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ABSTRACT
We formally analyze an epistemic bias we call interpretive blindness
(IB), in which under certain conditions a learner will be incapable

of learning. IB is now common in our society, but it is a natural

consequence of Bayesian inference and what we argue are mild

assumptions about the relation between belief and evidence. IB

a special problem for learning from testimony, in which one ac-

quires information only from text or conversation. We show that

IB follows from a codependence between background beliefs and

interpretation in a Bayesian setting and the nature of contemporary

testimony. We argue that a particular characteristic of contempo-

rary testimony, argumentative completeness, can preclude learning

in hierarchical Bayesian settings, even in the presence of constraints

that are designed to promote good epistemic practices.

KEYWORDS
learning, bias, agent modeling, echo chambers, Bayesian learning,

philosophical foundations

ACM Reference Format:
Nicholas Asher and Julie Hunter. 2022. When learning becomes impossible.

In 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT
’22), June 21–24, 2022, Seoul, Republic of Korea. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3531146.3533078

1 INTRODUCTION
In this paper, we describe and formally analyze a simple epistemic

bias, in which people end up being unable to learn, unable to shift

their beliefs in the face of evidence. We call this bias interpretive
blindness (IB). IB is now familiar and all around us—people dying

of Covid but refusing to believe that the disease exists despite

the evidence, people who believe elections are fraudulent in spite

of overwhelming evidence to the contrary, the list goes on. IB

is based on a codependence between what beliefs we have and

what evidence we use to update those beliefs; it then results from

exploiting simple rules of Bayesian inference in a dynamic, iterative

process whereby a learner’s background beliefs and biases lead her

to update her beliefs based on a body of testimony T , while biases
inherent in T come back to reinforce her beliefs and her trust in

T , further biasing her towards accepting T for future updates. We

look at how this codependence affects human agents whose beliefs
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are guided and shaped by testimony—perhaps the primary way

that most people acquire information nowadays. We show that

an inability to learn can result, and we show how this inability is

enabled and exacerbated by modern machine learning algorithms

that can govern what testimony we have access to.

When learning through testimony, an agent acquires beliefs

through conversations with other agents, or from books, newspa-

pers or social networks, and so on. Typically, such people lack direct

access to the phenomena described via that testimony or cannot

analyze the phenomena themselves [Millgram 2015]. Typically too,

humans only pay attention to a restricted set of bodies of testimony

from a limited number of sources for their information—which

makes sense in terms of an agent’s limited resources and attention

span. These conditions are the fertile ground for the learning inabil-

ity of IB. In IB, agents’ biases preclude learning when an agent tries

to exploit new data that are incompatible with or simply distinct

from T ; agents will discount any evidence that challenges their

beliefs. IB is enabled and exacerbated by algorithms that tailor the

testimony they provide to that which the agent is already disposed

to believe. Our paper formally analyzes the strategic epistemic con-

sequences of these algorithms and of IB. We use Wolpert’s 2018

extended Bayesian framework to prove our results.

IB is not only problematic for first order Bayesian approaches

but for hierarchical ones [Gelman et al. 2013] as well, because testi-

mony from sources like Facebook and other social media, 24/7 media

outlets and web interest groups is often argumentatively complete,
a notion we analyze precisely in Section 4. In an argumentatively

complete body of testimonyT , the authors of that testimony can re-

spond to and undercut any doubts raised by other data or arguments

in a body T ′
that might threaten T ’s credibility. A skillful climate

denier, for example, will always find a way to undercut the most

scientifically careful argument for climate change. Argumentatively

complete testimony can undermine higher order constraints and

good epistemic practices that guide first order learning.

Our paper starts in Section 2 by introducing the codependence of

belief and interpretation relative to testimony and the hypotheses

that support it. In Section 3 we formally show how IB can result

in first-order Bayesian learning. Section 4 shows how IB can come

about in a hierarchical Bayesian learning setting. Section 5 discusses

related work while Section 6 develops a game theoretic setting

to investigate the complexity of IB. We investigate whether IB

is rationally refutable; on certain commonly accepted epistemic

assumptions, we conclude that it is not.

2 TESTIMONY AND SOURCES
IB arises in learning because of a codependence between beliefs and

the interpretation of evidence, in this case written or linguistically

conveyed information. The interpretations we are interested in

are judgments about the evidence’s trustworthiness. In updating
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our beliefs with new evidence E, our beliefs, particularly about the

reliability of E’s source, color how we interpret E, how much in

short we believe it. But new evidence E ′ can update our beliefs

about the reliability of sources which in turn confer a possibly new

degree of belief concerning E. This codependence between evidence
and belief dictates how we learn.

Let us look at this codependence more closely in conjunction

with a body of testimony. A body of testimony T is a collection of

information conveyed by one or more sources that may “promote”

or vouch for certain descriptions of events and cast doubt on or

disparage others. The New York Times, Fox News, CNN, Facebook,
4Chan, all provide bodies of testimony; their union is also a body of

testimony. While such bodies may be consistent or inconsistent, we

restrict ourselves here to consistent T . Importantly such bodies are

also dynamic; they evolve over time as they are updated with new

descriptions of events. Dynamic bodies of testimony are ubiquitous

in our communicative landscape: on-line, 24/7 news sources as

well as particular groups on social media provide continuously

evolving, updated coverage of new events. To model this, we shall

say that T comes in “stages”, where stages can be defined by times

or even conversational turns, and each stage Ti is the body of

evidence accumulated up to stage i . T = {T1,T2, ...,Tn , ...} is the
collection of all the stages of a dynamic body of evidence. Thus, a

body of evidence invites us to iteratively update our beliefs about

the trustworthiness of that very body.

Let T be a collection of (potentially conflicting) bodies of tes-

timony T about some phenomenon P , and assume that a learner

ˆf does not have independent access to P and can thus only learn

about it via T . Learning from T will require
ˆf to judge some body

of testimony T in T as credible or trustworthy. Let H be a set

of evaluation hypotheses, where each h ∈ H evaluates the bodies

of testimony T in T . The hypotheses h ∈ H—background beliefs

that may take into account T ’s source, subject matter, past known

accuracy, appeal, and perhaps other elements—define a conditional

probability P(T |h) for each T ∈ T , which we will sometimes write

as h(T ), where h(T ) = 0 means T is untrustworthy according to

h, and h(T ) = 1 means T is trustworthy according to h. Following

Wolpert’s 2018 extended Bayesian framework,
ˆf determines his

belief in T relative to H .

