
Achieving Reproducibility in EEG-Based Machine Learning
Sean Kinahan∗
skinahan@asu.edu

School of Computing and Augmented
Intelligence, Arizona State University

Tempe, Arizona, USA

Pouria Saidi
School of Electrical, Computer, and
Energy Engineering, Arizona State

University
Tempe, Arizona, USA

Ayoub Daliri
College of Health Solutions, Arizona

State University
Tempe, Arizona, USA

Julie Liss
College of Health Solutions, Arizona

State University
Tempe, Arizona, USA

Visar Berisha†
College of Health Solutions, Arizona

State University
Tempe, Arizona, USA

ABSTRACT
Despite the inherent complexity of electroencephalogram (EEG)
data characterized by its high dimensionality, artifactual noise, and
biological variability, many machine learning (ML) studies claim
impressive performance in decoding or classifying EEG signals.
Recently, several studies have highlighted that flawed data analysis
is a prevalent issue in the literature, leading to irreproducible re-
sults and exaggerated claims. To address this issue, we propose a
framework that addresses three primary obstacles in EEG ML re-
search: data leakage, data scarcity, and flawed model selection. We
introduce the EEG ML Model Card, a standardized and transparent
EEG ML model documentation tool that aims to directly address
these pitfalls and enhance reproducibility and trustworthiness in
EEG ML research.

CCS CONCEPTS
• Computing methodologies→ Model verification and vali-
dation.
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1 INTRODUCTION
Machine learning (ML) applications in healthcare have advanced
rapidly in recent years under the assumption thatML algorithms are
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well suited to recognize patterns in complex biological signals. Elec-
troencephalographic (EEG) data allows researchers to investigate
task-related brain activity for many different purposes, including
the design of computer-aided diagnostic systems for neurological
disorders [13]. However, a trend of non-reproducible results plagues
the literature [8, 15, 19, 22, 27, 30, 38], impeding the fair assessment
of new approaches and algorithms.

The lack of reproducibility in EEG-based ML research is a symp-
tom of broader issues within healthcare ML studies. This challenge
underscores the critical need for adopting reproducible research
practices across these scientific domains [3, 20]. For high-stakes
applications like healthcare, the repercussions of deploying non-
reproducible models are significant; they can deny necessary pre-
scriptions, misinterpret X-rays, and overlook common health con-
cerns, thereby harming patients and eroding public trust in ML
technology [32, 39, 40].

The proliferation of these issues can be attributed, in part, to the
rapid growth and appeal of ML in diverse fields. This attractiveness
is coupled with a high degree of design flexibility and a range of an-
alytical methods, which, as highlighted by Ioannidis’ seminal work
"Why Most Published Research Findings Are False," significantly
increases the probability of reporting overoptimistic findings [6].
This problem is exacerbated in competitive fields where there is a
rush to publish results, leading to the propagation of the Fallacy of
AI Functionality [25]. Such overoptimism not only misleads scien-
tific inquiry but also poses risks when these prematurely lauded
AI models are deployed in real-world applications. In the context
of EEG processing, which has critical applications ranging from
rehabilitation and seizure detection to brain-computer interfaces
(BCI), the stakes are exceptionally high. Overly optimistic results
not only misguide further research and development efforts in these
important areas but can also lead to deployment of the technology
for questionable applications [37].

EEG data is complex, highly variable, and high-dimensional.
The typical analysis pipeline includes several steps, including data
preprocessing, channel and feature selection, and model selection,
increasing analytical flexibility for algorithm developers. As a result,
design and evaluation methods for EEG ML models vary consid-
erably across research fields and are documented differently. It
becomes challenging to compare ML approaches for EEG due to a
lack of unified and transparent reporting standards. Together, these
factors harm reproducibility and trustworthiness in EEG ML.
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The purpose of this paper is twofold. Firstly, we identify the
primary reproducibility risk factors and ML pitfalls facing EEG ML
researchers: data leakage, data scarcity, and flawed or insufficient
validation methods. We provide experimental examples to illustrate
the impact of these pitfalls and provide our recommendations for
avoiding them. Secondly, we aim to unify reporting standards in
EEG ML by proposing a Model Card specifically tailored for EEG
applications. The Model Card for EEG helps researchers to avoid
methodological flaws in EEG ML analysis. If adopted at the individ-
ual level, the model card can advance transparent and trustworthy
EEG ML research [21].

1.1 Electroencephalographic (EEG) Data
EEG signals have several characteristics that present a challenge
for the design of effective ML systems based on EEG data:

• High dimensionality
EEG is high-dimensional by nature, with multiple chan-

nels used in recording, and each sampled at hundreds of
samples per second. As a result, developers often apply fea-
ture and channel selection to reduce dimensionality [19].

• Artifactual Noise
Unwanted artifacts (e.g., eye blinks and movements) are

present in EEG signals. Developers commonly use prepro-
cessing techniques to remove these artifacts.

• Biological Variability
Variability is high at the inter- and intra-subject level for

EEG data. Myriad factors, including attention, fatigue, and
cognitive state, can impact the EEG signal. This variability
cannot be easily controlled using computational methods
alone. To control for these sources of variability, developers
must consider relevant noise sources during data acquisition.

