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ABSTRACT
We attempt to summarize the model logic of a black-box classifi-

cation model in order to generate concise and informative global

explanations. We propose equi-explanation maps, a new explana-

tion data-structure that presents the region of interest as a union

of equi-explanation subspaces along with their explanation vectors.

We then propose E-Map, a method to generate equi-explanation

maps. We demonstrate the broad utility of our approach by generat-

ing equi-explanation maps for various binary classification models

(Logistic Regression, SVM,MLP, and XGBoost) on the UCI Heart dis-

ease dataset and the Pima Indians diabetes dataset. Each subspace

in our generated map is the union of d-dimensional hyper-cuboids

which can be compactly represented for the sake of interpretabil-

ity. For each of these subspaces, we present linear explanations

assigning a weight to each explanation feature. We justify the use

of equi-explanation maps in comparison to other global explana-

tion methods by evaluating in terms of interpretability, fidelity,
and informativeness. A user study further corroborates the use of

equi-explanation maps to generate compact and informative global

explanations.
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1 INTRODUCTION
Wikipedia defines Explainable AI as AI in which the results of the
solution can be understood by humans. Most models today accept

a set of features (tabular or categorical) and combine them in a

carefully constructed though often obscure way to produce a result.

An “explanation” uses the same or different features to generate

simple, interpretable information that gives an insight on how the

model might have arrived at that result. For example, a complex
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neural model might be explained by a linear combination of a

subset of the features. As machine learning models are increasingly

being used in real-world decision making, it is important to provide

explanations of model predictions to guide their use and to improve

understanding of them.

Explanation algorithms which explain a single model prediction

are known as local explanation algorithms, while those which ap-

proximate characteristics of an entire model are known as global
explanation algorithms. Explanation algorithms which explain pre-

dictions by taking into consideration the original model parameters

are known as model-introspective explainers. Methods which treat

the original models as a black-box, only to learn model character-

istics using secondary training data, are known as model-agnostic
explainers. Algorithms in which we generate explanations for a

model after it has been trained are known as post-hoc explana-

tion algorithms. Explanation algorithms differ in basic units of
explanation: some methods use the features as-is for interpretabil-

ity, while some use mappings of features for the same. Different

interpretability methods map the interaction between features to
various degrees. Most explainability methods produce linear in-

terpretations of model predictions, thus ignoring all inter-feature

interaction terms. Generating explanations is also time and resource
dependent. Some algorithms assign a time budget, and return the

optimal explanation model derived within the assigned budget.

In this work, we focus on model-agnostic post-hoc linear inter-

pretability techniques. The problem of how the model logic varies
across the input space has not been studied well. Assume that a

medical practitioner has to rely on an ML model decision to choose

between different treatment plans for heart patients. Before relying

on the model for such a critical decision, they would like a system

to summarize the basis on which the model makes decisions for

different values of patient statistics (e.g., smoking and exercise) [6].
Existing global linear explanation methods [12, 15] at best return

a set of representative instances which cannot be used to give

answers to such questions.

To generate more informative global explanations, we propose

dividing the desired region of explanation features into subspaces
based on similar logic, i.e. ϵ-equi-explanation subspaces (Figure 1).

In this work, we focus on the task of binary classification.

Each ϵ-equi-explanation subspace is a union of non-overlapping

hyper-cuboids, each hyper-cuboid representing the range of val-

ues it covers over the explanation features. We employ a divide-

and-conquer based approach, where in each step of the memoized

recursion function, we compute the explanation vector for each

vertex of the obtained hyper-cuboid. Explanation vectors for in-

stances are computed based on their nearest Decision Boundary

Point (DBP), a method which approximates LIME results [12] but

with less uncertainty. We finally generate a linear explanation for

https://doi.org/10.1145/3531146.3533112
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Figure 1: A hypothetical binary classifier (top left) parti-
tioned into equi-explanation maps using the proposed E-
Map algorithm. The algorithm partitions the feature space
(here containing 2 features f1 and f2) into three regions
(R1,R2 and R3) based on similar model logic. Bar charts in
the bottom row represent relative importance of the fea-
tures in each of the 3 regions.

each equi-explanation region by aggregating its member hyper-

cuboid explanation vectors based on weight.

In order to study a given black-box model, our algorithm delivers
compact and informative global explanations, presenting a set of equi-
explanation regions and their corresponding explanation vectors. We

adapt relevant global explanation methods such as SP-LIME [12],

Guided-LIME [15], SHAP [10, 11], and MUSE [6] to form strong

baselines and justify the use of equi-explanation maps on grounds

of Interpretability, Fidelity, and Informativeness. We also conduct a

user study to demonstrate the effectiveness of our new explanation

format in comparison to a strong non-linear global explanation

method [6] and show that equi-explanation maps outperform the

strongest baseline considerably in terms of Informativeness.

In the spirit of reproducibility, our implementation is available

here
1
.