Our learner
ˆf also has a probability distribution over the eval-

uation hypotheses in H . Since the bodies of evidence T in T are

dynamic,
ˆf updates this distribution relative to the stages Ti of T

as eachT evolves. This is intuitive; testimonyT to which
ˆf attends

should be relevant to how
ˆf updates its beliefs about the trustwor-

thiness of T . The collection T is also most likely restricted, which

is intuitive too: most if not all of us acquire new information from

a restricted set of bodies of evidence—a reasonable choice given the

balance rational agents need to find between exploiting an already

acquired body of evidence and gathering data from other bodies of

evidence. And finally, because we restrict ourselves to consistent

bodies of evidence T , each T will push a particular point of view

on events.

But as the probabilities of the background beliefs, the evaluation

hypotheses, are updated over the stages Ti , so too will
ˆf update

her belief in T , using the updated probabilities for her evaluation

hypotheses. This codependence can lead to a problem in learning:

when we rely on testimony to learn and we restrict the testimony

we pay attention to, the confirming evidence for the background

beliefs, the evaluation hypotheses and the testimonyT they support

mutually confirm each other to form a barrier to learning about

events that are not mentioned in T . Algorithms of the sort used in

social media to build testimony for agents are optimized to continue

the themes and ultimately the content of what those agents have

previously consulted by exploiting the agent’s history of choices

that reveal her likes. We will formalize this in terms of a relation

between the algorithm’s choices and the presence of certain evalu-

ation hypotheses. Such algorithms naturally accelerate the process

of what we call below bias hardening and IB in the presence of

iterated Bayesian updating, despite our learner’s rational epistemic

practices. We turn to this in the next section.

3 IB IN A FIRST ORDER BAYESIAN SETTING
To formalize IB and its consequences, we first present a simple

experiment to show how the codependence of interpretation and

belief leads to bias hardening.1 To illustrate, suppose that
ˆf consid-

ers a consistent dynamic body of testimony T = {T1,T2, ...,Tn , ...}
and has two evaluation hypotheses h1,h2, where the prior proba-

bilities assigned to h1 and h2 by ˆf are:

P(h1) = .6, P(h2) = .4 (1)

and the evaluation hypotheses assign probabilities toT as it evolves

through stages Ti as follows:

P(Ti |h1) = .8, P(Ti |h2) = .2 for all i (2)

We can now calculate the probability of T1 using the general rule

for marginal probabilities in 3. Let B be
ˆf ’s background beliefs; and

let the set of all hi , the alternative hypotheses that are consistent
with or assigned non-zero conditional probability relative to B

[L Griffiths et al. 2008; Lampinen and Vehtari 2001; Tenenbaum

et al. 2006, 2011], be the set of evaluation hypotheses hi (so {h1,h2},
in our example).

P(x) =
i=k∑
i=1

P(x |hi ,B).P(hi ,B) (3)

Then using (1), (2), and (3), we have:

P(T1) = P(T1 |h1).P(h1) + P(T1 |h2).P(h2) = .56. (4)

This is our estimation of our belief in the body of evidence T based

on what we have so far. We will continue to update the probability

ofT given new stagesTi below by distinguishing prior probabilities

Ppr ior and updated probabilities Ppost . Now suppose there is a new

conversational turn in T , a new stage of evidence T2. Given our

assumptions, P(T2 |h1) = .8, while P(T2 |h2) = .2, T2 is supported by

h1 but not by h2—h1 and h2 are consistent with their roles on T1.
Given the dependence of beliefs and interpretation of evidence, T2
also leads us to re-evaluate our evaluation hypotheses by adapting

Bayes’ formula to our evaluation hypotheses:

P(hi |Tn+1) =
P(Tn+1 |hi ).Ppr ior (hi )

Ppost (Tn )
(5)

1
[Kelly 2008] describes an informal description of this phenomenon.
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Given T2, whose initial probability we set to what the posterior

calculated for T1—i.e., Ppost (T1) = Ppr ior (T2), we can update our

confidence in h1 as follows:

P(h1 |T2) =
P(T2 |h1).Ppr ior (h1)

Ppost (T1)
≈ .86. (6)

Thus, we have posterior probabilities for our evaluation hypotheses

as well as for stages of bodies of evidence. The similarly updated

probability for h2 now drops to roughly .14. Using the updated

values for h1 and h2, we see thatT2, which includesT1, is now even

more believable: Ppost (T2) = .74. Now suppose that a new bit of

evidence,T3, is added toT . As before, we set Ppost (T2) = Ppr ior (T3).
Given our assumptions about our source functions, P(T3 |h1) = .8,
we have P(h1 |T3) = .96, while P(h2 |T3) ≈ 0.04, and confidence inT3
is also updated: Ppost (T3) = .776 ≈ .78. Updating h1’s probability
conditional on new evidence T4 now yields a value of .989 ≈ .99,

while P(h2 |T4) = 0.008 ≈ 0.01. By the time we get to T5, the prob-
ability of h1 will have gone to 1, while P(h2) = 0, and P(T5) = .8.
In sum, as n increases, the updated probabilities of h1 go to 1 and

P(Tn ) → P(T |h1), that is, to the strength of h1’s support for T .
Our codependence of belief and evidence suggests a loopy struc-

ture (cyclic graph) for updating. However, by exploiting stages, we

can disentangle such structures; and efficient approximations are

possible in disentangled structures [Murphy et al. 2013]. Proposi-

tion 1 below shows a convergence under certain assumptions. Let

Pn (hi ) be the probability of hi after conditionalizing on Tn and

Pn (T ) the value of T after n conditional updates as defined above.

Let’s now move to a more general setting. Let
ˆf ’s evaluation

hypotheses H
ˆf , come with a probability distribution. An agent

could have, among the many evaluation hypotheses that she coun-

tenances, an evaluation hypothesis h for which the conditional

probability of T given h increases as T evolves. The support for T
might increase (or decrease) as T gets more extended with more

and more stages.

Definition 1. An evaluation hypothesis h ∈ H
ˆf is positive sensi-

tive to T = {T1,T2, ...} iff P(Tn |h) > .5 and is monotone increasing
for all n.

How bodies of testimony are constituted for ordinary learners

is not always clear. Learners can assemble their own body of testi-

mony, and typically, they must concentrate on some testimony to

the exclusion of other testimony. What are the criteria? Well, some-

times other actors can guide the acquisition of testimony. What we

shall call Facebook-like algorithms from our epistemic perspective

are a way social media and news organizations can steer learners

to a certain body of testimony. Their role is to bring testimony to

an agent’s attention that feeds and updates, in fact constructs, an

evaluation hypothesis that keeps the learner coming back to the

same type of information, often the same set of sources of informa-

tion. More formally, the role of such an algorithm is to construct a

positive sensitive evaluation hypothesis inH
ˆf .