These characteristics complicate the development process and
directly impact the reproducibility of EEG-based ML studies. High
dimensionality and artifactual noise necessitate complex prepro-
cessing and feature selection methods, which can vary significantly
between studies, leading to inconsistent results. Similarly, the in-
herent biological variability, both inter- and intra-subject, affects
the consistency of EEG data collected across different studies or
even within the same study over time. This variability can intro-
duce significant fluctuations in the data, making it challenging to
replicate findings. These characteristics collectively contribute to
the primary reproducibility risk factors in EEG-based ML – data
leakage, data scarcity, and flawed or insufficient validation methods:

• Data leakage
Data leakage can be exacerbated by inconsistent prepro-

cessing methods used to address high dimensionality and
noise. This results in identification of spurious relationships
between the independent and target variables. Data leakage
is a primary source of errors and overoptimistic performance
in ML models across varied research fields [8].

• Data scarcity
EEG datasets tend to have few data samples compared

to datasets typical of other ML sub-fields. Data scarcity is
particularly problematic in the context of EEG’s biological
variability, as limited data samples may not adequately cap-
ture this variability, leading to overfitting. The effectiveness

of ML methods for EEG analysis is hampered by limited data
availability as repeated overuse of small datasets often leads
to “overfitting to a dataset” [9].

• Flawed or insufficient validation methods
Validation methods are critical for accurately estimating

the performance of an EEG ML model. Improper or incom-
plete validation can introduce bias in model assessments,
jeopardizing result validity [30].

2 REPRODUCIBILITY
A fundamental problem facing the ML research community is a
lack of reproducibility, often called the "reproducibility crisis" [8].
ML-based science pitfalls such as data leakage and overfitting are
common, often leading to unrealistic or exaggerated claims about
model performance. To make matters worse, researchers often fail
to identify these exaggerated results or the practices that lead to
them prior to publication [8]. These issues are amplified in EEG
analysis for the reasons described in the previous section. This
section provides an overview of the sources that negatively impact
reproducibility and our recommendations for ensuring trustwor-
thiness and reproducibility in EEG-based ML.

2.1 Data Leakage
In the present study, we define data leakage as the unintentional
inclusion of information in the training data that would not be
available at the time of prediction, leading to overly optimistic
performance estimates or incorrect model predictions. Kapoor and
Narayanan [2022] identified a taxonomy of data leakage errors that
can occur in ML science [8]. Based on this taxonomy, we highlight
typical pitfalls in EEG studies with examples from the literature.
We organize the discussion according to the three levels of errors
identified in the original study.

2.1.1 L1 error: Lack of clean separation between training and test
dataset. L1 errors include all data leakage caused by poor training
and test data segregation. When this separation is not maintained,
evaluating model performance fairly becomes infeasible. A recent
study on a steady-state visual-evoked potential (SSVEP) based BCI
system [22] exposed reproducibility challenges. Proper adherence
to ML practices in data separation resulted in a significant accuracy
decrease in the proposed system compared to the initially published
results. Nakanishi et al. [2020] concluded that the original study
exhibited leakage of test samples into the training set, leading to an
overstatement of ML model performance in the original publication
[10]. Another study identified data leakage caused by insufficient
separation of training and test sets during data augmentation [8].
The lack of clean separation between the training and test samples
is an example of L1 error. This example demonstrates how L1 errors
can provide an unfair advantage to ML models due to overfitting.

To demonstrate the impact of data leakage on model accuracy,
we present experimental demonstrations focusing on EEG motor
imagery classifiers. The first experiment simulates an L1 error due
to leakage during feature selection. The simulation design was
motivated by the feature selection leakage issues that have been
reported by Shim et al. [2021] [31] and Lee et al. [2023] [13]. For
all EEG experiments, we utilized the open-access EEGBCI motor
imagery dataset [29]. Our EEGBCI subset included 45 samples of
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64-channel EEG recorded from a single subject performing hand
and foot motor imagery tasks. We used an 80-20 split into train and
test sets for every experimental trial. Unless otherwise stated, 20
trials were performed for each leakage experiment. Our classifier
performance plots include mean test accuracy and 95% confidence
intervals for each experimental condition. We performed basic EEG
preprocessing steps, including bandpass filtering, epoching, and
basic feature extraction. A total of 576 features were extracted, in-
cluding per-channel maximum, minimum, and mean amplitudes,
standard deviation, energy, skewness, and kurtosis. We then per-
formed feature selection twice using a select 𝐾-best method with
𝐾 = 100. In the first iteration, we provided only the training data to
the feature selector during training. In the second iteration, we per-
formed feature selection using the entire dataset. Lastly, we trained
two logistic regression classifiers LA and LB on the training set.
We trained classifier LA using the properly selected features and
classifier LB using the contaminated features. We then evaluated
the accuracy of these classifiers on the test set.

Classifier LB outperformed classifier LA because of data leak-
age during feature selection. Classifier LA mean accuracy was 0.49,
while classifier LB attained a mean accuracy measure of 0.60. Fig.
1a illustrates the invalid performance advantage given to classifier
LB due to a clear L1 error since classifier LB has been refined based
on information from the test dataset. Although the training and
test sets were separated during training, the feature selection pro-
cess was not applied appropriately. The error magnitude in this
experiment is comparable to the error reported by past studies of
biased EEG feature selection [13, 31].