Our main contributions are as follows:

• Wepropose equi-explanationmaps: a concise yet informative

new data structure to summarize the model logic of a black-

box classifier in order to generate concise and informative

global explanations. In doing sowe propose the task ofGlobal
Summary Explanation Generation.

• We propose the E-Map algorithm : a divide an conquer based

architecture - specifically to generate the equi-explanation

map explanation format.

• We propose newmetrics to uniformly compare E-Map gener-

ated equi-explanation maps with other linear, additive global

explanation methods. We also conduct a user study to prove

the effectiveness of our proposed explanation format with

respect to mimic model-based global explanation methods.

1
https://github.com/TaKneeAa/EquiExplanationMaps

2 BACKGROUND
LIME [12] is a popular local explanation model in the machine

learning literature. It is a model-agnostic linear explanation method

that locally approximates a classifier with an interpretable model.

It does so by perturbing inputs in a locality near the instance of

interest, and generating labels for the perturbed inputs using the

original model. Let G be the class of interpretable models. The

explanation model obtained by LIME, for an instance x is:

E(x) = argmin

д∈G
L(f ,д,πx ) + Ω(д) (1)

L(f ,д,πx ) =
∑

z,z′∈Z
πx (z)(f (z) − д(z′))2 (2)

πx (z) = exp(−D(x , z)2/σ 2), (3)

where Ω(д) represents the complexity of the learnt explanation

model, πx describes the locality around x (usually represented by

an exponential kernel on a distance function), and L(f ,д,πx ) is a
model of how unfaithful the explanationmodelд is in neighborhood
of x . D denotes a distance function (cosine in this case). In order to

learn the local behavior of f around x , they sample points uniformly

at random in the proximity of x . These samples are generated by

perturbing the original input, and replacing some feature values

by zero. Rebeiro et al. [12] also propose SP-LIME, a method that

selects a set of representative instances for global interpretability

via submodular optimization.

Laugel et al. [8] improve on LIME’s sampling techniques to opti-

mize model fidelity. They generate surrogate-based explanations for

individual predictions based on sampling centered on a particular

relevant place of the decision boundary, rather than on the predic-

tion itself. This allows them to achieve substantially better results,

demonstrated visually on the UCI half moons datasets, where the

local explanation often does not agree with the global explanation

due to an unusually shaped decision boundary. Garreau et al. [3]

derive closed-form expressions for linear explanation systems and

report that the coefficients are proportional to the gradient of the

function being explained. Reiger et al. [13] present evidence that

aggregate explanations are more robust to attacks than individual

explanation methods. We use existing work [3, 7, 11, 12] along

with concepts from linear algebra to propose a concise, informative

new format for global explanation representation which can be

employed in places where a condensed version of how model logic

varies across the region of interest is a requirement.

3 EQUI-EXPLANATION MAPS
Let f be a black-box binary classifier that maps input features S =

{x1,x2, . . . ,xn } to {0, 1}. The input features can be either tabular

or categorical. Following other explanation models [12], the domain

of an explanation model is the subset of interpretable features E

where E ⊆ S and |E | = d . Assume that we have knowledge of

a finite region of interest of E, named P . The region of interest

for explanation purposes may be smaller than the actual range of

feature values. For example, healthcare providers would want to

study heart disease symptoms in patients with age ranging from 0

to 120, instead of ages ranging from −∞ to +∞.

We globally explain f by providing a division of region P into

ϵ-equi-explanation subspaces. An ϵ-equi-explanation subspace is

https://github.com/TaKneeAa/EquiExplanationMaps
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Figure 2: E-Map architecture to generate ϵ-equi-explanation
maps. Given a binary classifier f as a black-box and region
of interest P , we try to partition E into equi-explanation re-
gions in accordance to the decision boundary of f . We com-
pute the approximate convex hull of E and run a divide-
and-conquer based approach, where in each recursion step
we compute the explanation vectors of hyper-cuboid coor-
dinates. Next, based on the standard deviation of the hyper-
cuboid vertices exceeding ϵ we decide if we want to divide
the hyper-cuboid into sub hyper-cuboids. After the recur-
sion ends, we try to merge hypercuboids, if their standard
deviation is less than ϵ . We lastly do a weighted aggregate
of hyper-cuboid explanations to assign an explanation for a
subspace.

defined as a subspace of the explanation space where the devia-

tions of local explanations for points within that subspace, do not

exceed ϵ . Specifically, classifier f is explained as [e,W] where e
is a partition of the explanation feature hyperspace E into ϵ-equi-
explanation subspaces and each subspace ei ∈ e is explained with

a function wi ∈ W. Each explanation function w belongs to a class

of potentially interpretable models, for which we consider linear

functions in this study. Thus, the explanation for each subspace

wi ∈ R
d
represents the contribution of each explanation feature

towards the model decision within that subspace. Standard devia-

tion of linear explanation vectors is measured to check whether a

subspace is ϵ-equi-explanation or not.