Definition 2. A Facebook-like (FB) algorithm д for ˆf constructs
a body of testimony from a set of bodies of testimony T that ˆf uses to
update her hypotheses and д(T ) = T = {T1,T2, ...} with дn (T ) = Tn
iff there is an h ∈ H

ˆf such that: (i) ∃n P(дn (T )|h) > .5 and (ii) ∀m >
n ∃k (P(дk+m (T )|h) > P(дm (T )|h) as long as P(дk+m (T )|h) , 1).

An FB algorithm дn (T ) at each stage n provides information that

does not decrease h’s support for T . Thus д makes h positive sen-

sitive to T through a choice of stages Tn . In addition, however, д
will eventually keep on increasing the support of h for д(T ). We

assume that if д is an FB algorithm for
ˆf , then ˆf updates her hy-

potheses based on the testimony fed by д. We suspect that actual

social media algorithms are FB though we do not have a proof of

this. The possibility, however, seems to us very real.

Proposition 1. Suppose testimony T = {T1,T2, ...,Tn , ...}, and
with h1 ∈ H positive sensitive to T and with P(h1) , 0, while
P(Tn |hj ) < .5 and is monotone decreasing for all n and for all hj ∈
H ,hj , h1. Then:

As n → ∞, Pn (T ) → limsup(P(Tn |h1)),

Pn (h1) → 1 and Pn (hj ) → 0 for j , 1

Given the calculations above and using standard updating rules for

the probabilities P assigned by
ˆf , if P(Ti |h1) is monotonic increasing

with respect to i and P(Ti |hj ) for any j , 1 is monotonic decreasing,

then the updates of P(Ti ), P(h1 |Ti ) and P(hj |Ti ) will follow the

pattern of our experiment above and converge to the support of

h1, 1, and 0 respectively. □

Corollary 1. If ˆf uses an FB algorithm and hj , j , 1 are as in
Proposition 1

As n → ∞, Pn (T ) → limsup(P(Tn |h1)),

Pn (h1) → 1 and Pn (hj ) → 0 for j , 1.

Given that an FB algorithm entails the existence of a positive sen-

sitive hypothesis h1 to T and that h1 must have non 0 probability,

the result follows from Proposition 1 □.
We now introduce three important properties of evaluation hy-

potheses.

Definition 3. An evaluation hypothesis h for a set of bodies of
testimony T is consistent iff for T ,T ′ ∈ T , if T ∪T ′ is inconsistent,
then P(T |h) = 1− P(T ′ |h). An evaluation hypothesis h is probability-
wise model complete (PWMC) for T and some topic t iff: for any
putative piece of evidence ϕ on t if for no stage Ti Ti |= ϕ (ϕ is not
predicted or included in any stage of T ), then P(ϕ |h) = 1 − P(T |h).

Definition 4. An evaluation hypothesis h ∈ H makes T poten-
tially trustworthy (h |= T ), if as n → ∞, P(Tn |h) → 1.

Proposition 2. Suppose д(T ) = T and д is an FB algorithm for
ˆf . Then there is an evaluation hypothesis h such that h |= T .

Let д be an FB algorithm for
ˆf . Then as we showed above, there

is an h that is positive sensitive to T and by the property (ii) of

Facebook algorithms, limn→∞P(Tn |h) = 1. □
While consistency seems a basic requirement of evaluation hy-

potheses, a potentially trustworthy evaluation hypothesis is a kind

of “soundness” or accuracy assumption about a body of evidence.

For an agent who remains wedded to a body of testimony, such an

assumption also seems rational.

PWMC hypotheses generalize consistent hypotheses, but what is

their rationale? FB algorithms by themselves don’t lead to PWMC.

But they do facilitate it. As д feeds testimony to
ˆf that lends more
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and more support to an eventually trustworthy hypothesis h, a nat-

ural thought is for
ˆf to assume that Ti+1 provides a more complete

coverage of the pertinent facts than Ti . So elements ϕ that are not

mentioned in any Ti or are in some way incompatible with T are

either not relevant, or just false. The PWMC condition codifies this

for evaluation hypotheses in terms of an operation akin to negation

as failure in Prolog; if h makes T probability wise model complete,

then if given some newsworthy and relevant topic t andT doesn’t

mention ϕ, then h supports ¬ϕ to the extent that h supports T . For
simplicity, we will assume that the topic parameter is constant in

our discussions below and drop it from the formalism.

Proposition 3. LetT be a set of consistent bodies of testimony and
letд be a FB algorithm for ˆf withд(T ) = T withh1 ∈ H

ˆf the entailed
positive sensitive hypothesis to T . Let the priors on hi ∈ H ,hi , h1
be as in Proposition 1 Then:

As n → ∞, Pn (T ) → 1. (1)

Suppose in addition, h1 is PWMC for T and T ̸ |= T ′. Then:

As n → ∞,Pn (T ′) → 0 (2)

To show (1), note that P(T1 |h1) > .5 and since as n → ∞, Pn (h1) →
1, after a certain point P(Tn |h1) is monotone increasing. Then by

Proposition 1, Pn (T ) → P(Tn |h1). Since h1 makes T potentially

trustworthy, as n → ∞,Pn (T ) = 1. To show (2), suppose h1 is

PWMC forT . Given thatT ̸ |= T ′
, hi (T

′
i ) = 1−hi (Ti ) for each i , and

the expected probability of T ′
will decrease strictly monotonically

over n, as Pn (h1) → 1. So as n → ∞, Pn (T ′) = 0. □

Corollary 2. Let the priors on hi ∈ H ,hi , h1 be as in Proposi-
tion 1. Suppose in addition, T |= ¬T ′, then:

As n → ∞,Pn (T ′) → 0 (2)

Note that our agent may have many evaluation hypotheses and

the result of Proposition 3 is unchanged. Crucially
ˆf has updated

his beliefs only on T due to д. This matches our intuitions about

what agents actually do. As long as the codependence between

background beliefs and bodies of evidence holds and certain bodies

of evidence are supported more than others, belief in some bodies

of evidence T ∈ T will be strengthened, while belief in bodies of

evidence in conflict withT or just different fromT will be weakened.

Importantly, this can happenmerely by Ti repeating content already
in Tk for i > k . Such repetitions of content are commonplace on

social media sites and news sites that broadcast continuously. In

addition, the assumption of a PWMC evaluation hypothesis is rather

mild; it reflects an agent’s mistrust of bodies of evidence other than

the ones he relies on—a rather common situation.

Proposition 3 impacts the marginalization of new data, because

if its assumptions are met, as Pn (T ′) → 0,
ˆf discounts evidence

from T ′
, despite the presence of evaluation hypotheses supporting

T ′
.

