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ABSTRACT
Predictive risk models in the public sector are commonly developed

using administrative data that is more complete for subpopulations

that more greatly rely on public services. In the United States, for

instance, information on health care utilization is routinely avail-

able to government agencies for individuals supported by Medicaid

and Medicare, but not for the privately insured. Critiques of public

sector algorithms have identified such “differential feature under-

reporting” as a driver of disparities in algorithmic decision-making.

Yet this form of data bias remains understudied from a technical

viewpoint. While prior work has examined the fairness impacts

of additive feature noise and features that are clearly marked as

missing, little is known about the setting of data missingness absent

indicators (i.e. differential feature under-reporting). In this work, we

study an analytically tractable model of differential feature under-

reporting to characterizethe impact of under-report on algorithmic

fairness. We demonstrate how standard missing data methods typi-

cally fail to mitigate bias in this setting, and propose a new set of

augmented loss and imputation methods. Our results show that,

in real world data settings, under-reporting typically exacerbates

disparities. The proposed solution methods show some success in

mitigating disparities attributable to feature under-reporting.
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1 INTRODUCTION
Regional and local governments around the world are using their

increasingly digitized data systems to develop AI-driven decision-

support technologies. The hope is that these tools improve decision

quality, reduce inefficiencies, eliminate fraud, and improve out-

comes for their citizens [25, 42]. Often, these technologies take the

form of predictive risk models that are trained on administrative
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data to assess the likelihood that a case will go on to have poor out-

comes. Such models have been developed and deployed in criminal

justice [9], child welfare [57], welfare fraud detection [58], federal

tax audits [11, 37], homelessness services [41], health care [44], and

many other settings.

Predictive risk models in the public sector have come un-

der criticism over concerns that they are trained on biased data

[10, 17, 43, 53]. In this paper, we consider a specific form of bias.

We use the term ‘differential feature under-reporting’ to describe

the phenomenon whereby administrative data records are more

complete for individuals who have more greatly relied on public ser-

vices. In the United States, for instance, administrative records often

contain medical claims data for those who receive services through

public insurance programs (Medicaid / Medicare), but lack infor-

mation on physical, mental and behavioral healthcare utilization

for the privately insured. A lack of recorded medical claims for an

individual in this context is often indistinguishable from instances

in which no medical claims have been made. In her critique of the

Allegheny Family Screening Tool (AFST) used in screening child

maltreatment referrals, Eubanks [26] writes, “by relying on data

that is only collected on families using public resources, the AFST

unfairly targets low-income families for child welfare scrutiny.”

We provide a technical analysis of this problem. First, we intro-

duce a statistical model of data collection with differential feature

under-reporting. We then present theoretical results that character-

ize the impact of under-reporting on disparities in selection rates

across groups. We describe why standard missing data methods

generally fail to mitigate unfairness and, instead, propose newmeth-

ods based on augmented loss estimation and optimal prediction

imputation that are tailored to the under-reporting setting. Lastly,

we present empirical results on semi-synthetic and real world data.

Our results show that, while in theory under-reporting can decrease

disparities, in practice, under-reporting usually leads to increas-

ing disparities and our proposed mitigation methods alleviate this

increase.

2 BACKGROUND AND RELATEDWORK
Under-reporting vs. missingness. The problem of differential fea-

ture under-reporting is illustrated in Figure 1. An individual’s risk

prediction 𝑌 is formed based on observed administrative data fea-

tures 𝑋 which are a mismeasured version of a “true” latent feature

vector𝑍 . We assume that certain features in𝑍 , such as demographic

information, are correctly observed, whereas others, such as use of

mental health services, are only correct for individuals who rely on

publicly funded services. Problematically, we generally lack indica-

tors on who is privately or publicly funded and for which services.

For indicators and count features, e.g. the number of episodes in
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𝐺 𝑍 𝑌

𝜉 𝑋 𝑌

(a) General graph

𝐺 : High vs. low income group

𝑍 : Number of doctor visits in the past year

𝜉 : Publicly insured (𝜉 = 1) or privately insured (𝜉 = 0)

𝑌 : Health risk

(b) Illustrative example

Figure 1: We study a prediction model on feature vectors with differential under-reporting 𝑋 where true outcomes 𝑌 are a
function of the latent ‘true’ features 𝑍 . Missingness 𝜉 is influenced by group membership 𝐺 . We consider both cases in which
feature distributions vary by group membership and cases with 𝐺 ⊥ 𝑍 . In our setting, missingness indicators 𝜉 are unobserved
and group membership 𝐺 is only used for model evaluation and not as a feature. The graph reflects the dependencies at
prediction time.

inpatient mental health treatment in the past year, the mismeasured

feature will simply show the value 0 for individuals who received

those services through privately funded mechanisms. This means

that when we observe 𝑋 𝑗 = 0, we do not know whether 𝑍 𝑗 = 0,

or if 𝑍 𝑗 ≠ 0 and the feature has been mismeasured. In the graph,

the unobserved missingness indicators are denoted by 𝜉 . This dis-

tinguishes the under-reporting setting from standard missingness,

wherein 𝜉 is assumed to be fully observed.

Missing data literature distinguishes three types of mechanisms:

(1) Missing Completely At Random (MCAR) where missing values

are independent of both observed and unobserved data, (2) Miss-

ing At Random (MAR) where missingness depends on observed

variables, and (3) Missing Not At Random (MNAR) where miss-

ing values depend on unobserved data [54]. In administrative data,

records are more available for individuals who rely more greatly on

public services which often correlates with demographic attributes

excluded from modeling. This implies an MNAR setting.

Under-reporting in real-world applications. The problem of fea-

ture under-reporting extends beyond the administrative data con-

text. In health applications, Electronic Health Record (EHR) data

is often under-reported at different levels for different population

sub-groups [19, 33, 35, 51, 60]. Socioeconomically disadvantaged

patients may be missing more diagnostic tests due to limited health

care access [2, 7]. Reliance on clinical decision support systems

trained on EHR data could exacerbate already existing health care

disparities [15, 33, 38]. Similarly, the extent of under-reporting of-

ten varies across domains (e.g. hospitals) which has been studied

by Zhou et al. [62]. While Zhou et al. [62] consider model adapta-

tion when shifting to unlabeled target data with different level of

under-reporting, we focus on a single domain with varying levels

of under-reporting across groups and study fairness implications.

Under-reporting in biomedical research. In epidemiological sur-

veys, social stigma can lead participants to provide false negative

responses (e.g. true maternal smoking status 𝑍 vs. reported status

𝑋 ) [34, 40, 45, 55]. Researchers have proposed various methods to

estimate association between 𝑍 and outcome 𝑌 by leveraging 𝑋 in-

cluding correction factors for independence tests [13, 55], adjusted

mutual information [55], odds-ratios [18, 22, 23], risk-ratios [12, 50],

and full likelihood approaches [1]. These methods are typically lim-

ited to binary features and outcomes, and focus on inferring the

relationship between 𝑌 and some 𝑍 rather than on prediction. In

the study of geographical disease counts, [8, 20, 32, 56] Bayesian

methods have been used to make inference in the under-reporting

setting of 𝑋 ≤ 𝑍 . Such methods require a host of parametric and

distributional assumptions as well as informative priors. In single-

cell RNA sequencing, under-report arises as ‘zero-inflation,’ which

refers to genes going undetected despite being expressed in a cell

due to low levels of RNA. Methods correcting for zero-inflation

are often Bayesian and highly specialized for the single-cell RNA

sequencing task. Note that even if some of the above approaches

were applicable in our setting to learn a correctly specified model

𝑓 (𝑧) = E [𝑌 | 𝑍 = 𝑧] from observations of 𝑋 and 𝑌 , it is unclear

how to use suchmodels for predictionwhen only the under-reported
features 𝑋 are available at prediction time.

Additive noise and fairness. The algorithmic fairness literature

has studied various types of feature mismeasurement as summa-

rized in Table 1. A commonly studied setting is additive feature

noise where, instead of a feature 𝑧1, we observe a noisy version

𝑥1 = 𝑧1 + 𝜀. The random noise 𝜀 is often assumed to be zero-mean,

of small variance, and independent of other variables. This implies

that, while some of the information in the feature is diluted, large

portions of the encoded information remains intact. Khani and

Liang [39] show that adding the same amount of feature noise to a

group-blind model can introduce statistical loss discrepancy. This is

in line with earlier observations from the statistical discrimination

literature [3, 48]. Chen et al. [16] propose data collection strategies

targeted at decreasing discrepancy and come to the conclusion that

overcoming differential noise across protected groups may require

collection of additional data. In contrast to additive noise, under-

reporting removes all information from impacted feature entries

and typically biases the feature mean. Some works [e.g. 39] suggest

that feature missingness can be modeled as a special case of additive

noise by selecting noise terms with very high variance. However,

this only covers a special case of under-reporting in which feature

entries are missing for all observations.

Missing data methods and fairness. Feature missingness has been

studied in the statistical literature for several decades [e.g. 54].

This line of work generally assumes that we observe missingness

indicators or, equivalently, missing values are clearly marked (e.g.

NaN). Various methods with different fairness implications have

been proposed (Table 1).

(1) Complete case analysis and reweighing. In some cases, it may

be desirable to remove incomplete rows which can lead to

significant biases [54]. Various reweighing procedures have
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Complete data Additive noise Missing with indicator Under-reporting

Setting

𝑔 𝒛1 𝑧2 𝑦

0 10 2 1

0 7 1 0

1 0 3 1

𝑔 𝒙1 𝑧2 𝑦

0 10.2 2 1

0 6.5 1 0

1 0.8 3 1

𝑔 𝒙1 𝒓 𝑧2 𝑦

0 10 1 2 1

0 𝒎 0 1 0

1 𝒎 0 3 1

𝑔 𝒙1 𝑧2 𝑦

0 10 2 1

0 𝒎 1 0

1 𝒎 3 1

Features fully observed Feature values with added

random noise 𝜀

Some feature values take

default value𝑚; 𝑟 indicates

which values are observed

Some feature values take

default value𝑚; No

indicators for missingness

Previous
fairness
work

No feature

mismeasurement

Khani and Liang [39],

Phelps [48], Aigner and

Cain [3], Chen et al. [16]

Zhang and Long [61], Wang

and Singh [59], Jeanselme et al.

[38], Fernando et al. [27],

Fricke [30], Ahmad et al. [2]

This work, Eubanks [26]

Table 1: Different types of feature mismeasurement and previous work addressing fairness implications. In the data examples,
mismeasured features are denoted with 𝑥 while correctly observed features are denoted by 𝑧. Column 𝑔 encodes group
membership.

been proposed to deal with this problem. Zhang and Long

[61] suggest learning only from complete observations while

employing an importance sampling procedure. Wang and

Singh [59] suggest that reweighing and resampling methods

in the context of categorical data can lead to considerable

fairness improvements over learning with missing data di-

rectly.

(2) Imputation. Jeanselme et al. [38] compare different imputa-

tion strategies under clinical presence and find that there

is no imputation strategy that reliably outperforms other

imputation methods in terms of fairness. Fernando et al.

[27] and Fricke [30] compare feature imputation to complete

case analysis and find that rows with missing values can

contribute to fairer outcomes via observed columns.

In contrast to the feature missingness setting, we do not observe

indicators for missing entries in this work. Despite this difficulty,

we experiment with row omission and imputation in Section 7.

3 PROBLEM SETUP
Setting. We study the effect of feature under-reporting on algo-

rithmic fairness through the lens of the regression setting displayed

in Figure 1. Assume latent feature vectors 𝑧 ∈ R𝑑
and group infor-

mation𝑔 ∈ {0, 1}. We assume a noiseless regression setting inwhich

the outcome 𝑦 is a linear function of 𝑧, i.e. 𝑦 = 𝛼 + 𝛽𝑇 𝑧 with 𝛼 ∈ R,

𝛽 ∈ R𝑑
≠0
. Instead of the true features 𝑧, we observe a mismeasured

vector 𝑥 in which entries default to 0 with group-dependent proba-

bilities. That is, we set 𝑥 = 𝑧 ⊙ 𝜉𝑔 where ⊙ denotes element-wise

multiplication, 𝜉𝑔 ∼ Bern(𝑚𝑔), and (1 −𝑚0), (1 −𝑚1) ∈ (0, 1]𝑑
are under-reporting rates in the two groups. More formally, we

have a group random variable 𝐺 ∼ Bern(𝑟 ) and a random feature

vector 𝑍 . The vector of under-reported features 𝑋 can be written

as 𝑋 = 𝑍 ⊙ 𝜉 where 𝜉 = 𝐺𝜉1 + (1 −𝐺)𝜉0. This setting allows for

different dependence structures depending on whether we assume

𝐺 ⊥ 𝑍 .

Two-step bias. Differential under-reporting introduces bias in

two ways: (1) Under-reporting in training data influences estima-

tion of the prediction model (estimation step), and (2) input data

with under-reporting leads to biased predictions at test time (pre-
diction step). It is generally not sufficient to recover the true model

parameters 𝛼, 𝛽 as only biased features are available at prediction

time. In fact, our experiments in Section 8 demonstrate that using

true parameters for prediction can lead to worse fairness outcomes

than using a model estimated with biased data.

Thresholded prediction. We assume a thresholded prediction set-

ting reminiscent of predictive risk modeling in the public sector.

A predictor 𝑓 is fit on (𝑋,𝑌 ) to produce predictions 𝑌 = 𝑓 (𝑋 ) =
𝑓 (𝑍 ⊙ 𝜉𝐺 ). We consider group-wise shares of predictions above a

given threshold 𝑦: 𝑃 (𝑌 ≥ 𝑦 | 𝐺 = 𝑔) which we refer to as selection
rates at threshold 𝑦. This implicitly assumes a setting in which the

highest risk individuals are selected (e.g. child welfare screenings,

fraud detection, federal tax audits). However, it is straightforward

to reverse the analysis for scenarios in which low risk leads to selec-

tion (e.g. bail decisions in criminal risk assessment). In addition, we

assume that being selected is undesirable. Crucially, this assumption

is only made to simplify interpretation and we could easily consider

the opposite case.