To obtain ϵ-equi-explanation subspaces, we propose a divide-and-
conquer approach, E-Map, summarized by the pseudo-code given

in Algorithm 1. E-Map computes the hyper-cuboid of desired ranges

of explanation features P and divides it into sub-hypercuboids if it

is not an ϵ-equi-explanation space. The obtained sub-hypercuboids

are then recursively checked and divided if necessary. When all

the obtained hypercuboids are ϵ-equi-explanation subspaces, E-

Map checks if neighboring subspaces can be merged to reduce the

number of partitions. Each explanation subspace e thus consists of
a set of hyper-cuboids in the d-dimensional space, and is linearly

explained by a weighted average of each constituent hyper-cuboid’s

explanation vector. We describe the E-Map approach in detail below.

Algorithm 1 Pseudo-code of E-Map approach to generate ϵ-equi-
explanation maps

Require: f : binary classifier, E ∈ Rd : explanation features, P :
Region of interest for explanation, ϵ ∈ [0, 1]

1: C = ConvexHull(P)
2: CPoints = Vertices(C)
3: procedure Divide-hyper-cuboid(CPoints)
4: DBP = DecisionBoundaryPoints(CPoints)

5: ExplanationVectors = DBPTangents(DBP)

6: σ = FindDeviation(ExplanationVectors)

7: if σ > ϵ then
8: list = CreateSubCuboids(CPoints)

9: for CPoint in list do
10: CPoints,ExplanationVectors = Divide-hyper-

cuboid(CPoint)

11: return CPoints, ExplanationVectors

12: CPoints,ExplanationVectors = Divide-hyper-cuboid(CPoints)

13: CPoints,ExplanationVectors = Merge-

Cuboids(CPoints,ExplanationVectors)

14: e,W = Aggregated-Subspace-

Explanation(Cpoints,ExplanationVectors)

Convex hull of region of interest. The first step of E-Map is

to compute the convex hull of our d-dimensional region of interest

P . Finding an exact convex hull is an NP-hard problem, however, an

approximate convex hull of the region is sufficient for our purpose.

As a result, we compute the hull coordinates, using the maximum

and minimum values of each feature in the region of interest, and

get a hyper-cuboid hull of 2
d
vertices.

Divide-and-conquer algorithm. Starting with the hyper-

cuboid hull of the region of interest, we use a divide-and-conquer

algorithm to obtain an ϵ-equi-explanation map. Given a hyper-

cuboid hull, the function divide-hyper-cuboid in Algorithm 1

computes a local explanation of classifier f at each vertex of the hull.
It then determines if the explanation vectors are similar enough

to label the hypercuboid as ϵ−equi-explanation. If the explanation
vectors are similar enough, the hyper-cuboid is an equi-explanation

subspace. Otherwise, the hyper-cuboid is partitioned into two sub-

hyper-cuboids, splitting along the hyper-cuboid plain with the

most explanation distance between its faces in the middle. Then,

the function divide-hyper-cuboid is called recursively for each

of the partitions.

Generating local explanations. Approaches like LIME use a

falling exponential kernel defined on a distance metric to weigh the

importance of each perturbed input as in Equation (3). On examin-

ing Equations (2) and (3), we observe that the decision boundary
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Algorithm 2 Growing spheres algorithm for computing Decision

Boundary Point nearest to x [7]

Require: f : x → {0, 1}: a binary classifier , x ∈ x: an observation

to be explained, η,n: Hyperparameters

Ensure: Nearest Decision Boundary Point e
1: Generate (zi )i≤n uniformly in SL(x , 0,η)
2: while ∃k ∈ (zi )i≤n : f (k) , f (x) do
3: η = η/2
4: Generate (zi )i≤n uniformly in SL(x , 0,η)

5: a0 = η,a1 = 2η
6: Generate (zi )i≤n uniformly in SL(x ,a0,a1)
7: while not ∃k ∈ (zi )i≤n : f (k) , f (x) do
8: a0 = a1
9: a1 = a1 + η
10: Generate (zi )i≤n uniformly in SL(x ,a0,a1)

11: return k , the l2-closest decision boundary point from x

point (DBP) nearest to the instance being explained plays the most

significant role in generating explanations. Points further than the

nearest DBP will have little influence due to the rapidly falling neg-

ative exponential function. However, as Laugel et al. [7] point out,

the solution by LIME largely depends on the density of sampling

and the proximity being sampled. Considering the scale of our task,

a method that generates approximate explanations but with less

variability, would yield better results. Therefore, we compute the

tangent to the DBP nearest to the instance to be explained for ob-

taining the local linear explanation. This method leads to a solution

approximate to what is returned by LIME, if the instance neigh-

borhood has been thoroughly sampled by LIME. However, with a

higher number of dimensions dense sampling around an instance is

hardly practical. The proposed approach is thus expected to return

solutions better than LIME with poor sampling.