Proposition 4. Suppose evidence ϕ such that T ′ |= ϕ, T ̸ |= ϕ and
T ,T ′, and ˆf ’s evaluation hypotheses are as in Proposition 3 and ˆf
conforms to Bayesian learning. Then:

As n → ∞, Pn (ϕ) → 0.

Since
ˆf conforms to Bayesian learning, the marginal probability for

ϕ is based on Equation 3 and the set of hypotheses hi in Equation 3

is the setH that for
ˆf pronounce on testimony that mentions or as-

serts ϕ. By Proposition 1, as n → ∞, Pn (h1) → 1. By Proposition 3,

Pn ((T ′h1) → 0. But for all other hk such that hk (T
′) , 0, by Propo-

sition 1 again, as n → ∞, Pn (hk ) → 0. But then Pn (ϕ |hi ,B) → 0

for all relevant hi . Given Equation 3, the result follows. □

In this situation,
ˆf assigns no credence to ϕ. The prior beliefs of

ˆf may so limit the alternative hypotheses hi such that even an

actual fact ϕ will have a marginal probability of 0;
ˆf will discount

ϕ completely.

Now consider general learning in this situation, defined inWolpert’s

2018 extended Bayesian framework via Bayes’s formula.

P(h |x ,B) =
P(x |h,B).P(h |B)∑i=k

i=1 P(x |hi ,B).P(hi |B)
(7)

To learn a hypothesis ψ about some event e , ˆf ’s estimation of ψ
at some stage Pn (ψ ) based on her evidence should be closer to

the objective or ideal assignment (posterior)ψp , than to her prior

probability forψ , P0(ψ ). Similarly for marginal probabilities: Pn (x)
should track xp , the posterior of x , given a random sampling of

X . We consider loss functions L(Pn (ψ ),ψp ) and L(Pn (x),xp ). The
greater divergence between the ideal posterior probability and

the Bayesian subjective estimation of that probability, the worse

will be the score for
ˆf ’s learning. We say that

ˆf cannot learnψ if

her updates do not eventually decrease loss; i.e. we cannot show

limn→∞L(Pn (ψ ),ψp ) < L(P0(ψ ),ψp ).

Proposition 5. Suppose ˆf is a Bayesian learner with evaluation
hypotheses and testimony T , T ′ as in Proposition 3. Let ψ be a new
hypothesis with all evidence e confirmingψ such that T ′ |= e . Then
ˆf is incapable of learningψ .

Consider e such thatT ′ |= e and e confirmsψ . So the true posterior

Pp (ψ |e) > P(ψ ), with P(ψ ) the prior on ψ . Suppose ˆf ’s evalua-
tion hypotheses and probabilities have been updated via T as in

Proposition 3 and let that give the “prior” probability for the new

hypothesisψ . By Proposition 4, as n → ∞, Pn (e) → 0. In the limit,

Bayesian learning as specified by equation (4) simply isn’t defined

when Pn (e) = 0. So assuming e is discounted as evidence in updat-

ing, we set P(ψ |e,Tn ) = P(ψ |Tn ). But this is just P0(ψ ), ˆf ’s prior on
ψ . It follows that as limn→∞ L(Pn (ψ ),ψp ) ≮ L(P0(ψ ),ψp ). □

Proposition 5 is a formal statement of IB in a first order setting. It

shows that under certain conditions,
ˆf will be incapable of learning

any hypothesis that involves a dependence on testimony not in T ,

upon which
ˆf has formed his beliefs.

ˆf is interpretively blind to

any possibilities outside of T .

4 IB IN HIERARCHICAL BAYESIAN
LEARNING

It’s not unreasonable to rule out new evidence from unreliable

testimony, provided the assignment of one’s evaluation hypotheses

to the testimony is reasonable. But nothing in our discussion above

forces the evaluation hypotheses to be be reasonable. Without any

constraints,
ˆf ’s evaluation hypotheses may rule out evidence that

is completely grounded in reality and comes from testimony that

an ideal rational agent would trust.
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To solve this problem, we need to correct the background beliefs

B. Ideally, a rational agent should control for the biases in testimony

by consulting several different bodies of testimony. However, B

cannot be corrected itself by evidence, because that evidence is

already discounted if it conflicts with B. Very clearly, background

beliefs can be a source of bad epistemic biases, and they can prevent

straightforward corrections to improve one’s beliefs as Bayesian

learning would have us do.

Hierarchical Bayesian models were designed to address this

problem [Gelman et al. 2013]. In hierarchical Bayesian models,

a Bayesian learning model like the one we have discussed in Sec-

tion 3 has certain parameters; the one parameter we have is our

evaluation hypotheses providing the reliability of testimony. At a

second level of the hierarchy, we could have a Bayesian learning

model concerning evaluation hypotheses, in which we could detail

factors that would allow us to estimate reliably the accuracy of

an evaluation hypothesis. Abstractly, we would have evaluation

hypotheses about evaluation hypotheses that would discuss fac-

tors like the consistency or the predictive accuracy of a testimony

source, or the extent to which testimony from other sources agrees

with its content. One could also require a longer or more thorough

exploration of the data about the phenomenon before the agent’s

restricting himself to a small subset for exploitation (once again an

application of the work in [Cesa-Bianchi and Lugosi 2006]). All of

these ideas and more have been proposed.

Simply requiring evaluation hypotheses that obey exogenous

constraints, however, begs the question of why
ˆf should accept

them. In fact, the interdependence of testimony, new information

and background beliefs can make the resort to higher order param-

eters to resolve IB a failure because a body of dynamic testimony

T , when directed by a conversational agent for the purposes of

persuading and keeping his audience, can react to and attack not

only a conflicting body of testimonyT ′
but also sources supporting

it. This behavior provides arguments for or against not only first

order evaluation hypotheses, as we’ve seen with the notion of con-

sistency, but also for higher order functions and in fact sequences

of evaluation hypotheses.

To formalize this picture, we assume a hierarchy of sets of eval-

uation hypotheses where,

hn+1 : hn → [0, 1], for hn+1 ∈ Hn+1.

Hypotheses at level n + 1 are related to evaluation hypotheses at

level n via rationality.

Definition 5. A set of sets of evaluation hypothesesH = {H1,

H2, ...,Hn } is rational iff for all m < n, hmk ∈ Hm , P(hmk ) =

λ
∑
hj ∈Hm+1 P(hm+1j ).P(hmk |hm+1j ) for some normalizing factor λ.

A rational set of sets of evaluation hypotheses is one in which

the probability of evaluation hypotheses at one level reflects what

higher levels say about it. We will assume rationality ofH .