Excess selection rates. We assume that the threshold on predic-

tions 𝑌 is set to achieve a desired overall selection rate 𝑃 (𝑌 ≥ 𝑦) =
𝐶 ∈ [0, 1]. Given the cumulative distribution function of predic-

tions 𝐹
𝑌
, the percentile threshold 𝐶 implies an absolute threshold

𝑦 = 𝐹−1
𝑌

(1 − 𝐶) such that the selection rate for group 𝑔 can be

written as 𝑃 (𝑌 ≥ 𝑦 | 𝐺 = 𝑔). In order to isolate the effect of under-

reporting, we need to account for a ground truth difference in

selection rates. Let 𝑌𝑋 denote the predictions of a model trained on

(𝑋,𝑌 ) and 𝑌𝑍 the predictions of a model trained on (𝑍,𝑌 ). When

distributions of 𝑌𝑍 and 𝑌𝑋 differ, the predictions imply different

thresholds 𝑦′ = 𝐹−1
𝑌𝑍

(1−𝐶) and 𝑦 = 𝐹−1
𝑌𝑋

(1−𝐶). With this notation,

we define a metric for impact of differential feature under-reporting

on disparities in selection rates.

Definition 1 (Excess selection rate due to under-report-

ing). The excess selection rate for group 𝑔 ∈ {0, 1} at overall selec-
tion rate 𝐶 ∈ [0, 1]

Δ(𝑔,𝐶) := 𝑃 (𝑌𝑋 ≥ 𝑦 | 𝐺 = 𝑔) − 𝑃 (𝑌𝑍 ≥ 𝑦′ | 𝐺 = 𝑔),
is the difference in selection rates when ranking according to a model
trained on 𝑋 compared to a model trained on 𝑍 . We say that group 𝑔
is over-selected at level 𝐶 if Δ(𝑔,𝐶) > 0. If Δ(𝑔,𝐶) < 0, we say that
𝑔 is under-selected.

In principle, we could directly consider a “difference in differ-

ence”: the difference in selection rates between groups 𝑔 = 0, 1

when selection occurs according to the model 𝑌𝑋 versus the un-

biased predictions 𝑌𝑍 . However, since we select a fixed share of
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the population 𝐶 , an increase of the selection rate of group 𝑔 when

moving from 𝑌𝑍 to 𝑌𝑋 already implies a decrease for group 1 − 𝑔.

It is generally difficult to argue about the excess selection rate

Δ(𝑔,𝐶) analytically. Even in a simple setting with group-dependent

Gaussian features 𝑍 | 𝐺 ∼ N (𝜇𝐺 , Σ𝐺 ), there is no closed-form

expression for the quantile 𝑦′ = 𝐹−1
𝑌𝑍

(1 −𝐶) and determining the

sign of Δ(𝑔,𝐶) requires analysis of a difference in cdfs which is

often intractable. Instead, we simplify the setting and assume that

𝑍 follows the same distribution across groups. In this case, the

selection rates on the true outcome 𝑌 are the same in both groups

at every threshold, and we can simplify.

Definition 2 (Excess selection rate due to under-report-

ing, independent case). If 𝑍 ⊥ 𝐺 , we say that group 𝑔 ∈ {0, 1}
is over-selected at threshold 𝐶 ∈ [0, 1] if 𝑃 (𝑌𝑋 ≥ 𝑦 | 𝐺 = 𝑔) >

𝑃 (𝑌𝑋 ≥ 𝑦 | 𝐺 = 1 − 𝑔), and under-selected if the inequality is
reversed.

While the majority of our theoretical derivations assume the

special case of 𝑍 ⊥ 𝐺 , the empirical portion of this work explores

the impact of feature under-reporting in the more general setting.

To clarify which assumptions are sufficient for which finding in

the paper, we supply a summary table in Appendix A, alongside

descriptions in the main text.

4 DIFFERENTIAL FEATURE
UNDER-REPORTING IN LINEAR
REGRESSION

In this section, we examine the bias that differential feature under-

reporting introduces into regression parameter estimates. We con-

sider a setting in which true outcomes are a linear function of latent

features, i.e. 𝑌 = 𝛼 + 𝛽𝑇𝑍 , which implies that a linear model with

access to the true 𝑍 recovers the true outcomes 𝑌 . Dropping sub-

scripts, we write 𝑌 = 𝑌𝑍 and 𝑌 = 𝑌𝑋 . Note that this section focuses

on population-level regression.

Estimates and attenuation bias. Feature mismeasurement in the

form of under-reporting leads to inconsistent parameter estimates

in linear regression. When fitting a linear model on (𝑋,𝑌 ), the least
squares estimates become

ˆ𝛽 = Σ−1𝑋 Σ𝑋𝑍 𝛽, 𝛼 = 𝛼 +E [𝑍 ]𝑇 𝛽 −E [𝑋 ]𝑇 ˆ𝛽, (1)

where Σ𝑋𝑍 denotes the covariance matrix between 𝑋 and 𝑍 and

we write Σ𝑋 for Σ𝑋𝑋 . At first glace, this solution resembles the

regression estimates in the more commonly studied additive feature

noise case. Assuming 𝑋 ′ = 𝑍 + 𝑈 where 𝑈 is independent zero-

mean feature noise, we obtain
ˆ𝛽 = Σ−1

𝑋 ′Σ𝑋 ′𝑍 𝛽 = (Σ𝑍 + Σ𝑈 )−1Σ𝑍 𝛽 .
The factor 𝜆 = (Σ𝑍 + Σ𝑈 )−1Σ𝑍 is commonly interpreted as a

noise-to-signal ratio and, if 𝑍 is one-dimensional, we know that

| ˆ𝛽 | = 𝜆 |𝛽 | < |𝛽 | which is generally referred to as attenuation bias

[e.g. 31, 36]. In the under-reporting setting, Σ𝑋 does not easily

separate into terms depending on only the feature or only the

mismeasurement. However, in the special case of one-dimensional

𝑍 and 𝑍 ⊥ 𝐺 , we can still show that the parameter
ˆ𝛽 is biased

towards zero.

Lemma 3 (Attenuation bias). Assume the feature 𝑍 is one-
dimensional and has the same distribution across groups. Then, the

least squares regression of 𝑌 on the mismeasured feature 𝑋 yields an
estimated slope ˆ𝛽 with | ˆ𝛽 | ≤ |𝛽 |.

The 𝑑-dimensional case. Real-world prediction settings typically

include multiple, often correlated, features. Assume the feature vec-

tor 𝑍 is 𝑑-dimensional, and under-reporting only occurs in the first

feature,𝑍1. This means that𝑋 coincides with𝑍 in all but the first en-

try which is computed as𝑋1 = 𝑍1𝜉1 where 𝜉1 = 𝐺𝜉1
1
+ (1−𝐺)𝜉0

1
and

𝜉1
1
∼ Bern(𝑚0

1
), 𝜉0

1
∼ Bern(𝑚1

1
). We further assume that features

𝑍2, . . . , 𝑍𝑑 are uncorrelated and the feature dependence structure

is characterized entirely by the correlations between 𝑍1 and 𝑍 [2:𝑑 ] .
This assumption is without loss of generality because we can al-

ways apply orthogonalization to the features. We explicitly exclude

cases in which 𝑍1 is a perfect linear combination of other features

to avoid problems of multicollinearity and assumeV [𝑍𝑘 ] > 0 for

all 𝑘 ∈ [2 : 𝑑]. Given this setting, Proposition B.1 provides a closed

form representation for the parameter estimates
ˆ𝛽 . The bias in these

estimates can be conceptualized as a generalization of omitted vari-

able bias [5] which is discussed Appendix C. We now assume that

𝑍 ⊥ 𝐺 which implies that under-reporting is independent of the

value that is under-reported. This resembles the assumptions made

in previous work on the impact of additive feature noise on fairness

[e.g. 3, 39, 48], and allows us to gain analytical insights that would

otherwise remain intractable. First, we examine the behavior of the

parameter estimate for the feature with under-reporting, i.e.
ˆ𝛽1.

Proposition 4 (Properties of
ˆ𝛽1). If 𝑍 ⊥ 𝐺 , the parameter

estimate ˆ𝛽1 has the following properties.

(1) Sign invariance: ˆ𝛽1 has the same sign as 𝛽1.
(2) Attenuation bias: | ˆ𝛽1 | ≤ |𝛽1 |.
(3) Attenuation bias increasing with under-reporting: If

under-reporting 1 −𝑚
𝑔

1
is increasing for one (or both) groups

𝑔 ∈ {0, 1}, ceteris paribus, the magnitude of the parameter
estimate, | ˆ𝛽1 |, is decreasing.

This finding shows that feature under-reporting leads to attenu-

ation bias in the respective parameter estimate even when other

correlated and fully observed features are available. The attenuation

bias gets more pronounced with more under-reporting. Next, we

turn towards the estimates for the fully observed features
ˆ𝛽𝑘 for

𝑘 ∈ [2 : 𝑘].
Proposition 5 (Properties of

ˆ𝛽𝑘 ). If 𝑍 ⊥ 𝐺 , the parameter
estimates ˆ𝛽𝑘 for 𝑘 ∈ [2 : 𝑑] have the following properties.

(1) Correlation bias: If ˆ𝛽𝑘 ≠ 𝛽𝑘 , then 𝜌 (𝑍1, 𝑍𝑘 ) > 0.
(2) Shifting weight: If under-reporting 1 −𝑚

𝑔

1
is is increasing

for one (or both) groups 𝑔 ∈ {0, 1}, ceteris paribus, ˆ𝛽𝑘 is
increasing if sign (𝛽1Cov [𝑍1, 𝑍𝑘 ]) = +1, and decreasing if
sign (𝛽1Cov [𝑍1, 𝑍𝑘 ]) = −1.

In line with general intuition, under-reporting in𝑍1 has no effect

on the parameter estimate
ˆ𝛽𝑘 if features 𝑍𝑘 and 𝑍1 are uncorrelated.

If the features are correlated, the direction of the under-reporting

effect on the parameter estimate depends on the signs of 𝛽1 and

Cov [𝑍1, 𝑍𝑘 ]. Note that this is independent of the value and sign of

𝛽𝑘 .

Take-away. Proposition 4 and 5 tell a compelling story about

the effect of under-reporting on parameter estimates in the studied

setting. As more feature values default, the regression model places
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less weight on the mismeasured feature and instead shifts weight

to fully observed features with non-zero correlation. This can lead

to increasing or decreasing parameter estimates. Analytically, there

are cases in which ‘shifting weight’ means that the magnitude

of a parameter estimate, | ˆ𝛽𝑘 |, is decreasing, which may appear

counterintuitive. For example, consider a setting in which both 𝑍1
and 𝑍𝑘 have positive true parameters but negative correlation, i.e.

𝛽1, 𝛽𝑘 > 0 and Cov [𝑍1, 𝑍𝑘 ] < 0. In practice, this could occur when

there are several mutually exclusive paths to the same outcome.

For example, consider prediction of general health risk scores with

features including both the number of pediatrician visits in the last

year and the number of internist visits. Presumably, these features

are negatively correlated because they are relevant for twomutually

exclusive parts of the population, i.e. children and adults, but in both

columns larger values can be indicative of a high general health

risk.

5 IMPACT ON SELECTION RATE DISPARITY
Selection rate disparity in Gaussian setting. We study the effect

of differential feature under-reporting on selection rate disparities

in linear regression. Similar to our previous discussion, we assume

a 𝑑-dimensional feature setting in which only the first feature is

subject to under-reporting and 𝑍 ⊥ 𝐺 . We further assume that

features are jointly Gaussian, i.e. 𝑍 ∼ N (𝜇, Σ) where 𝜇 ∈ R𝑑

and the covariance matrix Σ ∈ R𝑑×𝑑
is positive definite. This has

the benefit that predictions 𝑌 = 𝑌𝑋 follow a Gaussian mixture

distribution which allows us to directly analyze group selection

rates. If under-reporting rates are the same across groups, there is

no selection rate disparity as both groups have the same feature

distributions. If the under-reporting rates vary between groups, we

observe the following.

Proposition 6. For a sufficiently high threshold 𝑦, the group with
more under-reporting is over-selected if

V
[
𝛼 + ˆ𝛽 [2:𝑑 ]𝑍 [2:𝑑 ]

]
> V

[
𝛼 + ˆ𝛽𝑍

]
(Case 1), or under-selected if the inequality is reversed (Case 2). For
low thresholds, the cases are reversed.

We refer to Proposition B.2 for an expanded version of this find-

ing including a discussion of sufficiently high thresholds. Proposi-

tion 6 shows that over-selection primarily depends on variance in

predictions. When cutting off at a high threshold, the group with

more feature under-reporting is over-selected if the variance in pre-

dictions for examples with defaulted feature exceeds the prediction

variance for fully observed examples (Case 1). It is under-selected

if the variance of predictions is larger for the examples with fully

observed features (Case 2). Intuitively, at high thresholds, infor-

mation deficiency in a group always leads to under-selection be-

cause it prompts the group’s risk distribution to concentrate more

closely around its mean moving more mass below the threshold.

We find that, analytically, outcome disparities can go into either

direction and sometimes groups with information deficiency are

over-selected. While our findings suggest that this is mostly a ques-

tion of variance in predictions, this is likely only part of the story

in settings with group-dependent feature distributions. We study

more general settings empirically in Section 7.

Combining parameter estimation and prediction steps. Feature
under-reporting introduces bias both at estimation and prediction

time. In the following, we combine our previous findings to examine

the conditions under which under-reporting leads to over-selection

and under-selection. As before, we assume a 𝑑-dimensional feature

setting in which only the first feature 𝑍1 is impacted by under-

reporting. Features are jointly Gaussian, and we further assume

that 𝑍2, . . . , 𝑍𝑑 are uncorrelated.

Corollary 7. Given the first and second moments of 𝑍1, the ex-
pected share of observed valuesE [𝜉1], and the fraction of variance in
𝑍1 that is explained by the remaining features 𝑆2 =

∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2,

there exists a positive constant 𝑐 = 𝑐 (E [𝑍1] ,V [𝑍1] ,E [𝜉1] , 𝑆2)
such that, at high thresholds, the group with more under-reporting is
over-selected if

1

𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< −𝑐,

(Case 1), and under-selected if the inequality is reversed (Case 2).
Thresholds are considered high if they exceed the turning point

defined in Proposition B.2. The corollary shows that over-selection

due to feature under-reporting depends on the signs and magni-

tudes of the true parameters 𝛽 and the covariances between features.

If sign

(
1

𝛽1

∑𝑑
𝑗=2 𝛽 𝑗Cov

[
𝑍1, 𝑍 𝑗

] )
= 1, e.g. if all true parameters and

covariances are non-negative, the group with more missingness

will always be under-selected at high thresholds. If the sign is neg-

ative, the group with more under-reporting is over-selected if the

covariance-weighted sum of true parameters is sufficiently large

in absolute value. Otherwise, feature under-reporting still leads to

under-selection.