Nearest DBPx . To find the point nearest to an instance x on the

decision boundary of classifier f , we tweak the Growing Spheres

algorithm proposed by Laugel et al. [7]. We uniformly sample points

in the sphere centered at x with the radius of η, which is initially

set to a large value. In order to sample points inside SL(x ,a0,a1),
we sample observations uniformly distributed over the surface

of a unit sphere, then draw U(a0,a1)-distributed values and use

them to re-scale the distances between the sampled observations

and x . In order to sample uniformly on a unit sphere, we sample

observations from N(x , 1) and scale them to a distance of 1 from x .
Any of the sampled points having a class different than x guarantees

the presence of at least one DBP within the sphere. However, this

may not be the nearest DBP to x . As a result, the process is repeated
by sampling points in a spheres of radiusη = η/2 and keep halvingη
until we have a sphere where all sampled points have the same class

label as x . This indicates the absence of a decision boundary in the

sphere. Next we sample points inside the spherical layer SL(x ,η, 2η)
in search of points which have a class label different from x . Out
of the sampled points which have a different label, we accept the

one with the minimum L2-distance to x as the nearest DBP. If no

such point is found within this spherical layer, then we search in

the next spherical layer SL(x , 2η, 3η), and so on until the nearest

DBP is found. Let us name this point DBPx . The pseudo-code for

this process by [7] is provided in Algorithm 2.

Tangent at DBPx . Finding DBPx , we then compute the tangent

of the decision boundary of f at this point. To compute this, we

randomly perturb point DBPx and feed the perturbed instances to

f to get their predicted labels. A weighted linear regression model

is then learned on perturbed instances to obtain the tangent of f
at DBPx . We use the kernel function from KernelSHAP[11] as the

distance metrics in this regression (Equation 4) along with the Loss

function defined in Equation 2.

πx (z) =
d − 1

(dC |z |)|z |(d − |z |)
, (4)

where |z | is the number of non-zero elements in the d dimensional

vector z. This results in a d-dimensional tangent that locally ex-

plains instance x .
ϵ-equi explanation subspaces. We define the standard devia-

tion σEV for a set EV of explanation vectors (Equation 5) as:

σEV =
∑

∀pi ,pj ∈EV

∑
m∈d

(pim − pjm )2. (5)

We next computeσEV , where EV stands for the set of explanation

vectors of a hyper-cuboid’s coordinates. If σEV exceeds the value

of the hyperparameter ϵ , the obtained region cannot be termed

an ϵ-equi-explanation subspace and is further divided. For further

division, we iterate over each explanation feature (i ∈ d) and find

the average explanation vector corresponding to its minimum and

maximum values (Ximin and Ximax ). For every feature i ∈ d , we
then compute the L2 distance between Ximin and Ximax . We pick

the feature (f ) with the highest distance (Equation 6), and partition

the hyper-cuboid into two across that feature.

f = argmax

i
(Ximin − Ximax )

2
(6)

If σ does not exceed ϵ , an ϵ−equi-explanation subspace has been

found.When the recursion ends, a set of hyper-cuboids are obtained

where the standard deviation of each hyper-cuboid is less than ϵ .
At this step, a merge function is used to check if any two hyper-

cuboids can be merged while still satisfying the ϵ constraint. These

merged hypercuboids represent subspaces e of equi-explanation
maps.

Subspace linear explanation. Once we have obtained ϵ-equi-
explanation subspaces, each being a set of hyper-cuboids, we gen-

erate a linear explanation for each subspace depicting the behavior

of f in that subspace. For this step, we first compute an explana-

tion vector for each hyper-cuboid by computing the explanation

vector for each of the hyper-cuboid’s coordinates and averaging

them. We additionally compute the volume of each hyper-cuboid

(product of edge lengths). To generate an aggregated explanation

for each subspace, we average each hyper-cuboid’s explanation

vector weighted by its volume. This leads to a division of the input

space into ϵ-equi-explanation maps with normalized explanation

vectors for each subspace.

Presentation of results. E-Map partitions the space into sub-

spaces where each subspace is a union of d-dimensional hyper-

cuboids with d being the number of explanation features. For mod-

els with fewer than 3 explanation features, equi-explanation maps

can be visualized as in Figure 1. However for models with greater
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Table 1: A representation of equi-explanationmaps for aXG-
Boost classifier trained on the UCI Heart disease dataset, us-
ing three explanation features: Age, RestECG, and Choles-
terol. We depict the four explanation regions (subspaces)
generated by our algorithm and present the approximate
model logic corresponding to each of the four regions.

