) history of either type 2 diabetes, type 1 diabetes, RA, or
CKD at the index date. To construct the race and ethnicity attribute,
we assign “Hispanic or Latino” if the recorded OMOP CDM concept
for ethnicity is recorded as “Hispanic or Latino”, and the value of
the recorded OMOP CDM racial category otherwise. This resulted
in a final categorization of “Asian”, “Black or African American”,
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“Hispanic or Latino”, “Other”, and “White”, which we shortened to
“Asian”, “Black”, “Hispanic”, “Other”, and “White” for succinctness
in the presentation of the results. We identify patients with a history
of type 2 diabetes, type 1 diabetes, rheumatoid arthritis, or chronic
kidney disease using the presence of a concept identifier indicative
of the condition recorded prior to the index date (Supplementary
Table B2). The selected concept identifiers used for identifying type
2 and type 1 diabetes are adapted from Reps and Rijnbeek [76];
those used to identify chronic kidney disease are adapted from
Suchard et al. [88].

3.5 Experiments
Here, we provide an overview of the experiments and defer a
detailed description to supplementary section A.6. As in Pfohl
et al. [72], we extract a set of clinical features to use an input
to fully-connected feedforward neural networks and logistic re-
gression models using observation of unique OMOP CDM con-
cepts recorded prior to each patient’s selected index date (sup-
plementary section A.6.1). The cohort is partitioned following
the strategy described in supplementary section A.6.2. We use
the procedures described in supplementary section A.6.3 to de-
rive IPCW weights appropriate for estimating the risk of ASCVD
within ten years using neural networks trained with the discrete-
time likelihood [34, 52, 90] to estimate the censoring survival func-
tion conditioned on the full set of features used to fit the model
for ten-year ASCVD. We make all experimental code available at
https://github.com/som-shahlab/net_benefit_ascvd.

To serve as baseline comparators for all experiments, we train
models using unconstrained IPCW-weighted ERM without strat-
ification (pooled ERM; supplementary section A.6.4). The first ex-
periment aims to evaluate strategies to learn models that predict
the outcome well for subgroups defined following stratification by
race, ethnicity, and sex, including intersectional categories, and for
patients with ASCVD-promoting comorbidities. To compare with
pooled ERM, we evaluate models trained with ERM separately
on each subgroup (stratified ERM), models trained with IPCW-
weighted regularized training objectives that penalize differences in
the log-loss or AUC between each subgroup and the overall popula-
tion, and IPCW-weighted DRO objectives that target the worst-case
log-loss or AUC across subgroups (supplementary section A.6.5).
The second experiment aims to assess the implications of penal-
izing violation of the equalized odds criterion across subgroups
defined on the basis of race, ethnicity, and sex (supplementary sec-
tion A.6.6). To evaluate the effect of penalizing violation of equal-
ized odds, we use regularized training objectives that incorporate
an IPCW-weighted MMD penalty to penalize differences in the
outcome-conditioned distribution of the risk score between each
subgroup and the marginal population (equations (27) and (29)),
as well as a penalty that penalizes differences in the true positive
and false negative rates between each subgroup and the marginal
population at the guideline-relevant thresholds of 7.5% and 20% [3]
using an IPCW-weighted objective that uses a softplus relaxation
to the indicator function (equation (30)).

A detailed description of the evaluation procedure is described in
supplementary section A.6.7. In brief, we assess model performance
in the test set in terms of IPCW-weighted variants of the AUC, the

average log-loss, the absolute calibration error (ACE) [4, 71, 103],
true positive rate, false positive rate, calibration curve, and the net
benefit (using the formulation of section 3.3). Estimates of the cali-
bration curve used to calculate ACE and the calibrated net benefit
rely on an IPCW-weighted logistic regression estimator trained on
the held-out data to predict the outcome using logit-transformed
outputs of the predictive model as inputs. The inverse of the cali-
bration curve used to compute the calibrated net benefit is derived
analytically based on the coefficients of the learned logistic regres-
sion model. Confidence intervals are generated with the percentile
bootstrap with 1,000 iterations. Confidence intervals for the dif-
ference in performance for a comparator relative to pooled ERM
are generated based on the bootstrap distribution of differences
computed on the same bootstrap samples.

4 RESULTS
4.1 Approaches to improve model performance

over subgroups
We conducted an experiment to assess whether approaches that pe-
nalize differences in AUC or log-loss across subgroups or optimize
for the worst-case value of these metrics improve upon empirical
risk minimization approaches in terms of the model performance
and net benefit measures. In the main text, we report the results
assessed relative to those derived from unpenalized ERM applied
to the entire population for subgroups defined in terms of race,
ethnicity, and sex (Figure 1; results for intersectional subgroups
included in Supplementary Figure C3), as well as for subgroups
with ASCVD-promoting comorbidities (Supplementary Figure C5).
Absolute performance estimates are reported in the supplementary
material (Supplementary Figure C6 and Supplementary Figure C7).