6 SOLUTION APPROACHES
Sections 4 and 5 show how ignoring differential feature under-

reporting can lead to disparities in selection rates across groups. In

the following, we explore how conventional missing data methods

can be adapted to the under-reporting setting. We then propose a

new set of methods that is specifically tailored to this setting by

separating the problem into two steps—estimation and prediction.

For the estimation step, we provide a method that recovers the

ground truth data generating model from observed data. For the

prediction step, we derive optimal group-dependent imputation

values. As before, we assume under-reporting occurs only in the

first feature which is observed as 𝑋1 = 𝑍1𝜉1.

Standard missing data methods. Existing missing data methods

typically assume that defaulted values are clearly marked which is

not the case in the under-reporting setting. We explore adaptations

of several methods.

(1) Feature omission. Discarding the mismeasured feature vector

𝑋1 doesn’t require missingness indicators and mitigates the

bias introduced by under-reporting. However, this approach

may decrease model performance significantly, and may

itself introduce bias. When assuming a linear ground truth,

feature omission leads to omitted variable bias in parameter

estimates
ˆ𝛽 [2:𝑑 ] , which has been studied previously in the

econometrics literature [5] (also see Appendix C).
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(2) Multiple imputation. Multiple imputation draws plausible

feature values while retaining variability. Since we do not

observe indicators for missingness, we experiment with

imputing all 0-entries in 𝑋1 which includes correctly ob-

served 0s. In each imputation run, we estimate the posterior

𝑃 (𝑍1 | 𝑍2, . . . , 𝑍𝑑 ) on data rows with 𝑋1 ≠ 0, impute 0-

entries, and train a prediction model for 𝑌 . At prediction

time, we average the imputations and predictions over mod-

els to obtain a single prediction 𝑌 . While this procedure

successfully alleviates bias in some standard feature miss-

ingness settings, it is not a priori clear how well the method

works with under-reporting.

(3) Row omission. Omission of rows with missing feature entries

provides a convenient complete case analysis. Since true

and false 0-entries are indistinguishable in our setting, we

experiment with discarding all rows with 𝑋1 = 0. If there

is no model misspecification, e.g. in the linear case with

𝑓 (𝑍 ) = 𝛼 + 𝛽𝑇𝑍 where we train a linear model on observed

features, training on only complete rows is guaranteed to

asymptotically retrieve the true parameters 𝛼 = 𝛼 and
ˆ𝛽 = 𝛽

if 𝑍1 is not binary. Even with access to the ground truth

model, under-reporting introduces bias via the prediction

step and 𝑌 = 𝑓 (𝑋 ) may not be the most accurate (or fairest)

prediction.

Model estimation with augmented loss. Without model misspecifi-

cation, row omission can recover the ground truth model 𝑌 = 𝑓 (𝑍 ).
In practice, models are usually misspecified and discarding rows

can significantly decrease performance. Instead, we propose an aug-

mented loss function to recover the ground truth model. This proxy

loss uses observed features 𝑋 to provide an unbiased estimate of

the loss of a model 𝑓 on latent features 𝑍 . Similar approaches have

previously been used in the label noise setting [46, 47]. Assume

𝑍 ∈ R𝑑
has support Z and 𝑦 ∈ R has support Y. Let F : Z → R

be a class of real-valued functions and 𝑙 : F × Z × Y → R be a

bounded loss function. We assume 𝑍 ⊥ 𝐺 and denote the rate of

observed values as𝑚1 := E [𝜉1] = 𝑟𝑚1

1
+ (1 − 𝑟 )𝑚0

1
.

Lemma 8 (Augmented loss). Assume fixed 𝑓 ∈ F , 𝑧 ∈ Z, 𝑦 ∈ Y
and 𝑋 ∈ R𝑑 defined by 𝑋1 = 𝑍1𝜉1 and 𝑋 [2:𝑑 ] = 𝑧 [2:𝑑 ] . Define

˜𝑙 (𝑓 , 𝑋,𝑦) := 1

𝑚1

𝑙 (𝑓 , 𝑋,𝑦) − 1 −𝑚1

𝑚1

𝑙 (𝑓 , [0, 𝑋 [2:𝑑 ] ]𝑇 , 𝑦) .

If 𝑍⊥𝐺 , we have that E𝜉1

[
˜𝑙 (𝑓 , 𝑋,𝑦)

]
= 𝑙 (𝑓 , 𝑧,𝑦).

The fact that the augmented loss is unbiased with re-

spect to under-reporting noise implies that a prediction model

on observed data estimated with augmented loss, i.e.
ˆ𝑓 =

argmin𝑓 ∈F E(𝑋,𝑌 )
[
˜𝑙 (𝑓 , 𝑋,𝑌 )

]
, asymptotically recovers the Bayes

optimal model on the true features 𝑍 . If 𝑌 = 𝛼 + 𝛽𝑇𝑍 , F is the class

of linear functions 𝑓 : R𝑑 → R and 𝑙 (𝑓 , 𝑧,𝑦) = (𝑓 (𝑧) −𝑦)2 denotes
squared error loss, the true parameters 𝛼 = 𝛼 and

ˆ𝛽 = 𝛽 are re-

trieved. Note that squared error loss is not bounded and estimating

ˆ𝑓 requires the additional constraint
˜𝑙 (𝑓 , 𝑋,𝑌 ) ≥ 0. Lemma 8 oper-

ates in a group-agnostic setting with 𝑍⊥𝐺 . Lemma B.3 provides a

more general group-dependent version of the finding.

Optimal prediction imputation value. Assume we are in the linear

case with 𝑌 = 𝛼 + 𝛽𝑇𝑍 and we have access to the true parameters

𝛼 and 𝛽 , e.g. obtained via augmented loss. What is the best possible

prediction for an example of the form 𝑥 = [0, 𝑧2, . . . , 𝑧𝑑 ]? Since
𝑥1 = 0 could mean 𝑧1 = 0 or the entry is missing, it is intuitive that

𝑦 = 𝛼 + 𝛽𝑇 𝑥 does not minimize expected prediction error. Instead,

we derive the optimal fixed prediction imputation value 𝑥 ′∗
1
.

Lemma 9 (Optimal prediction imputation value). Assume
𝑍⊥𝐺 , 𝑓 (𝑍 ) = 𝛼 + 𝛽𝑇𝑍 is the ground truth model and 𝑋 the random
vector of observed features. We set

𝑋 ′ =

{
𝑋 if 𝑋1 ≠ 0,

[𝑥 ′
1
, 𝑋 [2:𝑑 ] ]if 𝑋1 = 0,

where 𝑥 ′
1
is fixed. Then, 𝑥 ′∗

1
:= argmin𝑥 ′

1

E𝑋 [(𝑓 (𝑋 ′) − 𝑌 )2] =

E [𝑍1 | 𝑋1 = 0] is the optimal prediction imputation value.
The Lemma shows that the loss-minimizing constant imputation

value is the conditional mean 𝑍1 given the observed value is 0. This

implies that, in alignment with earlier intuition, directly predicting

with the observed 𝑥 = [0, 𝑧2, . . . , 𝑧𝑑 ] is sub-optimal in the under-

reporting setting. The optimal value 𝑥 ′∗
1

in the setting of Lemma 9

can be written as

E [𝑍1 | 𝑋1 = 0] =
1

𝑚1

E [𝑋1] − 𝑃 (𝑋1 ≠ 0)E [𝑋1 | 𝑋1 ≠ 0]
𝑃 (𝑋1 = 0) ,

which can be estimated directly from observed data if the under-

reporting rate 1 −𝑚 is known. If feature distributions vary across

groups, group-dependent optimal prediction imputation values can

be derived as described in Lemma B.4.

Under-reporting rate estimation. Both augmented loss estimation

and optimal prediction imputation require access to the report-

ing rate, 𝑚, which is typically unknown. In some cases, it may

be possible to obtain supplementary data that can be used to esti-

mate𝑚. For example, in administrative data with under-reported

health features for privately insured individuals, an external pri-

vate insurance health claims dataset could be used to estimate the

expected rate of true 0’s. In most settings, estimation of under-

reporting rates needs to rely directly on the observed data. Assume

we have access to a dataset 𝑉 = {(𝑥,𝑦)𝑛
𝑖=1

}. We split 𝑉 into a train-

ing portion 𝑉train and evaluation portion 𝑉
eval

. Let 𝑃
eval

denote the

subset of examples from 𝑉
eval

for which 𝑥1 ≠ 0. We draw on the

literature on Positive and Unlabeled (PU) learning [24] and esti-

mate under-reporting rates as follows. First, we fit a model ℎ on

𝑉train to estimate 𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] , 𝑌 ). Second, we evaluate ℎ on

𝑃
eval

. The estimator for the share of observed values 𝑚 is given

by 𝑚̂ = 1

|𝑃eval |
∑

(𝑥,𝑦) ∈𝑃eval ℎ(𝑥 [2:𝑑 ] , 𝑦) . The estimation procedure

assumes that under-reporting occurs completely at random. Our

experimental setting assumes under-reporting completely at ran-

dom within groups and thus𝑚0 and𝑚1 can be estimated with the

described procedure by restricting 𝑉 to examples from the respec-

tive group. For more details on the estimation procedure, we refer

to Appendix F.

7 EXPERIMENTS
7.1 Publicly available datasets

Data. Both COMPAS data [6] and German credit data [52] are

widely used across the algorithmic fairness literature. The American

Community Survey (ACS) Income dataset is comprised of 2018
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census data from California [21]. Datasets vary in size, number of

features, and prediction tasks as shown in Table E.2. We conduct

all experiments with both gender and race as group columns if

available. All models are group-blind and race information is never

included as predictive feature. Results for the German credit dataset

are discussed in Appendix G.1.

Semi-synthetic outcomes. Since all of the prediction tasks are

binary classification, we opt to generate semi-synthetic regression

labels for our experiments. We first fit a logistic regression model

to the entire dataset and extract the fitted probabilities. For the ACS

Income data, the values are rescaled to center around the $50,000

income threshold. Next, we fit a linear regression model using the

same features and the predicted probabilities as outputs. The fitted

values from this linear model are chosen as the new “true” labels

for our experiment. This outcome augmentation procedure allows

us to generate artificial settings with a truly linear ground truth

similar to the settings studied in Sections 4 and 5 while leaving

realistic covariance structures intact. We further experiment with

controlling the 𝑅2 of the true linear model by adding additional

noise to outcomes and report fairness implications in Appendix G.2.

Experiment stratification. Regression models are trained to pre-

dict semi-synthetic outcomes based on the features of the respective

dataset. We select the top 𝐶 share of the predictions as high risk

and evaluate excess selection rates to assess the fairness impact of

under-reporting. Artificial under-reporting is added to one feature

column at a time and we repeat the experiments for each outcome

column, group column, and under-reporting rate. Under-reporting

rates range from 0-90% in 10 percentage point increments, and we

add under-reporting to only one group at a time (e.g., we set 10%

of a feature in the male group to 0 while leaving the features of the

female group unchanged). Only numeric features are considered for

under-reporting since, in administrative data, binary features are

often categorical dummies or thresholded versions of continuous

count features. All models are trained with 80% of the datasets

while withholding 20% for testing. We experiment with various

solution approaches as described in Section 6. This includes our

proposed methods of group-dependent augmented loss estimation

and group-dependent optimal prediction imputation.

7.2 County-level birth data
Data. We present an analysis of a private administrative dataset

we obtained from a county in the US. The dataset contains informa-

tion on newborn children and their families including demograph-

ics, child protective services history, birth record data, and mental

and behavioral health information for those who used publicly

funded services. We set up a prediction task that attempts to mimic

the analysis described in the Hello Baby model methodology report

from Allegheny County [29]. The Hello Baby model was developed

to predict which families are at greatest risk of having their child

removed by Child Protective Services (CPS) during their first three

years of life, and is used to prioritize families with newborn chil-

dren for opt-in, voluntary supportive services. Using our data, we

train a similar model, and explore the effect of adding additional

under-reporting to the behavioral and mental health data fields.

Experiment setup. We use the birth dataset with its original pre-

diction outcomes to showcase a realistic example of the effect of

under-reporting. As before, the data is separated into 80% for train-

ing and 20% for testing. We fit separate logistic regression models

on three datasets. (1) Data as observed. (2) Data with behavioral

health features set to 0 for privately insured individuals, i.e. mothers

that are not insured through Medicaid. (3) Data without behavioral

health features. For illustration, results are stratified by whether

individuals are covered by Medicaid, and by whether the mother’s

race is recorded as Black. Medicaid coverage and race are not used

as features in any of the models.

8 RESULTS
ACS Income data. Figure 2 summarizes the results for the experi-

ments on the ACS Income data. We see that feature under-reporting

in ‘education attainment’ and ‘hours worked per week’ consistently

leads to under-selection of the group with under-reporting. This

is true irrespective of whether feature under-reporting is injected

into the female sub-group or the male sub-group, and we observe

the same effect when under-reporting is added based on the indi-

viduals’ racial group. The figure additionally suggests that more

under-reporting generally leads to increasing under-selection. In-

tuitively, it makes sense that both education attainment and hours

worked per week contribute positively to predicted income which

is confirmed by the parameter estimates (Figure E.3). Exploration

of the covariance matrix of the unbiased features further reveals

that all numeric columns in the dataset are positively correlated

which together creates a setting reminiscent of the Case 2 scenario

studied in Section 5. At a high-level, our theoretical analysis pre-

dicts that the group with more under-reporting is under-selected

in this setting which aligns with our observations. In addition to

selection rate disparity, feature under-reporting in the data also

leads to decreased model accuracy as displayed in Figure E.2, and

the parameter estimates in Figure E.3 display an attenuation effect

as predicted in Section 4.

COMPAS data. We focus on results for under-reporting in count

features (Figure E.1) and point to Appendix G.3 for additional re-

sults. The feature ‘priors count’, i.e. the number of previous criminal

offenses individuals have been convicted of, emerges as important

feature with respect to under-reporting. Under-reporting in priors

count leads to under-selection of the impacted group. This pattern

repeats itself for any of the groups and both of the available predic-

tion outcomes. The more feature under-reporting in a group, the

larger the occurring outcome disparity. Similarly to the previous

results, this suggests a setting of Case 2 as discussed in Section 5.