Subspace Age Cholesterol RestECG Explanation

1

Min 29 285 0

[0.26,0.68,0.06]
Max 44 364 2

2

Min 44 126 0

[0.21,0.25,0.54]

Max 63 285 0

Min 29 364 1

Max 44 564 2

Min 63 284 2

Max 77 364 2

3

Min 63 126 0

[0.45,0.2,0.35]
Max 77 284 1

4

Min 29 126 0

[0.33,0.31,0.36]

Max 44 285 1

Min 44 285 1

Max 63 364 2

Min 63 364 2

Max 77 564 2

Table 2: Accuracy of the four chosen classifiers on the train-
ing and test sets of the Heart disease and Pima Indians
datasets.

Dataset Algorithm Training Accuracy Test Accuracy

Heart Disease

Logistic Regression 0.86 0.80

SVM 0.92 0.80

MLP 1 0.81

XGBoost Classifier 1 0.78

Pima Diabetes

Logistic Regression 0.79 0.73

SVM 0.83 0.72

MLP 1 0.77

XGBoost Classifier 1 0.75

than 3 explanation features, we present the coordinates of each

hyper-cuboid in a compact tabular representation using 2d numbers

for each hyper-cuboid, to enable at-a-glance summaries (as shown

in Table 1). The value of ϵ can be set according to the granularity

of explanations required.

4 EXPERIMENTS
To the best of our knowledge, our work is the first towards gener-

ating explanations that summarize the model logic of a black-box

classifier over different regions of feature values. However, since it

lies in the large space of global explanation methods, we compare

the quality of E-Map generated equi-explanation maps with other

global explanation methods.

4.1 Baseline Models
SP-LIME [12], an extension of LIME, is a model-agnostic ap-

proach that chooses diverse and representative instances to de-

scribe the global model logic. Given a budget B, SP-LIME selects |B |

instances from a uniformly sampled set X using a greedy approach

based on the local explanation for each instance.

Guided-LIME [15] adds a structured-sampling preprocessing

step to the input of SP-LIME in order to improve the fidelity of

LIME-based approaches. To do this, they employ Formal Concept

Analysis (FCA) assuming access to the completemodel training data.

Generating SP-LIME explanations on the full dataset (especially

for tabular features) has large computational complexity, which

Guided-LIME successfully reduces.

SHAP [11], originally a local feature attribution method, is ex-

tended for global explanation of tree-basedmodels [10]. The authors

report that it outperforms existing explainers on various metrics

like run time, accuracy, consistency guarantees, mask, resample,

and impute for tree based models.

MUSE [6] is a rule-based mimic model [1] explanation algorithm

to explain how a model behaves in subspaces characterized by

certain features of interest. It aims to learn compact decision sets,
each of which is a series of if-then rules built by optimizing for

fidelity, unambiguity, and interpretability. Since MUSE and equi-

explanation maps have representational differences, we compare

equi-explanation maps to MUSE only by the user study. We do

not include comparison with interpretable decision sets (IDS) [5]

and Bayesian decision lists (BDL) [9], as they have been shown to

under-perform MUSE [6].

4.2 Evaluation Metrics
To enable comparison of equi-explanation maps to other linear

global explanation algorithms, each with a different representation

format, we propose the following general evaluation metrics.

Interpretability: The multiplicative inverse of the amount of

information (numbers) needed to present generated explanations

to users. It is dependent on the format of explanation presenta-

tion by an explanation algorithm. For example, if a model has 4

explanation features and is to be explained with 3 representative

instances, its Emap interpretability would be
1

3∗(2∗4+4)
whereas its

LIME interpretability would be
1

(3∗4)
. The higher the score, the more

interpretable the explanation algorithm.

Fidelity: The fraction of sampled points from the region of inter-

est for which the black-box prediction agrees with the explanation
model prediction. For explanation models that generate represen-

tative instances, the reconstructed explanation model prediction is

either the prediction by the explanation vector of its subspace (if

subspaces are defined) or the prediction by the explanation vector

of its nearest representative element. The higher the fidelity, the

better the explanation algorithm.

Informativeness: The average similarity between local and

subspace explanation vectors for points uniformly sampled in the

region of interest. The local explanation of a sampled instance

is computed using LIME. The subspace explanation is either the

explanation vector of the subspace (if subspaces are defined) or the

explanation vector of the representative unit nearest to the instance.

Similarity is computed using cosine similarity. Higher this metric,

more informative the summary.
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4.3 Experimental Settings
Datasets : We perform our experiments on two real-world datasets

from the medical domain. The motivation is the known importance

of subspace explanations in clinical diagnostic settings [5]. The first

dataset is the UCI Heart Disease dataset2, which has 303 instances

and 14 real valued features designed to predict the presence (labels:

1,2,3,4) and absence (label: 0) of heart disease.

Secondly we use the Pima Indians Diabetes dataset3, predicting
the onset of diabetes within 5 years in Pima Indians, given their

medical details. It is a binary classification dataset with 768 obser-

vations containing 8 input features and a binary output. The label

for each instance is either 0 or 1, with 1 indicating that the person

would see an onset of diabetes within 5 years.