Given rational H = {H1,H2, ...,Hn }, we now lift our notions

of support to sequences. We define aHn
sequence σ ∈

∏n
i=1H

i

of consistent evaluation hypotheses to support T (σ |≈T ) (or that
make T potentially trustworthy—σ |= T ) iff theH1

element h1σ of

σ is positive sensitive to T (makes T potentially trustworthy) and

every element of σ has non-0 probability given H . Conversely, we

say that T |≈σ iff for each element hiσ of σ P(hiσ |Tj ) is eventually
monotone increasing for all stages Tj . We note that σ |≈T → T |≈σ .

Let σk be the subsequence of σ such that σk = σ ↾ (
∏n

i=k H
i ).

For h1 ∈ H1,σ 2(h1) signifies the support h1 receives from the

higher order functions in σ via Definition 5.

Definition 6. AnHn sequence σ1 undercuts T iff for any σ i ∈
H i , if σ i |≈T , then σ i+1

1
(hiσ ) = 1 − P(T |h1σ )

Definition 7. ϕ disagrees with T ′ just in case P(T |ϕ) < P(T ).

Definition 8. Given H = {H1,H2, ...,Hn } T attacks T ′ iff (i)
if σ |≈T , then P(T ′ |h1σ ) = 1 − P(T |h1σ ) and (ii) for any Hm sequence
σm ,m < n if σm |≈T ′, ∃hm+1 ∈ Hm+1 such that (P(hm+1 |T ) > .5
and hm+1(σ ) = 0).

Definition 9. T is argumentatively complete iff:
(i) (T ′ |= ϕ and Disagree(ϕ,T )) → Attack(T ,T ′); (ii) If Tn ̸ |= ϕ
but P(Tn |ϕ) ≥ P(Tn ), then Tn+1 |= ϕ. (iii) for any T undercutting se-
quenceσm ,∃hm+1 ∈ Hm+1 such that (P(hm+1 |T ) > .5,hm+1(hmσ ) =

0) (iv) ∃Hn sequence σ such that σ |= T .

Proposition 6. IfT is argumentatively complete, then there is an
h such that h is PWMC for T .

Assume that T is argumentatively complete. Then ∃σ ∈ Hn such
that σ |= T . Since σ |= T , σ |≈T . Now assume Tn ̸ |= ϕ for some ϕ
for all stages n. But then P(Tn |ϕ) < P(Tn ) for each stage Tn of T .
But then T and ϕ disagree and so T attacks ϕ. By the definition of

attack, P(ϕ |h1σ ) = 1 − P(T |h1σ ). So h
1

σ is PWMC. □

Proposition 7. Let T be argumentatively complete with a ra-
tional set of evaluation hypotheses H with

∑
h1∈H1 P(h1) , 0 and

probabilities updated on T .

As n → ∞, Pn (T ) → 1. (1)

In addition suppose there is a T ′ ⊈ T .

As n → ∞, Pn (T ′) → 0. (2)

We first show (1). Since T is argumentatively complete, ∃σ ∈

H such that h1σ |= T . We need to show that for some such h1σ ,
P(h1σ ) , 0 relative to H . Suppose that P(h1σ ) = 0, for all h1σ
such that h1σ |= T . By rationality, for each such h1σ , P(h

1

σ ) =

λ
∑
hj ∈H2 P(h2j ).P(h

1

σ |h
2

j ) = 0. Thus, all the non-0 probability mass

of H falls on T undercutting sequences σi . But for each such T
undercutting σi of lengthm, since T is argumentatively complete,

there is an evaluation hypothesis hm+1 supported by T such that

P(σi |h
m+1) = 0. SinceH has only finitely many levels, at some level

k all T undercutting sequences σj get 0 probability. This, together

with the fact that

∑
h1∈H1 P(h1) , 0, contradicts the assumption

that P(h1σ ) = 0. Since T is argumentatively complete, any sequence

supporting any h1 where P(T |h1) < P(T ) will eventually get proba-

bility 0; so

∑
{h1

:P (T |h1)≥P (T )} P(h
1) =

∑
h1∈H1 P(h1). Moreover, as

Pn gets updated, as n → ∞, the h1 such that Pn (T |h1) ≥ Pn (T ) turn
out to be such that h1 |= T . The conditions on first order evaluation

hypotheses inH of Proposition 1 are now met. By Propositions 1

and 3, as n → ∞, Pn (h1σ ) → 1,Pn (h1i ) → 0 for i , 1. By Proposi-

tion 3, Pn (T ) → 1.

To show (2), by Proposition 6,h1σ is also PWMC forT . Asn → ∞,

since Pn (h1σ ) → 1, Pn (T ′) → 0. □
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Proposition 8. Suppose T is argumentatively complete. Let ˆf
be a hierarchical Bayesian learner whose evaluation hypotheses are
rational and are updated on T . If T ′ ⊊ T such confirms a hypothesis
h that T does not, then ˆf is incapable of learning h.

Claim 2 of Proposition 7 shows that Pn (T ′) → 0. Then apply Propo-

sition 5. □
Argumentatively complete testimony reduces the case of higher

order Bayesian frameworks to our first order setting for IB. What

is troubling about IB is that our learner
ˆf may hold onto an argu-

mentatively complete T regardless of how inadequate it is in the

eyes of others or standard epistemic criteria; an argumentatively

complete theory will always eventually find a reply to any attack

or any doubt
ˆf might acquire.

Argumentatively complete testimony isn’t just an abstract con-

cept; many social media and news sites already approximate this

condition. Outlets like NewsMax or One Amercan News Network that
have a particular political bias will attack the credibility of stories

from other bodies of testimony that have gone against a narrative

they were and are promoting; darker conspiracy spinning websites

like those promoting QAnon will attack arguments against their

theories once they become aware of them.
2
In anecdotal support

of our claims, consider Michelle Goldberg’s “It’s Marjorie Taylor

Greene’s Party Now" New York Times, 2/2/2021) description of a

group in IB: “American conservatism — particularly its evangelical

strain — has fostered derangement in its ranks for decades, insist-

ing that no source of information outside its own self-reinforcing

ideological bubble is trustworthy.”

A crucial component of argumentatively complete testimonyT is

that it promotes evaluation hypotheses that both makeT eventually

trustworthy but also PWMC forT . Sources like the New York Times
embody this in their slogan all the news that’s fit to print, but there’s
a commercial reason for this outcome; news sites and social media

are out to capture market share and so they naturally promote

themselves as accurate and complete at least in a certain domain.

The nature of contemporary testimony leads agents naturally to a

situation where IB occurs.

