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ABSTRACT
Recent scholarship has brought attention to the fact that there often

exist multiplemodels for a given prediction taskwith equal accuracy

that differ in their individual-level predictions or aggregate prop-

erties. This phenomenon—which we call model multiplicity—can
introduce a good deal of flexibility into the model selection process,

creating a range of exciting opportunities. By demonstrating that

therearemanydifferentwaysofmakingequallyaccuratepredictions,

multiplicity gives model developers the freedom to prioritize other

values in their model selection process without having to abandon

their commitment to maximizing accuracy. However, multiplicity

also brings to light a concerning truth: model selection on the ba-

sis of accuracy alone—the default procedure in many deployment

scenarios—fails to consider what might be meaningful differences

between equally accurate models with respect to other criteria such

as fairness, robustness, and interpretability. Unless these criteria are

taken into account explicitly, developers might end up making un-

necessary trade-offs or could even mask intentional discrimination.

Furthermore, the prospect that there might exist another model of

equal accuracy that flips a prediction for a particular individual may

lead to a crisis in justifiability: why should an individual be subject to

an adverse model outcome if there exists an equally accurate model

that treats themmore favorably? In this work, we investigate how

to take advantage of the flexibility afforded by model multiplicity

while addressing the concerns with justifiability that it might raise?
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1 INTRODUCTION
How do model developers select which model to deploy for a given

prediction task? Even after a model developer translates a decision

into a prediction task (e.g. casting the task of determining who is

“creditworthy” as predicting whether applicants are likely to default

on a loan), there are myriad decisions made about how to make a

model, all of which may influence its ultimate behavior: what model

type should be used (from simple linear models to more complex

random forests and neural networks); what factors should be con-

sidered as inputs to the model; howmany times should the model

iterate through the training data to learn the patterns therein? How

should model developers select between all the possible models that

could have been created for a prediction task?

The standard answer to this question is to choose the model that

maximizes accuracy. Using maximum accuracy as a decision crite-

rion for model selection may suggest that there is onemodel with

the best accuracy, a common assumption in the technical literature.

However, recent work has reminded us that there are usually mul-

tiple models with equivalent accuracy but significantly different

properties. For example, Rodolfa et al. [52] have demonstrated that

maximally accurate models can produce varying degrees of demo-

graphic disparities; D’Amour et al. [23] have shown that models

with the same accuracy can be more or less robust; Chen et al. [15]

have shown that it is possible to create interpretable models with

the same accuracy as neural networks.

We call this phenomenonmodel multiplicity: when models with

equivalent accuracy for a certain prediction task differ in terms of

their internals—which determine a model’s decision process—and

their predictions. The existence of model multiplicity presents excit-

ing opportunities because it offers model developers the flexibility

to prioritize, and optimize for, desirable properties at no cost to accu-

racy, contrary to some conventional wisdom [7, 16, 28, 42, 57, 60, 62].

The existence of equally accuratemodels that differ along other axes,

including fairness, interpretability, and robustness, allows for model

selection to be guided by these other desiderata alongside accuracy.

For example, asmuch recentwork in algorithmic fairness has demon-

strated, it is often possible to improve the fairness of models with no

cost to accuracy [19, 28, 52, 61]. Model multiplicity can also improve

individual experiences with automated decisionmaking by allowing

model developers to createmodels thatmake recourse easier (e.g., by

limiting the use of features to only those overwhich individuals have

control). While the freedom that model multiplicity affords is broad,

in this paper we largely focus on its implications with respect to the

fairness of a model and the ability for people subject to the model

to seek recourse. We also show that model multiplicity has legal

implications—which we study in the context of lending—because

it places pressure on model developers to search for and adopt the

least discriminatory model among those that are equally accurate.
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However, alongwith these benefits comes a potentially surprising

revelation: given that there are multiple models for a prediction task

with equivalent accuracy, selecting models on the basis of accuracy

alone—the default procedure in many deployment scenarios—does

not lead to a selection of one unique model best suited for the task.

Model selection on the basis of accuracy alone is an underspeci-

fied [23] selection process. Unless other considerations are explicitly

incorporated into themodel development process, model developers

selecting models on the basis of accuracy are unlikely to happen

upon themodel, amongall thosewhichare equally accurate, that best

addresses those considerations (e.g., minimizes disparate impact).

Further, model multiplicity undermines the justification that we

canoffer individuals forbeing subject toanyadversedecisionprocess

or outcome. Consider the situation where an individual is denied a

loan,yet thereexistsanequallyaccuratemodelwhichwouldhaverec-

ommended acceptance. Why must they be subject to the model that

rejected them and not an equally accurate, and thus equally viable,

one that doesnot?The fact that suchhigh-stakes decisionsmay come

down to arbitrary choices on the part of model developers may be

quite unsettling—and may even conflict with the expectations of the

laws that govern such decisionmaking. Thus, whilemodel multiplic-

ity allows for greater choice in themodel selection process, it also im-

poses an additional burden onmodel developers to put that freedom

of choice to good use and to justify how they reach their decisions.

In this paper, we attempt to answer the following question: how
do we take advantage of model multiplicity while addressing its con-
cerning implications? To do so, we propose a process bywhichmodel

developers can specify, justify, anddocument awider set of behaviors

which qualify amodel for use in a specific context to guide themodel

selection process. Concretely, we present three main contributions:

(1) a principledunderstandingof the relationships betweenmultiplic-

ity, accuracy, and variance, providing intuition for why multiplicity

may actually increasewith accuracy, backed by theoretical results
deferred to Appendix A; (2) connections between the technical as-

pects of model multiplicity and their legal implications; and (3) a set

of policy recommendations for how to take advantage of model mul-

tiplicity while addressing the concerns it raises. Ultimately, we hope

that the explicit recognition of model multiplicity, along with legal

requirements preventing discrimination, will lead policy makers

and model developers to hold models to a higher standard on axes

beyond accuracy—and restore the justifiability of model decisions.

The rest of this paper proceeds as follows: in Section 2, we provide

an overview of model multiplicity and situate it in the existing liter-

ature. Section 3 explores the relationship between multiplicity and

accuracy, connecting multiplicity to standard ideas frommachine

learning theory. Sections 4 and 5 articulate the potential benefits

and harms respectively of model multiplicity, drawing connections

to the law. In Section 6, we provide recommendations for a model

development process that explicitly accounts for multiplicity.

2 DEFININGMULTIPLICITY
Model multiplicity occurs when models with equivalent accuracy

for a certain prediction task differ in terms of their internals or their

predictions. In this section, we define model multiplicity in more

detail, beginning by describing the setting in which we consider

model multiplicity, our definition of model accuracy, key terms for

the paper, and, finally, the definitions of the components of model

multiplicity: procedural and predictive multiplicity .

2.1 Preliminary Definitions
Setting. In this paper, we focus on classification models, although

the main insights of this work apply to the regression setting as well.

A classification model predicts to which class, or category, an input

x belongs, from some pre-set collection of categories. For example,

predicting whether an individual will default on their loan is a clas-

sification task. Classification models have decision surfaces which
delineate between different classes in the model’s input space (see

Figure 1). We will focus on the case where there are only two classes

(also known as binary classification).

Accuracy. Broadly, accuracy is a measure of howwell a model’s

predictions match the underlying labels in the data. Importantly,

model developers cannot know how accurate the model is on all pos-

sible model inputs (e.g., over all possible loan applicants); accuracy

must be estimated on available data. In practice, there are a variety of

measures of accuracy; for simplicity, we will take accuracy to mean

the fraction of predictions for which the model is correct. When we

refer to several models exhibiting equivalent accuracy, theymay not

have exactly the same accuracy, but accuracy that is functionally

indistinguishable (e.g., an accuracy of 97.8989 and 97.8990).
1

2.2 Procedural and PredictiveMultiplicity
Model multiplicity describes howmodels for a given prediction task

can differ even when they exhibit equal accuracy. We draw atten-

tion to two ways in which models can differ despite being equally

accurate: in their internals, or procedural multiplicity, and in their
predictions, or predictive multiplicity.