As before, parameter estimates suggest an attenuation effect which

is displayed in Figure 3. Under-reporting in priors count could be

interpreted as an extreme case of crimes that do not result in ar-

rest. Assuming that one demographic group is more likely to be

convicted for committed crimes than the other group, the result

implies that the already more frequently targeted group may addi-

tionally be flagged as high risk for recidivism at disproportionate

rates. Racial disparities in arrest rates and police encounters are

well-documented in the US [e.g. 4, 14, 28, 49] which highlights the

importance of this finding.
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(a) Female group (b) Male group

Figure 2: Group-wise excess selection rates using the ACS Income dataset. Each panel represents a feature that has been
corrupted by under-reporting in independent runs of the experiment. Black curves show performance when omitting the
entire feature column. Results are averaged over 50 runs on the test set. Shaded areas correspond to one standard deviation in
each direction of the mean.

Standard missing data methods. Our experiments reveal that

none of the standard missing data methods reliably mitigate the

bias introduced through under-reporting and, instead, may them-

selves introduce disparities in selection rates. Omission of the fea-

ture ‘hours worked per week’ leads to over-selection of the female

group and under-selection of the male group in the ACS Income

data. This is because female individuals report to work on average

less than male individuals (35.43h/week vs. 40.05h/week) while

work hours contribute positively to income (Figure E.3). Omitting

the feature blinds the model to these differences. Similar effects

occur with the feature ‘education attainment’, and ‘priors count’

in the COMPAS data (Figures E.1 and 3). For multiple imputation

on the COMPAS data, we see that the excess selection rate flips

signs and the group with under-reported ‘priors count’ is over-

selected (Figures 3 and E.4). This is because the feature has a lot

of true 0-entries that are wrongfully imputed as positive values.

The cost incurred by these wrong imputations exceeds the benefit

of imputation. In comparison to training on mismeasured features

directly, the parameter estimation bias is considerable even for

small amounts of under-reporting. For high under-reporting rates,

the excess selection rate follows a similar pattern as the excess

selection rate with feature omission since imputation is conducted

using the features already present in the model adding little to no

additional information. Since our models are well-specified, row

omission recovers the true parameter estimates as displayed for

the COMPAS data and feature ‘priors count’ in Figure 3. Despite

access to the ground-truth, we observe that under-reporting bias

introduced at prediction time increases the selection rate dispar-

ity. While the model without row omission is able to shift weight

to correlated features as more and more entries for ‘priors count’

are under-reported, the row omission model cannot make use of

the feature correlations ultimately leading to the increasing rather

than decreasing disparities. With the same reasoning, the test set

performance as measured by 𝑅2 is decreased as displayed in the

figure.

Augmented loss and optimal prediction imputation. We contrast

the performance of our method and standard approaches for han-

dling missing features at the example of the ‘priors count’ feature in

the COMPAS dataset. Under-reporting rates are estimated with the

procedure described in Section 6. We refer to Appendix F for fur-

ther details on the under-reporting rate estimation. The results in

Figure 3 show that selection rate disparities decrease considerably

when using group-dependent augmented loss and group-dependent

optimal prediction imputation. In contrast multiple imputation, this

fairness improvement comes at no visible cost in performance. In

fact, the average test set 𝑅2 of the corrected model is very similar to,

and even slightly higher than, the test set 𝑅2 of the model trained

directly on under-reported data (see Figure E.6). Despite some vari-

ability, the average parameter estimates of the corrected model

appear more stable across different amounts of under-reporting

which suggests that the method successfully diminishes the bias

introduced by under-reporting.

County-level birth data. For the birth data, Figure 4 suggest that

under-reporting of all behavioral health data for the non-Medicaid

population leads to over-selection of theMedicaid population. In the

displayed overall selection rate range (<10%), the Medicaid popula-

tion is selected about 10% more often than in the “true” data setting.

Note that in reality this difference could be even larger because

some of the “true” data features were likely already under-reported.

As shown in the Figure, some of the resulting disadvantage is still ob-

servable when evaluating performance for Black families. This can

be explained by the fact that the two group variables are positively

correlated in the dataset (𝜌 = 0.44). Excluding behavioral health

features altogether leads to a reversal of selection rate disparities

in the Medicaid / non-Medicaid groups, and significantly increases

selection of the Black sub-population for overall selection rates

less than about 7%. This provides additional evidence highlighting

that omitting features is an unreliable solution for addressing the

disparities arising from differential under-reporting. It underscores

the point that such an approach lacks precision, potentially leading

to arbitrary and inequitable outcomes.

9 DISCUSSION
Differential feature under-reporting is a common phenomenon

in administrative data. Data records are generally more complete

for individuals who rely more consistently on public services (e.g.

public health coverage). In many predictive risk assessment settings,

the segment of the population with more complete observations
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(a) Estimation and prediction with under-reported feature

(b) Estimation and prediction with multiple imputation

(c) Estimation on rows with non-zero entries and prediction with under-reported feature

(d) Estimation with group-dependent augmented loss and prediction with optimal group-dependent imputation (our method)

Figure 3: Excess selection rates of group Other (i.e. not African-American) (left columns), parameter estimates (middle column),
and test set 𝑅2 (right columns) when under-reporting is injected into ‘priors count’ in group Other using the COMPAS dataset
and synthetic two-year recidivism outcomes. In (a), the model is trained and evaluated using the under-reported feature. For (b),
we first train a multiple imputation model and then train and evaluate the prediction model using probabilistic imputations.
For (c), the model is trained on only rows without 0-entries in ‘priors count’ and evaluated on the under-reported data. In (d),
we train with group-dependent augmented loss and use group-dependent optimal imputation values for prediction. Results are
reported as averages over 30 runs. Shaded areas correspond to one standard deviation. The solid dots in the middle column
correspond to true parameters. Note that in order to preserve readability, parameter estimates are only displayed for continuous
features. Figure E.6 provides an overlay plot of the rightmost column for easy comparison.



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Akpinar et al.

Figure 4: Selection rate fractions of different models. On the left, the results are displayed for the sub-population of Black
individuals. On the right, the results are displayed for the sub-population that is insured through Medicaid. The selection rate
of the whole population is considered to be 10% or lower which reflects a realistic range for predictive risk modeling.

overlaps with sub-populations that are more commonly flagged

as high-risk. Critics have argued that differential data availability

is a key driver of the observed disparity in selection rates. When

being classified as high risk subjects one to greater scrutiny of

burden, this may disadvantage those with more complete data

[26]. Overall, the results of our study lend further credence to the

concern by demonstrating how feature under-reporting generally

leads to under-selection of a group that is already less frequently

identified as high-risk. While, as we demonstrate, groups with

greater data availability can theoretically be under-selected, the

feature dependence structure under which this occurs appears to

be uncommon in practice.

We illustrate the increased selection rate that individuals who

rely on public healthcare coverage may experience at a real world

example. Following the idea of Allegheny County’s Hello Baby

program [29], we build a model that predicts the risk that a new-

born child will be removed from their family by Child Protective

Services (CPS) within three years based on county-level data. The

dataset contains behavioral and mental health information on the

parents which can be assumed to be more complete for families

that rely on public insurance. We note that, for privately insured

individuals, some of this information may still be observed, e.g. be-

cause the individual was publicly insured previously, or individual

information has been collected explicitly, but a lot of the informa-

tion can be assumed missing. Our experiments suggest that further

under-reporting in behavioral health related information for the

privately insured sub-population leads to an increase in high-risk

predictions for the publicly insured group. We hypothesize that this

effect would be even larger if the dataset was not already missing

large portions of the feature observations for the privately insured

group. This finding implies an unfair targeting of the publicly in-

sured sub-population as high-risk. Since Black mothers in the data

are publicly insured more frequently than mothers from other racial

groups, these results also suggest that Black families are predicted

to be at high-risk at unfairly inflated rates. Of course, depending

on intervention type, a high risk classification may lead to an ad-

vantage or disadvantage for the families. In the Hello Baby setting,

it is tied to eligibility for voluntary supportive services provided by

county-funded service providers.

Our work proposes a technical remedy for the impact of under-

reporting as a driver of disparities in selection rates. While standard

missing data methods did not lead to more equitable outcomes in

our experiments, these new methods reduced disparities consider-

ably with little to no decrease in model accuracy. The applicability

and performance in real-world administrative data settings like the

Hello baby program remains an interesting and important avenue

for future work.

RESEARCH ETHICS AND SOCIAL IMPACT
Ethical considerations statement. The authors did not face ethical

concerns that had to be mitigated while conducting this study. Ex-

periments in this paper are based on the commonly used COMPAS

and German credit datasets, 2018 US Census data from the Ameri-

can Community Survey, and a private county level data set. Result

are aggregated over broad population groups and no identifiable

information can be retrieved.

Researcher positionality statement. The authors recognize that
their societal advantages give them certain benefits not shared

by all individuals undergoing public sector risk assessment. Thus,

great care was taken in reflecting on the question: Does this work

benefit us or the community at large? Since inflated selection rates

can lead to tangible advantages (e.g. qualification for further pub-

licly funded services) and significant disadvantages (e.g. unfavor-

able bail decisions in criminal risk assessment) depending on the

application area, we believe that addressing problems of feature

under-reporting ultimately benefits the community at large.

Adverse impact statement. The authors believe that drawing at-

tention to the problem of differential feature under-reporting has

the potential to positively impact public sector risk assessment

instruments for all individuals subjected to these systems. However,

our work provides only a first step towards finding appropriate so-

lutions to this problem. We propose a potential mitigation method

and evaluate the method in a semi-synthetic setting, but assessment

of potential adverse effects of the method in real-world applications

are beyond the scope of this paper. We clearly state this at the end

of the discussion and call for future work in this direction.
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A SUMMARY OF ASSUMPTIONS

Result /
Assumption

Missingness
indicators

Default value
𝑚 = 0

Linear
ground truth

𝐺 ⊥ 𝑍 , i.e.
MCAR

𝑍 [2:𝑑 ]
uncorrelated

𝑍 ∼ N jointly
Gaussian

Lemma 3 x x x

Proposition 4 & 5 x x x x

Proposition 6 & B.2 x x x

Corollary 7 x x x x x

Lemma 8 & B.3 x (x)

Lemma 9 & B.4 x x (x)

Under-reporting

rate estimation

x (x)

Table A.1: Summary of assumptions. Rows represent paper segments, columns indicate sufficient assumptions for corresponding
findings.

B ADDITIONAL THEOREMS
Proposition B.1. In the 𝑑-dimensional case setting described in Section 4, the parameter estimates from Equation 1 take the form

ˆ𝛽1 = 𝛽1
1

1 − 𝑅2

√︄
V [𝑍1]
V [𝑋1]

(
𝜌 (𝑋1, 𝑍1) −

𝑑∑︁
𝑖=2

𝜌 (𝑋1, 𝑍𝑖 )𝜌 (𝑍1, 𝑍𝑖 )
)
,

ˆ𝛽𝑘 = 𝛽1

√︄
V [𝑍1]
V [𝑍𝑘 ]

(
𝜌 (𝑍𝑘 , 𝑍1) −

1

1 − 𝑅2
𝜌 (𝑋1, 𝑍𝑘 )

(
𝜌 (𝑋1, 𝑍1) −

𝑑∑︁
𝑖=2

𝜌 (𝑋1, 𝑍𝑖 )𝜌 (𝑍1, 𝑍𝑖 )
))

+ 𝛽𝑘

(2)

for 𝑘 ∈ [2 : 𝑑]. Here, 𝑅2 = ∑𝑑
𝑖=2 𝜌 (𝑋1, 𝑍𝑖 )2 ∈ [0, 1).

Here, 𝑅2 is the squared coefficient of multiple correlation between 𝑍1𝜉1 and 𝑍 [2:𝑑 ] = [𝑍2, . . . , 𝑍𝑑 ] which can be interpreted as the

fraction of variance in 𝑍1𝜉1 that can be explained by the independent variables 𝑍 [2:𝑑 ] . If all features are observed, the factor 𝜌 (𝑋1, 𝑍1) −∑𝑑
𝑖=2 𝜌 (𝑋1, 𝑍𝑖 )𝜌 (𝑍1, 𝑍𝑖 ) collapses to (1 − 𝑅2), and the estimates are unbiased. With under-reporting the bias introduced into the parameter

estimates depends on the strength of correlations between features, as well as how this correlation changes with the mismeasurement of 𝑍1.

The bias in Equation 2 can be conceptualized as a generalization of omitted variable bias [5] which is further explored in Appendix C.

Proposition B.2. Define the threshold turning point 𝑇 as

𝑇 = 𝛼 + ˆ𝛽𝑇[2:𝑑 ]𝜇[2:𝑑 ] +
sd

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ]

)
sd

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ]

)
− sd

(
ˆ𝛽𝑇𝑍

) ˆ𝛽1𝜇1 .

Then, for a high threshold 𝑦 with 𝑦 > 𝑇 , the group with more under-reporting is

• Case 1: Over-selected ifV
[
𝛼 + ˆ𝛽 [2:𝑑 ]𝑍 [2:𝑑 ]

]
> V

[
𝛼 + ˆ𝛽𝑍

]
, or

• Case 2: Under-selected ifV
[
𝛼 + ˆ𝛽 [2:𝑑 ]𝑍 [2:𝑑 ]

]
< V

[
𝛼 + ˆ𝛽𝑍

]
.

For low thresholds 𝑦 < 𝑇 , the cases are reversed.

In practical applications, thresholds are usually set such that only a small portion of predictions exceeds the threshold. For example, we

can only decide to screen a small portion of calls in the child welfare setting. In particular, realistic thresholds are generally well above the

average 𝑌 . On a high level, the turning point 𝑇 in Proposition B.2 represent an adjusted mean predicted value where the influence of the

feature with under-reporting is weighed depending on a ratio determined by prediction variances with and without the feature.

