
Investigating and Designing for Trust in AI-powered Code
Generation Tools

Ruotong Wang∗
ruotongw@cs.washington.edu
University of Washington
Seattle, Washington, USA

Ruijia Cheng∗
rcheng6@uw.edu

University of Washington
Seattle, Washington, USA

Denae Ford
denae@microsoft.com
Microsoft Research

Redmond, Washington, USA

Thomas Zimmermann
tzimmer@microsoft.com

Microsoft Research
Redmond, Washington, USA

ABSTRACT
Trust is a crucial factor for the adoption and responsible usage of
generative AI tools in complex tasks such as software engineering.
However, we have a limited understanding of how software devel-
opers evaluate the trustworthiness of AI-powered code generation
tools in real-world settings. To address this gap, we conducted Study
1, an interview study with 17 developers who use AI-powered code
generation tools in professional or personal settings. We found
that developers’ trust is rooted in the AI tool’s perceived ability,
integrity, and benevolence, and is situational, varying according
to the context of usage. Existing AI code generation tools lack the
affordances for developers to efficiently and effectively evaluate the
trustworthiness of AI-powered code generation tools. To explore
designs that can augment the existing interface of AI-powered code
generation tools, we explored three sets of design concepts (sug-
gestion quality indicators, usage stats, and control mechanisms)
that derived from Study 1 findings. In Study 2, a design probe study
with 12 developers, we investigated the potential of these design
concepts to help developers make effective trust judgments. We
discuss the implication of our findings on the design of AI-powered
code generation tools and future research on trust in AI.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI;
HCI design and evaluation methods; • Software and its engi-
neering; • Computing methodologies→ Artificial intelligence;

KEYWORDS
software engineering tooling, human-AI interaction, trust in AI,
generative AI
ACM Reference Format:
Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas Zimmermann. 2024.
Investigating and Designing for Trust in AI-powered Code Generation Tools.
∗This work is done during the author’s internship at Microsoft Research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0450-5/24/06
https://doi.org/10.1145/3630106.3658984

In The 2024 ACM Conference on Fairness, Accountability, and Transparency
(FAccT ’24), June 03–06, 2024, Rio de Janeiro, Brazil. ACM, New York, NY,
USA, 19 pages. https://doi.org/10.1145/3630106.3658984

1 INTRODUCTION
With the rapid development of generative AI in recent years, it’s in-
creasingly used to support various human tasks inmultiple domains,
including complex information work such as software engineering.
In software engineering, AI-powered code generation tools such as
GitHub Copilot [3] and Tabnine [2] have quickly gained popularity
in programmer communities [20, 35], enabling a new way of pro-
gramming assistance [5, 50]. AI code generation tools can generate
multiple lines of code in real-time based on a prompt within an
Integrated Development Environment (IDE) [50].

While researchers and software developers are excited about
AI-powered code generation tools, these tools also introduce new
design challenges in creating responsible and reliable user experi-
ences. One significant challenge involves helping users evaluate
the trustworthiness of AI tools. Software developers’ trust in pro-
gramming support tools has long been studied as a crucial design
requirement for such tools, as it serves as a key prerequisite for the
safety of resulting software products [22, 26, 38]. Without proper
support, developers can find it challenging to form accurate mental
models of what AI tools can do or not [50] or determine the quality
of specific AI suggestions [5, 48, 55]; thus becoming vulnerable to
over- or under-trusting the AI [22, 46].

Existing research on trust in AI shows that the trustworthiness
of technology is not inherent in an AI system but is based on how
users interpret the information communicated via the systems’ in-
terfaces and interactions [36], and it can shift by context (e.g., task
difficulty) [32, 70]. Yet, while emerging work has begun investigat-
ing the general usability of generative AI assistant tools in software
engineering or broader domains [5, 6, 50, 55, 58, 71], we still know
little about how their interfaces should be designed to communicate
appropriate levels of trustworthiness and help developers form
calibrated trust attitudes in AI-powered code generation tools.

In this paper, we present results from a two-stage qualitative
study. We started by getting an empirical understanding of de-
velopers’ notions of trust in the particular context of using AI
code-generation tools. In Study 1, we conducted interviews with
17 developers who have various levels of experience in using AI-
powered code generation tools in real-life scenarios. We analyzed

https://orcid.org/0000-0003-0964-6943
https://orcid.org/0000-0002-2377-9550
https://orcid.org/0000-0003-0654-4335
https://orcid.org/0000-0003-4905-1469
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630106.3658984
https://doi.org/10.1145/3630106.3658984


FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

the results from Study 1 to answer the questions of what factors
contribute to developers’ trust attitudes in AI-powered code generation
tools (RQ1) and what challenges do developers face in evaluating the
trustworthiness of AI tools (RQ2). We found that developers evaluate
the trustworthiness of an AI tool based on its perceived practi-
cal benefits, alignment with their short- and long-term goals, and
process integrity when generating outputs. Moreover, developers
continuously reassess these factors in specific contexts based on
situational factors such as stakes or complexity of tasks, forming
situational trust attitudes. We also found that the lack of trust af-
fordances in existing AI tools could result in inefficient and biased
evaluation of AI’s trustworthiness. To explore solutions to these
challenges, we explored how to augment existing system interface
to support effective and efficient evaluation of AI’s trustworthiness
(RQ3) in Study 2. Specifically, we collected feedback on three groups
of visual design concepts in design probe sessions with 12 addi-
tional developers. We found that design concepts, including quality
indicators of AI suggestions, usage statistics dashboards, and con-
trol mechanisms to communicate user intention, show promise in
scaffolding developers’ trust judgments.

Our studies make the following contributions: (1) Building on
prior literature that shows trust is rooted in the interplay between
system characteristics and contexts [41] and the call for empirical
understanding of trust in specific application areas [32], we provide
a nuanced description of developers’ notion of trust in generative
AI tools in the context of programming, based on in-depth empirical
data collected from interviews with developers who have real-world
experience using AI powered code generation tools; (2) Furthering
the growing literature on users’ experiences with AI-powered code
generation tools, we show the lack of ways to communicate users’
intentions and lack of signals to validate AI output which are often
characterized as usability challenges could, in fact, pose challenges
for users to evaluate the trustworthiness of AI tools; (3) We con-
tribute three groups of user-evaluated design implications, coupled
with visual examples, to help designers take trust into consideration
when designing AI-powered code generation tools.

2 RELATEDWORK
2.1 Trust in AI
Trust is considered a key factor affecting user interaction with
AI [16, 19, 36]. The lack of trust can prevent users from adopting
AI tools in their workflow, even when the system’s performance
is superior [8, 47]. On the other hand, blind trust in AI, especially
in high-stake tasks such as software engineering, can result in
overlooking mistakes or risks produced by AI [48, 49].

Trust in AI is defined as the user’s attitude that “an agent will
help achieve an individual’s goals in a situation characterized by
uncertainty and vulnerability” [33, 36, 56], and therefore is particu-
larly important when users engage in high-stake scenarios where
the mistakes could have significant repercussions [30]. A review pa-
per highlights that trust in AI is subjective and should be studied as
an attitude [56], distinguishing from reliance or compliance, which
are often studied as a behavior [54]. Indeed, Mayer et al. charac-
terized trust as “an affective construct that can vary depending on
the context and experiences of a person rather than simply being

a rational or an objective reality.” in their seminal paper on orga-
nizational trust [41]. In the context of AI, empirical evidence has
also shown that users’ trust is affected by contextual factors such
as institution investment, other users’ endorsement, and riskiness
of task [33, 61, 69].

Besides contextual factors, prior research identified that three
system properties, including the system’s ability, benevolence, and
integrity, shape users’ trust [32, 41]. More recently, Liao et al. high-
lighted the importance of interface and interaction design in me-
diating users’ trust in AI [36]. Specifically, Liao et al. introduced
the notion of trust affordances, which are visual cues in the inter-
face that indicate the system’s trustworthiness. Users make trust
judgments based on these trust affordances. Therefore, user inter-
faces and interactions play an important role in communicating the
internal trustworthy characteristics of AI to users. Following this
understanding of trust, there has been a call for AI systems that can
communicate an appropriate level of trustworthiness through their
design, supporting users in building calibrated trust that aligns with
the system’s actual trustworthiness [13, 30, 66].

Many prior HCI works have empirically investigated the effec-
tiveness of various interface augmentations to support users in
evaluating and calibrating trust. One common approach is to ex-
plain AI predictions and decisions using confidence score [58, 69]
or visual explanations [65], which could give users means and
metrics to assess the performance of AI and make informed trust
judgments. A related approach is to support the interpretability of
model mechanisms [37, 43, 53], increasing the predictability [18, 21]
of AI behavior. However, the effectiveness of these transparency
features is not persistent across studies. For example, Agarwal et al.
found that model confidence scores could mislead users’ perception
of the quality of model output [4]. Another approach is to provide
users with ways to control AI behavior. For example, research has
shown that allowing users to co-create music with AI-powered
tools [39] or collaborate on writing tasks with AI models [34] can
foster a sense of control and ownership, leading to higher trust in
the system. Lastly, it has been shown that cognitive forcing func-
tions such as delay showing AI’s output could encourage users to
engage with AI output analytically and reduce over-trust in AI [14].

Despite the plethora of research on trust in AI, most centers
on deterministic AI tools for classification or prediction tasks [56].
These studies highlight the opportunity to support users in eval-
uating the trustworthiness of generative AI systems and forming
calibrated trust attitudes using interfaces and interactions. However,
how existing insights translate to generative AI tools, especially
in software engineering contexts, remains an open question. Char-
acteristics such as the richer and more complex input and output
space [53] and more flexible roles in human-AI collaboration [25]
distinguish generative AI tools from the deterministic AI tools that
are widely studied, but also introduces new challenges and oppor-
tunities in designing for users’ trust.