Procedural Multiplicity. Procedural multiplicity refers to the phe-

nomenon where several models for a given prediction task have

equivalent accuracy, yet differ in their model internals. More tech-

nically, procedural multiplicity occurs when models which have the

same accuracy exhibit some difference in their decision surface, as

this changes the way in which a model’s inputs are combined to

reach a conclusion. In otherwords, proceduralmultiplicity describes

the situation where models of equal accuracy differ in the process
by which they reach a given prediction. One example of a difference

in the model’s internals is the use of various input features into a
model’s decision for a given prediction: for example, one model may

use gender as a feature tomake loan granting decisions; anothermay

not. Another example of a difference in model internals is a differ-

ence inmodel class. For example, a random forest model and a linear

model may have equivalent accuracy for a certain task, but likely

vary in the way they reach each prediction. One way procedural

multiplicity can become apparent to model subjects is when equally

accurate models produce qualitatively different explanations for the

same decision. In one example from Anders et al., two credit scoring

models make the exact same predictions on every point, but one

model justifies its decision on the basis of gender, while the other

relies on income and tax payments [4].

Predictive Multiplicity. Predictive multiplicity refers to the phe-

nomenon where models with equivalent accuracy for a certain task

differ in their predictions (i.e., twomodels predict different classes for

1
We note that what levels of accuracy are functionally indistinguishable may depend

on the context in which the model is used.
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Figure 1: A stylized graphic displaying howmodels with higher accuracy can actually lead tomore model multiplicity: On the
left, we show a simple linear model on some data, with accuracy of approximately 75%. On the right, we show amore complex
model which fits the data better and reaches 92% accuracy. In order to achieve a better fit to the data, the more complex model
has a more complex decision surface. In having a more complex decision surface, there are more opportunities for shifts in
decision surface to take place in reaction to changes in the training process, and thus there are more points in the distribution
that are susceptible to a change in prediction.

the same input). Predictive multiplicity, like accuracy, is measured

on the labeled data available to amodel developer: given a prediction

task, models that exhibit predictive multiplicity have equal accuracy

but predict different classes for some data points in the training or

test set.
2
Thus, model developers cannot measure the full extent

of disagreement between any twomodels, but can only estimate it

based on available data.

Relationship Between Procedural and Predictive Multiplicity. Note
that differences in model predictions on a certain input require dif-

ferences in the decision surface, implying predictive multiplicity

is a special case of procedural multiplicity. The converse does not

hold: two models with the same prediction on a given point may

still exhibit variation in the process by which that outcome was

reached [4, 11]. However, we draw attention to predictive multiplic-

ity on its own due to its unique normative and legal implications.

Throughout this paper, when we refer to procedural multiplicity,

we refer to the aspects of procedural multiplicity that occur even

in the absence of (observed) predictive multiplicity: that is, models

with equal accuracy with different decision processes that do not

necessarily manifest in different predictions on the available data.

Of course, any change to a model’s decision surface, and thus any

twomodels exhibiting procedural multiplicity, will differ on some
potential input point; but if no such input is present in the data, then

this difference will not result in observable predictive multiplicity.

2.3 Sources ofMultiplicity
When creating a model for a given learning problem, every decision

point a model developer faces along the model building pipeline

serves as a fork, where each potential choice may lead to multi-

plicitous models. In the context of this paper, we define a learning

problem to be the prediction of a pre-defined target.While theremay

be further multiplicity-like problems stemming from the various

ways that a nebulous real-world goal may be translated into predict-

ing a specific target [44], we view these as out of scope for this paper.

However, all modeling decisions made once the prediction target is

set are within-scope and possible sources of model multiplicity.

2
There is disagreement in the literature on this definition: for example, Marx et al. [40]

define predictive multiplicity only on a model’s training set.

Decisions that can result in multiplicity include choosing what

features should be included as input to the model [26], which points

are included in the training set [10], which model class should be

adopted [15], what random numbers the model’s parameters are

initialized with [10, 41], among many others [40]. Through these

choices, the model developer creates one model, but each other

choice they could have taken may have lead to a model that would

have performed with similar accuracy. In theory, the sources of mul-

tiplicity are infinite, as there are infinite possible modeling choices.

In practice, however, the range of choices is restricted by practical

(including budgetary) constraints.

2.4 Aggregate and Individual Effects
Modelmultiplicity can result in differences betweenmodels at theag-
gregate level or at the individual level. By aggregate effects, we refer
todifferences inglobalmodelpropertiesbetweenmultiplicitousmod-

els (e.g., satisfaction of group-level fairness criteria (such as equal

selection rates across different demographic groups)). By individual

effects, we refer to the way in which differences between models of

equal accuracy impact individuals’ experience with the model, in-

cluding differences in individual predictions or explanations of those

predictions. Aggregate and individual effects are not disjoint cate-

gories of model behavior, as some forms of model multiplicity may

impact both aggregate-level and individual-level outcomes. Often,

however, individual effects donotmanifest at the aggregate level. For

example, differences in individual predictions may not impact the

overall treatment of any demographic group. We therefore find that

making these two perspectives explicit helps to better understand

the overall impacts of multiplicity.

2.5 Arbitrariness Versus Randomness
In this work, we draw a distinction between arbitrariness and ran-

domness in selection processes. By an arbitrary selection process,we

mean a completely unconsidered decision—one that ismadewithout

thought or perhaps evenwithout knowledge that a choice was being

made. By a random selection process, we mean a decision which is

purposefully left to chance. We draw this distinction to stress that

a random selection process is predicated on a conscious choice to

3
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employ this selection method: as Perry and Zarsky [46] write, “the

decision to opt for chance must be reasoned.”
3

2.6 RelatedWork
Model multiplicity has been recognized in the machine learning

literature, though not always under the same name, starting with

Breiamn’s characterization of the “Rashomon Effect” [13]. For ex-

ample, Dong and Rudin [26] and Fisher et al. [32] demonstrate pro-

cedural multiplicity in feature importance, showing that models

relying on different sets of features can reach the same accuracy;

Black et al. [11] and Mehrer et al. [41] have shown that deep models

with similar accuracies relying on the same features may still com-

bine those features in different ways to reach a given output. Recent

studies also provide evidence for predictive multiplicity: Marx et al.

[40], who introduced the term, focus on its effects at the individual

level (equally accurate models can make different predictions for

individuals), while others have demonstrated its effects at the ag-

gregate level (equally accurate models can have different properties,

including fairness and robustness) [23, 51]. A recent line of work has

sought to quantify and mitigate model multiplicity in a variety of

settings [10–12, 20, 45, 49, 55].Ourwork builds upon and synthesizes

this technical foundation to understand the relationship between

model multiplicity, complexity, and error, as discussed in Section 3,

and to relate thewide range of effects ofmodelmultiplicity to the law.

Some legal scholars have also begun to consider the possibility

of model multiplicity and its implications, though this discussion is

largely focused around predictive, and not procedural, multiplicity.