Lemma B.3 (Group-dependent augmented loss). Assume fixed 𝑓 ∈ F , 𝑧 ∈ Z, 𝑦 ∈ Y, 𝑔 ∈ {0, 1} and 𝑋 ∈ R𝑑 defined by 𝑋1 = 𝑍1𝜉
𝑔

1
and

𝑋 [2:𝑑 ] = 𝑧 [2:𝑑 ] . Define

˜𝑙 (𝑓 , 𝑋,𝑦, 𝑔) := 1

𝑚
𝑔

1

𝑙 (𝑓 , 𝑋,𝑦) −
1 −𝑚

𝑔

1

𝑚
𝑔

1

𝑙 (𝑓 , [0, 𝑋 [2:𝑑 ] ]𝑇 , 𝑦)

Then, we have that E𝜉
𝑔

1

[
˜𝑙 (𝑓 , 𝑋,𝑦, 𝑔)

]
= 𝑙 (𝑓 , 𝑧,𝑦).
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Lemma B.4 (Group-dependent optimal prediction imputation values). Assume 𝑓 (𝑍 ) = 𝛼 + 𝛽𝑇𝑍 is the ground truth model, 𝑋 a random
vector of observed features, and 𝐺 the group membership. We set

𝑋 ′ =


𝑋 if 𝑋1 ≠ 0,

[𝑥 ′0
1
, 𝑋 [2:𝑑 ] ] if 𝑋1 = 0 and 𝐺 = 0,

[𝑥 ′1
1
, 𝑋 [2:𝑑 ] ] if 𝑋1 = 0 and 𝐺 = 1,

where 𝑥 ′0
1
, 𝑥 ′1

1
are group-dependent fixed imputation values. Then,

argmin

𝑥
′𝑔
1

E𝑋

[
(𝑓 (𝑋 ′) − 𝑌 )2

]
= E [𝑍1 | 𝑋1 = 0,𝐺 = 𝑔]

are the optimal group-dependent prediction imputation values for 𝑔 ∈ {0, 1}.

Similar to before, the optimal imputation values can be written as

E [𝑍1 | 𝑋1 = 0,𝐺 = 𝑔] =
1

𝑚
𝑔

1

E [𝑋1,𝐺 = 𝑔] − 𝑃 (𝑋1 ≠ 0 | 𝐺 = 𝑔)E [𝑋1 | 𝑋1 ≠ 0,𝐺 = 𝑔]

𝑃 (𝑋1 = 0 | 𝐺 = 𝑔) ,

which can be estimated directly from observed data.

C CONNECTION BETWEEN PROPOSITION B.1 AND OMITTED VARIABLE BIAS
Econometrics literature uses the term omitted variable bias to refer to the model estimation bias that is introduced when omitting an

independent variable that influences both other independent variables and the dependent outcome [5]. In the setting of Proposition B.1,

omitting the first feature entirely corresponds to a setting in which all feature entries are under-reported, i.e. default to 0. The 𝑘-th parameter

estimate in this case can be written as

ˆ𝛽𝑘 = 𝛽1
Cov [𝑍𝑘 , 𝑍1]
V [𝑍𝑘 ]

+ 𝛽𝑘

which is known as omitted variable bias formula [5]. Here,𝛾𝑍1,𝑍𝑘
= Cov [𝑍1, 𝑍𝑘 ] /V [𝑍𝑘 ] corresponds to the population regression coefficient

of a linear regression of 𝑍1 on 𝑍𝑘 which can be written as

𝑍1 = 𝛼𝑍1,𝑍𝑘
+ 𝛾𝑍1,𝑍𝑘

𝑍𝑘 ,

where 𝛼𝑍1,𝑍𝑘
is an intercept. Omitting 𝑍1 from the regression induces a confounding relationship where the effects of 𝑍1 on 𝑍𝑘 become

intertwined. Instead of isolating the effect of 𝑍𝑘 on 𝑌 , ˆ𝛽𝑘 also includes a partial effect of 𝑍1 on 𝑌 . This effect is scaled by 𝛾𝑍1,𝑍𝑘
to account

for the linear relationship between 𝑍1 and 𝑍𝑘 .

In the setting of this paper, we are interested in cases in which some but not necessarily all of the feature entries are missing. Maintaining

the same notation as before,
ˆ𝛽1 from Equation 2 in this general case can be written as

ˆ𝛽1 = 𝛽1
1

1 − 𝑅2

(
Cov [𝑋1, 𝑍1]
V [𝑋1]

−
𝑑∑︁
𝑖=2

Cov [𝑋1, 𝑍𝑖 ] Cov [𝑍1, 𝑍𝑖 ]
V [𝑋1]V [𝑍𝑖 ]

)
= 𝛽1

(
𝛾𝑍1,𝑋1

− ∑𝑑
𝑖=2 𝛾𝑍𝑖 ,𝑋1

𝛾𝑍1,𝑍𝑖

1 − 𝑅2

)
.

Here, the numerator of the biasing factor reflects how much information about 𝑍1 remains encoded in 𝑋1 without drawing on associations

through the other features 𝑍2, . . . , 𝑍𝑑 (i.e, arrows of the form 𝑋1 → 𝑍𝑖 → 𝑍1). The denominator measures how much of the variance in 𝑋1 is

explained by 𝑍2, . . . , 𝑍𝑑 . For 𝑘 ∈ [2 : 𝑑], we receive

ˆ𝛽𝑘 = 𝛽𝑘 + 𝛽1
Cov [𝑍𝑘 , 𝑍1]
V [𝑍𝑘 ]

− 𝛽1
1

1 − 𝑅2

Cov [𝑋1, 𝑍𝑘 ]
V [𝑍𝑘 ]

(
Cov [𝑋1, 𝑍1]
V [𝑋1]

−
𝑑∑︁
𝑖=2

Cov [𝑋1, 𝑍𝑖 ] Cov [𝑍1, 𝑍𝑖 ]
V [𝑍𝑖 ]V [𝑋1]

)
= 𝛽𝑘 + 𝛽1𝛾𝑍1,𝑍𝑘

− 𝛽1
1

1 − 𝑅2
𝛾𝑋1,𝑍𝑘

(
𝛾𝑍1,𝑋1

−
𝑑∑︁
𝑖=2

𝛾𝑍𝑖 ,𝑋1
𝛾𝑍1,𝑍𝑖

)
= 𝛽𝑘 + 𝛽1𝛾𝑍1,𝑍𝑘︸   ︷︷   ︸

omitted variable bias

− ˆ𝛽1𝛾𝑋1,𝑍𝑘
.︸     ︷︷     ︸

Correction since partially observed

Instead of just encoding the effect of 𝑍𝑘 on 𝑌 and partial effect of 𝑍1 on 𝑌 like before, the estimate
ˆ𝛽𝑘 now also corrects for the fact that 𝑍1

is partially observed. The magnitude of the correction depends on the parameter estimate for the partially observed variable as well as the

linear relationship between 𝑋1 and 𝑍𝑘 .
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D PROOFS
In this section, we provide the full proofs for the results in the main text.

Lemma 3. We have 𝜉 ⊥ 𝑍 and E
[
𝜉2

]
= E [𝜉]. Since E [𝜉] ∈ [0, 1], we have

| ˆ𝛽 |=| Cov [𝑋,𝑍 ]
Cov [𝑋,𝑋 ] 𝛽 |=|

E
[
𝜉𝑍 2

]
−E [𝜉𝑍 ]E [𝑍 ]

E
[
𝜉2𝑍 2

]
−E [𝜉𝑍 ]2

𝛽 |= E [𝜉]V [𝑍 ]
E [𝜉] (E

[
𝑍 2

]
−E [𝜉]E [𝑍 ]2)

| 𝛽 |≤| 𝛽 | .

Proposition B.1. In order to derive the equations for
ˆ𝛽𝑖 for 𝑖 ∈ [1 : 𝑑], we start by inverting the covariance matrix

Σ𝑋 =

©­­­­­­«

V [𝑍1𝜉1] Cov [𝑍1𝜉1, 𝑍2] Cov [𝑍1𝜉1, 𝑍3] · · · Cov [𝑍1𝜉1, 𝑍𝑑 ]
Cov [𝑍2, 𝑍1𝜉1] V [𝑍2] Cov [𝑍2, 𝑍3] · · · Cov [𝑍2, 𝑍𝑑 ]
Cov [𝑍3, 𝑍1𝜉1] Cov [𝑍3, 𝑍2] V [𝑍3] · · · Cov [𝑍3, 𝑍𝑑 ]

.

.

.
. . .

.

.

.

Cov [𝑍𝑑 , 𝑍1𝜉1] Cov [𝑍𝑑 , 𝑍2] · · · V [𝑍𝑑 ]

ª®®®®®®¬
.

For this, we separate the matrix into the blocks 𝐴 = (Σ𝑋 )11, 𝐵 = ((Σ𝑋 )1𝑗 ) 𝑗∈[2:𝑑 ] , 𝐶 = ((Σ𝑋 )𝑖1)𝑖∈[2:𝑑 ] , and 𝐷 = ((Σ𝑋 )𝑖 𝑗 )𝑖, 𝑗∈[2:𝑑 ] . Note that
𝐴 ∈ R1×1

, 𝐵 = 𝐶𝑇 ∈ R1×(𝑑−1)
, and 𝐷 ∈ R(𝑑−1)×(𝑑−1)

. Using matrix inversion theorem, the inverse of Σ𝑋 can be written as

(Σ𝑋 )−1 =
(
𝐴−1 +𝐴−1𝐵(𝐷 −𝐶𝐴−1𝐵)−1𝐶𝐴−1 −𝐴−1𝐵(𝐷 −𝐶𝐴−1𝐵)−1

−(𝐷 −𝐶𝐴−1𝐵)−1𝐶𝐴−1 (𝐷 −𝐶𝐴−1𝐵)−1
)
, (3)

where 𝐷 −𝐶𝐴−1𝐵 = 𝐷 −𝐶𝐴−1𝐶𝑇 is the Schur complement of 𝐴 in Σ𝑋 . Recall that, by assumption, Cov

[
𝑍𝑖 , 𝑍 𝑗

]
= 0 for 𝑖, 𝑗 > 1 with 𝑖 ≠ 𝑗

which means that 𝐷 is a diagonal matrix. We also note that rank(𝐶𝐶𝑇 ) = 1. Denoting 𝑔 = trace(−𝐴−1𝐶𝐶𝑇𝐷−1), the inverse of the Schur
complement can be written as

(𝐷 −𝐶𝐴−1𝐶𝑇 )−1 = (𝐷 −𝐴−1𝐶𝐶𝑇 )−1 = 𝐷−1 + 1

1 + 𝑔𝐷
−1𝐴−1𝐶𝐶𝑇𝐷−1 .

Here, 𝐷−1
is a diagonal matrix with values 1/V [𝑍𝑖 ] for 𝑖 ∈ [2 : 𝑑] on the diagonal, 𝐴−1 = 1/V [𝑍1𝜉1], and the diagonal of 𝐶𝐶𝑇 is

Cov [𝑍1𝜉1, 𝑍𝑖 ]2 for 𝑖 ∈ [2 : 𝑑]. It follows that

𝑔 = −
𝑑∑︁
𝑖=2

𝜌 (𝑍1𝜉1, 𝑍𝑖 )2

which corresponds to the negative of the 𝑅2 between 𝑍1𝜉 and 𝑍2, . . . , 𝑍𝑑 . We hence write 𝑅2 for −𝑔 in the following.

Now we can calculate the top left block of the inverse matrix in Equation 3 as

𝐴−1 +𝐴−1𝐵(𝐷 −𝐶𝐴−1𝐵)−1𝐶𝐴−1 =
1

V [𝑍1𝜉1]
1

1 − 𝑅2
.

The top right bock corresponds to the row vector

−𝐴𝐵(𝐷 −𝐶𝐴−1𝐵)−1 =
((
− Cov [𝑍1𝜉1, 𝑍𝑖 ]
V [𝑍𝑖 ]V [𝑍1𝜉1]

1

1 − 𝑅2

)
𝑖

)
𝑖∈[2:𝑑 ]

,

while the bottom left block is the same transposed. Lastly, the bottom left block of Equation 3 can be computed as

(𝐷 −𝐶𝐴−1𝐵)−1 = ©­«diag(1/V [𝑍𝑖 ]) +
1

1 − 𝑅2

(
Cov [𝑍1𝜉1, 𝑍𝑖 ] Cov

[
𝑍1𝜉1, 𝑍 𝑗

]
V [𝑍1𝜉1]V [𝑍𝑖 ]V

[
𝑍 𝑗

] )
𝑖 𝑗

ª®¬𝑖, 𝑗∈[2:𝑑 ] .
Inserting these values into Equation 1 yields the desired parameter estimates

ˆ𝛽1 = 𝛽1
1

1 − 𝑅2

√︄
V [𝑍1]
V [𝑋1]

(
𝜌 (𝑋1, 𝑍1) −

𝑑∑︁
𝑖=2

𝜌 (𝑋1, 𝑍𝑖 )𝜌 (𝑍1, 𝑍𝑖 )
)
,

and

ˆ𝛽𝑘 = 𝛽1

√︄
V [𝑍1]
V [𝑍𝑘 ]

(
𝜌 (𝑍𝑘 , 𝑍1) −

1

1 − 𝑅2
𝜌 (𝑋1, 𝑍𝑘 )

(
𝜌 (𝑋1, 𝑍1) −

𝑑∑︁
𝑖=2

𝜌 (𝑋1, 𝑍𝑖 )𝜌 (𝑍1, 𝑍𝑖 )
))

+ 𝛽𝑘 .
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Proposition 4. The estimates from Proposition B.1 simplify to

ˆ𝛽1 =
1

1 − 𝑅2

(
E [𝜉1]V [𝑍1]
V [𝑍1𝜉1]

− 𝑅2

E [𝜉1]

)
𝛽1

and

ˆ𝛽𝑘 = 𝛽1
1

1 − 𝑅2

(
Cov [𝑍1, 𝑍𝑘 ] (V [𝑍1𝜉1] −V [𝑍1]E [𝜉1]2)

V [𝑍𝑘 ]V [𝑍1𝜉1]

)
+ 𝛽𝑘 ,

for 𝑘 ∈ [2 : 𝑑].
For the first claim, recall that V [𝜉] = E [𝜉1] − E [𝜉1]2 and V [𝑍1𝜉1] = V [𝑍1]E [𝜉1]2 +V [𝜉1]E

[
𝑍 2

1

]
. Note that 𝑍 ⊥ 𝜉 allows us to

rewrite

𝑅2 =

𝑑∑︁
𝑖=2

𝜌 (𝑍1𝜉1, 𝑍𝑖 )2

=

𝑑∑︁
𝑖=2

E [𝜉1]2 Cov [𝑍1, 𝑍𝑖 ]2V [𝑍1]
V [𝑍1𝜉1]V [𝑍𝑖 ]V [𝑍1]

=
E [𝜉1]2V [𝑍1]
V [𝑍1𝜉1]

𝑑∑︁
𝑖=2

𝜌 (𝑍1, 𝑍𝑖 )2

and thus

1

1 − 𝑅2

(
E [𝜉1]V [𝑍1]
V [𝑍1𝜉1]

− 𝑅2

E [𝜉1]

)
=
E [𝜉1]V [𝑍1]E [𝜉1] − 𝑅2V [𝑍1𝜉1]

(1 − 𝑅2)V [𝑍1𝜉1]E [𝜉1]

=
E [𝜉1]V [𝑍1]E [𝜉1] − E[𝜉1 ]2V[𝑍1 ]

V[𝑍1𝜉1 ]
∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2V [𝑍1𝜉1]

(1 − E[𝜉1 ]2V[𝑍1 ]
V[𝑍1𝜉1 ]

∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2)V [𝑍1𝜉1]E [𝜉1]

=
E [𝜉1]V [𝑍1]E [𝜉1] −E [𝜉1]2V [𝑍1]

∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2

(V [𝑍1]E [𝜉1]2 + (E [𝜉1] −E [𝜉1]2)E
[
𝑍 2

1

]
)E [𝜉1] −E [𝜉1]2V [𝑍1]

∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2E [𝜉1]

=
V [𝑍1] (1 −

∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2)

V [𝑍1]E [𝜉1] (1 −
∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2) + (1 −E [𝜉1])E

[
𝑍 2

1

] ,
which is positive as long as 𝑍1 is not a linear combination of other features which was explicitly excluded from consideration. The claim

follows.