Brain activity is attenuated by the subject’s skull and scalp sur-
face during an EEG study before the electrodes detect it. As a result,
EEG electrodes near one another tend to exhibit a high degree of
redundancy in the data captured. Additionally, brain activity may
be localized to specific cortical regions for a given task. EEG ML
researchers often apply channel selection procedures during pre-
processing to take advantage of these characteristics of EEG data
while decreasing dataset dimensionality.

Channel selection can be beneficial in making a dataset more
tractable forMLmethods; however, improper application of channel
selection methods results in data leakage. Using the same experi-
mental setup as described previously, we demonstrate the impact
of data leakage during channel selection in a binary EEG classifi-
cation scenario. After preprocessing steps, including filtering and
epoching, we perform channel selection using the Common Spatial
Patterns (CSP) method with four components. We performed CSP
channel selection twice. During the first iteration, we split the data
correctly into training and test sets, and we applied the channel
selection method only to the training set. In the second iteration, we
supplied the entire dataset during channel selection. After applying
the CSP transform, we trained and evaluated a logistic regression
classifier using the training and test sets respectively. As before,
we designate these classifiers as LA (no leakage) and LB (channel
selection leakage).

As a result of the data leakage, classifier LB significantly outper-
forms classifier LA. We note that although we separated the training
and test sets during training, data leakage during the earlier chan-
nel selection step dramatically impacted the performance of these

classifiers. The mean accuracy of classifier LA was 0.46, while clas-
sifier LB attained a mean accuracy of 0.94. Fig. 1b illustrates this
comparison.

Data leakage errors are a pervasive issue in EEG analysis. Ex-
perienced ML researchers may consider L1 errors easily avoidable,
yet they continually undermine the validity of published EEG ML
results. A meta-analysis of 37 EEG epilepsy detection studies by
Lemoine et al. [2023] noted that only eight studies did not present
any data leakage [14]. Some of these studies evaluated performance
by testing directly on the training data, a textbook L1 error. Addi-
tionally, all studies that conducted feature selection experienced
data leakage during this stage [14].

2.1.2 L2 error: Model uses features that are not legitimate. L2 errors
arise from using illegitimate features during classification. These er-
rors arise when an ML model can access features that would not be
available in practice. A study on biases in Event-Related Potential
(ERP) BCI experiments modeled how BCI algorithms can leverage
covariates not accounted for during experimental design to perform
classification tasks [12]. Using EEG data from a visual priming ex-
periment, La Fisca et al. [2022] demonstrated that psycho-linguistic
and image covariates can significantly affect the regression pro-
cess of a classifier [12]. In this context, covariate properties refer
to uncontrolled stimulus characteristics that may be imbalanced
across classification categories. For example, some psycho-linguistic
covariates investigated by La Fisca et al. included the number of
phonemes in an item’s name, familiarity, and age of acquisition;
image features included contrast, compactness, complexity, and
homogeneity [12]. In the typical case, these covariate features are
not modeled nor well-balanced across categories. Therefore, the
classification algorithm can exploit dataset biases on these variables
rather than the desired categorical effect. La Fisca et al. [2022] note
that the biasing effect of these covariates increases with the com-
plexity of the model [12]. When an EEG ML model can leverage
covariate features to perform classification, an L2 error occurs.

To highlight the impact of L2 errors on accuracy, we present an
experimental demonstration of a model that uses illegitimate fea-
tures that can be used as a proxy for the outcome variable [8]. Using
the EEGBCI motor imagery dataset [29], we performed bandpass fil-
tering, epoching, and feature extraction. We then contaminated the
feature set by introducing features that have a randomly weighted
correlation with the true label. Sample labels were used to alter 2%
of the original features. This process simulates the biasing effects
of uncontrolled covariate properties, such as non-categorical image
features in the EEG classification of visual stimuli [12]. We trained
two logistic regression classifiers LA and LB on the training set. We
trained classifier LA using the original feature set and classifier LB
using the contaminated features. We finally evaluated the accuracy
of these classifiers on the test set. This process was repeated 20
times, and we reported mean test accuracy of classifiers LA and
LB. As a result of the L2 error, classifier LB outperforms classifier
LA. The mean accuracy of classifier LA was 0.62, while classifier LB
attained an accuracy measure of 0.70. Fig. 2a illustrates the impact
of this error on the classification performance.