2.2 Generative AI in software engineering:
AI-powered code generation tools

The recent development of generative AI models unleashes new
possibilities for AI tools to support complex human tasks [7], in-
cluding software engineering [5, 6, 59, 71]. Software engineering is



Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

a type of complex and high-demanding information work that often
involves high cognitive load and stress [23, 24, 27, 50], and there-
fore demands high-quality support. As a means to provide support
for this complex work, commercial AI-powered code generation
tools such as GitHub Copilot [3] and Tabnine [2] have emerged
and become a novel service to expert and novice code creators
alike. These tools provide AI services powered by large language
models trained on code data [3, 52] and suggest code based on
user prompts and project context [10]. For instance, powered by
the OpenAI Codex model [1], Copilot is an extension in code edi-
tors that can generate code suggestions as ghost text at the user’s
cursor location. When using AI code generation tools, users can
write comments in natural language and prompt the AI to gener-
ate code that they can accept, reject, make edits, and choose from
various candidates. The AI can also complete users’ in-progress
code within a single line or by completing the function. Compared
to traditional code completion tools based on defined rules and
documentation, AI-powered code generation tools produce longer
and more contextually relevant code snippets by synthesizing new
code that might not exist in any code base [6]. As AI code gener-
ation tools introduce a brand new interaction paradigm between
developers and AI [44, 64], early empirical investigations show
that developers struggle to adapt to the new interaction pattern,
often having an incomplete mental model of what Copilot can do
or not [50] and finding it challenging to review and evaluate the
quality of AI-generated code [5, 6, 49, 55]. These known usability
challenges motivate us to understand how developers evaluate the
trustworthiness of AI-powered code-generation tools.

While user trust has long been considered crucial in the design
of traditional programming support tools, such as compilers and
version control systems [62, 63] to ensure software safety [26, 38],
developers’ trust in AI code generation tools needs even more
nuanced and careful consideration [6, 17, 48] due to the uncertainty
introduced by generative AI. For example, since the mechanism of
generative AI is more opaque and the outputs are more difficult
to anticipate than traditional developer support tools, developers
must establish an appropriate level of trust with these AI tools
and be cautious about the potential risks [6]. In particular, Widder
et al. conducted an ethnography study in 2021 with developers
who use deterministic code generation tools and uncovered 16
factors that affect their trust in the tool [61]. Given that trust is
deeply embedded in contextual factors, the factors identified in prior
empirical studies might change for AI-powered code-generation
tools as system properties and the social and organizational contexts
of usage shift.

The pressing need to support developers in building and calibrat-
ing trust and the gap in previous literature motivated us to conduct
retrospective interviews with developers who have experience us-
ing AI code generation tools in real-life scenarios (Study 1). In our
research setting, developers face real consequences if AI produces
undesirable outcomes, which could help us uncover the interplay of
trust and contexts. Building on the interview findings and literature
on the design of trust affordances, such as transparency and users’
control, we further conducted a design probe study to understand
the design space of trust affordances that can support developers
in evaluating the trustworthiness of AI-powered code generation
tools (Study 2).

3 STUDY 1: HOW DO DEVELOPERS EVALUATE
THE TRUSTWORTHINESS OF AI TOOLS?

To understand what contributes to developers’ trust attitudes in AI
code generation tools (RQ1), as well as their challenges in making
trust judgments (RQ2), we conducted retrospective interviews with
17 developers who use AI-powered code generation tools in real-life
professional or personal settings.

3.1 Methods: Retrospective Interview Study
3.1.1 Study Procedure: collect critical incident + retrospective inter-
view. To capture the interplay between trust and specific contexts
of usage, we adopt a method of critical incident sampling and retro-
spective interviews. A similar approach has been applied to study
patients’ trust during medical visits [60, 67] and interpersonal trust
in business negotiations [45]. A week before the scheduled inter-
view, we contacted participants via instant message and asked them
to prepare for the interview by collecting their significant moments
when using AI-powered code generation tools during the following
week—i.e., moments where they were either particularly satisfied,
disappointed, or surprised. Participants were asked to share the
descriptions and screenshots of those moments with us and were re-
minded regularly throughout the week. These records of significant
moments helped participants recall the nuances of their experi-
ence in the interviews, allowing us to understand their trust in AI
tools in realistic contexts of use. During the 60-minute retrospec-
tive interview sessions, we asked participants about their general
experience with AI tools and then asked them to walk through
the significant moments they collected during the prior week. We
specifically probed for factors that affected their trust attitudes in
AI. The interviews were conducted from July to August 2022, and
the study procedures received approval from the Institution Review
Board.

3.1.2 Participants. We recruited 17 software engineers with di-
verse programming and AI tools experience. Participants were re-
cruited from different organizations of a large technology company
through messages shared in group chats and emails distributed
to developers chosen randomly from a directory. We stopped re-
cruiting after hearing repeating themes in the interviews. Our final
sample consists of 15 male and two female participants, aged be-
tween 18 and 54 years, with varying degrees of work experience and
seniority. Participants had programming experience ranging from 2-
25 years. They reported working on different areas of development
(e.g., front-end, back-end, data science) and were involved in vari-
ous types of development tasks (e.g., modifying existing features,
writing new features, writing tests, refactoring). All participants
had experience using Github Copilot, with various frequencies (9
daily, 3 weekly, 3 monthly, 2 recently started) and experience using
it in professional and personal settings. Two also had experience
with Tabnine. Detailed profiles of our participants are included in
the Appendix (Table 1).

3.1.3 Data Analysis. All interviews were video and audio recorded
and later transcribed. Our analysis of the interview data followed
the procedure of inductive thematic analysis [9]. The first two au-
thors took detailed field notes and frequently discussed the emerg-
ing themes with the research team during data collection. Based



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

on the field notes and discussions with the research team, the first
author developed an initial codebook, applied it to the interview
data, and noted places where codes could be merged or refined. The
research team then collectively refined and grouped the codes via
discussion, deriving a final code book, which is then re-applied to
the data. The final codebook consists of 39 codes that focus on fac-
tors affecting developers’ general trust in AI tools, their process of
evaluating specific AI suggestions, and their challenges in building
trust in AI tools. Example codes include “trust varied by situations”,
“initial expectation affects trust building” or “trial and error to build
trust”.

3.2 Factors that contribute to developers’ trust
attitudes in AI tools (RQ1)

Aligning with prior literature that indicates systems’ ability, in-
tegrity, and benevolence as important factors that contribute to
users’ trust attitudes [36, 41], we observed that developers trust a
given AI-powered code generation tool when they perceive practi-
cal benefits (ability), alignment with their goals (benevolence), and
trustworthy processes (integrity). We also observed that situational
factors, such as stakes of the use scenario and the complexity of the
programming task, mediate developers’ trust attitudes.
3.2.1 Ability: AI tools’ practical benefits. The ability of an AI tool
is defined as its competence or performance [33, 36, 41]. In the
context of AI code generation tools, we observed that developers
commonly assess the ability of an AI tool based on its practical
benefits to their work, often related to time saved or lines of code
contributed. Instead of expecting AI to provide perfect solutions,
developers value the ease of building upon AI’s outputs. Even when
recognizing that AI’s suggestions “may not be able to compile or run
correctly”, P16 still trusts the tool: “because I can always go back and
modify it a little bit, tune it maybe, and get it to output what I want.”
P10 values AI’s utility in “lay(ing) the foundation very well.” At the
same time, P13 pointed out the potential for trust erosion if the AI’s
suggestion requires extra time to verify and correct: “If Copilot ever
slows down . . . I would consider not using Copilot anymore.”
3.2.2 Benevolence: alignment of goals between AI and developer.
Benevolence refers to the alignment of the AI tool’s goals and
users’ goals [36, 41]. When it comes to AI code generation tools,
benevolence is the perception that the AI tool is designed with
developers’ best interests in mind, supporting not just immediate
task completion but also their long-term goals, such as learning and
career growth. Trust arises when developers are convinced that
the AI tool respects their personal preferences, learning goals,
and career aspirations. However, we observed many instances
of distrust due to the mismatch between what developers expect
from the AI and the tool’s actual behavior, leaving the impression
of AI being aggressive and obtrusive. Regarding immediate task
completion, P13 often found AI’s suggestions to create unnecessary
“visual clutter” on the screen when they already knew what they
wanted to write. P7 felt that they had to “fight with Copilot” to let
unwanted suggestions go away. Developers alsoworry that usingAI
tools would hinder their personal and career growth in the long run
(i.e., limiting learning opportunities or eventually replacing their
jobs). For example, after accepting high-quality suggestions from
AI for a while, P8 started to worry about losing their “programming

muscles.” As P8 said, Copilot “want to sit in my seat...It started as
a co-pilot, but now it’s the pilot and I’m becoming the co-pilot.” P7
echoed the sentiment and worried that “(AI tool is) robbing me from
the opportunity to actually use my brain,” preventing them from
improving their own programming skills.
3.2.3 Integrity: the model mechanisms. Integrity is defined as
whether the operational process of AI is appropriate to achieve
users’ goals (e.g., fair and secure when making decisions) [36, 42].
Developers trust AI tools when they are informed about and agree
with themodel mechanism. As P17 puts it: “knowing how it works
gives me more trust because I think it’s just whether I agree with your
approach or not.” Developers specifically highlighted the need to
understand AI tools’ security and privacy implications. P5’s trust
in Copilot increased after reading that “it’s bound by all these pri-
vacy laws.” Others noted a lack of relevant information for them
to understand AI tools’ process integrity. For example, P16 desired
“an end-to-end transparent diagram with what’s exactly going on” so
that they could know “exactly what’s being tested to make sure that
this code is appropriately copyrighted.”
3.2.4 Situational factors: the stake and complexity of tasks. De-
velopers’ trust in AI tools is not an object translation of the tool’s
ability, benevolence, and integrity but a dynamic assessment of the
system characteristics together with additional situational factors
such as the stakes of the scenario or the complexity of tasks.
Developers are more reluctant to trust AI tools in high-stake and
high-impact scenarios, such as on codebases that could “impact
millions of customers and millions of dollars potentially”(P13). In
those cases, they would only allow AI tools to play a “suggestive”
role (P10) instead of generating code that would go into production.
In another example, P3 shared that they would trust Copilot when
writing “proof-of-concept type of the projects,” but not in “actual
production setting.” The complexity of tasks also affects trust. While
P2 trusts AI tools for smaller mundane tasks that are “standard and
common” and “involves less logic to do,” they don’t expect AI tools
to be useful for “open-ended stuff.” Others also decide against using
AI tools in situations with special requirements due to a lack of
trust. For example, P6 does not trust Copilot to generate code that
satisfies accessibility and responsiveness requirements. P2 does not
use Copilot when they need to share the code with others because
they don’t trust it to generate code "in the most explainable way
that other people would understand.".