Classifiers : We train binary classifier models on the Heart

Disease and Pima Diabetes datasets using four algorithms Logis-

tic Regression, SVM, MLP, and XGBoost. We use the scikit-learn

implementation of logistic regression. We learn a Support Vector

Machine with an RBF kernel using the scikit-learn implementa-

tion. We experiment with different configurations of MLP using

PyTorch. We settle on an architecture with 3 hidden layers. For

a dataset of N dimensions, the MLP has N neurons in the first

layers, 2 ∗ N in the second, N in the third,
N
2
in the fourth and a

single neuron in the final output layer. For the XGBoost classifier,

we use XGBClassifier from xgboost. The prediction threshold

is set to 0.5, i.e., the prediction is 1 if scores are greater or equal

to 0.5, otherwise the prediction is zero[20]. We split both datasets

into three parts: train, validation, and test in the ratio of 80:10:10.

We use five-fold cross validation on the training data to learn the

supervised models. We compute the classification accuracy of each

of these algorithms and report results in Table 2.

Setting 1 : In the first set of experiments, we compare the per-

formance of Equi-explanation maps with respect to other global

linear explanation methods on the two chosen datasets. We carry

out experiments with all input features as explanation features and

with a budget of four representative instances (as in SP-LIME). In

order to carry out fair comparison, we tune E-Map with different

values of ϵ until four subspaces are generated. For the sake of uni-

formity, we also demarcate the centroid of each subspace in E-Map

as its representative vector. SP-LIME and Guided-LIME algorithms

output representative instances and their respective explanations as

output, but no subspace information. Equi-explanation maps output

representative instances, their explanations, and the coordinates

of subspace hyper-cuboids (refer to Table 1). Both SP-LIME and

Guided-LIME require a sampling density to determine the number

of perturbations, the value of which is retained from the original

LIME repository. For E-Map, we set initial sampling radius η to

1 and the number of points to sample on the sphere η to 1, 000

(following recommendations by Laugel et al. [7]). For the compar-

ing methods, we set as many parameters as possible to the values

reported in their original drafts or repositories. MUSE is a mimic

model-based explanation method whose performance is difficult

to compare with representation vector-based explanation empiri-

cally. As a result, we put off comparison of E-Map with MUSE to

2
https://archive.ics.uci.edu/ml/datasets/Heart+Disease

3
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-

diabetes.csv

a user study (Section 5). For our evaluation metrics Fidelity and

Informativeness, we uniformly sample 500 points from the region

of interest. The same 500 points are used to evaluate all competing

systems for a given dataset and classifier.

Setting 2 : For the next set of experiments, we compare the

equi-explanation maps generated by E-Map for the four different

classifiers described above. Setting the value of ϵ to a fixed 0.6, the

aim of this experiment is to study the variation in Interpretability,
Fidelity, and Informativeness for explanations of classifiers with
different complexities on the two chosen datasets. As above, we set

initial sampling radius η to 1 and the number of points to sample

on the sphere η to 1, 000 (as above). We again sample 500 points

from the region of interest and use the same points to evaluate

explanations for different classifiers.

4.4 Results and Observations
The results of our experiments comparing equi-explanation maps

generated by E-Map with representation-vector based explanations

by other global explanation methods are reported in Table 3. The

representative instances returned by equi-explanation maps show

43% and 38% higher fidelity than those returned by SP-LIME and

Guided-LIME, respectively. This indicates that a user is more likely

to guess the black-box model’s decision for an instance, when

shown an E-Map explanation as compared to when shown a
∗
-

LIME explanation.

This might be attributed to equi-explanation maps presenting

subspaces of complex shapes and sizes considering intricacies of

decision boundaries compared to the spherical subspaces carved

by
∗
-LIME.

E-Map explanations are also 41% and 21.5% more informative as

compared to SP-LIME and Guided-LIME explanations, respectively.

This indicates that a user is more likely to accurately guess the ex-

planation of an unseen instance when shown an equi-explanation

map explanation rather than the when shown other kinds of ex-

planations. This might again be attributed to complex subspace

boundaries for equi-explanation regions as compared to other ex-

planation algorithms.

Due to the extra reporting of subspace coordinates, equi-

explanation maps show 79.6% lesser interpretability compared to

the other approaches. Since SP-LIME and Guided-LIME only re-

turn representative instances and their explanations, their inter-

pretability score for a budget B is computed as |B |*(number of

input features + number of explanation features). The in-

terpretability of E-Map, which returns hyper-cuboid dimensions,

additionally includes an extra |B |*(2*number of explanation fea-

tures*number of hyper-cuboids) term. As a result, although we

see a gain in Fidelity and Informativeness with E-Map, we see a

drop in Interpretability.