2.1.3 L3 error: Test set is not drawn from the distribution of scientific
interest. L3 errors occur when the test set does not originate from
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Figure 1: (a) Demonstration of data leakage during the feature selection process. For this comparison, we trained two logistic
regression classifiers LA and LB after applying a Select 𝐾-Best feature selection method with 𝐾 = 100. (b) Demonstration of
data leakage during EEG channel selection. We trained two logistic regression classifiers LA and LB after applying a Common
Spatial Patterns (CSP) channel selection method. Classifier LA was trained after proper application of CSP, while classifier LB
was trained after CSP with intentional data leakage.
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Figure 2: (a) Demonstration of leakage due to the use of illegitimate classification features. For this comparison, we trained two
logistic regression classifiers LA and LB to classify EEG motor imagery samples with and without correlated feature leakage.
(b) Demonstration of leakage due to nonindependence of training and test set. For this comparison, we trained two logistic
regression classifiers LA and LB to classify EEG motor imagery samples with two sets of randomly assigned labels. Classifier LA
was trained on samples with individually randomized class labels. Classifier LB was trained on a feature set where it was highly
likely for samples recorded close together in time to be assigned the same label.

the distribution of scientific interest. EEG signals capture the corre-
lated activity of neurons, influenced by various factors including
neuron connectivity [18]. Although the spatiotemporal structure
of these oscillations is not fully known, Linkenkaer-Hansen et al.

[2001] demonstrated the presence of long-range temporal corre-
lations and power-law scaling behavior in the frequency range of
10 and 20 Hz [17]. These temporal correlations have a significant
impact on the outcome of experiments that are designed in a block
fashion. Li et al. [2021] provided evidence that ML models learn and
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classify arbitrary brain states based on these temporal correlations
instead of the target features of the data and can result in unreal-
istic estimates of the ML model’s performance [15]. Additionally,
West et al. [2023] identified temporal correlations as a significant
confound in EEG seizure prediction [38]. This nonindependence of
training and test samples constitutes an L3 error [8].

We present an experiment demonstrating the impact of L3 errors
on ML model performance. This experiment simulates temporal
correlation leakage in EEG. We preprocessed the EEGBCI dataset
[29] by bandpass filtering and epoching. Next, we assigned binary
classification labels to the EEG epochs using two methods. The
first labeling method assigned labels randomly for each sample.
Our second method divided the samples into alternating fixed-
length buckets so neighboring samples would likely be assigned
the same class. Although the class labels are randomly assigned,
this method emulates an EEG experiment with a block design for
stimulus presentation. Lastly, we evaluated the performance of
logistic regression classifiers LA (no leakage) and LB (leakage). This
process was repeated 20 times, after which the mean accuracy of
each classifier was reported. Classifier LB outperforms classifier
LA. The mean accuracy of classifier LA was 0.50, while classifier LB
attained an accuracy measure of 0.88. Fig. 2b illustrates the impact
of the L3 error on the classification performance.

Data leakage, occurring in experimental or preprocessing stages,
detrimentally affects downstream ML model performance. Thus,
vigilant monitoring of data leakage risks is crucial throughout the
data analysis pipeline. Recommendations to mitigate such leakage
in EEG ML research follow.

2.1.4 Avoiding Data Leakage. As discussed in Section 2.1.3, tempo-
ral correlations can undermine reproducibility when experimental
stimuli are presented in a block fashion [15, 38]. This issue is espe-
cially problematic given the availability of neuroimaging datasets
that are collected in a block fashion, and can lead to potential
data contamination [15]. There are two main paths to remedy this
problem. First, we recommend adopting a reporting checklist and
highlighting efforts taken to avoid data contamination if the dataset
was collected in a block fashion. Second, at the experimental design
level it has been suggested to adopt other data collection methods,
such as rapid event designs that allow stimuli randomization to
avoid the block-level temporal correlations.

Researchers can avoid data leakage and improve the trustworthi-
ness and reproducibility of EEG ML science by adopting rigorous
standardized documentation practices. The Reporting Standards
For Machine Learning Based Science (REFORMS) checklist was first
proposed by Kapoor et al. [2023] to address invalid and irrepro-
ducible results in ML research [7]. This checklist is a practical guide
for conducting transparent and reproducible ML-based research,
addressing validity failures across diverse ML research fields. The
REFORMS checklist is a valuable tool that covers all facets of a sci-
entific study, from study design to limitations. We advocate for the
widespread use of the REFORMS checklist in all EEG-ML research
studies to aid in the promotion of reproducibility and prevention
of validity issues such as data leakage.

The REFORMS checklist is based on three foundational goals
for robust ML-based science. The first goal is establishing scientific
claims. Scientific claims should be clearly articulated and linked to

the ML task. Ensuring correct execution is the second goal, which
involves verifying that the ML task is correctly performed by thor-
oughly documenting all design and performance aspects. The final
goal is to enable independent verification of results, a critical aspect
of transparency and credibility. Adoption of the REFORMS checklist
can have extensive benefits for EEG ML researchers, referees, and
journals.

2.2 Data Scarcity
Data scarcity is a primary reproducibility risk in EEG-ML studies.
Deep learning methods show promise for enhancing EEG diagnos-
tic tools, but their effectiveness relies on large training datasets
[13]. Though EEG is cost-effective compared to other neuroimag-
ing methods, data collection remains resource-intensive, resulting
in smaller datasets, especially in motor imagery tasks [4]. Criti-
cally, EEG data scarcity has a negative downstream effect on model
evaluation accuracy.

A lack of available data in EEG ML analysis contributes to the
“selective inference” problem in statistics [33]. In selective infer-
ence, a dataset is mined to determine the strongest associations, for
example, between EEG features and an outcome variable. Then, the
same dataset is reused to assess the significance and effect sizes of
the mined associations. When the effect of the selection process
is not accounted for, it becomes challenging to assess the strength
of the mined associations [33]. Therefore, reported claims tend to
be overoptimistic due to a selective inference bias. Overoptimistic
performance claims due to selective inference bias are extremely
common across the ML neuroimaging literature [36].