3.3 Challenges in evaluating the
trustworthiness of AI tools (RQ2)

While AI tools’ ability, benevolence, integrity and situational in-
form developers’ trust attitudes, our findings show that the design
of current AI-powered code generation tools fails to adequately
support developers to evaluate these factors, leading to inefficiency
and bias in trust attitudes. We outline three key challenges in this
section.
3.3.1 Biased trust attitudes due to lack of reliable source of infor-
mation on AI ability. Given that the performance of generative
AI varies greatly depending on the specific context and task, mak-
ing informed trust judgments requires developers to have a clear
understanding of AI tools’ ability in different situations. However,
we notice a lack of reliable sources of information for developers



Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

to understand the ability of AI tools. As a result, developers com-
monly rely on intuitions accumulated from first-hand experiences
of evaluating AI outputs to determine AI tools’ abilities in different
situations. Developers like P13 form intuitions by observing AI
performance in routine programming tasks: “once you’ve seen it
10 times, I’m pretty sure Copilot will do this thing the 11th time.”
Others like P6 “played around” or intentionally experiment with AI
to try to “break it’’ when first started using Copilot, so that they
can “know where its limits are”, which helped “set my expectations
on how to use it.”

However, the sole reliance on developers’ personal experience
can be inefficient. P13 shared that: “you have to give it the benefit
of the doubt for a while until it makes a little more sense to you as
a tool...You just have to ignore those things until your expectation
lines up with Copilot’s capabilities.” It also leads to biased percep-
tions of the trustworthiness of AI tools. We observed that while
positive experiences with AI tools lead to increased trust, negative
experiences disproportionately impact developers’ trust. A single
misstep could instantly undermine their trust. For example, when
P5 started using Copilot and found its multi-line suggestion to be
unhelpful, they decided that they would “not even read into the
[multi-line] recommendations.” P5 further emphasized that: “it takes
three good recommendations to build trust versus one bad recommen-
dation to lose trust.” The issue is exacerbated when developers bring
expectations from traditional non-AI-based auto-completion tools
such as IntelliSense, which pulls error-free code directly from the
documentation. This creates unrealistic expectations for AI tools
that generate more flexible suggestions that usually require reviews
and edits and could lead to disappointment. P17 commented that “It
(AI tools) has to be better than IntelliSense to be worth using.” P14 also
shared their frustration when observed that Copilot did not give
them “the right solution” or, in fact, the same solution as IntelliSense.
3.3.2 Ineffective and inefficient evaluation of AI output. While eval-
uating each specific instance of AI suggestions forms the basis of
developers’ understanding of the AI tool’s ability, we observed that
developers often rely on inefficient manual methods due to inade-
quate support for evaluating the suggestion quality. The common
strategies that developers use, such as “logically going through the
problem,” (P11) or “validat[ing] by testing it,” (P13), can be time-
consuming and ineffective. P9 shared that they spent half an hour
identifying a small error of an additional bracket in a long block of
code suggestions that spanned multiple lines. Some developers turn
to external tools such as refactoring tools or library documenta-
tion for assistance. However, frequently using these methods could
disrupt their programming workflow. The process of constantly
switching between writing and reviewing code was described to
be “mentally draining” (P7), “derail my mind.” (P9) and eventually
“creates more work” (P8). For example, P1 once had to spend extra
effort researching a method they were not familiar with to debug:
“I had to look back at documentation, and it was using fields that were
deprecated or nonsense fields that just created on its own.”
3.3.3 Lack of mechanisms to align AI with developers’ goals and
preferences. Aligned goals between developers and AI tools indi-
cate the benevolence of the tool. However, the current interaction
paradigms of AI code generation tools that mostly rely on includ-
ing information in in-progress code for the AI to produce desired
outputs make it challenging for developers to communicate their

short-term and long-term goals and preferences to AI tools, not to
mention signaling the benevolence of the tool. P1 and P8 find it
difficult to tailor their prompts to guide AI output without sacrific-
ing their programming flow. As a result, they chose not to trust AI
suggestions because “there’s no reason to expect Copilot will read my
mind and figure out what I want to do now.” (P1) P9 desired a “sensei”
version of Copilot that is more “endearing” and would “invest in you
by suggesting what you could learn”, but find no way to communi-
cate their goal. Another common challenge is signaling the desired
timing of suggestions from AI tools. Many developers expressed
frustration that they did not get enough suggestions when they
desired AI’s help; whereas other times they found AI suggestions
to be intrusive, getting in the way of their programming flow. For
example, P11 did not want “Copilot to jump the gun and suggest
before I finish fully defining the method” because it would likely lead
to “suggestions that are way off the mark.”

3.4 Summary of results
Our findings in Study 1 reveal that developers tend to trust AI
tools when they perceive practical benefits, alignment with their
goals, and trustworthy processes. Furthermore, developers adjust
their trust by considering additional situational factors such as task
complexity and importance. However, the current AI tools do not
provide enough support for the developers to assess AI tools’ ability
and benevolence in specific situations, resulting in inefficient and
biased evaluation of the trustworthiness of AI tools. These findings
motivate us to explore ways to improve the existing interface and
interaction design of AI code generation tools to help developers
more effectively calibrate their trust attitudes.

4 STUDY 2: HOW TO SUPPORT DEVELOPERS
TO EVALUATE THE TRUSTWORTHINESS OF
AI TOOLS?

We conducted a design probe study to further explore how to aug-
ment existing system interfaces to support effective and efficient
evaluation of AI’s trustworthiness (RQ3). Building on findings in
Study 1, we developed three groups of design concepts with visual
representations and collected feedback from 12 developers. Notably,
we do not aim to settle on or quantitatively evaluate the effective-
ness of any specific design—rather, we used the designs as stimuli
to elicit developers’ feedback and aim to explore the potential of
these interface design concepts as trust affordances through nu-
anced qualitative exploration. A similar approach has been used to
explore interface designs for AI-assisted decision-making systems
in child welfare [31] and clinical diagnosis [66].

4.1 Developing design concepts and visual
stimuli

We first brainstormed design concepts that can address each of the
challenges from Study 1. Some concepts were directly inspired by
participants’ interviews (e.g., control of timing, confidence score),
while others were informed by literature (e.g., XAI features in [36],
uncertainty visualizer in [53]). Once the team settled on the three
groups of concepts, the first author created the initial visuals, which
were then iterated with additional feedback from the team and pilot



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

participants. We intentionally kept the visuals low-fidelity since we
wanted participants to focus on evaluating the high-level concepts
of the design instead of the usability of specific graphical or textual
elements, following the suggestion in [12]. All visual representa-
tions follow the design style of Copilot in Visual Studio Code since
this combination was most commonly mentioned by participants
in Study 1. In this subsection, we highlight the main features of
each design concept and include the full visual representations in
Appendix G).

4.1.1 Usage statistics dashboard to allow structured reflection on AI
capability. Study 1 reveals that developers’ sole reliance on intu-
itions accumulated through personal experiences can lead to biased
assessments of AI tool’s trustworthiness in different situations
(§ 3.3.1). This points to a need for a more structured approach
to explicitly communicate AI tool’s strengths, limitations,
and applicability in specific contexts to help developers under-
stand and reflect on their trust attitude. Specifically, we designed a
dashboard that displays personalized usage statistics to developers,
with comparisons with AI tools’ objective performance metrics in
specific situations. The dashboard appears as a pop-up in the IDE
after a user has used the AI tool for a certain period of time. The
dashboard contains users’ overall usage stats (Figure 1a) and usage
stats broken down by files (Figure 1b). The overall usage statistics
include data such as total hours of usage and average acceptance
rate, which help developers reflect on their interaction with the
AI tool. The situational usage statistics include data such as the
most accepted categories of suggestions, which enable developers
to calibrate their trust according to different contexts. The com-
parisons between users’ acceptance rates and AI tools’ confidence
in different contexts serve as a reality check against developers’
expectations. Users can access the dashboard via a button whenever
they want to see it, allowing developers to dynamically recalibrate
their trust based on ongoing usage.

(a) Overall usage stats

(b) Situational usage stats

Figure 1: A usage statistics dashboard that displays personal-
ized usage statistics to a user. Both (a) overall usage stats and
(b) situational usage stats are shown in a pop-up dashboard
in IDE.

4.1.2 Quality indicators to support efficient in-context evaluation of
AI suggestions. Evaluating each instance of AI suggestions helps
developers build up their understanding of AI’s abilities and en-
ables developers to integrate AI output into their workflow (§ 3.2.1).
However, the lack of support for the evaluation process forced de-
velopers to rely on manual methods or external tools (i.e., documen-
tation), which are often time-consuming, ineffective, and disrupt
developers’ workflow (§ 3.3.2). Thus, we created design concepts
to provide in-context support that enhances the evaluation
process without disrupting the workflow. Concretely, we ex-
plored three ways to provide transparency into the AI model’s
confidence in the output as non-disruptive ways to help developers
make quick and accurate assessments of the quality of suggestions.
The Solution-level confidence explanation (Figure 2a) indicates the
model’s aggregated confidence of the solution in the editing win-
dow, helping developers to quickly decide whether to build upon
the AI’s suggestion or discard it. If developers decide to scrutinize
the suggestion closely, the Token level confidence/uncertainty expla-
nation (Figure 2a) highlights specific tokens in the solution where
the model has low confidence, helping developers to identify po-
tential problems in the suggestion. Finally, the File-level familiarity
explanation (Figure 2b) communicates the model’s familiarity and
alignment with the specific context in the file. For example, if the
model has not seen input in the specific programming language or
is using a particular library, the familiarity indicator might turn yel-
low or red to indicate that the model is unfamiliar with the context
provided in the file.

4.1.3 Control mechanisms at the onset and during programming
session to help align developers and AI’s goals. Existing AI code gen-
eration tools require developers to include information in the code
they are working on to produce desired AI outputs. However, this
interaction paradigm makes it challenging for developers to com-
municate their intentions and thus evaluate AI tool’s benevolence
(§ 3.3.3). Therefore, it is crucial to provide developers effective ways
to convey short-term and long-term goals and preferences. To
help bridge this communication gap, we designed two mechanisms
for developers to indicate intention (§ 3.2.2) and preferences for AI’s
approach (§ 3.2.3) when generating suggestions. To complement
the existing natural language interface, we designed control mech-
anisms in graphical interfaces. Specifically, we designed a control
panel (Figure 3a) that enables developers to set explicit intentions
and define goals for using the AI tool at the project initialization.
In the control panel, developers can specify specific benefits they
expect to gain from using the AI tool in the programming sessions
(e.g., to help them speed up by serving as a prototyping tool or to
help them learn as a programming tutor). We chose to use system
roles as metaphors since it has been shown to effectively bridge the
communication gap between users and large language models [51].
Users can also further customize settings by adjusting the configu-
ration on the right side of the control panel. We included options
such as suggestion scope, the maximum length of suggestion, the
timing of suggestion, and the type of validation (e.g., only suggest
solutions that pass security checks). We also designed a context
adjustment slider (Figure 3b) that enables developers to adapt AI
behavior further during the programming sessions. Users can drag



Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

(a) Solution-level and token-level confidence explanations (b) File-level familiarity explanation

Figure 2: Quality indicators to support users better evaluate each AI suggestion.

the control bar next to each file name or the code snippets to man-
ually select the context they would like to include as part of the
prompts for code generation.