For the second claim, we show that

V [𝑍1] (1 −
∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2)

V [𝑍1]E [𝜉1] (1 −
∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2) + (1 −E [𝜉1])E

[
𝑍 2

1

] < 1

⇔(1 −
𝑑∑︁
𝑖=2

𝜌 (𝑍1, 𝑍𝑖 )2)V [𝑍1] (1 −E [𝜉1]) < (1 −E [𝜉1])E
[
𝑍 2

1

]
⇔(1 −

𝑑∑︁
𝑖=2

𝜌 (𝑍1, 𝑍𝑖 )2) (E
[
𝑍 2

1

]
−E [𝑍1]2) < E

[
𝑍 2

1

]
⇔(1 −

𝑑∑︁
𝑖=2

𝜌 (𝑍1, 𝑍𝑖 )2)
(
1 − E [𝑍1]2

E [𝑍1]2

)
< 1.

Since 𝑍1 is not a linear combination of other features, we know that 1 −∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2 ∈ (0, 1] and this inequatily is always true. The claim

follows with the first part of the proposition.
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For the third claim, recall that E [𝜉1] = 𝑟𝑚1

1
+ (1 − 𝑟 )𝑚0

1
. Assume we have two sets of parameters (𝑚0

1
,𝑚1

1
) and (𝑚0

′
1
,𝑚1

′
1
). If𝑚0

1
< 𝑚0

′
1

and𝑚1

1
≤ 𝑚1

′
1
, we have

E [𝜉] = 𝑟𝑚1

1
+ (1 − 𝑟 )𝑚0

1
< 𝑟𝑚1

′
1
+ (1 − 𝑟 )𝑚0

′
1
= E

[
𝜉 ′

]
.

The same holds true if𝑚0

1
≤ 𝑚0

′
1
and𝑚1

1
< 𝑚1

′
1
which shows that the expected share of observed features E [𝜉1] is decreasing if and only if

we are increasing under-reporting in either (or both) of the groups while leaving everything else fixed. Thus, instead of changes in𝑚
𝑔

1
, we

argue directly about changes in E [𝜉1] in the following.

Denote 𝑆2 =
∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2 and consider the function

𝑓 : (0, 1] → R

E [𝜉1] = 𝑥 ↦→ V [𝑍1] (1 − 𝑆2)
V [𝑍1] 𝑥 (1 − 𝑆2) + (1 − 𝑥)E

[
𝑍 2

1

] .
We show that 𝑓 is monotonically increasing from which the claim follows directly. It holds that

𝑑

𝑑𝑥
𝑓 (𝑥) =

−V [𝑍1] (1 − 𝑆2) (V [𝑍1] (1 − 𝑆2) −E
[
𝑍 2

1

]
)(

V [𝑍1] 𝑥 (1 − 𝑆2) + (1 − 𝑥)E
[
𝑍 2

1

] )2 .

Since 1 − 𝑆2 ∈ [0, 1) andV [𝑍1] > 0, the numerator is positive iff

−V [𝑍1] (1 − 𝑆2) (V [𝑍1] (1 − 𝑆2) −E
[
𝑍 2

1

]
) > 0

⇔V [𝑍1] (1 − 𝑆2) < E
[
𝑍 2

1

]
⇔

(
1 − E [𝑍1]2

E
[
𝑍 2

1

] )
(1 − 𝑆2) < 1,

which is a true statement. We conclude that 𝑓 is monotonically increasing in 𝑥 and the claim follows.

Proposition 5. Given a 𝑘 ∈ [2 : 𝑑], we know that

ˆ𝛽𝑘 = 𝛽1
1

1 − 𝑅2

(
Cov [𝑍1, 𝑍𝑘 ] (V [𝑍1𝜉1] −V [𝑍1]E [𝜉1]2)

V [𝑍𝑘 ]V [𝑍1𝜉1]

)
+ 𝛽𝑘 .

The first claim is obvious from this expression.

For the second claim, we follow similar steps as for the third claim in the proof of Proposition 4. We know from the previous proof that

𝑅2 =
E [𝜉1]2V [𝑍1]
V [𝑍1𝜉1]

𝑑∑︁
𝑖=2

𝜌 (𝑍1, 𝑍𝑖 )2

and thus, denoting 𝑆2 =
∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2,

1

1 − 𝑅2

(
Cov [𝑍1, 𝑍𝑘 ] (V [𝑍1𝜉1] −V [𝑍2]E [𝜉]2)

V [𝑍𝑘 ]V [𝑍1𝜉1]

)
=

Cov [𝑍1, 𝑍𝑘 ]V [𝜉1]E
[
𝑍 2

1

]
(1 − E[𝜉1 ]2V[𝑍1 ]

V[𝑍1𝜉1 ] 𝑆2)V [𝑍𝑘 ]V [𝑍1𝜉1]

=
Cov [𝑍1, 𝑍𝑘 ]V [𝜉1]E

[
𝑍 2

1

]
V [𝑍𝑘 ]V [𝑍1𝜉1] −E [𝜉1]2V [𝑍1] 𝑆2V [𝑍𝑘 ]

=
Cov [𝑍1, 𝑍𝑘 ] (E [𝜉1] −E [𝜉1]2)E

[
𝑍 2

1

]
V [𝑍𝑘 ] (V [𝑍1]E [𝜉1]2 + (E [𝜉1] −E [𝜉1]2)E

[
𝑍 2

1

]
) −E [𝜉1]2V [𝑍1] 𝑆2V [𝑍𝑘 ]

=
Cov [𝑍1, 𝑍𝑘 ] (1 −E [𝜉1])E

[
𝑍 2

1

]
(1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1]E [𝜉1] +V [𝑍𝑘 ] (1 −E [𝜉1])E

[
𝑍 2

1

] ,
sinceV [𝑍1𝜉1] = V [𝑍1]E [𝜉1]2 +V [𝜉1]E

[
𝑍 2

1

]
andV [𝜉1] = E [𝜉1] −E [𝜉1]2.

Now, consider the function

𝑔 : (0, 1] → R

E [𝜉1] = 𝑥 ↦→
Cov [𝑍1, 𝑍𝑘 ] (1 − 𝑥)E

[
𝑍 2

1

]
(1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] 𝑥 +V [𝑍𝑘 ] (1 − 𝑥)E

[
𝑍 2

1

] .
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We compute

𝑑

𝑑𝑥
𝑔(𝑥) =

−Cov [𝑍1, 𝑍𝑘 ]E
[
𝑍 2

1

]
((1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] 𝑥 +V [𝑍𝑘 ] (1 − 𝑥)E

[
𝑍 2

1

]
)(

(1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] 𝑥 +V [𝑍𝑘 ] (1 − 𝑥)E
[
𝑍 2

1

] )2
−

(1 − 𝑥)Cov [𝑍1, 𝑍𝑘 ]E
[
𝑍 2

1

]
((1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] −V [𝑍𝑘 ]E

[
𝑍 2

1

]
)(

(1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] 𝑥 +V [𝑍𝑘 ] (1 − 𝑥)E
[
𝑍 2

1

] )2 .

Further,

𝑑

𝑑𝑥
𝑔(𝑥) > 0

⇔− Cov [𝑍1, 𝑍𝑘 ]E
[
𝑍 2

1

]
((1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] 𝑥 +V [𝑍𝑘 ] (1 − 𝑥)E

[
𝑍 2

1

]
)

> (1 − 𝑥)Cov [𝑍1, 𝑍𝑘 ]E
[
𝑍 2

1

]
((1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] −V [𝑍𝑘 ]E

[
𝑍 2

1

]
)

⇔ − Cov [𝑍1, 𝑍𝑘 ] (1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1] 𝑥 > (1 − 𝑥)Cov [𝑍1, 𝑍𝑘 ] (1 − 𝑆2)V [𝑍𝑘 ]V [𝑍1]
⇔0 > Cov [𝑍1, 𝑍𝑘 ] .

This shows that factor determining the influence of 𝛽1 on ˆ𝛽𝑘 is increasing with decreasing under-reporting if Cov [𝑍1, 𝑍𝑘 ] < 0 and decreasing

with decreasing under-reporting otherwise. The claim follows.

Proposition B.2. Predictions are obtained from the model 𝑌 = 𝛼 + ˆ𝛽𝑇𝑋 . Since 𝑍 ∼ N(𝜇, Σ) is jointly Gaussian, we know that

ˆ𝛽𝑇𝑍 ∼ N
(
ˆ𝛽𝑇 𝜇, ˆ𝛽𝑇 Σ ˆ𝛽

)
= N ©­«

𝑑∑︁
𝑖=1

ˆ𝛽𝑖𝜇𝑖 ,

𝑑∑︁
𝑖=1

ˆ𝛽2𝑖 𝜎
2

𝑖 +
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=𝑖+1

2
ˆ𝛽𝑖 ˆ𝛽 𝑗Cov

[
𝑍𝑖 , 𝑍 𝑗

]ª®¬
and

ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ∼ N
(
ˆ𝛽𝑇[2:𝑑 ]𝜇[2:𝑑 ] ,

ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ]
)
= N ©­«

𝑑∑︁
𝑖=2

ˆ𝛽𝑖𝜇𝑖 ,

𝑑∑︁
𝑖=2

ˆ𝛽2𝑖 𝜎
2

𝑖 +
𝑑∑︁
𝑖=2

𝑑∑︁
𝑗=𝑖+1

2
ˆ𝛽𝑖 ˆ𝛽 𝑗Cov

[
𝑍𝑖 , 𝑍 𝑗

]ª®¬
where 𝜎2

𝑖
= V [𝑍𝑖 ] for 𝑖 ∈ [1 : 𝑑].

The cdf of predictions 𝑌 in group 𝑔 ∈ {0, 1} can be written as

𝐹
𝑌 |𝐺=𝑔

(𝑥) =𝑃
(
ˆ𝛽1𝑍1𝜉

𝑔

1
+ ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ≤ 𝑥 − 𝛼

)
=(1 −𝑚

𝑔

1
)𝑃

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ≤ 𝑥 − 𝛼

)
+𝑚𝑔

1
𝑃

(
ˆ𝛽𝑇𝑍 ≤ 𝑥 − 𝛼

)
.

Let 𝐶 ∈ [0, 1] and denote 𝑦 = 𝐹−1
𝑌

(1 −𝐶). Without loss of generality, assume that𝑚0

1
< 𝑚1

1
. If𝑚0

1
= 𝑚1

1
the selection rate disparity is 0,

if𝑚0

1
> 𝑚1

1
the following calculation can easily be adjusted. The inequality𝑚0

1
< 𝑚1

1
means that group 0 has the same or more expected

under-reporting in feature 𝑍1 than group 1. Group 0 is over-selected at threshold 𝐶 according to Definition 2 if and only if

1 − 𝐹
𝑌 |𝐺=1

(𝑦) < 1 − 𝐹
𝑌 |𝐺=0

(𝑦)

⇔(1 −𝑚1

1
)𝑃

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ≤ 𝑦 − 𝛼

)
+𝑚1

1
𝑃

(
ˆ𝛽𝑇𝑍 ≤ 𝑦 − 𝛼

)
> (1 −𝑚0

1
)𝑃

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ≤ 𝑦 − 𝛼

)
+𝑚0

1
𝑃

(
ˆ𝛽𝑇𝑍 ≤ 𝑦 − 𝛼

)
⇔(𝑚1

1
−𝑚0

1
)𝑃

(
ˆ𝛽𝑇𝑍 ≤ 𝑦 − 𝛼

)
> (𝑚1

1
−𝑚0

1
)𝑃

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ≤ 𝑦 − 𝛼

)
⇔𝑃

(
ˆ𝛽𝑇𝑍 ≤ 𝑦 − 𝛼

)
> 𝑃

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ≤ 𝑦 − 𝛼

)
.

Expanding on this in the jointly Gaussian case, we can see that

𝑃

(
ˆ𝛽𝑇𝑍 ≤ 𝑦 − 𝛼

)
> 𝑃

(
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ] ≤ 𝑦 − 𝛼

)
⇔Φ

©­­«
𝑦 − 𝛼 − ˆ𝛽𝑇 𝜇√︃

ˆ𝛽𝑇 Σ ˆ𝛽

ª®®¬ > Φ
©­­«

𝑦 − 𝛼 − ˆ𝛽𝑇[2:𝑑 ]𝜇[2:𝑑 ]√︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ]

ª®®¬
⇔

(
𝑦 − 𝛼 − ˆ𝛽𝑇 𝜇

) √︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] >

(
𝑦 − 𝛼 − ˆ𝛽𝑇[2:𝑑 ]𝜇[2:𝑑 ]

) √︃
ˆ𝛽𝑇 Σ ˆ𝛽

⇔𝑦

(√︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] −

√︃
ˆ𝛽𝑇 Σ ˆ𝛽

)
>

(
𝛼 + ˆ𝛽𝑇[2:𝑑 ]𝜇[2:𝑑 ]

) (√︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] −

√︃
ˆ𝛽𝑇 Σ ˆ𝛽

)
+

(
ˆ𝛽1𝜇1

) √︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] .
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Here, Φ is the standard normal cdf. If

√︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] −

√︃
ˆ𝛽𝑇 Σ ˆ𝛽 > 0,

group 0 is over-selected if and only if 𝐶 implies a threshold 𝑦 with

𝑦 >

(
𝛼 + ˆ𝛽𝑇[2:𝑑 ]𝜇[2:𝑑 ]

)
+

(
ˆ𝛽1𝜇1

) √︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ]√︃

ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] −
√︃

ˆ𝛽𝑇 Σ ˆ𝛽

.