Selective inference bias undermines reproducibility in EEG ML
model evaluation. Small EEG datasets are prone to overfitting, in
part due to extensive redundancies seen across sensor channels
[19]. Dataset reuse in feature selection and subsequent model se-
lection can increase the risk of overfitting [33]. Limited sample
sizes increase the variability of performance estimates using ML
methods [34]. This increased variability can cause over-optimistic
reported accuracies, particularly when paired with insufficient or
flawed validation methods [30].

When building an ML analysis pipeline, researchers use the
same dataset repeatedly when making critical design decisions [1].
Dataset reuse in this manner leads to overoptimistic ML model
performance estimates [33]. This issue is particularly pronounced
for small sample sizes and high-dimensional data, including EEG
[1, 4].

We present an experimental demonstration of selective inference
bias in EEGmotor imagery classification. Using the EEGBCI dataset
[29], we performed basic preprocessing steps, including bandpass
filtering, epoching, and feature selection. We trained and evaluated
100 logistic regression classifiers, where each classifier utilized a
unique training and test data partition. The maximum test accuracy
obtained using this method was 0.88. The lowest test accuracy ob-
tained was 0.33. Meanwhile, the mean test accuracy was 0.62. These
results are illustrated in Fig. 3. Without robust validation methods,
EEG ML researchers may overestimate model performance due to
this level of variability [30].

The high variability of EEG ML model performance highlights
the joint issues of selective inference and publication biases [1, 8].
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In a scenario where multiple research laboratories perform the
same experiment with unique random train-test splits, only those
who attain high accuracy are likely to publish their findings [36].
Selective inference and publication bias can jeopardize the repro-
ducibility of EEGML results and contribute to over-optimism across
the research community [8].

2.2.1 Working with Limited Data. A lack of available data is a crit-
ical issue affecting the reliability and reproducibility of EEG-ML
science. Open access data sources, data augmentation methods,
and transfer learning methods are three options for EEG-ML re-
searchers to address data scarcity. This section will discuss how
these approaches can enable EEG-ML researchers to produce reli-
able and reproducible scientific results.

Open access data is a boon to reproducible EEG ML research
as it enables researchers to evaluate the benefits and drawbacks
of varied ML approaches against substantially sized and freely
available datasets. EEGML researchers can utilize these open-access
data sources to directly bolster the transparency and computational
reproducibility of their results [8, 27]. However, many research
questions will necessitate the use of smaller EEG datasets. In these
scenarios, data augmentation and transfer learning methods can
help mitigate the impact of the limited sample size.

Data augmentation for ML involves artificially expanding a
dataset by applying various transformations to the existing data,
enhancing model robustness and generalization. EEG data augmen-
tation techniques include averaging trials, recombining time and
frequency slices of trials, adding noise, sliding window cropping,
and generating synthetic data [4]. EEG-ML researchers may ben-
efit from data augmentation when analyzing datasets with few
samples. However, data augmentation techniques also have some
drawbacks. Augmentation techniques that have been shown to be
effective for specific tasks or datasets often do not transfer well to
other datasets or tasks [2]. Traditional augmentation methods for
time-series data are based on making modifications to elements of
the real dataset, which can often cause them to generate invalid or
lower quality examples [5]. Finally, deep learning-based augmenta-
tion methods such as generative adversarial networks are highly
complex, making it difficult to train and obtain results.

EEG-ML researchers may address data scarcity using transfer
learning. In transfer learning, knowledge gained from training a
model on one task is used to improve performance on a related
but distinct task. This approach has garnered significant attention
in self-supervised representation learning for EEG [23]. Represen-
tation learning automatically discovers and creates meaningful
representations or features from raw data. Transforming highly
complex EEG data into a compact, tractable, and informative feature
representation is a primary challenge in EEG-ML. Self-supervised
representation learning methods can help overcome the limitations
imposed by smaller datasets by leveraging a pre-trained learned
representation of EEG data to perform a downstream task.

There are data leakage risks in data augmentation and trans-
fer learning. Lee et al. [2023] explore the risks of data leakage in
data augmentation for EEG computer-aided diagnosis systems [13].
When cropped segments of EEG trials are placed into training and
test sets, the same source EEG trial is utilized as training and test
data, and L1 data leakage occurs. To prevent this leakage, EEG

ML researchers must perform data augmentation only after proper
train-test splitting such that these samples remain separated [13].

Feature leakage is a form of data leakage that can occur when
applying transfer learning methods [28]. One example of feature
leakage is when feature selection is informed by test performance
during the transfer learning process. A researcher can reuse a test
set numerous times during transfer learning for feature extraction
and alter their methods until they achieve a satisfactory perfor-
mance level [1, 28]. For example, a developer could adjust the num-
ber of frozen layers in a pre-trained feature extractor until test
accuracy reaches the desired level. This is a variant of the selective
inference problem discussed in Section 2.2; the test set has effec-
tively become part of the validation set in this situation. Feature
leakage is a particular risk when performing transfer learning on
limited datasets, as with EEG transfer learning [28]. We recommend
that researchers set aside a test set to evaluate model generalizabil-
ity that is strictly isolated during the transfer learning process to
mitigate feature leakage risks.