(a) Control panel at the project initialization

(b) Sliders that enable users to select contexts for code genera-
tion

Figure 3: Two control mechanisms that allow users to com-
municate intentions to the AI tool. (a) control panel allows
users to select system roles at the project initialization; (b)
allows users to adapt AI behavior during the programming
sessions.

4.2 Study procedure, participants, and data
analysis

We conducted one-to-one 60-minute design probe sessions with 12
developers with diverse programming experience and experience
with AI code generation tools from social media and a large tech-
nology company. To recruit participants, we emailed 600 randomly
selected developers and advertised on social media. We selected
participants with various levels of experience with AI tools while
ensuring diversity in race, age, and work experience. We stopped
recruiting after hearing repeating themes in the interviews. Our
final sample includes nine males and three females from different
racial groups whose programming experience ranges from 4 to 45
years. All participants in Study 2 have experience with Copilot -
8 use it regularly, 2 recently started using it, and two have used it
but are no longer using it. Detailed profiles of our participants are
presented in the Appendix (Table 2). To capture a broader range of
experiences, we didn’t invite participants in Study 1 to participate
in Study 2 again.

The co-design session starts with brief questions on developers’
trust attitudes toward AI code generation tools. We then showed
the three sets of design concepts to the participants. The visual
representations of the design concepts were presented in Microsoft
PowerPoint. Each concept is animated to show a sequence of actions
to demonstrate the interaction. During the session, we explained
each design and asked for participant feedback and reactions, includ-
ing questions on how they imagined using the proposed features
in real life and if and how the features contribute to trust. We also
encouraged participants to brainstorm new features. The study
procedures received approval from the Institution Review Board.

Similar to Study 1, all sessions were video and audio recorded
and later transcribed. The data analysis followed the procedure
of deductive thematic analysis [9], following the structure of each
design concept. In the analysis, we focused on analyzing ways
that interface features are helpful or not helpful for participants to
evaluate the trustworthiness of the AI tool, especially the factors
identified in Study 1. We also looked for potential risks and places
of improvement for each design concept.

4.3 Study 2 findings
4.3.1 Demonstrating AI’s practical benefits via usage statistics. Par-
ticipants found that the explicit information on Copilot’s abilities in



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

both overall and situational usage dashboards was helpful for align-
ing their expectations with AI’s ability. For example, P8 thought
that “the aggregated measures of how I’ve used Copilot over time
helps me form an image of my relationship with Copilot, which helps
me evaluate Copilot’s performance and form informed goals.” Several
participants (P5, P6, P10) agree that statistics such as suggestion
acceptance rate and time saved are useful for demonstrating the AI
tool’s practical benefit and can help them calibrate their trust in it.
For example, P10 suggests: “if I can see a quantifiable number of how
much Copilot increases my productivity or saved me time, I’m more
prone to depend on it more.” While we included file-level statistics
to help developers calibrate their trust for different situations, P8
wished to see more granular breakdowns of Copilot’s performance
based on functional concepts so that they can better “navigate that
space with which topics is Copilot the best at.”

At the same time, it can be challenging for users to interpret the
statistics shown on the dashboard. For example, P9 worried that: “I
also need to analyze the correlation and causation, the statistical num-
bers. I think it’s just put into many works to developers.” In addition
to the numbers, P7 prefers more actionable insights: “it’s the perfor-
mance of the Copilot, not my performance, so there’s nothing that I
can change just based on this...to improve working efficiency with the
Copilot.” Similarly, P2 wished that the dashboard could not only tell
users “how users used things,” but also “how to use something,” by
including some actionable tips on how to use Copilot in unobtru-
sive ways. In addition, participants were concerned about potential
privacy issues, especially for workplace surveillance when tracking
telemetry data. For example, P12 worried that organizations would
use the tracked data to evaluate employees.

4.3.2 Offering quality indicators to support evaluation of AI sug-
gestions. Participants found that the quality indicators at different
levels are helpful for them in more efficiently and effectively as-
sessing the quality of code suggestions. For example, P2 thought
that the file-level confidence indicates the helpfulness of the AI
tool in nuanced and accurate ways: “If I know the Copilot is not
very familiar with this code, I am not going to have high expectations
that the code the Copilot produces will be accurate.” P8 thinks that
additional transparency helps them make quick and reliable trust
judgments: “low familiarity can be a sign of vulnerability for the
machine. If I know [the AI tool] is not good at it. I will be more vigilant,
careful when I’m writing the code myself or incorporating it... [the
transparency signals] help me know how much I should be relying on
it.” These signals also help prompt subsequent user actions, helping
developers integrate AI suggestions into their workflow. P5 uses
the highlights of low-confidence tokens to guide their validation
process and “target where I’m reviewing the logic and say, yeah, it
wasn’t super confident about these parts, so I should look more closely
at what it did there.”

At the same time, developers indicated that the transparency
signals could be hard to interpret without additional contexts. For
example, P5 thought that the solution-level confidence indicators
were not very helpful because: “Even that 20 percent, maybe I have
to tweak five lines, it’s still a win.” P7 also expressed a similar re-
luctance to fully rely on the numeric metrics: “I will pick that a
solution even though the confidence score is a little bit lower than the
others because it meets my needs better. Human judgment actually

knows that that is a better solution.” Indeed, many developers also
reported challenges in interpreting the context of model confidence
numbers—the same numeric score could communicate different
information for different developers in a variety of scenarios. Lastly,
explicit indications of model confidence also introduced potential
bias in users’ trust judgments, as users may be “more likely to ac-
cept without critically thinking about a suggestion” or “reject a valid
solution or a valid suggestion based on low familiarity, even though
it’s a perfectly valid solution that is ultimately productive.” (P6)

4.3.3 Communicating developers’ intention with control mecha-
nisms. Participants found the control panel at project initialization
and the context adjustment sliders during programming sessions
helpful for aligning AI tools with their specific intentions and pref-
erences. The context adjustment sliders offer “more tools to guide
Copilot to the right answer” and allow developers to: “teach the
model what to do for me when I need it.” (P1) The control panel,
on the other hand, allows developers to customize how much and
what kind of help they get from Copilot at project initialization,
which makes the AI more predictable and controllable. For example,
P10 once worried that Copilot might introduce unnoticed security
bugs, but the option in the control panel for users to customize the
type of suggestions could allow them to “only get suggestions that
have been scanned for any security vulnerabilities.” Indeed, control
mechanisms allowed users to customize a more reliable and help-
ful version of Copilot, as P7 described, “if the performance is not
reliable anymore or if there are suggestions that I don’t need, I would
turn those off those function just for precision and clarity.” Trust was
fostered in the process since users felt they had control over what
and how the AI will make suggestions: “the ability to set a boundary
[for Copilot] and have it respect that boundary is the core of building
trust. If it can work in that boundary, then you trust it more, and you
can give it more permission.” (P4)

Interestingly, although we did not explicitly design the control
mechanisms to inform users’ expectations of AI’s abilities, develop-
ers thought the control mechanisms allowed them to develop more
concrete expectations of what AI can and cannot do. For example,
P5 thought that seeing all possibilities to control is almost like in-
teractive documentation for the AI tools’ functionalities, showing
the full capacity of AI tools. P12 thought that the control panel is
especially helpful in project initialization because it allows them to
have “concrete expectations of what is going to happen,” such as “how
many lines of code there will be in suggestions.” Others imagined
experimenting with functionalities using the controls to understand
the strengths and limitations of Copilot in more targeted ways. For
example, P7 imagined themselves to “turn off everything and see
what each function does and see which functions are more helpful,”
which allowed them to have “the full scope of what Copilot does.”

At the same time, developers expressed concern that too much
control could be a burden for users. For example, P5 expressed
doubts about the usefulness of the context slider due to its high
interaction cost: “if I start spending a bunch of time managing what
context it has that the utility starts dropping because I’m investing
more time than am I getting anything more out of it.” The choice of
what type of controls to grant users and how to foreshadow their
impact on AI behaviors also needs careful consideration. A few
developers were confused about some of the current designs, and



Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

hoped to see more examples in action and “visual cues for what
this looks in the editor” (P5) or “examples like how the code will
be different, like turning it on and off ” (P7), on top of the textual
description of the control mechanisms. P10 also thought the presets
could be helpful, “especially for someone who has no idea about all
these customization settings.

5 DISCUSSION
5.1 Trust in generative AI tools
Building on prior work that calls for real-world empirical studies
of users’ trust in AI tools [32], our work contributes a detailed
account of users’ notions of trust in AI code generation tools based
on retrospective interviews with developers who have used such
tools in real-life scenarios. Aligning with theories in existing lit-
erature [36, 41], we observed that developers’ trust attitude in AI-
powered code generation tool is informed by the tool’s perceived
practical benefits (ability), alignment with developers’ goals (benev-
olence), trustworthy processes (integrity) and situational factors,
such as stakes of the use scenario and the complexity of the pro-
gramming task. This echoes prior work indicating that trust is
evolving over time [29], is situational [28, 30, 33, 70] and affected
by social and organizational contexts [32, 61].

Responding to recent calls to understand how cues in the design
of system interface (i.e., trust affordance) communicate the internal
trustworthy characteristics of AI to users [36], we observed a lack
of trust affordances that can effectively convey the trustworthiness
of AI-powered code generation tools. As a result, developers are
forced to rely on intuitions accumulated from their limited personal
experiences to make trust judgments, which can be inefficient and
ineffective and lead to biased trust attitudes. Although our data
focused on developers’ challenges with AI code generation tools,
the challenges of evaluating AI output [71] and conveying goals and
intentions to AI using natural language are also observed in other
applications of large language models [25, 40, 68]. Our work high-
lights that these challenges not only manifest as usability problems
but also affect users’ judgment of the trustworthiness of generative
AI applications, leading to a potential overreliance on AI or prevent-
ing users from taking full advantage of AI. Our work also shows
that graphical user interface (GUI) remains crucial in assisting users
in establishing calibrated and warranted trust in AI, despite recent
debates on the possibility of replacing the conventional GUI with
the emerging language user interface (e.g., [57]).