Kim [35] has argued that predictive multiplicity means that certain

interventions aimed at reducing disparate impact “do not require

special legal justification” as the lack of one “correct” model means

that there is “no clear baseline” against which any departures might

be challenged. Kim points out that it simply does not make sense

to say that someone has been unfairly denied a job that they would

have otherwise secured if not for the attempt to reduce disparate

impact because there is nothing that entitles anyone to having a

particular model chosen over an equally accurate alternative. On

this account, multiplicity provides developers with the freedom to

choose the model among those with equal accuracy that exhibits

the least disparate impact without raising concerns with disparate

treatment. However, this work does not address the concerns that

modelmultiplicitymay raise. Creel andHellman [22] briefly note the

unsettling implications of predictive multiplicity with respect to ar-

bitrariness in algorithmic decisionmaking, but ultimately argue that

arbitrariness is only a problem in algorithmic decisionmakingwhen

there is an algorithmicmonoculture that locks an individual out from

certain opportunities across the board (e.g., when all lenders use the

same algorithm and thus all reach similarly adverse decisions for a

particular individual). Contra Creel and Hellman [22], many legal

scholars have been calling for legal protections, inspired by due pro-

cess principles and practices, to address the potential arbitrariness

of algorithmic decision making more generally, even in the absence

of an algorithmic monoculture [17, 18, 21]. In contrast to prior work,

we address both the benefits and the concerns of procedural and

3
As Perry and Zarsky [46] describe in their work, there are many situations where

random (not arbitrary) selection is justifiable: for example, allocating a scarce, indivisible

resource amongmany with equally strong claims—such as allocating public housing

among equally needy applicants.

predictive multiplicity, and we provide concrete recommendations

for how to take advantage of the benefits of model multiplicity in

practice, without falling prey to the concerns that it might provoke.

3 ACCURACYANDMODELMULTIPLICITY
By default, accuracy is the primarymeasure bywhichmachine learn-

ing systems are evaluated. This focus is pervasive throughout ma-

chine learning scholarship and practice [8], perhaps best evidenced

by the Common Task Framework [27], through which independent

researchers compare predictive performance on common datasets.

But accuracy plays a larger role in model development than evalu-

ation alone: accuracy is typically the main or sole criterion used for

model selection. When deciding which of many possible models to

deploy, a practitioner will often choose the most accurate one.

The idea thatmodel selectioncanbereducedtoaccuracy-maximization

rests on a pair of premises: that accuracy is the primary measure

of how “good” a model is, and that, for a given task, models that

maximize accuracy do not differ meaningfully from one another. In

other words, if accuracy-maximization leads to a unique or near-

unique optimal model, then no other criteria need be used in model

selection. Even if we accept that accuracy should be the primary

evaluation criterion (setting aside, for now, properties like fairness,

robustness, and interpretability that might be perceived as crucial

to model performance in practice), evidence suggests that accuracy-

maximizing models are not unique [10–12, 23, 40, 45, 51]. And yet,

the intuition that there exists a unique “correct” model, and that

accuracy-maximization should ultimately discover it, remains per-

vasive [35, 39, 50]. Inwhat follows,we trace the roots of this intuition

and offer a theoretical basis for why, as machine learning becomes

more sophisticated, we should expect accuracy-maximization to

yieldmoremultiplicity, rather than less. As a result, accuracy is an

incomplete basis for model selection. We focus here on predictive

multiplicity, though it may be possible to derive analogous results

for procedural multiplicity as well.

Does accuracy-maximization reduce predictive multiplicity? Our

intuition that accuracy-maximization should lead to little or no pre-

dictive multiplicity comes from the idea that there exists a single

“best” or “correct” predictor (known as the Bayes optimal predic-

tor [56]), and increasingly sophisticated models will converge to

this optimal predictor. In general, Bayes optimal models are unique,

and it may be tempting to apply this intuition more broadly: we

might believe that even when our models aren’t Bayes-optimal, the

maximally accurate model for a given dataset is near-unique. We

can make this idea rigorous: Theorem A.2, included in the appen-

dix, demonstrates as the error of a model approaches that of the

Bayes optimal predictor, themodelmust approach the Bayes optimal

predictor.
4
In other words, as models get more accurate, they must

converge to one another in the limit. Results like these can lead to

a slippage in intuition: Bayes optimal predictors are unique, so the

best predictorwe can build should also be unique. And yet, empirical

evidence seems to suggest the opposite: developing more accurate

models can often lead tomore multiplicity (see Figure 1 for an ex-

ample) [10, 41]. While this might appear to contradict Theorem A.2,

in reality, models are sufficiently far from Bayes optimal, leaving

4
This result holds as long as data points are more predictable than 50-50 coin flips.
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plenty of room for multiplicity. To derive a more nuanced view, we

turn to standard bias-variance decompositions of error.

Bias, variance, and multiplicity. Conceptually, errors in machine

learning systems come from three sources: bias, variance, and ir-

reducible noise [25, 33]. This decomposition helps us understand

fundamental trade-offs inmachine learning: more expressive and so-

phisticatedmachine learning techniques (suchasdeep learning)have

lessbiasbecause theaveragemodel canmoreaccuratelyapproximate

the Bayes optimal predictor than less expressive techniques (such as

linear regression); but this increased expressivity comes at the cost

of high variance, since any particular model is much more sensitive

to random choices in the model development pipeline. Crucially, as

Theorem A.3 shows, multiplicity is tightly related to variance. To

the extent that increased accuracy is achieved through increased

model complexity (and therefore variance), we should therefore ex-

pect to seemore predictive multiplicity, as noted in Corollary A.4.

Thus, accuracy is not an antidote tomultiplicity, andmodel selection

cannot simply be reduced to accuracy-maximization. Instead, we

must explicitly consider and deal with multiplicity, beginning with

an understanding of the benefits and challenges it brings.

4 OPPORTUNITIES
By shattering the intuition that there is onemost accurate—and there-

fore correct—model, multiplicity can introduce much more freedom

into the model selection process. On the aggregate level, this means

that model developers can express preferences over values beyond

accuracy at no cost to accuracy, including with respect to properties
like fairness, robustness, and interpretability, among others. This

same flexibility manifests on an individual level: to illustrate this

point, we focus on the ability to improve the recourse available to

the individuals subject to a model’s adverse decisions. This section

will consider the benefits at both levels.

4.1 Aggregate Benefits: Flexibility
By demonstrating that there are many different ways of making

equally accurate predictions, multiplicity gives model developers

the flexibility to prioritize other values in their model selection pro-

cess without having to abandon their commitment to maximizing

accuracy. While this benefit is broad, we focus in particular on its

implications for fairness. In fact, as we’ll discuss in this section, the

flexibility afforded by multiplicity is particularly relevant to the law

because it creates legal pressure for model developers to reduce

avoidable disparate impact in their deployed models. We demon-

strate this flexibility—and its connections to the law—through both

procedural and predictive multiplicity.

Procedural Multiplicity. Model developers can leverage proce-

dural multiplicity to ensure that a model has desirable model inter-

nals without sacrificing accuracy. As shown in prior work, model

developers might exploit procedural multiplicity to select a model

class that is more robust or interpretable than other model classes

of equal accuracy [23, 53]. This is far from an exhaustive list, as

procedural multiplicity creates the possibility for any quality of a

model’s decision process to be prioritized at potentially no cost to

accuracy. However, in the context of fairness, the possibility that re-

placing or removing certain features from a model may not affect its

accuracy is particularly relevant. If there are certain features that are

perceived as a normatively objectionable basis for decision making,

procedural multiplicity suggests—and research has demonstrated

empirically [9, 26]—that model developers can remove these from

their models while still potentially achieving the same level of accu-

racy in their predictions. For example, features may be normatively

objectionable because they are legally protected characteristics such

as race or sex or because they are proxies for such characteristics,

such as zip code. Discrimination law imposes exactly these kinds of

constraints on model developers in certain regulated domains via

a prohibition on so-called “disparate treatment.” For example, the

Equal Credit Opportunity Act (ECOA) prohibits the consideration of

race, sex, age, and a number of other legally protected characteristics

in lending decisions [2, 30]. Thus, lenders using machine learning to

develop credit scoringmodels are understood to be legally prohibited

from including these features in their models.While this prohibition

is designed to prevent lenders from relying on features that have

served as the basis for discriminatory decision making in the past, it

is also designed to encourage lenders to find other features that serve

their goals at least as well. Procedural multiplicity demonstrates that

it may be technically possible to do so, putting to bed the idea that

there is only ever one set of features that would allowmodel devel-

opers to achieve some level of accuracy in their decision making.