2.3 Flawed Validation Methods
In ML research, model validation significantly impacts the repro-
ducibility of the reported results. We will focus our reproducibility
discussion on cross-validation (CV). CV is a technique used to assess
the performance of different ML models and their hyperparameters.
Absent or flawed validation methods can undermine EEGML repro-
ducibility in two primary ways. Firstly, as discussed in Section 2.2,
EEG ML analysis exhibits high performance variability due to lim-
ited sample sizes. When data is limited, EEG ML models are prone
to overfitting. This scenario leads to overoptimistic performance
estimates, particularly when researchers do not apply CV. CV meth-
ods can also introduce biased model assessments and compromise
result validity when incorrectly applied due to data leakage risks.
Even when applied correctly, CV measures of predictive accuracy
in neuroimaging can be artificially inflated due to high variance in
the prediction score [36].

In the field of neuropsychiatric disease prediction from neu-
roimaging data, biased estimates of predictive accuracy are a com-
mon error. Poldrack et al. [2020] identifies several factors for this
issue, among them is the introduction of bias via misapplied CV
methods [24].

Absent validation methods are a significant reproducibility risk
factor in EEG ML studies. A study on the prediction performance
of neuropsychiatric EEG biomarkers demonstrated how overfitting
due to selection bias can cause overoptimistic results when CV is
not applied [31]. In this study, feature selection was performed
using real and simulated EEG data, and the prediction accuracy
of the resulting features was evaluated both with and without CV
methods. The non-CV results were found to be significantly higher
than the CV results. This result shows that CVmethods are essential
to obtain robust estimates of EEG ML model performance. EEG
ML researchers often fail to apply robust validation methods when
estimating model performance. A meta-analysis by Roy et al. [2019]
found that of 154 surveyed EEG deep learning studies, 42% did not
apply CV [27].

CV methods are pivotal in reproducible model selection for EEG
studies. As a technique to evaluate various ML models and their
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Figure 3: Measurement of test accuracy when EEG features are randomly split into training and test datasets. Logistic regression
classifiers were trained on 100 unique train-test splits of the EEGBCI subset. We compare the group maximum, minimum, and
mean test accuracies.

hyperparameters, CV allows researchers to balance model perfor-
mance while minimizing overfitting and over-optimism. Despite
these advantages, CV is not a panacea for reproducibility issues
in EEG ML. Methodological flaws can jeopardize the validity of
model assessments, even when CV is applied [8, 30, 38]. For exam-
ple, when data is limited, K-Fold CV can yield overoptimistically
biased performance estimates [34]. Inadequate data partitioning
can undermine reproducibility by causing data leakage [13]. The
next section discusses developing a correct CV strategy to avoid
common reproducibility pitfalls.

2.3.1 Cross-validation in EEG-based ML. Incorrect application of
CV methods can lead to over-optimistic estimates of ML model
performance. This section provides recommendations to help de-
fine an appropriate CV strategy for EEG-based ML. We focus our
discussion on data partitioning approaches and evaluation criteria.
For additional information on neuroimaging predictive modeling
best practices, researchers are encouraged to refer to the work by
Poldrack et al. [2020] [24].

When applyingML techniques to EEG data, researchers are often
interested in a classification task of some form. In this context, we
recommend that researchers consider the downstream goals of
the ML model being trained and evaluated. For example, an ML
diagnostic system is only useful if the classification capabilities
generalize well to unseen participants. To correctly evaluate the
generalization performance of an ML model in this context, a leave-
one-subject-out (LOSO) CV strategy is often recommended [11,
30]. Using LOSO validation, recordings from individual subjects
are iteratively omitted from the training set. However, the left-
out subject data is still used to evaluate the trained model during
each iteration, and the final performance estimate is obtained by
averaging over these iterations. By contrast, randomized K-Fold
CV methods allow subject trials to appear in both training and test
sets. LOSO CV performance estimates may exhibit lower bias than
randomized CV methods [11, 30]. The LOSO CV scenario more

closely resembles the real-world use case of such a model, wherein
a previously unseen subject’s data must be classified into one of
the classes.

EEG ML researchers may be interested in obtaining a perfor-
mance estimate using data from a single subject in non-diagnostic
contexts. For example, a study may seek to determine the feasibility
of a given ML task or whether model performance differs among
groups of experimental subjects and healthy controls. Subject-wise
CV methods may be appropriate for these scenarios [8]. For subject-
wise CV, EEG data from a single subject is divided into training
and evaluation sets. This process is applied iteratively, so different
samples from the subject’s data are used for training and evaluation
at each step. A final performance estimate can be constructed by
determining the mean across subjects. The development of a CV
strategy must be informed by the specific characteristics of the EEG
dataset and the ML task at hand. We recommend that researchers
experiment with different approaches to assess their impact on
model performance. As there is no universal CV solution, tailoring
CV strategies to fit the EEG dataset is necessary to ensure that ML
model results are reliable and reproducible. Transparent documen-
tation of the chosen CV strategy can improve reproducibility in
EEG ML. Researchers should document the CV strategy applied,
including any hyperparameter tuning details, in the EEG ML model
card (Section 3.1).