The results of comparing E-Map explanations for different clas-

sifiers is presented in Table 4. Over experiments with E-Map on

different classifiers, we observe a strong correlation between the

number of subspaces returned by E-Map and the complexity of the

classifier being explained, for a fixed value of ϵ . Overall the equi-
explanation maps’ explanation of the simplest classifier (logistic

regression) achieves 105% more interpretability, 79% more fidelity,

and 40% more informativeness as compared to that of the classifier

https://archive.ics.uci.edu/ml/datasets/Heart+Disease
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
https://raw.githubusercontent.com/jbrownlee/Datasets/master/pima-indians-diabetes.csv
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Table 3: Comparing E-Map generated equi-explanation maps to existing global explanation algorithms with a budget of 4
representative instances on all explanation features for two medical domain datasets, averaging performance over all four
classifiers.

UCI Heart Disease PIMA Indian Diabetes

Method Interpretability Fidelity Informativeness Interpretability Fidelity Informativeness

SP-LIME 0.083 0.49 0.56 0.083 0.56 0.63

Guided-LIME 0.083 0.62 0.65 0.083 0.62 0.66

SHAP 0.083 0.56 0.66 0.083 0.60 0.69

E-Map 0.017 0.86 0.79 0.017 0.88 0.86

Table 4: Comparing E-Map generated equi-explanation maps to explain four different classifiers on two medical domain
datasets for a fixed value of ϵ set to 0.6.

UCI Heart Disease PIMA Indian Diabetes

Method Interpretability Fidelity Informativeness Interpretability Fidelity Informativeness

Logistic Regression 0.037 0.97 0.91 0.050 0.99 0.95

SVM 0.018 0.56 0.65 0.025 0.69 0.82

3-layer MLP 0.032 0.82 0.82 0.040 0.87 0.93

XGBoost Classifier 0.021 0.80 0.79 0.028 0.93 0.87

with the most complex decision boundary (here: SVM) for ϵ = 0.6.

This is intuitive as the more curved the decision boundary is, the

greater the deviation in explanations is and vice versa.

MUSE is a series of cascading if-then rules, with a maximum hier-

archy of two layers. For datasets withmostly tabular features, MUSE

will have exponential combinations over feature ranges and would

be pretty unintuitive to observe. Decision set-based approaches

seem to work well for datasets with mostly categorical features,

like the datasets chosen in demonstrated examples of previous stud-

ies [5, 6, 9]. Since many real world datasets are largely tabular, we

believe equi-explanation maps would provide better explanations

for them as compared to decision sets-based approaches [5, 6, 9].

5 USER STUDY
In the previous section, we demonstrated that our approach outper-

forms the compared baselines on grounds of Fidelity and Informa-

tiveness. However different global explanation algorithms result

in different formats, making it hard to compare algorithm perfor-

mances. In order to enable fair comparison between rule-based

mimic model explanations (MUSE) and equi-explanation maps, we

conduct a user study.
4
Inspired by explainable AI literature, we re-

cruited 10 students who had completed at least one undergraduate

level machine learning course. Two different XGBoost classifiers

were trained on non-overlapping sections of the UCI heart disease

dataset and the UCI Divorce predictors dataset and used to gener-

ate two explanation presentations: an equi-explanation map and

a falling if-then list. The volunteers were then asked a series of

questions based on both explanation presentations.

On the basis of each explanation presentation, the volunteers

were asked to: (i) predict the classifier label for a given instance

(ii) given a partition of the feature space (e.g. age > 30), indicate

the primary features used in decision making for that partition.

The ground truth for (i) was computed by feeding the instance to

4
UMass Amherst IRB (IRB Number 3410).

the black-box classifier. The ground truth for (ii) was obtained by

generating local LIME explanations for instances in that partition.

The user’s response accuracy to these questions was then computed.

We observe that MUSE achieves a slightly higher accuracy for

question 1, outperforming equi-explanationmaps by 8.5%. However,

the equi-explanation map group outperforms the MUSE group by

46% on accuracy in question 2.

Participants were also asked (i) Which presentation do you think

would give more compact explanations as the number of feature

scales? (ii) Which explanation presentation did you find more in-

formative? (iii) Which explanation presentation did you find easier

to understand? 100% volunteers answered Equi-explanation maps

for (i), 70% for (ii), and 30% for (iii).

This shows that if a user wants to understand what features

influence the decision making in a certain region (which is the

primary intent behind generating explanations), equi-explanation

maps should be unarguably preferred.

6 DISCUSSION
Local explanations are useful to understand the model behavior for

a specific instance, but do not tell much about the larger picture.

Most existing global explanation methods on the other hand are too

sparse and not very informative about the variation in model logic

across the region of interest [7]. Global explanations that summarize

the model logic using equi-explanation maps lie somewhere in

between, with an informativeness-interpretability trade-off, which

can be set by tuning ϵ as per user requirements.