If

√︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] −

√︃
ˆ𝛽𝑇 Σ ˆ𝛽 < 0,

group 0 is over-selected if and only if 𝐶 implies a threshold 𝑦 with

𝑦 <

(
𝛼 + ˆ𝛽𝑇[2:𝑑 ]𝜇[2:𝑑 ]

)
+

(
ˆ𝛽1𝜇1

) √︃
ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ]√︃

ˆ𝛽𝑇[2:𝑑 ]Σ[2:𝑑,2:𝑑 ] ˆ𝛽 [2:𝑑 ] −
√︃

ˆ𝛽𝑇 Σ ˆ𝛽

.

The proposition follows.

Corollary 7. We combine Proposition B.2 with the parameter estimates given in the proof of Proposition 4. For a high threshold 𝑦, the

group with more under-reporting is over-selected if

V
[
ˆ𝛽𝑇[2:𝑑 ]𝑍 [2:𝑑 ]

]
> V

[
ˆ𝛽𝑍

]
⇔

𝑑∑︁
𝑖=2

ˆ𝛽2𝑖 𝜎
2

𝑖 +
𝑑∑︁
𝑖=2

𝑑∑︁
𝑗=𝑖+1

2
ˆ𝛽𝑖 ˆ𝛽 𝑗Cov

[
𝑍𝑖 , 𝑍 𝑗

]
>

𝑑∑︁
𝑖=1

ˆ𝛽2𝑖 𝜎
2

𝑖 +
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=𝑖+1

2
ˆ𝛽𝑖 ˆ𝛽 𝑗Cov

[
𝑍𝑖 , 𝑍 𝑗

]
⇔ ˆ𝛽2

1
𝜎2
1
+

𝑑∑︁
𝑗=2

2
ˆ𝛽1 ˆ𝛽 𝑗Cov

[
𝑍1, 𝑍 𝑗

]
< 0.

Recall that

𝑅2 =
E [𝜉1]2V [𝑍1]
V [𝑍1𝜉1]

𝑑∑︁
𝑖=2

𝜌 (𝑍1, 𝑍𝑖 )2

and denote 𝑆2 =
∑𝑑
𝑖=2 𝜌 (𝑍1, 𝑍𝑖 )2. Then

1

1 − 𝑅2
=

V [𝑍1𝜉1]
V [𝑍1𝜉1] −E [𝜉1]2V [𝑍1] 𝑆2

.
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Using Proposition 4 and inserting the parameter estimates gives

ˆ𝛽2
1
𝜎2
1
+

𝑑∑︁
𝑗=2

2
ˆ𝛽1 ˆ𝛽 𝑗Cov

[
𝑍1, 𝑍 𝑗

]
< 0

⇔
(

1

1 − 𝑅2

)
2
(
E [𝜉1]V [𝑍1]
V [𝑍1𝜉1]

− 𝑅2

E [𝜉1]

)
2

𝛽2
1
V [𝑍1]

+ 1

1 − 𝑅2

(
E [𝜉1]V [𝑍1]
V [𝑍1𝜉1]

− 𝑅2

E [𝜉1]

)
𝛽1

𝑑∑︁
𝑗=2

2

(
𝛽1

1

1 − 𝑅2

(
Cov

[
𝑍1, 𝑍 𝑗

]
(V [𝑍1𝜉1] −V [𝑍1]E [𝜉1]2)
V

[
𝑍 𝑗

]
V [𝑍1𝜉1]

)
+ 𝛽 𝑗

)
Cov

[
𝑍1, 𝑍 𝑗

]
< 0

⇔
(

1

1 − 𝑅2

) (
E [𝜉1]V [𝑍1]
V [𝑍1𝜉1]

− 𝑅2

E [𝜉1]

)
𝛽2
1
V [𝑍1]

+ 2

1

1 − 𝑅2
𝛽2
1

𝑑∑︁
𝑗=2

(
Cov

[
𝑍1, 𝑍 𝑗

]
(V [𝑍1𝜉1] −V [𝑍1]E [𝜉1]2)
V

[
𝑍 𝑗

]
V [𝑍1𝜉1]

)
Cov

[
𝑍1, 𝑍 𝑗

]
+ 2𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< 0

⇔ 1

1 − 𝑅2

(
E [𝜉1]V [𝑍1]
V [𝑍1𝜉1]

− 𝑅2

E [𝜉1]

)
𝛽2
1
V [𝑍1]

+ 2𝛽2
1

1

1 − 𝑅2

(V [𝑍1𝜉1] −V [𝑍1]E [𝜉1]2)V [𝑍1]
V [𝑍1𝜉1]

𝑑∑︁
𝑗=2

(
Cov

[
𝑍1, 𝑍 𝑗

]
2

V
[
𝑍 𝑗

]
V [𝑍1]

)
+ 2𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< 0

⇔ E [𝜉1]V [𝑍1]2

V [𝑍1𝜉1] −E [𝜉1]2V [𝑍1] 𝑆2
(1 − 𝑆2)𝛽2

1
+ 2𝛽2

1

(V [𝑍1𝜉1] −V [𝑍1]E [𝜉1]2)𝑆2V [𝑍1]
V [𝑍1𝜉1] −E [𝜉1]2V [𝑍1] 𝑆2

+ 2𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< 0

⇔𝛽2
1
V [𝑍1]

V [𝑍1] (1 − 𝑆2) + 2(1 −E [𝜉])E
[
𝑍 2

1

]
𝑆2

V [𝑍1] (1 − 𝑆2)E [𝜉1] + (1 −E [𝜉1])E
[
𝑍 2

1

] + 2𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< 0

where we used thatV [𝑍1𝜉1] = V [𝑍1]E [𝜉1]2 +V [𝜉1]E
[
𝑍 2

1

]
andV [𝜉1] = E [𝜉1] −E [𝜉1]2. Note that the first term on the left side is

always positive. Thus the inequality is fulfilled if and only if

sign
©­«𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]ª®¬ = −1

and

2𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< −𝛽2

1
V [𝑍1]

V [𝑍1] (1 − 𝑆2) + 2(1 −E [𝜉1])E
[
𝑍 2

1

]
𝑆2

V [𝑍1] (1 − 𝑆2)E [𝜉1] + (1 −E [𝜉1])E
[
𝑍 2

1

]
⇔ 1

𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< −

V [𝑍1]2 (1 − 𝑆2) + 2(1 −E [𝜉1])E
[
𝑍 2

1

]
V [𝑍1] 𝑆2

2V [𝑍1] (1 − 𝑆2)E [𝜉1] + 2(1 −E [𝜉1])E
[
𝑍 2

1

]
⇔ 1

𝛽1

𝑑∑︁
𝑗=2

𝛽 𝑗Cov
[
𝑍1, 𝑍 𝑗

]
< −V [𝑍1]2 (1 − 𝑆2) + 2(1 −E [𝜉1]) (V [𝑍1] +E [𝑍1]2)V [𝑍1] 𝑆2

2V [𝑍1] (1 − 𝑆2)E [𝜉1] + 2(1 −E [𝜉1]) (V [𝑍1] +E [𝑍1]2)
.

Since we know that the fraction on the right side is always positive, this can be rewritten as presented in the corollary. If the inequality is

not fulfilled, the group with more under-reporting is under-selected at a high threshold.
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Lemma 8. In the setting of the Lemma, we can write

E𝜉 [𝑙 (𝑓 , 𝑋,𝑦)] = E𝜉

[
1

𝑚
𝑙 (𝑓 , 𝑋,𝑦) − 1 −𝑚

𝑚
𝑙 (𝑓 , [0, 𝑋 [2:𝑑 ] ]𝑇 , 𝑦)

]
=

1

𝑚
E𝜉 [𝑙 (𝑓 , 𝑋,𝑦)] −

1 −𝑚

𝑚
𝑙 (𝑓 , [0, 𝑧 [2:𝑑 ] ]𝑇 , 𝑦)

=
1

𝑚

(
𝑃 (𝜉1 = 1)𝑙 (𝑓 , 𝑧,𝑦) + 𝑃 (𝜉1 = 0)𝑙 (𝑓 , [0, 𝑧 [2:𝑑 ] ]𝑇 , 𝑦)

)
− 1 −𝑚

𝑚
𝑙 (𝑓 , [0, 𝑧 [2:𝑑 ] ]𝑇 , 𝑦)

= 𝑙 (𝑓 , 𝑧,𝑦) + 1 −𝑚

𝑚
𝑙 (𝑓 , [0, 𝑧 [2:𝑑 ] ]𝑇 , 𝑦) −

1 −𝑚

𝑚
𝑙 (𝑓 , [0, 𝑧 [2:𝑑 ] ]𝑇 , 𝑦)

= 𝑙 (𝑓 , 𝑧,𝑦).

Here, the first equality holds since only the first feature has under-reporting and the second equality holds because 𝑍⊥𝐺 which implies 𝑍⊥𝜉 .

Lemma B.3. Follows the same as Lemma 8. Instead of under-reporting completely at random, the under-reporting is completely at random

within group 𝑔.

Lemma 9. Since 𝑓 is linear and under-repoting only occurs in the first feature, the expected prediction error for an imputation value 𝑥 ′
1

can be written as

𝑅(𝑓 ) = E𝑋

[
(𝑓 (𝑋 ′) − 𝑌 )2

]
= 𝛽2

1
E𝑋

[
(𝑋 ′

1
− 𝑍1)2

]
= 𝛽2

1
𝑃 (𝑋1 = 0)E𝑋

[
(𝑋 ′

1
− 𝑍1)2 | 𝑋1 = 0

]
+ 𝛽2

1
𝑃 (𝑋1 ≠ 0)E𝑋

[
(𝑋 ′

1
− 𝑍1)2 | 𝑋1 ≠ 0

]
= 𝛽2

1
𝑃 (𝑋1 = 0)E𝑍

[
(𝑥 ′

1
− 𝑍1)2 | 𝑋1 = 0

]
+ 𝛽2

1
𝑃 (𝑋1 ≠ 0)E𝑍

[
(𝑍1 − 𝑍1)2 | 𝑋1 ≠ 0

]
= 𝛽2

1
𝑃 (𝑋1 = 0)

(
𝑥 ′2
1
− 2𝑥 ′

1
E [𝑍1 | 𝑋1 = 0] +E

[
𝑍 2

1
| 𝑋1 = 0

] )
.

Then

𝑑𝑅(𝑓 )
𝑑𝑥 ′

1

= 𝛽2
1
𝑃 (𝑋1 = 0) (2𝑥 ′

1
− 2E [𝑍1 | 𝑋1 = 0]) !

= 0

⇔𝑥 ′
1
= E [𝑍1 | 𝑋1 = 0] .

We implicitly assume that 𝛽1 ≠ 0 and the probability of 0-entries is positive.

Lemma B.4. Recall that 𝐺 ∼ Bern(𝑟 ). Similar to the proof of Lemma 9, the expected prediction error can be written as

𝑅(𝑓 ) = E𝑋

[
(𝑓 (𝑋 ′) − 𝑌 )2

]
= 𝛽2

1
𝑃 (𝑋1 = 0)E𝑍

[
(𝑋 ′

1
− 𝑍1)2 | 𝑋1 = 0

]
= 𝛽2

1
𝑃 (𝑋1 = 0)

(
𝑟E𝑍

[
(𝑋 ′

1
− 𝑍1)2 | 𝑋1 = 0,𝐺 = 1

]
+ (1 − 𝑟 )E𝑍

[
(𝑋 ′

1
− 𝑍1)2 | 𝑋1 = 0,𝐺 = 0

] )
= 𝛽2

1
𝑃 (𝑋1 = 0)

(
𝑟E𝑍

[
(𝑥 ′1

1
− 𝑍1)2 | 𝑋1 = 0,𝐺 = 1

]
+ (1 − 𝑟 )E𝑍

[
(𝑥 ′0

1
− 𝑍1)2 | 𝑋1 = 0,𝐺 = 0

] )
.

This prediction error is minimal when

𝑑𝑅(𝑓 )
𝑑𝑥

′𝑔
1

= 𝛽2
1
𝑃 (𝑋1 = 0)𝑃 (𝐺 = 𝑔) (2𝑥 ′𝑔

1
− 2E [𝑍1 | 𝑋1 = 0,𝐺 = 𝑔]) !

= 0

⇔𝑥
′𝑔
1

= E [𝑍1 | 𝑋1 = 0,𝐺 = 𝑔]

for 𝑔 ∈ {0, 1}.
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E SUPPLEMENTARY FIGURES

Name #Obs. #Feat. Groups Binary outcomes
COMPAS [6] 7,214 6 Race (51% African-American, 49%

other), Gender (81% male, 19% female)

Two-year recidivism,

violent recidivism

German credit [52] 1,000 19 Gender (69% male, 31% female) Good credit

ACS Income (CA, 2018) [21] 195,665 6 Race (62% White, 38% other), Gender

(53% male, 47% female)

Yearly income over $50,000

Birth data 39,365 51 Medicaid (no 72%, yes 28%), Race

(African-American 21%, other 79%)

Child placed in foster care

within 3 years

Table E.2: Statistics of the datasets used in experiments. Data is split randomly into 80% for training and 20% for testing. For the
first three datasets, we iterate over all outcome types, groups, and numerical features for missingness injection.

Figure E.1: Excess selection rate of racial group Other (i.e. not African-American) at different selection rates of the whole
population with synthetic two-year recidivism outcomes using the COMPAS dataset. Each panel represents a feature that has
been corrupted by under-reporting in independent runs of the experiment. Feature under-reporting is added to the Other
group with 0-90% missing in 10 percentage point increments. The black curves show performance when excluding the whole
feature column from modeling. Results are reported as averages over 30 runs on a test set. Shaded areas correspond to one
standard deviation in each direction of the mean.
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(a) Female group (b) Male group

Figure E.2: Test set 𝑅2 over varying levels of feature under-reporting in the ACS Income dataset. Results are reported as averages
over 50 runs on the test set. Variation in results was minimal.