5.2 Design for trust affordances in AI code
generation tools

Findings from our design probe study (study 2) additionally shed
light on opportunities to support users in building and adjusting
their trust in AI tools by augmenting existing interfaces with trust
affordances. We outline specific design implications below. While
the specific recommendations are derived from the context of AI
code generation tools, we believe our advice can also be useful for
supporting users in building and calibrating trust with generative
AI applications more broadly.

5.2.1 Encourage structured reflection on AI tool’s performance and
applicability in specific contexts. Developers’ trust attitudes are

often informed by intuitions accumulated from their personal ex-
periences with AI tools, which can lead to bias and inefficiencies in
calibrating their trust in different situations. This suggests a more
structured approach to align users’ expectations by explicitly
communicating AI tools’ performance and applicability in
specific contexts, while also encouraging users’ to reflect on
the gap between their perception and the tool’s actual perfor-
mance. In study 2, we evaluated a feedback analytic dashboard that
shows personalized statistics of AI tools’ performance in different
contexts (Figure 1a and 1b), which proved to be effective in helping
developers to form accurate expectations and understand the tool’s
utility. However, we noticed that simply showing comparisons of
statistics might not be enough to prompt users to engage in a re-
flection, as they can be hard to interpret and require certain data
literacy. Therefore, further systems could consider providing more
explicit guidance on how users should adjust their trust attitudes
or including actionable suggestions on how users can effectively
engage with AI tools (e.g., tips on when to use the tool).

5.2.2 Support evaluation of AI output using context-aware quality
indicators. Findings from study 1 show that while evaluating AI
output forms the basis of trust attitude, developers rely on native
methods such as eye-browsing or running the program, which is
time-consuming and ineffective, calling for the need to provide in-
context support for developers to make quick and accurate
evaluations of AI output. In study 2, we explored the potential
of three levels of model confidence scores of AI suggestions: token
level, solution level, and file level (Figure 2a and 2b). While devel-
opers find the confidence indicators useful for evaluating solutions
and guiding their actions, there’s a clear need to customize these
quality indicators to suit diverse preferences and requirements (e.g.,
explainability or accessibility requirements). One possible design
is to allow users to define or adjust metrics based on their specific
needs and contexts. The quality indicators could also go beyond
explanations of modal mechanisms to include social transparency,
such as acceptability of the solution in the community [15]. Lastly,
as previous research on confidence scores has suggested, the de-
sign should be wary of users’ overreliance [4]. To mitigate this, it’s
vital to present quality indicators as part of a broader evaluation
framework that includes clear explanations of their meaning and
appropriate use. For instance, rather than solely relying on numeri-
cal confidence scores, which can be misleading or hard to interpret,
AI tools could explain why certain parts of the code were flagged
as low confidence to encourage critical reasoning.

5.2.3 Afford users to convey short- and long-term goals and prefer-
ences. The various ways that AI tools can be used make it important
to help users communicate their intentions clearly. In the design
probe study, we demonstrate examples of control options that allow
users to customize the timing, characteristics, as well as local con-
text of AI suggestions (Figure 3a). These means of control allow AI
tools to better align with users’ goals and intentions, communicat-
ing the benevolence of the system. This also echoes prior research
in the context of AI-powered music generation which indicated
that enabling users to steer AI behavior increases trust in AI [39].
However, more controls come with more responsibilities. Designers
of generative AI systems need to be cautious about overburdening
users with decisions that they are not confident in making or less



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

important to their experience. We suggest that control mechanisms
should prioritize places where users have discrepancies or group op-
tions and provide users with the option to have simple defaults. We
explored persona as a grouping mechanism, which proved helpful.
Further systems could also imagine other ways to group them, such
as stake of tasks or expertise of users. It’s also important to consider
how to explain and help users preview the outcome of different
control options. Although the users reacted positively to the design
probes, they also pointed to the challenges of understanding the
control options. Future systems can explore how to introduce the
control options more clearly. For example, an interactive onboard-
ing session could potentially address the issue by demonstrating to
users the effect of control options in action. Toolsmiths can even
consider rolling out at an incremental, progressive clarity on what
control means.

5.3 Limitations and future work
In this study, we investigated developers’ trust in AI-powered code
generation tools via qualitative interviews. Future research can
build on our qualitative investigation by implementing and eval-
uating interactive prototypes in controlled experiments to better
quantify the effects of interface design on users’ trust.

In addition, although we try to reach a diverse population in
terms of demographic factors, our sample is still heavily skewed to-
ward male developers, given the general demographics of software
engineering. The skewed gender distribution might have affected
our findings, given prior research showing that women and mi-
nority groups might have different preferences in programming
activities (e.g., [11]). We call for future work to gain a more in-depth
understanding of how female and gender minority developers ap-
proach trust in AI tools.

Further, our data in Study 1 were collected at a single company.
Although we encouraged participants to also discuss their expe-
rience outside of the work in Study 1 and intentionally sampled
outside of the organization in Study 2, there may be additional
needs that we miss because of the specific organizational setting.

Lastly, we collected our interview data between July and August
2022, at a time when AI-powered code generation tools were just
starting to emerge. Since then, the landscape of AI-powered code
generation tools has been rapidly changing, with several new tools
emerging. Existing tools such as GitHub Copilot also introduced
updates such as conversation assistants and content exclusion set-
tings. To better contextualize our findings, we provide a description
of the features of GitHub Copilot and Tabnine as of July 2020 in the
Appendix. Although the core interaction paradigm of AI suggesting
code snippets based on code context and natural language prompts
remains unchanged, we encourage future research to explore the
effect on trust given the fast-growing adoptions in different com-
munities and organizational settings [35].

ACKNOWLEDGMENTS
We would like to thank the participants for their valuable insights
and anonymous reviewers for their helpful feedback. We would
also like to thank members of the Microsoft Research SAINTES
team and members of the University of Washington Social Futures
Lab for their thoughtful discussion and feedback.

REFERENCES
[1] 2021. OpenAI Codex. https://openai.com/blog/openai-codex/
[2] 2023. AI Assistant for software developers | Tabnine. https://www.tabnine.com/
[3] 2023. GitHub Copilot · Your AI pair programmer. https://github.com/features/

copilot
[4] Mayank Agarwal, Kartik Talamadupula, Stephanie Houde, Fernando Martinez,

Michael Muller, John Richards, Steven Ross, and Justin D. Weisz. 2021. Quality
Estimation & Interpretability for Code Translation. https://doi.org/10.48550/
arXiv.2012.07581 arXiv:2012.07581 [cs].

[5] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2022. Grounded
Copilot: How Programmers Interact with Code-Generating Models. https:
//doi.org/10.48550/arXiv.2206.15000 arXiv:2206.15000 [cs].

[6] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2023. Taking Flight with
Copilot: Early insights and opportunities of AI-powered pair-programming tools.
Queue 20, 6 (Jan. 2023), Pages 10:35–Pages 10:57. https://doi.org/10.1145/3582083

[7] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2021. On the Opportunities
and Risks of Foundation Models. https://arxiv.org/abs/2108.07258v3

[8] Jayson G. Boubin, Christina F. Rusnock, and Jason M. Bindewald. 2017. Quantify-
ing Compliance and Reliance Trust Behaviors to Influence Trust in Human-
Automation Teams. Proceedings of the Human Factors and Ergonomics So-
ciety Annual Meeting 61, 1 (Sept. 2017), 750–754. https://doi.org/10.1177/
1541931213601672 Publisher: SAGE Publications Inc.

[9] Virginia Braun andVictoria Clarke. 2019. Reflecting on reflexive thematic analysis.
Qualitative Research in Sport, Exercise and Health 11, 4 (Aug. 2019), 589–597.
https://doi.org/10.1080/2159676X.2019.1628806 Publisher: Routledge _eprint:
https://doi.org/10.1080/2159676X.2019.1628806.

[10] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[11] Margaret Burnett, Scott D Fleming, Shamsi Iqbal, Gina Venolia, Vidya Rajaram,
Umer Farooq, Valentina Grigoreanu, and Mary Czerwinski. 2010. Gender dif-
ferences and programming environments: across programming populations. In
Proceedings of the 2010 ACM-IEEE international symposium on empirical software
engineering and measurement. 1–10.

[12] Bill Buxton. 2007. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[13] Zana Buçinca, Phoebe Lin, Krzysztof Z. Gajos, and Elena L. Glassman. 2020.
Proxy tasks and subjective measures can be misleading in evaluating explainable
AI systems. In Proceedings of the 25th International Conference on Intelligent User
Interfaces (IUI ’20). Association for Computing Machinery, New York, NY, USA,
454–464. https://doi.org/10.1145/3377325.3377498

[14] Zana Buçinca, Maja Barbara Malaya, and Krzysztof Z. Gajos. 2021. To Trust or to
Think: Cognitive Forcing Functions Can Reduce Overreliance on AI in AI-assisted
Decision-making. Proceedings of the ACM on Human-Computer Interaction 5,
CSCW1 (April 2021), 188:1–188:21. https://doi.org/10.1145/3449287

[15] Ruijia Cheng, Ruotong Wang, Thomas Zimmermann, and Denae Ford. 2024. “It
would work for me too”: How Online Communities Shape Software Developers’
Trust in AI-Powered Code Generation Tools. ACM Trans. Interact. Intell. Syst.
(mar 2024). https://doi.org/10.1145/3651990 Just Accepted.

[16] European Commission. 2019. Building Trust in Human-Centric Artificial Intelli-
gence. Retrieved September 1, 2022 from https://digital-strategy.ec.europa.eu/
en/library/communication-building-trust-human-centric-artificial-intelli.

https://openai.com/blog/openai-codex/
https://www.tabnine.com/
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/arXiv.2012.07581
https://doi.org/10.48550/arXiv.2012.07581
https://doi.org/10.48550/arXiv.2206.15000
https://doi.org/10.48550/arXiv.2206.15000
https://doi.org/10.1145/3582083
https://arxiv.org/abs/2108.07258v3
https://doi.org/10.1177/1541931213601672
https://doi.org/10.1177/1541931213601672
https://doi.org/10.1080/2159676X.2019.1628806
https://doi.org/10.1145/3377325.3377498
https://doi.org/10.1145/3449287
https://doi.org/10.1145/3651990
https://digital-strategy.ec.europa.eu/en/library/communication-building-trust-human-centric-artificial-intelli
https://digital-strategy.ec.europa.eu/en/library/communication-building-trust-human-centric-artificial-intelli


Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

[17] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C. Desmarais, Zhen Ming, and Jiang. 2022. GitHub Copilot AI pair
programmer: Asset or Liability? https://doi.org/10.48550/ARXIV.2206.15331

[18] Sylvain Daronnat, Leif Azzopardi, Martin Halvey, and Mateusz Dubiel. 2021.
Inferring Trust From Users’ Behaviours; Agents’ Predictability Positively Affects
Trust, Task Performance and Cognitive Load in Human-Agent Real-Time Collab-
oration. Frontiers in Robotics and AI 8 (2021), 194. https://doi.org/10.3389/frobt.
2021.642201

[19] Arun Das and Paul Rad. 2020. Opportunities and Challenges in Explainable
Artificial Intelligence (XAI): A Survey. https://doi.org/10.48550/arXiv.2006.11371
arXiv:2006.11371 [cs].