But how does argumentative completeness relate to FB algo-

rithms? We suspect that FB algorithms don’t entail argumentative

completeness, but they facilitate it like they do for PWMC. An FB

algorithm д’s choosing testimony Tj for ˆf should ideally detract

from other possible additions to
ˆf ’s evidence that might lead

ˆf to

find other testimony besides that provided by д. Since the goal of
providing д is to reinforce T and the evaluation hypotheses sup-

porting it, a possible consequence is for д to provide testimony that

not only supports T but attacks any evidence that might detract

from T .

5 COMPARISONS TO PRIORWORK
IB is an epistemological bias that we briefly described in a prelim-

inary abstract [Asher and Hunter 2021]. IB is clearly related to

confirmation bias [Lord et al. 1979; Nickerson 1998; Oswald and

Grosjean 2004], in which agents interpret new evidence in a way

that confirms their beliefs, and to the framing biases of [Tversky

2
See Stuart A. Thompson, “Three Weeks Inside a Pro-Trump QAnon Chat Room”

NY Times, Jan 26, 2021).

and Kahneman 1975, 1985]. People tend to see in the evidence what

they believe. These forms of bias, however, concern how beliefs and

bias influence interpretation, painting only part of the picture of IB.

[Asher and Paul 2018] shows a codependence between beliefs and

the interpretation of ambiguous or underspecified elements in a text

and postulates a similar circular structure to that which we have

exploited for belief and interpretation of evidence in analyzing IB.

Further, unlike much of the psychological and philosophical litera-

ture which either claims that biases like IB arise from bad epistemic

practices or aren’t really beliefs at all, or finds epistemologically

exogenous justifications for it [Cassam 2016; Dardenne and Leyens

1995; Ichino and Räikkä 2020], we show how IB is a natural outcome

of Bayesian updating, rational resource management and the belief

interpretation codependence.

IB is also related to what [Jamieson and Cappella 2008; Nguyen

2020] have called echo chambers and epistemic bubbles. Epistemic

bubbles are the sort of epistemic structures that result from Propo-

sition 1. Contrary to what [Nguyen 2020] claims, we show that they

are not so easy to get rid of. Once the potentially trustworthy hy-

pothesis is sufficiently entrenched, which can happen very quickly

as we show in Section 3, simply bringing evidence inconsistent

with an accepted body of evidence will not liberate the learner from

his IB predicament. Evidence inconsistent with the primary source

of our learner’s beliefs will be simply rejected, as we show formally

in Corollary 2. Following [Jamieson and Cappella 2008], [Nguyen

2020] claims that echo chambers are much more problematic epis-

temically. We have shown this rigorously via Proposition 3 as well

as in Propositions in Section 4. As we show below in Section 6

(see Proposition 10), there is no escape from these echo chambers,

once certain epistemic principles are admitted to. We have also

shown conceptual and formal links between epistemic bubbles and

echo chambers. In fact epistemic bubbles lead naturally to echo

chambers, as we show in Sections 3 and 4.

IB is also related to so called epistemic bootstrapping [Douven
and Kelp 2013; Vogel 2008; Weisberg 2010]. Epistemic bootstrapping

is a phenomenon in which an agent A exploits a hypothesis h she

is interested in confirming in the very process of confirming h. IB
is somewhat different. In IB, A has a hypothesis h that confers a

certain probability on evidence E. Suppose h assigns a relatively

high probability to E. As more evidence E ′ comes in, however, and

E ′ tends to confirm E, then A’s confidence in h should increase.

And A doesn’t just exploit one hypothesis but other hypotheses

that may be opposed and that would tend to disconconfirm h. As
[Douven and Kelp 2013] argues, bootstrapping is not in itself bad;

in fact this is just what scientists do. What matters is whether the

process involved in confirming h could disconfirm h. So in principle,
the inductive practices that lead to IB aren’t easily criticizable as

instances of bad epistemic bootstrapping. Most likely unbeknownst

to A, however, the epistemic deck is stacked against her, when an

FB algorithm is used to feed her testimony. In principle this is quite

a different situation epistemically from a case of bad epistemic

bootstrapping.

One can also see IB as a concrete application of work on deter-

mining an optimal allocation of resources to the exploration and

exploitation of sources [Auer et al. 2002; Banks and Sundaram 1994;

Burnetas and Katehakis 1997; Cesa-Bianchi and Lugosi 2006; Gariv-

ier and Cappé 2011; Lai and Robbins 1985; Whittle 1980]. It is also
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related to work on generalization in machine learning. Epistemic

biases affect generalization and learning capacity in ways that are

still not fully understood [Kawaguchi et al. 2017; Lampinen and

Vehtari 2001; Neyshabur et al. 2017; Zhang et al. 2016]. [Zhang

et al. 2016] show that standard techniques in machine learning

for promoting good epistemic biases and generalization—training

error minimization, regularization techniques like weight decay or

dropout, or complexity measures used to minimize generalization

error (the difference between training error and test error)—do not

necessarily lead to good generalization and test performance. Ar-

gumentatively complete testimony T incorporates an adversarial

attack mechanism against any good epistemic practices that might

discount T . It’s this mechanism that guarantees IB.

The argumentation literature [Amgoud and Demolombe 2014;

Dung 1995] is also relevant to IB. If testimony T is argumentatively
complete, then T always provides a counterargument to an attack

against T–much like an acceptable argument in [Dung 1995]. In

addition, however, an argumentatively complete T also supports

higher order evaluation hypotheses that support hypotheses that

supportT . There are also important connections to the literature on

trust [Castelfranchi and Falcone 2010]; in our set up learning agents

trust certain sources over others, and our higher order setting in-

vokes a hierarchy of reasons. Nevertheless, the argumentation and

trust-based work of which we are aware is complementary to our

approach. An argumentation framework takes a possibly incon-

sistent belief base and imposes a static constraint on inference in

such a setting. Similarly, trust is typically modeled in some sort

of static modal framework. By contrast, ME learning games and

the whole Bayesian framework are dynamic, with beliefs evolving

under evidence and game strategies evolving under agent interac-

tion. It is this dynamic evolution that is crucial to our approach

and, we think, to modeling agents and learning. In sum, we are not

looking at the problem of consistency, but rather the problems of

entrenchment and bias.

6 THE COMPLEXITY OF IB
IB is a result about learning. IB is a suboptimal but natural outcome

of the way contemporary bodies of evidence are set up and how

humans interpret them. Given our set up, everything turns on what

body of evidence on which to update and with which evaluation

hypotheses.