We find that the use of unconstrained empirical risk minimiza-
tion using data from the entire population typically results in mod-
els with the greatest AUC for each subgroup, but stratified ERM
procedures that train a separate model for each subgroup achieve
an AUC that does not differ substantially in some cases, particu-
larly for majority subgroups (Figure 1D and Supplementary Figure
C5C,D,E,F). The models trained with regularized fairness objec-
tives or DRO and selected on the basis of the worst-case AUC
or log-loss do not improve on the AUC assessed for each sub-
group, and typically perform substantially worse, with the least
extreme degradation observed for those models trained with the
AUC-based DRO training objective (Figure 1C,D and Supplemen-
tary Figure C5C,D,E,F). Despite the lack of improvement in AUC,
we observe that subgroup-specific ERM and both regularized and
DRO-based objectives that incorporate the AUC into their training
objective often result in improved model calibration for some sub-
groups (1E,F,G,H and Supplementary Figure C5G,I,J,K,L). Similarly,
subgroup-specific training does result in minor improvements in
the log-loss for some subgroups relative to ERM applied to the entire
population, but these results are typically observed only for larger
subgroups when they are present (Figure 1K,L and Supplementary
Figure C5O,R).

The implication of these effects can be understood holistically
through an assessment of the net benefit of statin therapy initiated
on the basis of the risk estimates. As before, we report relative

https://github.com/som-shahlab/net_benefit_ascvd
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Figure 1: The performance of models that estimate ten-year ASCVD risk, stratified by race, ethnicity, and sex, relative to the
results attained by the application of unpenalized ERM to the overall population. Results shown are the relative AUC, absolute
calibration error (ACE), and log-loss assessed in the overall population, on each subgroup, and in theworst-case over subgroups
following the application of unconstrained pooled or stratified ERM, regularized objectives that penalize differences in the
log-loss or AUC across subgroups, or DRO objectives that optimize for the worst-case log-loss or AUC across subgroups. Error
bars indicate 95% confidence intervals derived with the percentile bootstrap with 1,000 iterations.

(Figure 2, Supplementary Figures C4 and C9) and absolute esti-
mates (Supplementary Figures C8 and C10). Overall, no approach
consistently confers more net benefit than unpenalized ERM ap-
plied to the entire population for each subgroup, when the net
benefit is assessed for the benefit-harm trade-offs corresponding
to either of the thresholds of 7.5% or 20%, but subgroup-specific
training and AUC-based DRO approaches do lead to minor improve-
ments in some cases (Figure 2C,D,K,L and Supplementary Figure
C9C,F,O,R). However, we note that, for each subgroup, no approach
improves on the calibrated net benefit, i.e. the net benefit achieved
following adjustment of the decision threshold to account for the
observed miscalibration, relative to unpenalized ERM applied to
the entire population (Figure 2G,H,O,P and Supplementary Figure
C9I,J,K,L,U,V,W,X). This indicates that for those cases where an al-
ternative strategy results in an increase in the net benefit conferred
relative to that which is achieved for the pooled ERM strategy, it is
a consequence of the improvement in calibration at the threshold
of interest.

4.2 Regularized fairness objectives for
equalized odds

We further conducted an experiment to assess the implications of
the use of a training objective that penalizes violation of equalized
odds across intersectional subgroups defined by race, ethnicity, and
sex. In the main text, we present the results corresponding to an
MMD-based penalty evaluated over subgroups defined by race and

ethnicity, but include in the supplementary material analogous
results corresponding to evaluation over intersectional categories
and for sex (Supplementary Figures C15 to C28). Furthermore, the
supplementary material includes analogous results for experiments
that penalize equalized odds at both of the thresholds of 7.5% and
20% using softplus relaxations of the true positive and false positive
rates (Supplementary Figures C29 to C49).