PredictiveMultiplicity. While procedural multiplicity givesmodel

developers the flexibility to incorporate their normative preferences

into the model’s decision-making process, predictive multiplicity

allows model developers to impose their preferences on the model’s

predictions—potentially without impacting accuracy. In the context

of fairness, predictivemultiplicity creates the possibility tominimize

differences in prediction-based metrics across groups, notably dif-

ferential validity (i.e., differences in the accuracy of the predictions)

and disparate impact (i.e., differences in the predictions themselves).

Rodolfa et al. [51] show that this is possible in practice across a wide

rangeof real-worldapplications, includingsuchhigh-stakesdomains

as criminal justice, housing, and education. Similarly, algorithmic

hiring companies such as HireVue require that their models return

similar distributions of predictions across demographic groups, and

claim that this has little impact on predictive accuracy [38].

This aspect of predictive multiplicity speaks directly to the dis-

parate impact doctrine in discrimination law,which imposes liability

on model developers for avoidable disparities in the rate at which

membersof legallyprotectedgroupsobtain thedesiredoutcomefrom

a decision-making process. As the official commentary on ECOA

states, the law “prohibit[s] a creditor practice that is discriminatory

in effect because it has a disproportionately negative impact on a

prohibited basis, even though the creditor has no intent to discrim-

inate and the practice appears neutral on its face, unless the creditor

practice meets a legitimate business need that cannot reasonably be

achievedaswell bymeans that are less disparate in their impact” [2].
5

To appreciate what this means in the context of a lender employing

machine learning, imagine that the “creditor practice” in question

is the use of a machine learning model developed to predict default

and that the lender’s primary “business need” is predicting default

as accurately as possible so as tomake appropriate lending decisions.

The official commentary suggests that even when machine learning

has been adopted for this purpose, involves no legally proscribed

features, and demonstrates a high degree of accuracy, lenders still

5
While disparate impact is notwritten directly into ECOA, the formal guidance suggests

that it is understood to apply under the law.

5



FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Emily Black, Manish Raghavan, and Solon Barocas

face liability if they fail to adopt whatever alternative “means”might

exist for achieving their same goal but with smaller disparities in

outcomes across legally protected groups. Predictive multiplicity

suggests that theremay exist such alternative “means” because there

may be a different model of equivalent accuracy that generates less

disparate impact. The disparate impact doctrine can thus be inter-

preted to say that predictive multiplicity creates legal risk for those

who fail to adopt the least discriminatory model among those that

are equally accurate [47, 48].

4.2 Individual Benefits:
Improved Possibilities for Recourse

Multiplicity can also provide the flexibility necessary to improve

individuals’ experience of model procedures and their outcomes.

To illustrate this point in the context of fairness, we explain how

procedural and predictive multiplicity can improve an individual’s

capacity to achieve recourse—that is, to obtain a more desirable

outcome after receiving an adverse decision.

Procedural Multiplicity. Recent scholarship has suggested that

one of the important functions of providing explanations of model

decisions is to help people subject to an adverse decision understand

how theymight obtain amore favorable prediction in the future [59].

In the United States, the Fair Credit ReportingAct (FCRA) and ECOA

both require that lenders explain their decisions to consumers who

were unsuccessful in their applications for credit [30, 31]. Both laws

compel lenders to provide so-called “adverse action notices” that

state the “principle reasons” for adverse decisions, on the belief that

doing so may help consumers more effectively navigate the process

of obtaining credit in the future [6, 54]. Scholars have suggested that

lenders might comply with these requirements by offering counter-

factual explanations that point out, for example, that an applicant

would have been successful if their annual income had been $10,000

higher [58]. In light of such an explanation, the consumer might

look for ways to increase their income and then reapply for a loan.

However, as prior work has pointed out, such explanations may

not facilitate recourse if the highlighted factors are immutable and

thus cannot be acted upon by the consumer [58]. Explanations only

facilitate recourse if they suggest changes to features that consumers

can actually execute in practice. This insight has motivated a good

deal of recent research focused on developing methods to produce

explanations that suggest viable and efficient paths to future success

[34]. Procedural multiplicity suggests that there is another—and

more direct—way to achieve these same goals. Rather than search-

ing for different possible explanations of the decisions of a fixed

model that would be easiest for consumers to act upon (the current

focus in the literature on recourse), model developers could exploit

procedural multiplicity to find models that exhibit the same degree

of accuracy but differ in the degree to which they rely on features

known to be difficult or impossible for people to change. Thus, pro-

cedural multiplicity gives model developers a way to take recourse

into account in the model development process, not just in deciding

which techniques to rely on when explaining a model’s decisions.

PredictiveMultiplicity. Asalgorithmshavebeenadopted inagrow-

ing range of high-stakes decisions, scholars have begun to worry

about the possible harms of an algorithmic monoculture [22, 36]. For
example, if several lenders all converge on one credit scoring model

(and thus on the same predictions of default for each applicant), con-

sumers who were rejected by one lender may find that they have no

better luck when they submit an application to other lenders. This,

too, is a problemof recourse, but at the level of an entire domain of de-

cisionmaking, rather thanat the levelof amodel. Predictivemultiplic-

itymay serve as a natural bulwark against thisworrisomepossibility:

even if lenders all maximize prediction accuracy, they may still end

up with models that produce different individual-level predictions.

The perhaps surprising benefit of predictivemultiplicity is that, even

whenmodels are selected on the basis of accuracy alone, therewill be

inherent heterogeneity in themodels selected by different firms [22].

5 CONCERNS
While procedural and predictive multiplicity gives us the flexibility

to prioritize values beyond accuracy, this very same flexibility can be

cause for serious concern. The fact that we can choose among many

possible models with equivalent accuracy can lead to problems of

underspecification and to arbitrariness in decisionmaking. Selecting

models on the basis of accuracy alone can obfuscate large differences

between multiplicitous models that we might actually care about,

but have failed to explicitly integrate into the set of considerations

that go into the model development process. Perhaps even more

importantly, model multiplicity also means that accuracy alone is an

insufficient justification forwhy onemodelwas chosen over another

equally viable (i.e., accurate) alternative. In this section, we consider

the concerning implications of model multiplicity and how the law

bears on some of these concerns.

5.1 Aggregate Concerns: Underspecification
As we’ve shown, model multiplicity gives model developers the op-

tion to prioritize values beyond accuracy, since models with equal

accuracy can have quite different aggregate- and individual-level

effects. This alsomeans, however, that failing to consider what other

behaviors may be desired, and continuing to choose models on the

basis of accuracy alone, leaves model behavior on axes other than

accuracy up to an arbitrary choice: without explicitly specifying

what behaviors a model should exhibit—such as fairness, robustness,

and interpretability—and optimizing for them, it is unlikely that a

model will naturally exhibit such behaviors. D’Amour et al. [23] call

this the problem of underspecification.
6
Underspecification reveals

that we need to make our desired model properties explicit if we

want our models to exhibit them.

Procedural Multiplicity. Procedural multiplicity can give rise to

three rather serious problems. First, as mentioned, selecting a model

on the basis of accuracy does not guarantee that it will exhibit other

desirable properties. Second, because it may be possible for models

with different internals to still generate the same set of predictions,

changes made to the internals of a model may not have the antic-

ipated effect on predictions. Third, procedural multiplicity can be

leveraged to remove anything from thedecision-makingprocess that

would raise legal or normative concerns (e.g., legally protected or

6
We note that there is a subtle difference between underspecification, where a model

developer fails to fully articulate and incorporate their full set of behavioral desiderata

into the model building process (as D’Amour et al. [23] show in the case of model

robustness) andmis-specification, where a model developer chooses the wrong target

to optimize for (as Obermeyer et al. [43] demonstrate in a healthcare system’s choice

to use healthcare costs as a proxy for healthcare needs).
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otherwise controversial features), while preserving a troubling, but

avoidable, outcome (e.g., disparate impact). We focus on the second

two concerns.