If IB is suboptimal, its effects are still more worrisome, because

agents in the grip of IB are often unwilling or incapable of changing

their beliefs so as to be able to learn. Of course, our learner might

just be happy with T ; perhaps he needs no more accurate or more

truthful body of testimony. He may not be interested in learning

anything beyondwhatT presents himwith. In this section, however,

we assume a learner who might be interested in learning but has

difficulting escaping his IB prison. We assume a rational learner
ˆf

who updates according to his evaluation hypotheses; so if he has

an evaluation hypothesis that confers a high probability on someT ,

he will update on T . We’ve seen that
ˆf can get IB when he unduly

restricts the bodies of evidence which serve as the basis of update or

when he attends to an argumentatively complete testimony. So key

to removing IB is to get
ˆf to change his hypotheses and consider

other evidence that that to which he is wedded.

Anecdotally, we have a lot of evidence that IB is hard to escape
3

In general, however, we lack a precise analysis of its difficulty. In

this section, we introduce a game theoretic method that shows IB is

not only hard to defeat but it can even be hard to detect (leading to

self-deception). We will see that the choice of epistemic paradigms

is important.

To motivate our approach, consider how an actual conversation

might go between our learner
ˆf in the grip of IB and a person E

who wants to correct his problem. E might question
ˆf ’s reasons for

believing some proposition ϕ; she might try getting
ˆf to consider

different bodies of evidence T ′
that might disconfirm ϕ. ˆf might

accept T ′
or he might argue against it—by providing, for example,

reasons why T ′
is not trustworthy or why the arguments support-

ing T ′
are faulty. E might attack those arguments or provide new

evaluation hypotheses for consideration. Our ME games formalize

this interaction.

In an ME learning game G = (V∞,Win), the two players, our

investigator E and our Bayesian learner
ˆf , construct a larger "con-

versation" by consecutively playing finite strings from the vocabu-

lary V .Win specifies the winning condition of E. The vocabulary
V of an ME learning game G consists of sequences of evaluation

hypotheses (with some abuse of notation, we’ll take a single hnj to

be a one place sequence) and a predicate ACCEPT. ACCEPT means

that
ˆf accepts the last suggestion by E and confers upon it a non

zero probability mass. Our ME learning games are subject to several

constraints.

A. Knowledge first [Williamson 2002]: this is a constraint from

formal epistemology;
ˆf only adds a sequence σ to

∏n
1
H i

ˆf
for H i

ˆf
i-th level evaluation hypotheses in H

ˆf if he has

no argument that attacks σ—in other words no evaluation

hypothesis hn+1 ∈ Hn+1
ˆf

such that hn+1(σ ) = 0.

B. The Jury in anME learning game is epistemologically compe-

tent; i.e. it sanctions only evaluation hypotheses that advance

learning.

C. E may only add sequences of evaluation hypotheses sanc-

tioned by the Jury. We assume this to be a finite setHJ .

D. Both players may only propose consistent and rational se-

quences.

E.
ˆf has learned from some body of evidence T , which is com-

mon knowledge.

F.
ˆf may only not accept a proposal σ of E, if he has a reason to

do so—i.e., if he has an evaluation hypothesis hn+1 ∈ Hn+1
ˆf

such that hn+1(σ ) = 0.

We say a sequence σ ∈
∏n

1
H i

to be positive if for each element

hm+1 and hm of σ hm+1(hm ) >> 0. A sequence σ nullifies a se-

quence σ1, if for allm and for hm
1

of σ1, the h
m+1

of σ is such that

hm+1(hm
1
) = 0. We can have two sequences each one nullifying the

other. This formally represents an n round argument, with each

round j + 1 offering a counterargument to the argument of round j .
We will say that a hypothesis h1 is T positive if h1 is positive and
P(T |h1) = 1

3
See Thompson, cited in note 2.
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We now define the moves of a game G, in which we suppose a

body of evidence T that
ˆf has attended to and a body of evidence

T ′
inconsistent with T . E plays first, then

ˆf then replies. The game

ends if
ˆf plays ACCEPT, which implies that he adds a hypothesis h1∗

to H1

ˆf
, with a non-0 probability mass and with with high P(T ′ |h1∗),

where T ′ ∪T is inconsistent.

(m1) E proposes T ′
-positive h1 ∈ H1

J to be added to H1

ˆf
.

(m2) Suppose at round k ≥ 1 of ρ in G E has proposed a T ′

positive h1. At k + 1 ˆf may play ACCEPT.

(m3) Suppose at round k of ρ in G E has proposed a a T ′
positive

h1. At k + 1
ˆf may play a nullifying h2 ∈ H1

ˆf
such that

h2(h1) = 0, if there exists such h2 ∈ H2

ˆf
.

(m4) Suppose E has proposed a positive sequence σ of lengthm
and with h1σ T ′

positive at round k of ρ in G. At round k + 1
ˆf may respond with sequence of lengthm + 1 nullifying σ .

(m5) Suppose at round k of ρ of G, ˆf has proposed an m-length

sequence σ nullifying a positive σ∗ proposed by E, with T ′

positiveh1σ∗ . E may respond at roundk+1 of ρ with a positive

m + 1 length sequence hm+1∗ .σ∗, with h
m+1
1

(hm ) , 1 for hm

in σ .
(m6) Suppose at round k of ρ in G, E has proposed a positive

sequence σ of lengthm and with h1σ T ′
positive. At round

k + 1 ˆf may play ACCEPT, which implies that he adds σ to∏n
1
H i

ˆf
.

We note that if move (m6) occurs,
ˆf assigns h1∗ and T

′
a non-0

probability mass and updates with evidence T ′
, which makes the

ACCEPT move coherent.

Suppose that in an ME learning game G, E’s winning condition

is simply to discover that
ˆf is interpretively blind, if he is. Call this

condition IB. We establish the complexity of E’s attempt to achieve

IB. The first order case with a finiteH where the game is restricted

to moves m1,m2,m3, is rather trivial. More interesting is the case of

an ME learning game G = (V∞,Win) with Win = IB and in which

E and
ˆf play higher order evaluation hypotheses.

Proposition 9. Suppose an ME learning game G = (V∞,Win)
with Win = IB in which ˆf plays moves described in (m4)- (m7). Then
ˆf is not interpretively blind iff play stops at some finite ordinal n.