[20] Thomas Dohmke. 2022. GitHub Copilot is generally available to all develop-
ers. https://github.blog/2022-06-21-github-copilot-is-generally-available-to-
all-developers/

[21] Jaimie Drozdal, Justin Weisz, Dakuo Wang, Gaurav Dass, Bingsheng Yao,
Changruo Zhao, Michael Muller, Lin Ju, and Hui Su. 2020. Trust in AutoML:
exploring information needs for establishing trust in automated machine learning
systems. In Proceedings of the 25th International Conference on Intelligent User
Interfaces (IUI ’20). Association for Computing Machinery, New York, NY, USA,
297–307. https://doi.org/10.1145/3377325.3377501

[22] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,
and J. Alex Halderman. 2014. The Matter of Heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference (Vancouver, BC, Canada)
(IMC ’14). Association for Computing Machinery, New York, NY, USA, 475–488.
https://doi.org/10.1145/2663716.2663755

[23] Neil A. Ernst and Gabriele Bavota. 2022. AI-Driven Development Is Here: Should
You Worry? IEEE Software 39, 2 (2022), 106–110. https://doi.org/10.1109/MS.
2021.3133805

[24] Lucian Gonçales, Kleinner Farias, Bruno da Silva, and Jonathan Fessler. 2019.
Measuring the Cognitive Load of Software Developers: A Systematic Mapping
Study. In 2019 IEEE/ACM 27th International Conference on Program Comprehension
(ICPC). 42–52. https://doi.org/10.1109/ICPC.2019.00018

[25] Matthew Guzdial, Nicholas Liao, Jonathan Chen, Shao-Yu Chen, Shukan Shah,
Vishwa Shah, Joshua Reno, Gillian Smith, and Mark O. Riedl. 2019. Friend,
Collaborator, Student, Manager: How Design of an AI-Driven Game Level Editor
Affects Creators. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. ACM, Glasgow Scotland Uk, 1–13. https://doi.org/10.1145/
3290605.3300854

[26] W. Hasselbring and R. Reussner. 2006. Toward trustworthy software systems.
Computer 39, 4 (2006), 91–92. https://doi.org/10.1109/MC.2006.142

[27] Daniel Helgesson, Emelie Engström, Per Runeson, and Elizabeth Bjarnason.
2019. Cognitive Load Drivers in Large Scale Software Development. In 2019
IEEE/ACM 12th International Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). 91–94. https://doi.org/10.1109/CHASE.2019.00030

[28] Robert R. Hoffman. 2017. A Taxonomy of Emergent Trusting in the Hu-
man–Machine Relationship. In Cognitive Systems Engineering. CRC Press. Num
Pages: 28.

[29] Daniel Holliday, Stephanie Wilson, and Simone Stumpf. 2016. User Trust in
Intelligent Systems: A Journey Over Time. In Proceedings of the 21st International
Conference on Intelligent User Interfaces (IUI ’16). Association for Computing Ma-
chinery, New York, NY, USA, 164–168. https://doi.org/10.1145/2856767.2856811

[30] Alon Jacovi, Ana Marasović, Tim Miller, and Yoav Goldberg. 2021. Formalizing
Trust in Artificial Intelligence: Prerequisites, Causes and Goals of Human Trust
in AI. In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and
Transparency (FAccT ’21). Association for Computing Machinery, New York, NY,
USA, 624–635. https://doi.org/10.1145/3442188.3445923

[31] Anna Kawakami, Venkatesh Sivaraman, Logan Stapleton, Hao-Fei Cheng, Adam
Perer, Zhiwei Steven Wu, Haiyi Zhu, and Kenneth Holstein. 2022. Why Do I
Care What’s Similar: Probing Challenges in AI-Assisted Child Welfare Decision-
Making through Worker-AI Interface Design Concepts. In Designing Interactive
Systems Conference (DIS ’22). Association for Computing Machinery, New York,
NY, USA, 454–470. https://doi.org/10.1145/3532106.3533556

[32] Sunnie S. Y. Kim, Elizabeth Anne Watkins, Olga Russakovsky, Ruth Fong, and
Andrés Monroy-Hernández. 2023. Humans, AI, and Context: Understanding
End-Users’ Trust in a Real-World Computer Vision Application. In Proceedings
of the 2023 ACM Conference on Fairness, Accountability, and Transparency (FAccT
’23). Association for Computing Machinery, New York, NY, USA, 77–88. https:
//doi.org/10.1145/3593013.3593978

[33] John D. Lee and Katrina A. See. 2004. Trust in Automation: Designing for
Appropriate Reliance. Human Factors 46, 1 (March 2004), 50–80. https://doi.org/
10.1518/hfes.46.1.50_30392 Publisher: SAGE Publications Inc.

[34] Mina Lee, Percy Liang, and Qian Yang. 2022. CoAuthor: Designing a Human-AI
Collaborative Writing Dataset for Exploring Language Model Capabilities. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–19.
https://doi.org/10.1145/3491102.3502030

[35] Jenny T Liang, Chenyang Yang, and Brad A Myers. 2024. A large-scale survey
on the usability of ai programming assistants: Successes and challenges. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering.
1–13.

[36] Q.Vera Liao and S. Shyam Sundar. 2022. Designing for Responsible Trust in AI
Systems: A Communication Perspective. In 2022 ACM Conference on Fairness, Ac-
countability, and Transparency (FAccT ’22). Association for Computing Machinery,
New York, NY, USA, 1257–1268. https://doi.org/10.1145/3531146.3533182

[37] Q. Vera Liao, Daniel Gruen, and Sarah Miller. 2020. Questioning the AI: Informing
Design Practices for Explainable AI User Experiences. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems. 1–15. https://doi.org/
10.1145/3313831.3376590 arXiv:2001.02478 [cs].

[38] S. Lipner. 2004. The trustworthy computing security development lifecycle. In
20th Annual Computer Security Applications Conference. 2–13. https://doi.org/10.
1109/CSAC.2004.41

[39] Ryan Louie, Andy Coenen, Cheng Zhi Huang, Michael Terry, and Carrie J. Cai.
2020. Novice-AI Music Co-Creation via AI-Steering Tools for Deep Generative
Models. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems (CHI ’20). Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/3313831.3376739

[40] Xiao Ma, Swaroop Mishra, Ariel Liu, Sophie Su, Jilin Chen, Chinmay Kulkarni,
Heng-Tze Cheng, Quoc Le, and Ed Chi. 2023. Beyond ChatBots: ExploreLLM
for Structured Thoughts and Personalized Model Responses. arXiv preprint
arXiv:2312.00763 (2023).

[41] Roger C. Mayer, James H. Davis, and F. David Schoorman. 1995. An Integrative
Model Of Organizational Trust. Academy of Management Review 20, 3 (July 1995),
709–734. https://doi.org/10.5465/amr.1995.9508080335 Publisher: Academy of
Management.

[42] Siddharth Mehrotra, Carolina Centeio Jorge, Catholijn M. Jonker, and Myrthe L.
Tielman. 2023. Integrity Based Explanations for Fostering Appropriate Trust
in AI Agents. ACM Transactions on Interactive Intelligent Systems (July 2023).
https://doi.org/10.1145/3610578 Just Accepted.

[43] Swati Mishra and Jeffrey M. Rzeszotarski. 2021. Crowdsourcing and Evaluating
Concept-driven Explanations of Machine Learning Models. Proceedings of the
ACM on Human-Computer Interaction 5, CSCW1 (April 2021), 139:1–139:26. https:
//doi.org/10.1145/3449213

[44] HusseinMozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2023. Reading
Between the Lines: Modeling User Behavior and Costs in AI-Assisted Program-
ming. https://doi.org/10.48550/arXiv.2210.14306 arXiv:2210.14306 [cs].

[45] Robert Münscher and Torsten M Kühlmann. 2011. Using critical incident tech-
nique in trust research. Handbook of research methods on trust (2011), 161.

[46] Emerson Murphy-Hill, Ciera Jaspan, Caitlin Sadowski, David Shepherd, Michael
Phillips, Collin Winter, Andrea Knight, Edward Smith, and Matthew Jorde. 2021.
What Predicts Software Developers’ Productivity? IEEE Transactions on Software
Engineering 47, 3 (2021), 582–594. https://doi.org/10.1109/TSE.2019.2900308

[47] Annette M. O’Connor, Guy Tsafnat, James Thomas, Paul Glasziou, Stephen B.
Gilbert, and Brian Hutton. 2019. A question of trust: can we build an evidence
base to gain trust in systematic review automation technologies? Systematic
Reviews 8, 1 (June 2019), 143. https://doi.org/10.1186/s13643-019-1062-0

[48] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2022. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and Privacy
(SP). 754–768. https://doi.org/10.1109/SP46214.2022.9833571 ISSN: 2375-1207.

[49] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. 2022. Do Users
Write More Insecure Code with AI Assistants? https://doi.org/10.48550/arXiv.
2211.03622 arXiv:2211.03622 [cs].

[50] Advait Sarkar, Andrew D. Gordon, Carina Negreanu, Christian Poelitz, Sruti Srini-
vasa Ragavan, and Ben Zorn. 2022. What is it like to program with artificial
intelligence? https://doi.org/10.48550/arXiv.2208.06213 arXiv:2208.06213 [cs].

[51] Xinyue Shen, Zeyuan Chen, Michael Backes, and Yang Zhang. 2023. In ChatGPT
We Trust? Measuring and Characterizing the Reliability of ChatGPT. https:
//arxiv.org/abs/2304.08979v1

[52] Dominik Sobania, Dirk Schweim, and Franz Rothlauf. 2022. A comprehensive
survey on program synthesis with evolutionary algorithms. IEEE Transactions
on Evolutionary Computation (2022).