3 TOWARDS A SOLUTION: A FRAMEWORK
FOR REPRODUCIBILITY IN EEG-BASED ML
METHODS

In this section, we present our framework for achieving repro-
ducibility in EEG-based ML studies. A first step towards ensur-
ing that EEG-based ML studies are reproducible is establishing
community-wide standards for transparency in reporting proce-
dures and methods. In service of this goal, we present a Model Card
tailored to EEG ML applications. We designed this model card to
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foster reproducible EEGML research bymitigating data leakage and
scarcity issues and promoting correct model validation practices.

3.1 Model Cards for EEG ML
One issue with the ML-based science literature is that model de-
velopers focus on improving “accuracy” during model training,
with less attention paid to experimental design for data collection
and potential consequences post deployment. We posit that model
developers should consider a broader view of model design, one
informed by the data collection methodology and other metadata
describing the sample. Finding an approach for operationalizing
this has been an ongoing concern of the ML community. For in-
stance, Rostamzadeh et al. [2022] suggest a guideline to provide
dataset insights for developers [26]. Our solution is optimized for
EEG-based applications, as these guidelines do not currently exist.

We adopt the concept ofModel Cards, first introduced byMitchell
et al. [2019], to facilitate standardization in reporting practices for
ML technology [21]. Model cards are short documents accompa-
nying released ML models, providing usage context, performance
benchmarks, and other relevant information. They provide valuable
contextual information regarding an ML model’s use case, capa-
bilities, and performance. Proper use of model cards can enhance
reproducibility in EEG-based ML research by enabling researchers
to precisely identify a public model’s characteristics.

Model cards are a familiar tool for many ML researchers, hav-
ing already seen widespread adoption among the ML community.
A systematic analysis of over 32,000 model cards posted on the
Hugging Face platform revealed that the 44% of models with cor-
responding model cards account for over 90% of total download
traffic [16]. Additionally, the inclusion of detailed model card doc-
umentation for previously undocumented models had a positive
influence on model utilization. The wide uptake of model card
documentation suggests that the ML community recognizes the
importance of model cards for facilitating model understanding
and deployment [16]. Critically, model cards allow researchers to
understand the limitations of an ML model. A greater understand-
ing of ML model limitations can reduce the misuse of existing ML
models or architectures [8, 21]. Additionally, thorough use of model
card documentation can help researchers easily identify sources
of data leakage or other reproducibility risks before publication.
We propose this extension of model cards for EEG-based ML to aid
transparency and reproducibility in this research area, addressing
some potential pitfalls outlined herein. We additionally provide a
sample EEG-ML model card to illustrate the usage of this extended
framework.

Though the REFORMS checklist (Section 2.1.4) and our proposed
Model Card for EEG aim to enhance ML research transparency,
they adopt distinct roles in service of this objective. The REFORMS
checklist is a field-agnostic guide emphasizing comprehensive re-
porting for all ML-based research. By contrast, our Model Card
for EEG takes a focused approach explicitly tailored to EEG ML
research. The REFORMS checklist can help researchers monitor
reproducibility risks during experimental design and data analysis,
while our model card facilitates public EEG ML model transparency.
Lastly, the model card is geared towards concise model summaries,
enabling rapid evaluation of public model capabilities.

A typical ML model card comprises sections related to model
details, intended use, factors, metrics, evaluation data, training
data, quantitative analyses, ethical considerations, and caveats and
recommendations [21]. We focus on additional documentation for
EEG-based ML models, assuming baseline information aligns with
the original framework. To cover the entire EEG data analysis
pipeline, we propose the addition of several new sections in the
model card:

• Experimental protocol
Summarize the EEG data collection process. This section

includes information on the sample rate, behavioral task
and stimuli details, trial length, and number of electrodes.
Data collected alongside the EEG, such as electromyographic
(EMG), audio, or other data types, can also be described in
this section.

• Preprocessing
Document all operations applied to EEG data after col-

lection and before use in model training. Filter types and
frequencies, epoching, artifact removal, channel rejection,
and channel selection methods can all be included in the
preprocessing section. Authors may justify preprocessing
parameter selections and provide any additional information
about the EEG data in this section.

• Hyperparameter tuning
Specify the tuning process applied during model devel-

opment. Hyperparameter tuning involves finding the best
settings for an ML model, such as the learning rate or other
control parameters. Hyperparameter tuning strategies ap-
plied to the model should be summarized here.

• Reproducibility and sharing practices
Consider steps taken to ensure the reproducibility of the

study. Reproducibility topics presented in this section include
data availability, code sharing, and any additional resources
to facilitate replication of a study’s primary results.

We present a hypothetical EEG-based motor imagery classifier
using the EEGBCI dataset [29]. Fig. 4 shows an example of the
extended EEG ML model card.