We observe that as the strength of the penalty λ increases, the
AUC assessed for each subgroup monotonically decreases (Figure
3A,D). With a minor degree of equalized-odds promoting regular-
ization (i.e. λ = 0.01, 0.0562), calibration actually improves relative
to the result for unpenalized ERM (Figure 3C,F) and there is little to
no change in the log-loss for each subgroup despite the reduction
in AUC (Figure 3B,E). This is reflected in the calibration curves
presented in Figure 4, where we observe modest miscalibration
consistent with overestimation of risk for each subgroup for the
unconstrained model (Figure 4A) with improvements in the cali-
bration of the model with a minor degree of regularization (Figure
4B,C). However, for large degrees of regularization (i.e. λ = 1.78
and λ = 10), both the calibration and log-loss assessed for each sub-
group deteriorate, although the reduction in AUC remains modest
(Figure 3). In this case, the variability in the risk estimates sharply
decreases to concentrate around the incidence of the outcome for
larger degrees of regularization, which is reflected in the shape of
the calibration curve and error rates as a function of the threshold
(Figure 4F,L,R), consistent with overestimation for patients with
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Figure 2: The net benefit of models that estimate ten-year ASCVD risk, stratified by race, ethnicity, and sex, relative to the
results attained by the application of unpenalized ERM to the overall population. Results shown are the net benefit (NB)
and calibrated net benefit (cNB), parameterized by the choice of a decision threshold of 7.5% or 20%, assessed in the overall
population, on each subgroup, and in the worst-case over subgroups following the application of unconstrained pooled or
stratified ERM, regularized objectives that penalize differences in the log-loss or AUC across subgroups, or DRO objectives
that optimize for the worst-case log-loss or AUC across subgroups. Error bars indicate 95% confidence intervals derived with
the percentile bootstrap with 1,000 iterations.

risk lower than the incidence and underestimation for patients with
risk greater than the incidence.

For the unconstrained model, the true positive rates and false
positive rates at each threshold are ranked across subgroups in
accordance with the observed incidence for each subgroup, such
that the Black population has the largest true positive rate and false
positive rate while the Asian population has the lowest true positive
rate and false positive rate (Figure 4G,H). The regularized training
objective is successful at enforcing the equalized odds constraint, in
that the variability in false positive and true positives rates trends
towards zero as the strength of the penalty increases (Figures 4 and
Supplementary Figure C11).

For the benefit-harm trade-off implied by the use of either a
threshold of 7.5% or 20%, we observe clear reductions in net benefit
for each subgroup for large values of λ (Figure 5A,C,E,G). With
minor amounts of regularization, we observe little to no reduction
in net benefit parameterized by either a threshold of 7.5% or 20%,
and the point estimates for 20% even suggest a relative increase in

net benefit compared to unpenalized ERM (Figure 5E,G). However,
for large degrees of regularization, we observe large reductions
in net benefit relative to that which is attained from unpenalized
ERM, but the magnitude of these differences are attenuated when
the thresholds applied for each subgroup are adjusted to account
for miscalibration (Figure 5B,D,F,H). We further observe that the
calibrated net benefit for equalized odds penalized models does not
improve on unpenalized ERM at any value of λ (Figure 5C,F,D,H).
Overall, the reduction in net benefit observed directly due to operat-
ing at a suboptimal decision threshold, as a result of miscalibration,
is generally larger than the reduction in net benefit that results
due to the reduction in the AUC of the model at larger values of
λ. Furthermore, we note that threshold adjustment to recover net
benefit lost due to the miscalibration resulting from the use of the
training objective that penalizes equalized odds violation does not
preserve the satisfaction of the equalized odds fairness constraint,
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as the variability in error rates at the adjusted thresholds is ob-
served to be similar to or more variable than that which results
from unpenalized ERM (Supplementary Figure C11).

To gain further insight into these phenomena, we plot the net
benefit for a range of decision thresholds, assuming that the benefit-
harm trade-off is fixed to one implied by the use of a threshold of

7.5% (Supplementary Figure C12). We also include analogous results
for the threshold of 20% (Supplementary Figure C13)), as well as
standard decisions curves defined such that the net benefit plotted
for each point on the curve corresponds to the benefit-harm trade-
off implied by the corresponding threshold on the x-axis (Supple-
mentary Figure C14)). As expected for the analysis corresponding to
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a threshold of 7.5%, the calibrated net benefit is maximized for each
subgroup at a threshold on the risk estimates corresponding to the
point where the observed incidence of the outcome conditioned on
the risk estimate is 7.5% (Supplementary Figure C12M,N,O,P,Q,R).
Furthermore, when the model overestimates risk at a threshold of
7.5% due to miscalibration, such as was the case for the unpenal-
ized ERM model and for the models trained with a large penalty
on equalized odds violation, the threshold that maximizes the net
benefit is one greater than 7.5% (Supplementary Figure C12A,D,E,F).
In these cases, adjusting the threshold on the penalized models to
compensate for miscalibration recovers the majority of difference
in net benefit relative to the model derived with unpenalized ERM.