Most existing explanation work focuses solely on Interpretability
and Fidelity/Faithfulness as the primary metrics to optimize during

explanation generation. However, we believe that Informativeness -
which is a proxy for the knowledge gained is an important metric

to consider as well. While the Fidelity metric is an evaluation metric

in the black-box decision space, Informativeness is an evaluation

metric in the explanation space. We believe that lower bounds and
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confidence intervals on Fidelity and Informativeness should be man-

dated in instances where the explanation is highly consequential:

e.g. deciding between treatment options by a doctor, deciding jail

term length. We believe that using summaries of the black-box

logic for global explanations instead of existing approaches would

induce more trust in users in the above mentioned scenarios.

Due to the increased number of bits in Equi-explanation maps

explanations, they are more suitable in low dimensional settings.

However, they can still be generated in higher dimensional settings

to verify black-box model behavior. For example, a developer would

prefer an informative summary explanation to verify how their

model prioritizes features on all subspaces, even at the cost of

interpretability.

Studying explanations with a subset of input features as ex-

planation features might not always be as insightful even if it is

more interpretable. For example, for a classifier with input features

[A,B,C] if we generate explanations using only feature A and B,

there might be a causal feature C driving model decision making for

that variable. However, these factors depend on the exact problem

statement in hand.

7 RELATEDWORK
Recently Setzu et al. [18] propose GLocalX, a tool that adds an inter-

pretable layer on top of a black-box by aggregating local explana-

tions agnostic to the model being explained. GLocalX hierarchically

aggregates the local explanations, represented as decision rules

with the goal of emulating the black-box. Their output format is

similar to MuSe [6] and serves as a mimic model to the black-box

explanation. Our proposed data structure, subspaces as a union of

hyper-cuboids can also be visualized using Polyhedral Sets from

linear algebra. Ruggieri et al. [14] propose a method of learning a

parameterized linear system whose class of polyhedra includes a

given set of example polyhedral sets and it is minimal.

Apart from explanations for black-box models, certain algo-

rithms generate explanations while taking the model architecture

into consideration. One such notable model-introspective expla-

nation method for deep learning models is DeepLIFT [19] which

backpropagates the output of DNNs to assign each input feature a

contribution weight. DeepLIFT [19] specializes in that its assigned

feature weight, positive or negative, can be computed in a single

backward pass of the neural network. Selvaraju et al. [17] intro-

duce Grad-CAM, a method for generating visual explanations across
the layers of a convolutional neural network (CNN), using target

gradients to create coarse localization maps highlighting region im-

portance. SHAP [11] provides unifying framework and formalizes

explainability using the Shapely values principle from game theory.

The SHAP method assigns each feature an importance value for a

particular prediction. It is notable because it proves that there exists

a unique solution in this class with a set of desirable properties.

Their framework unifies six existing methods including LIME [12]

and DeepLift [19] discussed above. Apart from the local explanation

techniques discussed so far, there are a few algorithms that help

users make global conclusions about the model.

The above methods focus on features which are present, even

though these features might have a negative contribution in the

classification. A few recent works have been focused on identifying

features which are necessary or sufficient to explain an instances

classification by a model. Dhurandhar et al. [2] present contrastive

explanations to explain black-box classification models. Given an

input, they find what features must be minimally and sufficiently
present and minimally and sufficiently absent to justify its classifi-

cation. The authors argue that this format of explanations is more

in line with the human way of thinking. Another recent branch of

model agnostic black-box explanation methods include counterfac-

tual explanations. Given a query image I, for which a vision system

predicts class C, a counterfactual visual explanation identifies how

I could change such that the system would output a different spec-

ified class [4]. Looveren et al. [21] further propose a method to

speed up the the search for counterfactual instances to generate

interpretable counterfactual explanations. All the above efforts dis-

cuss post-hoc interpretability methods. Recently a lot of interest

has arised in generating causal explanation algorithms, especially

with applications in genomics [22]. Algorithms like CXPlain [16]

use a causal learning function to train the surrogate model and

combine it with bootstrap to measure uncertainty in explanations.

8 CONCLUSION
In this work, we proposed the new paradigm of summarizing the

model logic of a black-box in order to generate global explanations.

In order to do this, we propose Equi-explanation maps, a novel con-

cise representation for global explanations. We further proposed

E-Map, an effective method that generates equi-explanation maps.

Using hyper-cuboids as units of equi-explainability, we termed

the union of hyper-cuboids to be a subspace and assigned a linear

explanation to each subspace. We experimented on two medical

records datasets: the UCI heart disease dataset and the Pima Indians

Diabetes dataset and our approach was evaluated using the metrics

interpretability, fidelity and informativeness, and substantially out-

performed competitive methods in most of these. With this work,

we introduce the task of Global summary explanation generation
- explanations which present a summary of the model logic of a

black-box model. We hope future explainability researchers study

the compactness-informativeness trade-off for global summaries

and propose better ways to generate summary explanations. It

would also be more effective to see equi-explanation maps being

generated using causal explanation techniques with bounds on

subspace uncertainty.
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