Suppose that in the play of G, ˆf accepts at some level n to add

the sequence of evaluation hypotheses proposed by E. Then by the

construction of the sequence and the requirement of coherence

(constraint D), this confers upon some evaluation hypothesis s∗1
a non zero probability such that P(T ′ |h1∗) = 1, where T ′

is incom-

patible with the body of evidence T . By accepting,
ˆf will have

an evaluation hypothesis h1∗ with non zero probability such that

P(T ′ |h1∗) = 1, where T ′
is incompatible with the body of evidence

T , which ˆf has proposed as a source of learning (constraint E). Now

when
ˆf updates his belief inT he must do so with respect to h1∗, and

he must now update his confidence in his evaluation hypotheses

with respect not only toT but alsoT ′
. In that case, P(h1∗ |Tn ,T

′
n ) ↛ 0

and Pn (T ′) ↛ 0. As a result,
ˆf will be able to learn from T ′

, and so

he is not interpretively blind with respect to T .

If there is no stopping point at any finite ordinal, then E’s is

never able to get
ˆf to accept a T ′

positive hypothesis. In which

case,
ˆf continues to only update on T and by Propositions 7 8,

ˆf is

interpretively blind. □
Suppose E’s winning condition for an ME learning G, is to get

ˆf to accept a T ′
positive evaluation hypothesis. Call this winning

condition for E P (for persuasion).

Corollary 3. Suppose that in anME learning gameG withWin =
P. The complexity of Win is an R.E. set. If Win = IB then Win is
co-r.e. or Π1 in the Borel Hierarchy.

Proposition 10. Suppose an ME learning game G with Win = P

and ˆf as described in Proposition 7. Then E has no winning strategy
in G.

Proposition 8 implies
ˆf ’s evaluation hypotheses are updated on an

argumentatively complete body of evidence T . When implemented

via an ME game G, the sequence of evaluation hypotheses in Propo-

sition 7 provide a winning strategy for
ˆf . Suppose E proposes an

h1 supporting e that is inconsistent with T . Even if E generates a

suitable sequence of higher order T ′
positive evaluation hypothe-

ses h1,h2,h3, . . ., given Constraint A above,
ˆf will only accept an

evaluation hypothesis if he has no argument against it. But as T

will eventually supply such an argument,
ˆf can always counter E’s

proposals. So she has no winning strategy. □
Not only is IB computationally complex (Corollary 3 shows it is

not computable), Proposition 10 shows formally that even if E has

rationally compelling arguments to show that
ˆf is better off (his

payoff or reward is higher) in accepting her proposed sequence

of evaluation hypotheses,
ˆf can rationally resort to T to counter

her argument. Extracting someone from higher order IB is thus

impossible by purely epistemic means. There is no way of getting

someone, even a rational agent, out of higher order IB by purely

epistemic arguments, given our assumptions. This pessimistic is

borne out empirically: some people in the grip of right wing con-

spiracy theories in the US were dying of Covid19 in December of

2020 and January 2021 but continued to refuse to believe that it

was that disease that was killing them—despite all the evidence and

arguments they were given, they refused to let go of an obviously

faulty but argumentatively complete T .
Of course, people sometimes do change their minds and do es-

cape the grip of argumentatively complete theories, many times

for epistemically exogenous reasons.
4
But by challenging one of

our assumptions, rational agents can of course also reject IB. The

weak link in our argument is assumption A, the "knowledge first"

assumption. Perhaps
ˆf should accept evaluation hypotheses even if

T attacks them. More likely,
ˆf should not accept all attacks equally.

Probably, he should be skeptical of any body of evidence T that

promotes PWMC for T and T eventually trustworthy evaluation

hypotheses while attacking any point of view at variance with it.

We now explore the play between E and
ˆf in an ME learning

game G whereWin = P before
ˆf has accepted enough of the argu-

mentatively completeT to close off learning from alternative bodies

of evidence. Suppose T is argumentatively complete but comes in

4
For instance, the satisfaction they derived from belonging to a particular com-

munity supported by a particular body of testimony might and does wane.
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stages; if T ′
i attacks Ti , then Ti+1 but not Ti attacks T

′
i . That is, an

argumentatively complete T reacts to attacks but does not forsee

all attacks in advance. Suppose a set of consistent first order eval-

uation hypotheses H1 = {h1
1
,h1

2
, ...}, with P(h1

1
) = .6, P(h1

2
) = .4,

and P(Ti |(h1) = 1 = P(T ′
i |h2). Now suppose T ′

1
∪ T1 is inconsis-

tent and E proposes h1
2
since h1

2
|= T ′

i . Since the h
1

i are consistent,

P(T1 |h
1

2
) = 0 = P(T ′

2
|h1
1
). At this point, ˆf could accept E’s proposal

under constraint (A), G ends and E wins.
ˆf will continue to update

over stagesT andT ′
with the marginal probabilities P(Ti ) = .6 and

P(T ′
i ) = .4 remaining stationary.

On the other hand,
ˆf may decide to wait to see what the next

stageT2 ofT brings. AsT is argumentatively complete,T2 will attack

T ′
2
, and add a nullifying h2 ∈ H2

supported by T2. Should ˆf accept

h2, the probability of h1
2
will go to 0 in H . But now suppose we

have a constraint, Discount, that discounts any nullifying sequence

from T . It would be unreasonable for
ˆf to wipe out alternatives in

the face of this level of uncertainty; at this stage, P(T2) = .6 and
P(T ′

2
) = .4. Summarizing:

Proposition 11. Suppose an ME learning game G with constraint
A replaced by Discount and with Win = P and ˆf as described in
Proposition 7. E then has a winning strategy in G, and IB does not
arise for ˆf .

7 CONCLUSIONS
Interpretive blindness results from a dynamic, iterative process

whereby a learner’s background beliefs and biases lead her to update

her beliefs based on a body of testimonyT , and then biases inherent

inT come back to reinforce her beliefs and her trust inT ’s source(s),
further biasing her towards these sources for future updates. We

have introduced and formally characterized IB. We have shown that

IB can prevent learning even in higher order Bayesian frameworks

for learning from argumentatively complete testimony, despite

the presence of constraints designed to promote good epistemic

practices. We also shown that IB is computationally complex as

a co-r.e. set via a game theoretic analysis, and that an agent may

rationally remain in IB in the face of epistemic arguments. Our

game theoretic analysis can also be extended to cases where the

agent falls out of IB but then is a recidivist and becomse a prisoner

once more. We leave that for future work.

How general are the results in Propositions 7 and 8? PAC, Sta-

tistical Physics Framework, VC, and supervised Bayesian learning

are four different instantiations of Wolpert’s extended Bayesian

formalism that we use [Wolpert 2018]. Thus our results should hold

for other frameworks.

Investigating IB alas is not just an academic enterprise. IB really

does happen, with sometimes tragic or dangerous results. We think

a careful formal analysis is urgent for society. Finally, we note

that while we have focused on IB as a problem for learning from

testimony, the problem it raises for learning extends to any case in

which we do not have unmediated access to ground truth and our

data is “theory laden” [Hanson 1958].
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