First, procedural multiplicity means that removing features pro-

scribed by discrimination lawmay do nothing to reduce disparities

in predictions, which may have been the explicit intent of such an

intervention. As discussed earlier, discrimination law imposes strict

prohibitions on the use of certain characteristics in decision making

across a range of high-stakes domains, including lending. These

prohibitions on disparate treatment were put in place to protect

people who possess these characteristics from systematically worse

treatment than others (hence the term “protected characteristics”).

Procedural multiplicity undermines these protections because it

opens up the possibility that people with these characteristics might

be subject to the same disfavorable predictions without directly con-

sidering these characteristics [24]. While disparate impact doctrine

has developed, in part, in recognition of the potentially limited effi-

cacyonprohibitionsondisparate treatment [5]—placingdemandson

decision makers to be able to justify disparities in model predictions,

even if they haven’t considered any protected characteristics—calls

for procedural interventions remain commonplace. For example,

Black et al. [9] observe this phenomenon in debates about the design

and use of risk assessment tools in the criminal justice system,where

procedural interventions recommended by experts and advocates,

such as removing nonviolent arrests from the criminal history con-

sidered by the tools, seem to be suggested with the expectation that

they will reduce racial disparities in tools’ predictions. Procedural

multiplicity means that there is no guarantee that these changes will

have the desired effects on model predictions.

Second, given that there might be many ways to develop a model

that generates the same predictions, developers could search for

models that seem to be more palatable from a procedural perspec-

tive (e.g., because they don’t involve legally proscribed or otherwise

controversial features) but display the same worrisome predictive

behavior. Objecting to these predictions might be more difficult

when the process that generates them seems benign or perhaps even

desirable. This is not just a hypothetical concern; recent work has

shown that it is possible to create two models with exactly the same
predictions that rely on completely different features to make up their
decision [4, 11]. This suggests that not only might procedural inter-

ventions fail to have their intended effects on predictions, but that

procedural multiplicity can be exploited adversarially to develop

a compelling justification for whatever disparities in predictions

that model developers might like to preserve. While this possibility,

often referred to as proxy discrimination [24], is well-studied in the
literature, we note that it is a result of procedural multiplicity.

Taken together, these observations about procedural multiplic-

ity highlight the need for model developers—or those seeking to

influence or regulate their choices—to fully specify the kinds of pre-

dictions that they would like models to generate. Unless these are

optimized for explicitly, there is no reasonwhymaximizing accuracy

or making procedural interventions will lead to the desired model

behavior.

Predictive Multiplicity. The reality of predictive multiplicity high-

lights that model selection on the basis of accuracy does not guaran-

tee the desired prediction-based behaviors beyond accuracy. Specif-

ically, in the context of fairness, predictive multiplicity tells us that

there may be several equally accurate models that each vary in the

degree to which accuracy, selection rates, or other fairness metrics

differ across groups. Unless this is made an explicit consideration

in the model development process, the chosen model can be an ar-

bitrarily bad pick with respect to fairness metrics among those that

are all equally accurate.

5.2 Individual
Level Concerns: Loss of Justifiability

Model multiplicity also creates serious challenges for justifying the

ultimate choice of model, given that different choices can result

in more or less favorable situations and predictions for any given

individual. Globally, this raises a fundamental question: what jus-

tification is there for subjecting a particular person to an adverse

model procedure or model prediction if that person would have

received more favorable treatment under a different, but equally

accurate model? This section will consider the crisis of justifiability

brought about by both procedural and predictive multiplicity and

again discuss how the law bears on this challenge.

Procedural Multiplicity. As discussed, procedural multiplicity ad-

mits the possibility of creating models with very different internals,

even if they all exhibit the same degree of accuracy and all result

in the same predictions. This increased flexibility, however, leads

to a difficulty in justifying why a particular way of reaching the

prediction is necessary. We again focus on the example of recourse:

we previously suggested that predictive multiplicity is desirable

when it allows developers to favor models with internals that would

make recourse easier (e.g., selectingmodelswith features that people

would find less challenging to change). Yet, for any given individual,

theremight exist an alternativemodelwith identical predictions that

would have given the individual an easier path to recourse. Consider

a scenario in which a lender offers an explanation for an adverse

decision that an applicant for credit would find challenging to act on.

Even if the applicant accepts that this is a valid explanation for their

adverse prediction and the easiest of all possible explanations for

the applicant to act on, the applicant might nevertheless ask: why

did the lender choose the model that makes recourse more difficult

for me instead of the model that would have made recourse easier

for me, given that both would have resulted in the same predictions?

The applicant might ask more generally: why must I be subject to

this model rather than the other? Procedural multiplicity makes

it challenging to answer these questions because accuracy alone

cannot justify the ultimate choice of model.

Predictive Multiplicity. Predictive multiplicity can be just as un-

settling when it comes to the justifiability of decisions because indi-

viduals might receive favorable predictions under some models and

unfavorable predictions under others, even when all of these models

are equally accurate. To illustrate this point, consider a situation in

which there are two models that exhibit the same accuracy, but only

one of which would instruct a lender to grant an applicant’s request

for credit. If the lender happens to choose the one that denies the

applicant’s request, howwould the lender justify its adverse decision,

given that the lendercouldhave just aseasilychosen theothermodel?

This line of questioning is unsettling because it reveals that choos-

ing a model based on accuracy alone is akin to choosing arbitrarily

between more or less favorable predictions for certain individuals.

7
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The disquieting prospect that consumers’ access to credit might

rest on decisions made without adequate care was one of the main

concerns that motivated the passage of FCRA and ECOA, both of

which target arbitrariness in lendingdecisions. The legislative record

suggests the FCRAwas designed to “protect consumers from inac-

curate or arbitrary information in a consumer report which is being

used as a factor in determining an individual’s eligibility for credit,

insurance, or employment” [1]. It seeks to do this by requiring that

lenders adopt reasonable procedures to ensure the “accuracy, rele-

vancy, and proper utilization” of the information in credit reports. In

regulating the information that goes into high-stakes decision mak-

ing, FCRA seems to be designed to guard against capricious, sloppy,

and otherwise faulty decision making. As discussed earlier, ECOA

requires lenders facing a disparate impact claim to demonstrate that

“the creditor practice meets a legitimate business need”; in practice,

this is often accomplished by demonstrating that their credit scoring

models reasonably accurately predict default. In other words, absent

some justification for assessing applicants for credit in amanner that

generates a disparate impact, lenders will be found liable for discrim-

ination. Finally, both FRCA and ECOA require that lenders provide

adverse action notices, on the belief that having to justify their deci-

sions will cause lenders to be less arbitrary in their decision making

[54]. Note that lenders are only required to justify their particular

way of making decisions when they face a disparate impact charge.

Absent any identified disparate impact, FCRA and ECOA only re-

quire that lenders provide an explanation for any particular decision,

not a justification for the manner in which they make decisions. Yet

it is possible to interpret this moremodest requirement as an indirect
way of trying to ensure that there are good justifications for why

lendersmake decisions theway that they do. For example, if the prof-

fered reason for an adverse decision is something that seems to lack

face validity as a predictor of default, then consumersmight question

whether the basis for decision making is well justified (namely be-

cause it seemsunlikely that predictions of default on that basiswould

be accurate) [54]. These laws are obviously bothpremised on the idea

that there should be good reasons for themanner inwhich lenders go

about making their highly-consequential decisions.
7
The problem

with predictive multiplicity is that it makes avoiding arbitrariness

difficult even when lenders seek maximally accurate predictions.

Accuracy has traditionally provided a justification for model se-

lection because it was assumed that there must be one unique model

of maximally achievable accuracy. If selecting on the basis of accu-

racy leaves model developers with only one choice, then, according

to this thinking, the ultimate choice must be justified. Multiplicity

reveals this assumption to be false. While we might welcome the

fact that selecting models on the basis of accuracy does not limit

developers’ choices to just one option, we should also recognize the

threat that it poses to the justifications that we can now offer for the

ultimate choice of model. Just as selecting on the basis of accuracy

does not entitle anyone to a specific prediction [35], selecting on the

basis of accuracy need not condemn anyone to a specific prediction.