Figure E.3: Parameter estimates over varying levels of feature under-reporting in the ACS Income dataset. Each panel indicates
a different feature selected for under-reporting injection. Points indicate the true parameters from the semi-synthetic ground
truth model. Results are reported as averages over 50 runs. Variation in estimates over runs was minimal. Note that only
estimates for continuous features are displayed and the estimated parameters for the levels of the categorical variables worker
class, marital status, and relationship to reference person are omitted for readability.
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Figure E.4: Multiple imputation excess selection rate of racial group Other (i.e. not African-American) at different selection
rates of the whole population with synthetic two-year recidivism outcomes using the COMPAS dataset. Results are reported as
averages over 30 runs on a test set. Shaded areas correspond to one standard deviation in each direction of the mean.

Figure E.5: Excess selection rate of racial group Other (i.e. not African-American) when training on rows without 0-entries
at different selection rates of the whole population with synthetic two-year recidivism outcomes using the COMPAS dataset.
Results are reported as averages over 30 runs on a test set. Shaded areas correspond to one standard deviation in each direction
of the mean.
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Figure E.6: Test set 𝑅2 of different solution approaches using the COMPAS dataset with synthetic two-year recidivism outcomes.
Under-reporting is injected into the feature ‘priors count’ of group Other (i.e. not African-American). Results are reported as
averages over 30 runs. Shaded areas correspond to one standard deviation.

F UNDER-REPORTING RATE ESTIMATION
F.1 Estimation procedure
We draw on PU-learning literature to estimate under-reporting rates. Elkan and Noto [24] assume a classification setting with a latent

indicator 𝑠 ∈ {0, 1} that encodes whether an example is labeled or not. Only positive examples are labeled, i.e. 𝑠 = 1 implies that 𝑦 = 1, but

when the example is unlabeled 𝑠 = 0, we don’t know if 𝑦 = 0 or 𝑦 = 1. In our case, the outcome 𝑦 translates to the indicator 1(𝑍1 ≠ 0) while
the labeling indicator 𝑠 translates to 1(𝑋1 ≠ 0). If 𝑋1 ≠ 0, we know that the example is not under-reported and 𝑍1 ≠ 0. But, if 𝑋1 = 0, we

don’t have any information about the value of 1(𝑍1 ≠ 0) because the example may not be ‘labeled’. Similar to the assumption in [24], our

setting fulfills an under-reported completely at random assumption which can be expressed as

𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] , 𝑌 , 𝑍1 ≠ 0) = 𝑃 (𝑋1 ≠ 0 | 𝑍1 ≠ 0).
In our analysis, this assumption is fulfilled either over the whole population or within the group considered for estimation of𝑚𝑔 . Given this

notation, the rate of correctly observed feature entries𝑚 can be written as

𝑚 = 𝑃 (𝜉1 ≠ 0) = 𝑃 (𝜉1𝑍1 ≠ 0 | 𝑍1 ≠ 0) = 𝑃 (𝑋1 ≠ 0 | 𝑍1 ≠ 0).
This implies that we can estimate𝑚 without having to consider correctly recorded 0-entries in the feature vector. As described in the main

text, we assume access to a data set 𝑉 = {(𝑥,𝑦)𝑛
𝑖=1

} that is split into a training portion 𝑉train and evaluation portion 𝑉
eval

. Let 𝑃
eval

denote

the subset of examples from 𝑉
eval

for which 𝑥1 ≠ 0. We now fit a model ℎ on 𝑉train to estimate 𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] , 𝑌 ) and evaluate ℎ on 𝑃
eval

.

The estimator for the share of observed values𝑚 is given by

𝑚̂ =
1

| 𝑃
eval

|
∑︁

(𝑥,𝑦) ∈𝑃eval
ℎ(𝑥 [2:𝑑 ] , 𝑦).

Assuming ℎ(𝑥 [2:𝑑 ] , 𝑦) = 𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] = 𝑥 [2:𝑑 ] , 𝑌 = 𝑦), i.e. no error is introduced through the estimation of ℎ, this provides an unbiased

estimate of𝑚. To see this, we show that ℎ(𝑥 [2:𝑑 ] , 𝑦) =𝑚 for all (𝑥,𝑦) ∈ 𝑃
eval

. We can write

ℎ(𝑥 [2:𝑑 ] , 𝑦) =𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] = 𝑥 [2:𝑑 ] , 𝑌 = 𝑦)
=𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] = 𝑥 [2:𝑑 ] , 𝑌 = 𝑦, 𝑍1 ≠ 0)𝑃 (𝑍1 ≠ 0 | 𝑋 [2:𝑑 ] = 𝑥 [2:𝑑 ] , 𝑌 = 𝑦)
+ 𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] = 𝑥 [2:𝑑 ] , 𝑌 = 𝑦, 𝑍1 = 0)𝑃 (𝑍1 = 0 | 𝑋 [2:𝑑 ] = 𝑥 [2:𝑑 ] , 𝑌 = 𝑦)

=𝑃 (𝑋1 ≠ 0 | 𝑋 [2:𝑑 ] = 𝑥 [2:𝑑 ] , 𝑌 = 𝑦, 𝑍1 ≠ 0)
=𝑃 (𝑋1 ≠ 0 | 𝑍1 ≠ 0) =𝑚.

Here, the third equality follows because (𝑥,𝑦) ∈ 𝑃
eval

.

F.2 Estimation results
We estimate under-reporting rates using the procedure described above where 𝑉 is taken to be the 80% training data fold conditioned on the

group with under-reporting. Half of the data is used for training of ℎ while the other half is used as evaluation data to compute 𝑚̂𝑔 . As

model class for ℎ, we use XGBoost classifiers with 100 trees of maximum depth 3, and learning rate 0.1. Figure F.7 depicts the results of the

estimation procedure for under-reporting in the feature priors count for the racial group Other and synthetic two-year recidivism outcomes
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using the COMPAS dataset. We see that estimation of𝑚𝑔 works particularly well when under-reporting in the feature is high. When the

feature is fully observed, i.e.𝑚𝑔 = 1, the estimator returns 𝑚̂𝑔 = 0.811 on average. We hypothesize that this is due to the high share of true

0-entries occurring in the priors count feature which impacts the estimator more when fewer values are missing due to under-reporting.

Figure F.7: True vs. estimated observed rate (i.e. 1 - under-reporting rate) of feature priors count in racial group Other (i.e. not
African-American) with sythetic two-year recidivism outcomes using the COMPAS dataset. Results are reported as averages
over 30 runs. Shaded areas correspond to one standard deviation in each direction of the mean. The black line shows 𝑦 = 𝑥 for
comparison.

G ADDITIONAL EXPERIMENTS AND RESULTS
G.1 German credit data

Figure G.8: Excess selection rate ofmale group at different selection rates of the whole population with synthetic outcomes using
the German credit dataset. Each panel represents a feature that has been corrupted by under-reporting in independent runs of
the experiment. Feature under-reporting is added to the male group with 0-90% missing in 10 percentage point increments. The
black curves show performance when excluding the whole feature column from modeling. Results are reported as averages
over 50 runs on a test set. Shaded areas correspond to one standard deviation in each direction of the mean. Note that feature
under-reporting is only injected into continuous features and models are estimated using the displayed features as well as the
available categorical features checking account status, credit history, purpose, savings, employment, marital status, type of
owned property, other installment plans, housing type, and job type.

Our experiments suggest that addition of feature under-reporting to one of the two gender groups in the German credit dataset has only

marginal fairness implications. Figure G.8 depicts the results for synthetic outcomes and addition of different amounts of under-reporting
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to the features of the male group. We can see that, for any of the considered features, the amount of under-reporting injected has little to

no effect on the excess selection rate of the male group. However, when selecting rates of around 10-15% from the whole population any
amount of under-reporting in the installment feature appears to results in a slight over-selection of the male group. The installment feature

in the German credit dataset is discretized into four values with lower values indicating a higher installment rate. Incorrectly observed

0-values may thus suggest a high installment rate which is indicative of good credit.

G.2 Beyond the noise-free setting
Motivation. The experiments on the publicly available datasets discussed in Sections 7 and 8 rely on semi-synthetic outcomes that are

computed as deterministic linear functions of correctly measured features. The implicit simplifying assumptions are that, without feature

under-reporting, a linear model on the data can retrieve the true data generating model 𝑓 (𝑋 ) = 𝛼 + 𝛽𝑇𝑍 and the exact outcomes 𝑌 as

recorded in the data. This modeling choice facilitates isolation of the effect of feature under-reporting by explicitly excluding potential effects

of model misspecification and regression noise. In real-life applications, we can generally not predict outcomes exactly even if correctly

measured features are available. In the following additional set of experiments, we loosen the assumption of a noise-free regression setting

to allow for more general settings.

Experimental setup. We follow a similar experimental setup as described in Section 7.1. Instead of relying on noise-free regression labels

𝑌 = 𝛼 + 𝛽𝑇𝑍 , we add some noise back into the system by setting

𝑌 = 𝛼 + 𝛽𝑇𝑍 + 𝜀.

Here, 𝜀 ∼ N(0, 𝜎2) is i.i.d. and assumed to have mean zero. Like before, fitting a linear regression of 𝑌 on features 𝑍 with sufficient data

yields the correct parameter estimates
ˆ𝛽 = 𝛽 and 𝛼 = 𝛼 . However, in contrast to the noise-free setting, the prediction model 𝑌𝑍 = 𝛼 + 𝛽𝑇𝑍

can only retrieve labels 𝑌 up to random noise. The 𝑅2 of this prediction model can be controlled via the variance 𝜎2 by setting

𝜎2 =
1 − 𝑅2

𝑅2
E

[(
(𝛼 + 𝛽𝑇𝑍 ) −E

[
𝛼 + 𝛽𝑇𝑍

] )
2

]
.

We experiment with 𝑅2 values between 0.1 and 1.0 in increments of 0.1. Instead of comparing predictions 𝑌𝑍 to predictions under feature

under-reporting 𝑌𝑋 , we compare thresholded versions of outcomes 𝑌 and 𝑌𝑋 directly to measure both the impact of under-reporting and

regression noise.

Results. Figure G.9 depicts a subset of the results for the COMPAS dataset. Comparing against the results of the noise-free setting

summarized in Figure E.1, we observe that the group Other is under-selected to a greater extend with additional noise. Under-selection

occurs even if no feature under-reporting is added (dark blue curves) and increases with increasing noise, i.e. decreasing 𝑅2 of the model on

𝑍 . On a high level, this occurs because the predictions 𝑌𝑍 concentrate more closely around their group-level means as compared to the true

values 𝑌 . The mean of 𝑌𝑍 is smaller for the group Other than the group African-American which leads to under-selection of the group Other

as compared to the true 𝑌 at many thresholds. We note that the group-level variances in outcomes 𝑌 and predictions 𝑌𝑍 play a role in this

dynamic as well. The isolated effect of feature under-reporting in the studied setting appears to be similar to the effect in the noise-free

setting. As under-reporting is introduced into the group Other via the feature ‘priors count’, the group Other is further under-selected.

The more under-reporting is injected, the more the group is under-selected. The magnitude of under-selection due to under-reporting is

comparable across different levels of regression noise. Overall, the results give us some insight into what to expect in more realistic settings

of feature under-reporting. Instead of selection rate disparities that are exclusively due to differential feature under-reporting, disparities in

the studied setting also depend on regression noise which, together, leads to increased disparities overall.

G.3 Possibility of decreasing disparities
We conduct our main experiments on three publicly available datasets, i.e. COMPAS data [6], German credit data [52], and ACS Income data

[21], where each numerical feature is considered for the effect of under-reporting. As discussed in Section 8, the results suggest that, if an

effect is present, feature under-reporting generally leads to under-selection of the group with under-reporting which aligns with Case 2 from

the theoretical derivations in Section 5. If the group with under-reporting aligns with the group that is less frequently selected in the ground

truth model, this implies that differential feature under-reporting leads to increased selection rate disparities.

All three datasets have a numerical age feature which was considered for under-reporting but omitted for the discussion of results in the

main text. In contrast to most other features (e.g. the counts in the COMPAS data), the default value of 0 is somewhat unintuitive for age and

lies outside of the feature’s support in each of the datasets. Studying the effect of fitting a model on differentially available data directly is

less compelling in this setting since we essentially have indicators for under-reporting and could hope to use missing data methods like

imputation directly. Nevertheless, we discuss the results for feature under-reporting in age for the COMPAS dataset in the following as it

presents the only empirical example for decreasing disparities we encounter in our experiments.

Figure G.10 depicts the parameter estimates and excess selection rate of group Other (i.e. not African-American) when fitting a model on

data with feature under-reporting in the feature ‘age’ for group Other. We see that under-reporting in this setting leads to over-selection of the

group with under-reporting. This over-selection is increasing with increasing levels of under-reporting. As the figure shows, the regression
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(a) Model on 𝑍 : 𝑅2 = 0.9. (b) Model on 𝑍 : 𝑅2 = 0.6. (c) Model on 𝑍 : 𝑅2 = 0.3.

Figure G.9: Excess selection rate under under-reporting over true labels 𝑌 with different levels of 𝑅2 for the model on correctly
measured features 𝑍 . Low 𝑅2 indicates a high level of noise and vice versa. Under-reporting injected into the features of group
Other (i.e. not African-American) in the COMPAS dataset. Results are reported as averages over 30 simulation runs with shaded
areas representing one standard deviation in each direction.

Figure G.10: Excess selection rate of group Other (i.e. not African-American) at different population selection rates with
synthetic outcomes using the COMPAS dataset, and the respective parameter estimates. Under-reporting is added to the feature
‘age’ in group Other. Results are reported as averages over 30 simulation runs with shaded areas representing one standard
deviation in each direction. Note that parameter estimates are only displayed for continuous count features and age to preserve
readability. The models additionally take sex and the categorical feature charge degree into consideration.

parameter for age is negative with an attenuation effect when under-reporting is injected. This means that in the semi-synthetic ground

truth model and in the prediction models under under-reporting younger defendants are more likely to reoffend than older defendants. The

feature correlations between age and juvenile crime counts (felony, misdemeanor, and other) are negative in the data while the correlation

between age and the feature ‘priors count’ is positive. This leads to parameter estimates that are increasing for increasing under-reporting in

age for juvenile crime counts and decreasing for increasing under-reporting for priors count exactly as predicted by the theoretical analyses

in Proposition 5. Ultimately, this example shows how, in some settings, disparities may decrease as a function of under-reporting which

aligns with Case 1 from the theoretical discussions in Section 5. However, the example presented here is somewhat artificial and we find that

typically disparities are increasing with differential feature under-reporting.
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