[53] Jiao Sun, Q. Vera Liao, Michael Muller, Mayank Agarwal, Stephanie Houde, Kartik
Talamadupula, and Justin D. Weisz. 2022. Investigating Explainability of Genera-
tive AI for Code through Scenario-based Design. In 27th International Conference
on Intelligent User Interfaces (IUI ’22). Association for Computing Machinery, New
York, NY, USA, 212–228. https://doi.org/10.1145/3490099.3511119

[54] Suzanne Tolmeijer, Markus Christen, Serhiy Kandul, Markus Kneer, and Abraham
Bernstein. 2022. Capable but Amoral? Comparing AI and Human Expert Col-
laboration in Ethical Decision Making. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems (CHI ’22). Association for Computing
Machinery, New York, NY, USA, 1–17. https://doi.org/10.1145/3491102.3517732

[55] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation
vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In Extended Abstracts of the 2022 CHI Conference on

https://doi.org/10.48550/ARXIV.2206.15331
https://doi.org/10.3389/frobt.2021.642201
https://doi.org/10.3389/frobt.2021.642201
https://doi.org/10.48550/arXiv.2006.11371
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://doi.org/10.1145/3377325.3377501
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1109/MS.2021.3133805
https://doi.org/10.1109/MS.2021.3133805
https://doi.org/10.1109/ICPC.2019.00018
https://doi.org/10.1145/3290605.3300854
https://doi.org/10.1145/3290605.3300854
https://doi.org/10.1109/MC.2006.142
https://doi.org/10.1109/CHASE.2019.00030
https://doi.org/10.1145/2856767.2856811
https://doi.org/10.1145/3442188.3445923
https://doi.org/10.1145/3532106.3533556
https://doi.org/10.1145/3593013.3593978
https://doi.org/10.1145/3593013.3593978
https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1518/hfes.46.1.50_30392
https://doi.org/10.1145/3491102.3502030
https://doi.org/10.1145/3531146.3533182
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1109/CSAC.2004.41
https://doi.org/10.1109/CSAC.2004.41
https://doi.org/10.1145/3313831.3376739
https://doi.org/10.5465/amr.1995.9508080335
https://doi.org/10.1145/3610578
https://doi.org/10.1145/3449213
https://doi.org/10.1145/3449213
https://doi.org/10.48550/arXiv.2210.14306
https://doi.org/10.1109/TSE.2019.2900308
https://doi.org/10.1186/s13643-019-1062-0
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.48550/arXiv.2211.03622
https://doi.org/10.48550/arXiv.2211.03622
https://doi.org/10.48550/arXiv.2208.06213
https://arxiv.org/abs/2304.08979v1
https://arxiv.org/abs/2304.08979v1
https://doi.org/10.1145/3490099.3511119
https://doi.org/10.1145/3491102.3517732


FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

Human Factors in Computing Systems (CHI EA ’22). Association for Computing
Machinery, New York, NY, USA, 1–7. https://doi.org/10.1145/3491101.3519665

[56] Oleksandra Vereschak, Gilles Bailly, and Baptiste Caramiaux. 2021. How to Evalu-
ate Trust in AI-Assisted Decision Making? A Survey of Empirical Methodologies.
Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (Oct. 2021),
327:1–327:39. https://doi.org/10.1145/3476068

[57] BryanWang, Gang Li, and Yang Li. 2023. Enabling conversational interactionwith
mobile ui using large language models. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems. 1–17.

[58] Justin D. Weisz, Michael Muller, Stephanie Houde, John Richards, Steven I. Ross,
Fernando Martinez, Mayank Agarwal, and Kartik Talamadupula. 2021. Perfection
Not Required? Human-AI Partnerships in Code Translation. In 26th International
Conference on Intelligent User Interfaces (IUI ’21). Association for Computing Ma-
chinery, New York, NY, USA, 402–412. https://doi.org/10.1145/3397481.3450656

[59] Justin D. Weisz, Michael Muller, Steven I. Ross, Fernando Martinez, Stephanie
Houde, Mayank Agarwal, Kartik Talamadupula, and John T. Richards. 2022. Better
Together? An Evaluation of AI-Supported Code Translation. In 27th International
Conference on Intelligent User Interfaces (IUI ’22). Association for Computing Ma-
chinery, New York, NY, USA, 369–391. https://doi.org/10.1145/3490099.3511157

[60] Eva Wendt, Bengt Fridlund, and Evy Lidell. 2004. Trust and Confirmation in
a Gynecologic Examination Situation: A Critical Incident Technique Analysis.
Acta Obstetricia et Gynecologica Scandinavica 83, 12 (2004), 1208–1215. https:
//doi.org/10.1111/j.0001-6349.2004.00597.x

[61] David Gray Widder, Laura Dabbish, James D. Herbsleb, Alexandra Holloway,
and Scott Davidoff. 2021. Trust in Collaborative Automation in High Stakes
Software Engineering Work: A Case Study at NASA. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems (CHI ’21). Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3411764.3445650

[62] Jim Witschey, Olga Zielinska, Allaire Welk, Emerson Murphy-Hill, Chris May-
horn, and Thomas Zimmermann. 2015. Quantifying Developers’ Adoption of
Security Tools. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (Bergamo, Italy) (ESEC/FSE 2015). Association for Comput-
ing Machinery, New York, NY, USA, 260–271. https://doi.org/10.1145/2786805.
2786816

[63] Shundan Xiao, Jim Witschey, and Emerson Murphy-Hill. 2014. Social Influences
on Secure Development Tool Adoption:Why Security Tools Spread. In Proceedings
of the 17th ACM Conference on Computer Supported Cooperative Work & Social
Computing (Baltimore, Maryland, USA) (CSCW ’14). Association for Computing
Machinery, New York, NY, USA, 1095–1106. https://doi.org/10.1145/2531602.
2531722

[64] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE Code
Generation from Natural Language: Promise and Challenges. ACM Transac-
tions on Software Engineering and Methodology 31, 2 (March 2022), 29:1–29:47.
https://doi.org/10.1145/3487569

[65] Fumeng Yang, Zhuanyi Huang, Jean Scholtz, and Dustin L. Arendt. 2020. How
do visual explanations foster end users’ appropriate trust in machine learning?.
In Proceedings of the 25th International Conference on Intelligent User Interfaces
(IUI ’20). Association for Computing Machinery, New York, NY, USA, 189–201.
https://doi.org/10.1145/3377325.3377480

[66] Qian Yang, Yuexing Hao, Kexin Quan, Stephen Yang, Yiran Zhao, Volodymyr
Kuleshov, and FeiWang. 2023. Harnessing Biomedical Literature to Calibrate Clin-
icians’ Trust in AI Decision Support Systems. https://doi.org/10.1145/3544548.
3581393

[67] Rodrigo Yañez-Gallardo and Sandra Valenzuela-Suazo. 2012. Critical in-
cidents of trust erosion in leadership of head nurses. Revista Latino-
Americana de Enfermagem 20 (Feb. 2012), 143–150. https://doi.org/10.1590/S0104-
11692012000100019 Publisher: Escola de Enfermagem de Ribeirão Preto / Univer-
sidade de São Paulo.

[68] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21.

[69] Yunfeng Zhang, Q. Vera Liao, and Rachel K. E. Bellamy. 2020. Effect of confidence
and explanation on accuracy and trust calibration in AI-assisted decision making.
In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency
(FAT* ’20). Association for Computing Machinery, New York, NY, USA, 295–305.
https://doi.org/10.1145/3351095.3372852

[70] Yixuan Zhang, Nurul Suhaimi, Nutchanon Yongsatianchot, Joseph D Gaggiano,
Miso Kim, Shivani A Patel, Yifan Sun, Stacy Marsella, Jacqueline Griffin, and
Andrea G Parker. 2022. Shifting Trust: Examining How Trust and Distrust
Emerge, Transform, and Collapse in COVID-19 Information Seeking. In Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI ’22). Association for Computing Machinery, New York, NY, USA, 1–21.
https://doi.org/10.1145/3491102.3501889

[71] Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productivity
assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN

International Symposium on Machine Programming (MAPS 2022). Association
for Computing Machinery, New York, NY, USA, 21–29. https://doi.org/10.1145/
3520312.3534864

https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1145/3476068
https://doi.org/10.1145/3397481.3450656
https://doi.org/10.1145/3490099.3511157
https://doi.org/10.1111/j.0001-6349.2004.00597.x
https://doi.org/10.1111/j.0001-6349.2004.00597.x
https://doi.org/10.1145/3411764.3445650
https://doi.org/10.1145/3411764.3445650
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/2786805.2786816
https://doi.org/10.1145/2531602.2531722
https://doi.org/10.1145/2531602.2531722
https://doi.org/10.1145/3487569
https://doi.org/10.1145/3377325.3377480
https://doi.org/10.1145/3544548.3581393
https://doi.org/10.1145/3544548.3581393
https://doi.org/10.1590/S0104-11692012000100019
https://doi.org/10.1590/S0104-11692012000100019
https://doi.org/10.1145/3351095.3372852
https://doi.org/10.1145/3491102.3501889
https://doi.org/10.1145/3520312.3534864
https://doi.org/10.1145/3520312.3534864


Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Table 1: The participants of Study 1. The Column Exp indicates the years of programming experience. The Job Title was self
reported by the participants.

ID Tool (Frequency) Gender Race Age Education Job Title Exp
P1 GitHub Copilot (Daily) Male White 25-34 Bachelor degree Researcher 7
P2 GitHub Copilot (Weekly) Male Asian 18-24 Bachelor degree Program Maleager 5
P3 GitHub Copilot (Monthly) Male White 45-54 Bachelor degree Software Engineer 25
P4 GitHub Copilot (Monthly), Tabnine (Yearly) Male White 25-34 Bachelor degree Software Engineer 12
P5 GitHub Copilot (Daily), Tabnine (Daily) Male Asian Indian 25-34 Ongoing Masters degree Software engineer 9
P6 GitHub Copilot (Daily) Female White 25-34 Bachelor degree Software Engineer 4
P7 GitHub Copilot (Monthly) Male White 25-34 PhD degree Software Engineer 22
P8 GitHub Copilot (Weekly) Male Middle Eastern 35-44 Bachelor degree Security Engineer 20
P9 GitHub Copilot (Weekly) Male Asian 25-34 Master degree Software Engineer 8
P10 GitHub Copilot (Daily) Male Black or African American 25-34 High school diploma Software Engineer 8
P11 GitHub Copilot (Daily) Male White 25-34 Bachelor degree Software Engineer 9
P12 GitHub Copilot (Daily) Male White 35-44 Master degree Software Engineer 21
P13 GitHub Copilot (Daily) Male White 18-24 Bachelor degree Software engineer 6
P14 GitHub Copilot (Never) Female Asian 25-34 Bachelor degree Software engineer 8
P15 GitHub Copilot (Daily) Male Hispanic or Latino 18-24 High school diploma Software engineer intern 3
P16 GitHub Copilot (Daily) Male White 18-24 High school diploma Software engineer intern 2
P17 GitHub Copilot (Never) Male Asian 25-34 Bachelor degree Software engineer 5

Table 2: The participants of Study 2. The Column Exp indicates the years of programming experience.