Whatever the chosenmodel, there always exists an alternativemodel

7
While Creel and Hellman [22] suggest that arbitrariness in decision making is only

a problem when there is no alternative decision maker to whom a person can turn after

receiving an adverse decision, these legal requirements seem to be designed to guard

against arbitrariness in the decision making of private actors whether or not there are

alternatives in the marketplace.

of equal accuracy that would reverse an individual’s prediction.
8

And any given individualmight ask:whywas onemodel chosen over

the other?Modelmultiplicitymeans thatwe have lost a fundamental

basis for justification that needs to be replaced.

This is well reflected in the worries expressed by Citron and

Pasquale [18]when theypoint to a “a studyof 500,000files [inwhich]

29% of consumers had credit scores that differed by at least 50 points

between the three credit bureaus.” They argue that “[b]arring some

undisclosed, divergent aims of the bureaus, these variations suggest

a substantial proportion of arbitrary assessments” [18]. If we assume

that the three credit bureaus all have access to similar information,

that theyare all seeking topredict default, and that theyeachhave the

means to achieve similar accuracy in their predictions, thenmuch of

the resulting divergence in scores for particular individuals is likely

the result of predictive multiplicity. Rather than accepting this as an

unavoidable or even desirable effect of the heterogeneity naturally

engendered by predictive multiplicity, Citron and Pasquale argue

that the divergence is evidence of arbitrariness, on the likely belief

that if the bureaus had good reasons for choosing their credit scoring

models, themodels would not return different predictions. Accuracy

is no longer a sufficiently good reason because selecting models on

that basis cannot supply one correct answer; there now remains an

unaddressed degree of arbitrariness. In a perhaps surprising reversal,

what we described earlier as a welcome guard against algorithmic

monoculture is here presented as a threat to justifiability: why must

any individual be subject to the chosen model when an equally ac-

curate alternative exits that would have given the individual a more

desirable prediction?

In order to recover the justifiability of model decisions, accuracy

can no longer be used as the reason why a particular model was

chosen in high-stakes applications. There must be additional crite-

ria used to determine whether a model performs sufficiently well

for high-stakes deployment, and why one model—and therefore its

decision procedure and predictions—should have been chosen over

an equally accurate alternative.

6 SOLUTIONS
The problems arising frommodel multiplicity underscore the need

for amore careful model selection process that explicitly takesmulti-

plicity into account.A core component of the risks imposed bymodel

multiplicity is that there is no thought given to the selection of the
model among apparently equally viable choices: the selection is arbi-

trary, as it occurswithout admission or even knowledge that a choice

is beingmade. In order to take advantage ofmodelmultiplicitywhile

making justifiable model decisions, we must create a non-arbitrary

method of choosing between high-accuracy models that specifies

the behaviors we wish to see in the model, and documents the rea-

soning behind the choices made. Towards this goal, we can make

explicit and justify a set of criteria for acceptable model properties

or model behavior beyond accuracy alone, document these criteria

and justifications, and then only consider models that meet these

criteria. We call this set of criteria themeta-rule. As there may still

be multiplicitous models that all satisfy the meta-rule, we suggest

ways to further choose between models with differing individual

8
In theory, such a model always exists; whether one could reasonably be found in

practice depends on both the model developer’s choices and the individual in question.

8
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predictions to prevent arbitrariness that satisfy a given meta-rule

via various prediction aggregation techniques. Importantly, all of

these choices—the meta-rule and the aggregation technique—must

be justified anddocumented. This, ultimately, serves as a justification

for why an individual is subject to a certain model decision.

6.1 Meta-Rules
Using ameta-rule provides a reasonedway to choose amongstmulti-

plicitiousmodels: the explicit consideration ofwhatmodel behaviors

make up themeta-rulemay providemodel developers greater clarity

on how to optimize for these behaviors during the model building

process, preventing issues of underspecification discussed in Sec-

tion 5.1. For example, for a loan prediction model, a meta-rule may

be: the model must have over 95% accuracy, rely on features only

available in the individual’s recent banking activity, and have near-

equal true positive rates across demographic groups. Moreover, the

documentation of these decisions and the reasoning behind them

can serve as a justification for the model.

The restriction to only consider models that satisfy all criteria of

a meta-rule reduces the set of multiplicitious models which all reach

similar accuracy on a given prediction task to a smaller set—which,

crucially, all satisfy certain specifications for what it means to be

an acceptable model in a given context. Importantly, a meta-rule

should specify theactual behaviors desired: ifminimal racial disparity

is preferable subject to maximal accuracy, this should be enforced

through an explicit outcomes-based constraint, rather than a pro-

cedural constraint that stakeholders may expect to reach such an

outcome.

A meta-rule should be deliberated over and documented, with

justifications for each qualification on the model. Put together, the

explanations of the desideratawithin ameta-rule constitute the justi-

fication behind a decision from amodel that satisfies such desiderata.

This is because the meta-rule compels model developers to explic-
itly consider the differences that may exist between multiplicitous

models and decide on the criteria that are relevant to the application

that would disqualify a model (even with high accuracy), instead of

choosing arbitrarily.

In practice, the ability to explore the space of equally accurate

models in order to find one which satisfies a meta-rule may be con-

strainedby themodeldeveloper’s ability toexperimentwithdifferent

design choices, which in turn may be influenced by restrictions on

the amountof timeandmoney that they can spendon the exploration

process. Following Selbst and Barocas [54], the meta-rule should

also document the practical constraints that developers face (e.g.

available funding, available talent, available data, etc.) in their model

selection process, as this ultimately influences the breadth with

which they may search for multiplicitous models. Doing so would

help to justify the choice of model among a potentially infinite set

of alternatives, while also providing the necessary information for

others (e.g., the person subject to the decision, an auditor, a regulator,

etc.) to assess whether the efforts to find more desirable alternatives

were reasonably exhaustive under these constraints.

Further, the very question of how to search among equally ac-

curate models is only beginning to be addressed by the research

literature.While some dimensions of explorationmay be costly, such

as collecting more data to explore alternate features to include in a

model, the most commonmethod of exploration—hyperparameter

variation [40, 51]—is already standard machine learning practice.

Whereas model developers currently explore a range of possible

models through hyperparameter tuning and select one that maxi-

mizes accuracy, a meta-rule would require that the model developer

maintain a set of models that satisfy the meta-rule.

In theory, and often even in practice [52], it is unlikely there is

only one model which satisfies a meta-rule. As we discuss in the

next section, we can account for residual differences in predictions

betweenmodelswhich satisfy themeta-rulewithmodel aggregation

techniques.

6.2 Aggregation Techniques
Given a set of models that all satisfy themeta-rule, howmight a deci-

sion maker choose among models? In fact, there are several ways to

produce a singlemodel from a set of equally “good”models. Here, we

focus on three such techniques, and, in particular, we demonstrate

that each may be appropriate for use in different contexts. LetM be

a distribution over models that satisfy decision makers’ meta-rule.
9

The techniques that follow require that the model developer can

construct a random sample fromM, as opposed to enumerating all

of the models inM. The three aggregation techniques we consider

are mode aggregation, randomized predictions, and random
model selection. Importantly, these techniques help to restore jus-

tifiability because they each involve deliberating over how to choose

between multiplicitious models.

• Mode aggregation [11]: The mode predictorm aggregates

models from the model distribution M by outputting the

majority vote over the modelsm ∈ M for each example x .
Formally, in the case of binary classification, this is

m(x)≜

{
1 Prm∼M [m(x)=1]≥ 1

2

0 otherwise

.

Note that the mode predictorm is the one that minimizes the

expected disagreement between itself and a randomly chosen

modelm∼M.