The Model Card for EEG offers a systematic template for re-
searchers to document essential model details. This standardized
format helps to prevent reproducibility errors, such as data leak-
age and selective inference, by providing a consistent framework
for model assessment. Researchers can efficiently compare EEG
ML models and approaches using model cards, allowing for the
identification and mitigation of potential risks. The streamlined pre-
sentation of crucial reproducibility details is the primary strength
of the Model Card for EEG. Greater emphasis on standard report-
ing practices will promote collaboration and knowledge sharing
within the EEG ML research community and foster reliable and
transparent advancement of the field.

3.1.1 Limitations. Although model cards are valuable for trans-
parency and accountability in machine learning, they have limita-
tions. They are limited in scope and may not capture all relevant
information about complex models. Model cards provide a snapshot
of a model’s characteristics at a particular time and may not reflect
changes or updates as a model is deployed in different contexts.
Therefore, model developers must invest time to maintain public
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Model Card: EEG-Based Motor Imagery Classification 

Model Details 

● Architecture: Convolutional Neural Network 
(CNN) with three layers.

● Configuration: Optimized for EEG feature
extraction in motor imagery tasks.

Intended Use 

● Binary classification of motor imagery tasks for 
brain-computer interface applications.

● Not intended to make judgments about specific 
individuals. 

Metrics 

● Accuracy, Precision, Recall, and F1-score
collected for all subjects.

● K-fold Cross-Validation (K=5). 
Evaluation Data 

● Real-time motor imagery tasks performed by 
subjects.

● Recording session separate from training data.
Training Data 

● 500 trials (250 per class) from four subjects.
● Augmentation: Random temporal jitter.

Ethical Considerations 

● Privacy: Measures taken to anonymize
participant data. 

Caveats and Recommendations 

● Performance not evaluated on subjects with 
severe neurological conditions. 

● Recommendations: Include diverse subject 
groups for robust evaluation.

Experimental Protocol 

● Motor imagery tasks of left- and right-hand
movements. 

● Sample Rate: 250 Hz. 
● Trial Length: 4 seconds. 
● Inter-trial Length: 10 seconds.
● 32-channel BIOSEMI EEG cap using 10-20 

standard electrode placement.
Preprocessing 

● Filtering: Bandpass (1-30 Hz). 
● Epoching: 1-second segments.
● Artifact Removal: ICA for eye and muscle

artifacts. 
● Channel Selection: Topographical analysis for 

relevant electrodes performed using training 
data set only.

Model Calibration 

● Individual Subject Calibration: Per-subject 
calibration required. 

● Task: Subjects perform 50 opposing motor 
imagery tasks for calibration. 

Hyperparameter Tuning 

● Hyperparameters: Learning rate, batch size, and
dropout rate tuned. 

● Rationale: Balancing performance and
generalizability. 

Reproducibility and Sharing Practices 

● Data Availability: Public EEGBCI dataset.
● Code Sharing: Implementation available on

GitHub: https://github.com/link-to-repo 
● Supplementary materials provided for 

replication, including preprocessing scripts and 
trained model weights (GitHub).

Figure 4: Sample EEG-ML Model Card for an EEGBCI Motor Imagery classification model.

model card information. Useful model cards are populated with at-
tention to all aspects of a model, including thoughtful reflection on
a model’s limitations. However, researchers and developers tend to
downplay model limitations. Liang et al. [2024] notes that the Envi-
ronmental Impact, Evaluation, and Limitations model card sections
are frequently omitted by developers [16]. Model cards may provide
a false sense of transparency or accountability to organizations, as
model cards are less interpretable to those without significant ML
expertise [35]. Finally, there is no enforcement of a standard format
or template for model cards. This limitation can make it difficult to
evaluate competing models based on model cards alone.

Model cards are not a complete solution to reproducibility issues
in EEG ML, but they are an important part of a more complete solu-
tion. Defining best practices for model card design and implemen-
tation will be necessary across ML research disciplines to support

transparent, usable, and responsible ML [16]. Researchers should
evaluate and apply additional transparency tools and approaches
beyond model cards to improve reproducibility, including algo-
rithmic auditing, adversarial testing, and inclusive user feedback
mechanisms [21]. Despite their limitations, model cards remain a
valuable tool for improving model transparency and reproducibility.
Most importantly, model cards directly involve developers with
reproducibility issues during model development, decreasing the
likelihood of common reproducibility errors. This paper highlights
the prevalence of ML pitfalls in the neural engineering community
and acknowledges the reproducibility crisis in this field. We believe
that proposing a model card tailored for EEG signals is the first
step toward finding a standard and widely accepted guideline in
this area of research to elevate transparency and achieve the safe
deployment of these models.
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4 CONCLUSION
EEG data analysis through ML methods is challenging but essen-
tial for decoding brain signals. Recent studies have claimed high
performance, gaining widespread attention. Yet, reproducibility
issues have arisen. This paper addresses three key reproducibility
challenges in EEG-based ML analysis: data leakage, data scarcity,
and flawed model selection. We introduce the Model Card for EEG,
a documentation tool promoting transparency and standardization
in EEG model reporting. Our framework aims to mitigate data
leakage, leverage limited data effectively using strategies like data
augmentation and transfer learning, and guide the development
of appropriate cross-validation methods. By doing so, we seek to
improve the reliability and credibility of EEGML research, fostering
trustworthiness and reproducibility in the field.
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