ID GitHub Copilot (Frequency) Gender Race Age Education Exp
P1 I use the tool regularly Female White 35-44 PhD degree 4
P2 I use the tool regularly Male White 55-64 Bachelor degree 45
P3 I’ve tried the tool but no longer using it Male Asian 35-44 Bachelor degree 5
P4 I use the tool regularly Male Black or African American 25-34 Bachelor degree 6
P5 I use the tool regularly Male White 25-34 Bachelor degree 15
P6 I recently started using the tool Male White 25-34 Master degree 7
P7 I recently started using the tool Female Asian 25-34 Master degree 6
P8 I use the tool regularly Female Asian 18-24 Bachelor degree 3
P9 I use the tool regularly Male Asian 25-34 Master degree 6
P10 I’ve tried the tool but no longer using it Male Middle Eastern 18-24 High school diploma 6
P11 I use the tool regularly Male Black or African American 35-44 Master degree 11
P12 I use the tool regularly Male Asian 25-34 Master degree 7

A PARTICIPANT INFORMATION
B STUDY MATERIAL FOR STUDY 1
B.1 Example interview questions
The retrospective interviews were semi-structured, so the questions
below only represent a general structure of the interviews. In the
actual interviews, we followed up with participants whenever they
mentioned topics relevant to their understanding of trust and the
challenges they have in building appropriate trust.

• Could you tell us a bit more about the kind of programming
project or tasks that youwork on?What kind of development
activities (e.g, front-end) are you typically involved in?

• What experience do you have with AI-powered code gener-
ation tools?

• How do you trust the AI tool?
• Can you walk me through the significant moments you col-
lected?
– What was your task?
– How did you interact with the tool? [Feel free to share
screen]

– How do these interactions affect your trust in the tool?
Why?

• Now think about your general experience interacting with
the tool. How would you define trust?

• Where do you think the trust come from?
• What tasks do you trust/distrust the tool to do? Why?
• Were there moments where you trusted the AI tool but later
realized that you shouldn’t?

• Were there moments where you didn’t trust the AI tool but
later realized that you should?

• How has your perception of trust in the tool changed over
time?

• How would you want to improve the design of AI-powered
code generation tool so that you can trust it more appropri-
ately?

B.2 Message sent to participants to collect
significant moments
Hi [Participant Name], Thank you for signing up for the
experience in AI-powered code generation tools research
study. We would like to invite you for an interview to
learn more about your experience. To prepare for the in-
terview, we would like to invite you to collect significant



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

moments in your experience using AI-powered code gen-
eration tools (e.g., Copilot) in the next few days. Our goal
is for you to collect these significant moments, so that
you can reflect on your experience more concretely in the
interview. Specifically, please aim to share 1 to 3 signif-
icant moments each day. Some examples of significant
moments are when you are appreciative of, frustrated
by, or hesitant/uncertain to use the AI-powered code
generation tool (e.g., copilot). For each time you share,
you can use one or two sentences to describe the instance,
take a screenshot or share a snippet of code. You can
share these in our chat directly. We will also send you a
quick reminder message everyday morning during the
week. In the case that you do not use AI-powered code
generation tools during the day, it would also be helpful
to share a quick update in the chat (e.g., did not use AI
tools today). We will schedule an interview with you
after you successfully complete the preparation phase
(collect several significant moments).

C STUDY MATERIAL FOR STUDY 2
C.1 Example design probe questions
We begin the interview by briefing participants that:

• We are evaluating the prototype, not you, so feel free to
comment on anything.

• Do not worry about the technical implementation of the
designs. The purpose of the session is to get feedback on the
concept of designs, instead of the feasibility of the designs.

• Do not worry about usability (e.g., layout, color, style) of the
design

• Feel free to think aloud as you look at the design prototypes
• The code snippets are only placeholders. Try to imagine how
you will use the design in your daily workflow.

Next, we ask the following questions to understand participants’
understanding of trust.

• What experience do you have with AI-powered code gener-
ation tools, such as copilot?

• How do you trust the AI tool?
• How do you define trust?
• Are there challenges in knowing what to expect from the AI
tool?

• Are there challenges in integrating the AI tool into your
workflow?

• How would you want to design the interaction with the AI
tool differently so that you can better judge when to trust
the AI tool or not?

Present and give brief explanations of the mockups to participants
one by one. For each mockup, ask the following questions:

• What do you think of this design?
• How might you use this feature in your daily coding task?
• Thinking about your overall experience interacting with the
tool, to what extent do you think it will help you better judge
when to trust copilot or not?

• Which of all the mockups is the most helpful in helping you
judge when to trust copilot or not?

• What other features do you like to add to this prototype?
• What other features do you like to remove or change to this
prototype?

D CODE BOOK FOR STUDY 1
Table 3 shows the codebook for the inductive thematic analysis in
Study 1.

E CODE BOOK FOR STUDY 2
Table 4 shows the codebook for the thematic analysis in Study 2.

F FEATURES OF GITHUB COPILOT AND
TABNINE AS OF JULY 2022

As of July 2022, GitHub Copilot was an AI-powered code generation
tool that is integrated into code editors as shown in Figure 4. Based
on the official website image of July 2022 1, GitHub Copilot “uses
the OpenAI Codex to suggest code and entire functions in real-time,
right from your editor.” It can generate whole lines or blocks of code
based on the comments and preceding code snippets. Copilot also
supports multiple programming languages and frameworks, includ-
ing Python, JavaScript, etc. However, users cannot chat with the
tool. Moreover, GitHub Copilot Chat, which allows users to interact
with GitHub Copilot to ask and receive answers to coding-related
questions, was not available. Features allowing users to select a
snippet of code and ask natural language questions 2 also became
available after our study. Similarly, Tabnine also only supported
code completion within editors in July 2022 3 and only supported a
chat interface after our study.

G DESIGN CONCEPTS SHOWN IN THE STUDY
In Figure 5, 6, 7, we show the design prototypes that we showed to
the study participants.

1https://web.archive.org/web/20220701014741/https://github.com/features/copilot –
Retrieval date: 05/02/2024
2https://code.visualstudio.com/docs/copilot/overview –Retrieval date: 05/02/2024
3https://web.archive.org/web/20220705023816/https://www.tabnine.com/ –Retrieval
date: 05/02/2024

https://web.archive.org/web/20220701014741/https://github.com/features/copilot
https://code.visualstudio.com/docs/copilot/overview
https://web.archive.org/web/20220705023816/https://www.tabnine.com/


Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Category Code
How developers use AI tools understand AI tool’s utility over time

assign different roles of AI tools
expect different scope of suggestions
validate before accepting suggestions
willing to accept without validation

Factors affecting trust in AI tools general trust perceptions
compare AI tools to human
effect on productivity
stability of performance
(mis)aligned expectation on AI tools
ability to convey intention
reliability of suggestions
concerns around privacy and security
transparency of model mechanism
trust varied by complexity of task
trust varied by the granularity of expected suggestion
trust varied by programming language
trust varied by stake of task
trust varied by individual factors

Evaluating specific AI suggestions local judgement differ from global trust perception
global trust affects local judgement
knowing the exact context help evaluate AI suggestions
explanation help evaluate AI suggestions

Challenges in building trust in AI tools lack of support in onboarding experience
trust perception shift over time
initial expectation affects trust building
build trust via intentional experimentation
prior knowledge shapes trust perception
success and failure cases shape trust
trial and error to build trust in AI
want to understand the limits of AI tools
evaluate suggestion based on external references
fixing AI’s error affects trust
challenges in validation
learning how to control AI tools
assign too much responsibility on AI tools
integrate AI tools in workflow
expect the AI tools’ performance to grow over time
develop folk theory of how AI works

Table 3: Codebook for inductive thematic analysis in Study 1



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

Design concept Code
Usage statistics dashboard demonstrate values of AI tools

support exploration of AI capabilities
help understand the limitation of AI tools
privacy concern around behavior analytics
high effort to interpret the stats

Quality indicators help guide decisions on whether to accept suggestion or not
help show vulnerability and demystifying AI tools
helpful signals to make trust judgement
difficult to interpret numbers
potential to introduce bias

Control mechanisms help set boundaries and align intentions
help build expectations on AI tools
settings are hard to understand
additional effort of using AI tools

Table 4: Codebook for thematic analysis in Study 2

Figure 4: GitHub Copilot interface, as of July 2022



Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

(a) Control panel

(b) Context slider

Figure 5: Group 1: Control mechanisms



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Wang, et al.

(a) File-level familiarity explanation

(b) Solution-level and token-level confidence explanations

Figure 6: Group 2: Quality indicators of AI suggestions



Trust in AI-powered Code Generation Tools FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Figure 7: Group 3: Usage statistics dashboard


	Abstract
	1 Introduction
	2 Related Work
	2.1 Trust in AI
	2.2 Generative AI in software engineering: AI-powered code generation tools

	3 Study 1: How do developers evaluate the trustworthiness of AI tools?
	3.1 Methods: Retrospective Interview Study
	3.2 Factors that contribute to developers' trust attitudes in AI tools (RQ1)
	3.3 Challenges in evaluating the trustworthiness of AI tools (RQ2)
	3.4 Summary of results

	4 Study 2: How to support developers to evaluate the trustworthiness of AI tools?
	4.1 Developing design concepts and visual stimuli
	4.2 Study procedure, participants, and data analysis
	4.3 Study 2 findings

	5 Discussion
	5.1 Trust in generative AI tools
	5.2 Design for trust affordances in AI code generation tools
	5.3 Limitations and future work

	Acknowledgments
	References
	A Participant information
	B Study material for Study 1
	B.1 Example interview questions
	B.2 Message sent to participants to collect significant moments

	C Study material for Study 2
	C.1 Example design probe questions

	D Code book for Study 1
	E Code book for Study 2
	F Features of Github Copilot and Tabnine as of July 2022
	G Design concepts shown in the study