• Randomized Predictions: Under randomized prediction,

the decision maker uses the classifiermrand
that, for each

example x , randomly samples a modelm ∼M and outputs

m(x). Formally, this is

Pr[mrand(x)=y]≜ Pr

m∼M
[m(x)=y].

• RandomModel Selection: Under randommodel selection,

the decision maker randomly samples somem∼M and ap-

plies thatm to everydecision subject.Note that randommodel

selection differs from an arbitrary selection in that the ran-

domness (and the act of choosing) is made explicit [46].

Each of these techniques, alongside documentation of the reasons

why a givenmethodwas chosen, provides a justifiableway to resolve

multiplicity in different contexts. When decisions are made by a cen-

tralized authority, the decision maker’s objective may be to resolve

multiplicity by providing a consistent predictor (i.e., contains no

explicit randomness) that minimizes multiplicity across the model

9
In practice, M may be constrained by the decision maker’s ability to experiment with

different design choices (e.g., type of model, random seed, etc.).

9
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distributionM. The government, for example, has a special legal

burden to ensure consistency in decision making [14]. In such cases,

the mode predictor best achieves these goals: it is the model that

minimizes multiplicity compared to the model distribution M.
10

Recent work has shown that, beyond stabilizing model predictions,

mode aggregation also results in more stable model explanations,

and thus suggests that models which return themode over a random

sample of similar models have more stable internals than individual

models [11].

On the other hand, consider decisions that are low-stakes and

frequent, such as choosing which advertisement to show to a user.

Suppose 70% of models in the distributionM predict that a user x
prefers credit card ads, and 30% predict that x prefers ads for cars.

While the mode predictor would resolve this multiplicity by always

showing x an ad for credit cards, under randomized prediction, the

model will show the user credit card ads 70% of the time and car

ads the other 30% of the time.
11

Of course, there are plenty of appli-

cations where such randomized predictions are undesirable; but in

applications where decisions are low-stakes and repeated, this ran-

domized sampling might give a person outcomes that better reflect

the uncertainty contained in the model distribution.

Finally, there are cases where society would prefer that the model

developer simply samples a randommodelm∼M and always uses

m. For example, consider an application like hiring or lending where

multiple private actors make independent decisions. We may not

want explicit randomness through sampling in these decisions, but

if each supposedly independent actor uses the same mode predictor,

then decision making effectively becomes a monoculture, which

can have negative impacts both for individuals’ recourse and social

welfare [22, 36]. To prevent this, we might prefer that each model

developer independently choose its own randommodelm∼M. And

while random model selection may seem like the de facto resolu-

tion of predictive multiplicity in practice, private model developers

may end up converging on the same models for a variety of reasons,

including third-party vendors selling the same tools to multiple

clients [48] or centralized evaluation (e.g., credit scores).

Crucially, all three of these methods mitigate arbitrariness since

choosing among them requires considering and deliberating be-

tween the different options. By requiring model developers to doc-

ument the model building process—and their ultimate decision on

how to address remaining multiplicity—we can reach a justification

for why a model’s internals and predictions are the way that they

are [54].

7 CONCLUSION
Our work considers the implications ofmodel multiplicity, the phe-
nomenon of multiple models with equal accuracy for a given pre-

diction task exhibiting different individual predictions or aggre-

gate properties. We show that model multiplicity leads to increased

flexibility—and perhaps even legal pressure—to prioritize fairness,

robustness, and interpretability, among other values, in the model

10
Black et al. [11] provides an evaluation of this approach, including theoretical

guarantees on the consistency of mode-aggregated decisions.

11
Randomized prediction is often used in the fairness literature to ensure that

individuals or groups have similar probabilities of receiving an given outcome from

a classifier [3, 29]. Our use of randomized prediction ensures that an individual has

a chance of getting any outcome available to them under somem∼M.

building process. However, this increased flexibility also leads to

the risk of avoidable discrimination and to a lack of justification for

model decisions when the model is chosen on the basis of accuracy

alone. While this work does not serve as a complete exploration of

the impact that predictive multiplicity may have on law and policy,

we hope that by bringing attention tomodel multiplicity that we can

add to the momentum to take advantage of the opportunities that

it creates and head off the resistance that it could provoke.
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A A FORMALMODELOFMULTIPLICITY
Here, we formalize the relationship between individual-level dis-

agreement inmodels and standard formulations of the bias-variance

trade-off. Standard models of the bias-variance trade-off decompose

loss into three components: bias, variance, and noise (e.g., [37]). Bias

refers to the difference between the mean predictor (or in the case of

0-1 loss,which is simplest, themodepredictor) and theBayes optimal

predictor. Variance refers to the difference between any particular

model and the mode predictor. Noise refers to the expected loss of

the Bayes optimal model. For simplicity, we focus on the case of

binary classification with 0-1 loss, though similar approaches could

be used to characterize continuous models.

We begin by providing basic definitions in Section A.1. We ex-

plore the relationship between predictive multiplicity and accuracy

in Section A.2, showing a fairly loose connection. We conclude by

showing a tighter connection between predictive multiplicity and

variance in Section A.3.

A.1 Basic Definitions
Suppose binary classification models come from some fixed distri-

butionM (e.g., the distribution induced by random seeds, inclusion

of data, etc.). LetD be the distribution over data. In a slight abuse of

notation, wewill denote a randomdata point asx ∼D, and a random

(data point, label) pair as (x ,y) ∼ D. Letm∗
be the Bayes optimal
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model, and letm be the mode predictor, defined as

m(x)≜

{
1 Prm∼M [m(x)=1]≥ 1

2

0 otherwise

,

i.e., m assigns x the most probable label over the distribution of

modelsM. The 0-1 loss is defined as

L(y1,y2)≜

{
0 y1=y2

1 otherwise

.

For a given data point x , define

N (x)≜Ey |x
[
L(m∗(x),y)

]
(noise)

B(x)≜L(m(x),m∗(x)) (bias)

Vm (x)≜L(m(x),m(x)) (variance)

Note that of these three, variance is the only one that depends on the

particular modelm. The expected error (also known as the “loss”)

of a modelm on datasetD is

err(m,D)≜E(x,y)∼D [L(m(x),y)].

Define the disagreement between two modelsm1 andm2 as

d(m1,m2)≜ Pr

x∼D
[m1(x),m2(x)]=Ex∼D [L(m1(x),m2(x))],

i.e., d(m1,m2) is the probability thatm1 andm2 disagree on a ran-

domly drawn data point. Intuitively, predictive multiplicity flips

decisions for more people as d grows. Note that d(·,·) is symmetric

and satisfies the triangle inequality:
12

d(m1,m2)≤d(m1,m3)+d(m2,m3)

A natural way to formalize predictive multiplicity for a distribution

M over models is the expected pairwise disagreement over the dis-

tribution of models: if two models are randomly selected, howmany

points do they disagree on in expectation?

I (M)≜Em1,m2∼M [d(m1,m2)].

Thus, I is a formal measure of the predictive multiplicity present in

a distributionM over models. Note that I is task-specific, since it
depends on the data distributionD. For the remainder of this paper,

we will assume thatM refers to the Rashomon set, i.e., all models

inM have the same error L∗.

A.2 PredictiveMultiplicity and Accuracy
Here,we present results relating predictivemultiplicity to error. If all

models inM have error L∗, Theorem A.1 upper-bounds predictive

multiplicity I (M) by 2L∗. We will revisit this bound in Section A.3

to derive a tighter bound. Theorem A.2 shows that under certain

assumptions, as L∗ decreases (models inM become more accurate),

predictive multiplicity approaches 0.

Theorem A.1.