5 DISCUSSION
This work has implications for the operationalization of algorith-
mic fairness in healthcare. We argue that assessment of fairness
in terms of the equalized odds, demographic parity, or predictive
parity criteria are likely to be misleading in cases where the inci-
dence of the outcome differs across groups because differences in
those metrics are expected when decision-making maximizes net
benefit for each subgroup by developing a well-fitting, calibrated
model for each subgroup and setting a decision threshold on the
basis of model calibration and preferences for downstream bene-
fits and harms of the decision. For predictive models that estimate
the risk of ASCVD, our experiments evaluate a variety of model
development approaches, including those that penalize violation of
equalized odds, and find no evidence that any alternative improves
on empirical risk minimization applied to the entire population,
due to either reduced fit and miscalibration.

The results suggest that in settings where the observed model
miscalibration may be adjusted for with subgroup-specific recali-
bration or via threshold-adjustment, no approach to learning an
ASCVD risk estimator confers more net benefit for each subgroup
than unpenalized ERM applied to the entire population. This claim

follows from the observation that no alternative approach resulted
in greater calibrated net benefit for any subgroup. We find that the
net benefit for each population is maximized for each subgroup at
a threshold on the risk score that is consistent with the analysis
presented in section 2.2.

In cases where we observe improvements in the unadjusted net
benefit over ERM, or little to no change despite a reduction in
AUC, the differences directly follow from improvements in the
calibration of the model derived from the alternative approach. We
observe such effects for models trained with objectives that penalize
equalized odds to a minor degree, those trained with stratified ERM
procedures that train a separate model for each subgroup, as well as
for regularized fairness objectives and DRO procedures that operate
over the AUC assessed for each subgroup. Taken together, these
results indicate that models derived from unpenalized ERM should
not necessarily be assumed to be well-calibrated in practice, further
highlighting the importance of model development, selection, and
post-processing strategies that aims to identify the best-fitting,
well-calibrated model for each subgroup.

While this work motivates the use of approaches that reason
about algorithmic fairness in terms of the interplay of threshold
selection, calibration, and net benefit, such assessments are not
comprehensive and rely on assumptions that warrant further ex-
amination. First, the analysis relies on a notion of optimal decision-
making given a score output by a predictive model, which differs
from reasoning about decision-making on the basis of the optimal
score that outputs the conditional expectation of the outcome given
the covariates. As a result, calibration-based assessments do not
account for unrealized net benefit that could be attained if a model
were to better fit the data, and thus can be misleading as a notion
of fairness when the model is well-calibrated but poorly predicts
the outcome for some subgroups [24, 25].
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The analysis presented in section 2.2 uses the assumption of
invariance across subgroups of the utility of decision-making con-
ditioned on the risk of the outcome to motivate the use of single de-
cision threshold for all subgroups. While this assumption is strong,
it is plausible that the analysis could be extended to account for
the preferences of subgroups or individual patients. Furthermore,
in cases where threshold selection is constrained, such as when a
predictive model is used for referral to a clinical service that can-
not process more than a fixed number of cases due to resource
constraints [15, 47], then it may not be practical to operate at the
desired thresholds. In that case, differences in the magnitude of
the unrealized benefit across subgroups are likely if the distribu-
tion of risk differs across subgroups, even if sufficiency holds and
thresholds are selected in a preference-concordant manner for each
subgroup.

The presence of measurement error in outcomes that differs
systematically across subgroups poses a major challenge for algo-
rithmic fairness assessments [60]. The analysis of Obermeyer et al.
[64] demonstrated that this form of measurement error can mask
consequential violation of sufficiency with respect to the ideal un-
observed outcome not subject to measurement error. The presence
of such measurement error could result in differences in measured
outcome incidence across groups that imply violation of equalized
odds, demographic parity, or predictive parity with respect to the
measured outcome. However, consistent with the recommendation
of Obermeyer et al. [64], we argue for endeavoring to understand
the mechanism of the measurement error to conduct a fairness
assessment with respect to a proxy of the unobserved outcome that
plausibly does not contain differential measurement error across
subgroups.

Finally, it is important to recognize that the algorithmic fairness
paradigm, inclusive of the approach considered in this work, is
insufficient to characterize the extent to which machine learning
systems may exacerbate health disparities or promote health equity
[12, 18, 31, 36, 59, 71, 89]. The reasons for this are several-fold, but
primary among them is the observation that algorithmic fairness
techniques broadly do not consider the mechanisms through which
health disparities arise as a result of structural racism and economic
inequality, nor how potential interventions may counteract those
mechanisms to promote health equity [5, 6, 50, 65]. Furthermore,
the narrow scope of statistical algorithmic fairness assessments
does not, by default, consider the context, values, and norms under-
pinning problem formulation, data collection, and measurement,
nor the benefits and harms of the downstream model-guided inter-
vention [60, 68]. However, in considering the effect of the properties
of the decision-making context on best practices for algorithmic
fairness assessments and model development, this work takes a
small step towards incorporating aspects of this broader context
into the algorithmic fairness paradigm.
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