I (M)≤ 2L∗

12
In fact, d is a metric, since it is nonnegative and d (m,m)=0.

Proof. We formalize the observation that two models that only

makemistakeswith probabilityp can only disagreewith one another
with probability at most 2p:

Pr

x∼D
[m1(x),m2(x)]

≤ Pr

(x,y)∼D
[(m1(x)=y∩m2(x),y)∪(m1(x),y∩m2(x)=y)]

= Pr

(x,y)∼D
[m1(x)=y∩m2(x),y]+ Pr

(x,y)∼D
[m1(x),y∩m2(x)=y]

≤ Pr

(x,y)∼D
[m2(x),y]+ Pr

(x,y)∼D
[m1(x),y]

=2L∗

Since this holds for anym1,m2 ∈M, it holds in expectation over for

randomm1,m2∼M. □

Note that this characterization is essentially tight: consider the

case where the true label is alwaysy=1 andM assigns equal proba-

bility to eachofkmodels,wheremi (xi )=0 andmi (x)=1 for allx ,xi .
Then, each model makes exactly one error (on xi ), and modelsmi
andmj disagree in exactly two points (xi and x j ). Thus, the expected
number of disagreements between two randomly selected models is

2L∗(1−1/k), taking into account the probability that the same model

is selected twice.

Uniqueness. Next, we show that optimalmodels are in some sense

unique. Our intuition is that the Bayes-optimalmodel is unique. This

isn’t strictly true: if Pr[y = 1]= 1/2 given an x , then all models are

Bayes-optimal, since they all have loss 1/2. But our intuition should

still hold for “predictable” problems, wherey can be predicted from

x better than random chance.

Assume |Pry∼D |x [y=1]−1/2|>c , i.e.,y can be predicted better

than 50-50 chance for every x . We will show that predictive multi-

plicity goes to 0 as model performance approaches the Bayes risk.

As before, let L∗ be the loss of any model inM. Then, the following

theorem shows that as the models inM approach the Bayes risk R
onD, predictive multiplicity goes to 0.

Theorem A.2. If |Pry∼D |x [y=1]−1/2|>c , then

I (M)≤
L∗−R

c
.
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Proof.

E(x,y)∼D [L(m(x),y)]

= Pr

(x,y)∼D
[m(x),y]

= Pr

(x,y)∼D
[m∗(x),y]+ Pr

(x,y)∼D
[m(x),m∗(x)]

−2 Pr

(x,y)∼D
[m(x),m∗(x)∩m∗(x),y]

=R+d(m,m∗)

−2 Pr

(x,y)∼D
[m(x),m∗(x)] Pr

(x,y)∼D
[m∗(x),y |m(x),m∗(x)]

L∗=R+d(m,m∗)

(
1−2 Pr

(x,y)∼D
[m∗(x),y |m(x),m∗(x)]

)
d(m,m∗)=

L∗−R

1−2Pr(x,y)∼D [m∗(x),y |m(x),m∗(x)]

≤
L∗−R

1−2(1/2−c)
(m∗

is wrong with probability at most 1/2−c by assumption)

=
L∗−R

2c

Thus, the distance between anym∼M and the Bayes optimal model

m∗
is bounded. We can use this to bound predictive multiplicity as

follows:

I (M)=Em1,m2∼M [d(m1,m2)]

≤Em1,m2∼M

[
d(m1,m

∗)+d(m2,m
∗)
]

≤
2(L∗−R)

2c

=
L∗−R

c
□

A.3 PredictiveMultiplicity and Variance
Next,weshowatightconnectionbetweenpredictivemultiplicityand

variance. Theorem A.3 shows that predictive multiplicity and vari-

ance are within a factor of 2 of one another. As a corollary, we show

that reducing loss can increase predictivemultiplicity (CorollaryA.4).

Theorem A.5 uses this result to sharpen the bound in Theorem A.1.

Let the expected variance of a model distributionM be

V (M)≜Em∼M,x∼D [Vm (x)].

Theorem A.3.

1

2

V (M)≤ I (M)≤ 2V (M)

Proof. We begin with an upper bound on predictive multiplicity.

I (M)=Em1,m2∼M [d(m1,m2)]

≤Em1,m2∼M [d(m1,m)+d(m2,m)]

=2Em∼M [d(m,m)]

=2Em∼M [Ex∼D [L(m,m)]]

=2V (M)

We derive a lower bound with the following observation: ifm dis-

agrees with the mode predictorm on an instance x , thenm must

disagree on x with at least half of the models inM.
13

Formally, we

can write this as

m(x),m(x)=⇒ Pr

m′∼M
[m(x),m′(x)]≥

1

2

,

which implies

Pr

x∼D
[m(x),m(x)]≤ 2 Pr

m′∼M,x∼D
[m(x),m′(x)]. (1)

Using this, we have

V (M)=Em∼M,x∼D [Vm (x)]

=Em∼M

[
Pr

x∼D
[m(x),m(x)]

]
≤ 2Em∼M

[
Pr

m′∼M,x∼D
[m(x),m′(x)]

]
(by (1))

=2Em,m′∼M

[
Pr

x∼D
[m(x),m′(x)]

]
=2Em,m′∼M

[
d(m,m′)

]
=2I (M)

Putting this together, we have

1

2

V (M)≤ I (M)≤ 2V (M).

□

This shows a fairly tight connection between model variance

and predictive multiplicity, which can help our intuition in a few

ways. First, we see that increasing accuracy by increasing variance

and reducing bias (e.g., using a more complex model class) can actu-

ally increase predictive multiplicity, consistent with empirical find-

ings [10, 12]. Second, we see that efforts to decrease model variance

(e.g., more data) should reduce predictive multiplicity. This yields

the following result:

Corollary A.4. Reducing loss by decreasing bias and increasing
variance can increase predictive multiplicity.

Deriving a tighter relationship between predictive multiplicity and
accuracy. We can use this insight on the connection between predic-

tive multiplicity and accuracy to improve the bound in TheoremA.1.

As before, letL∗ be the loss of anymodel inM. LetR be theBayes risk,

and let B be the bias ofM (i.e., the error of the mode predictorm).

Theorem A.5.

I (M)≤ 2[L∗−R(1−2B)]

13
By “half,” we mean models that account for at least half the probability mass of M.
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Proof. We begin with decomposition of error into noise, bias,

and variance from [25].

L∗=E(x,y)∼D,m∼M [L(m(x),y)]

= (2· Pr
x∼D

[m(x)=m∗(x)]−1)Ex∼D [N (x)]+Ex∼D [B(x)]

+Ex∼D,m∼M

[
(−1)1m(x ),m∗(x )Vm (x)

]
= (2(1−d(m,m∗)−1)R+d(m,m∗)+Ex∼D,m∼M [(1−2B(x))Vm (x)]

= (1−2B)R+B+V (M)−2Ex∼D,m∼M [B(x)Vm (x)]

= (1−2B)R+B+V (M)−2 Pr

x∼D,m∼M
[B(x)=1∩Vm (x)=1]

= (1−2B)R+B+V (M)−2 Pr

x∼D
[B(x)=1] Pr

m∼M
[Vm (x)=1 |B(x)=1]

Note that for any x , Prm∼M [Vm (x)=1]≤ 1

2
because by definition of

the mode predictor, the probability a randommodel disagrees with

the mode predictor on a given x as at most a half. Since this holds

for every x , this is true conditioned on B(x)=1, so

Pr

m∼M
[Vm (x)=1 |B(x)=1]≤

1

2

.

Thus, we have

L∗= (1−2B)R+B+V (M)−2 Pr

x∼D
[B(x)=1] Pr

m∼M
[Vm (x)=1 |B(x)=1]

≥ (1−2B)R+B+V (M)− Pr

x∼D
[B(x)=1]

= (1−2B)R+B+V (M)−B

= (1−2B)R+V (M)

≥ (1−2B)R+
1

2

I (M) (By Theorem A.3)

Rearranging yields the desired result:

I (M)≤ 2[L∗−R(1−2B)].

□

Note that B≤ 1

2
, since a model that deterministically predicts the

more likely class achieves loss at most
1

2
. As a result, Theorem A.5

immediately implies Theorem A.1.
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