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ABSTRACT
The use of Computer Vision, through a Perceptive Visual Urban
Analytics (VUA) paradigm, has been proposed as a way for munici-
palities to more easily monitor their cities. However, prior studies
fall short of actually investigating whether Perceptive VUA is ready
for municipal use. In this paper we take a critical look at this para-
digm by comparing key methods and evaluating them on usability
and trustworthiness with municipal experts as well as Responsible
AI and Computer Vision researchers. Based on on this evaluationwe
find that Perceptive VUA is not (yet) ready for municipal use as they
do not incorporate domain knowledge and overly rely on spurious
correlations. We conclude by providing recommendations for how
to progress Perceptive VUA such that it may actually contribute to
improving the liveability and quality of urban environments.
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plied computing;
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1 INTRODUCTION
Studies on urban perception have been around since the 1960s [21],
attempting to shed light on the way cities are perceived by citi-
zens. Motivated by potential health outcomes, municipalities have
also been focused on improving neighbourhoods to benefit their
citizens. More recently, this field of research has caught the eye
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of computer vision researchers [2, 7, 18, 27, 28, 34, 38]. Perceptive
VUA (Visual Urban Analytics), categorised as a subfield of VUA by
[15], has attempted to evaluate whether large scale computer vision
approaches can effectively predict labels from datasets of urban
imagery. These approaches typically use a dataset of Google Street
View images in combination with either socio-economic labels col-
lected through civil databases such as housing prices [18] and mean
income [38], or subjective labels collected through crowdsourcing
such as perceived safety [27] and scenicness [34]. These approaches
are motivated by the labour intensive nature of their traditional
counterpart; surveys take up a lot of time and resources, and thus
it is hard for municipalities to set them up at a large spatial scale.
Perceptive VUA researchers pose that with a VUA approach, the
perceptive VUA paradigm can learn large spatio-temporal patterns
to evaluate policies [37, 38, 43] or assist urban planners in surveying
the city [7, 27, 34, 42]. While there is an increasing demand from
municipalities, and the public sector in general, for adopting such
techniques [4, 24, 25, 30, 41] there is little research on evaluating
whether the current paradigm is yet suitable for practical use within
a municipal context.

As such, in this paper we evaluate whether the current paradigm
of perceptive VUA for predicting socio-economic variables using
street view imagery is suitable yet for incorporating into thework of
municipalities and policymakers. A key requirement for integrating
perceptive VUA into the municipal workflow is to combine it with
explainability approaches, as a solely predictive model would be
of little use for municipalities. As such we combine the perceptive
VUA paradigm with explainability techniques. We compare how
well the perceptive VUA paradigm, combined with different explain-
ability approaches, helps us understand the relation between visual
elements of a panoramic image and a socio-economic variable in
the city of Amsterdam. To this end we compare three approaches
that in our view cover the current field of Perceptive VUA: a high
impact traditional approach using clustered visual elements [2, 6],
an end-to-end approach as done by [38] in combination with a
post-hoc explainability technique, and an end-to-end approach us-
ing the same philosophy as the previous but with the inherently
explainable ProtoPNet. Additionally, we visually inspect the expla-
nations to evaluate whether they show human interpretable visual
elements and whether the methods are trustworthy. Moreover, we
evaluate the methods through an expert user-study with Computer
Vision and Responsible AI researchers, and employees from the
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municipality that work in AI or contribute to policy-making in tech
innovation. Our contributions are as follows:

• An evaluation of the current paradigm of Perceptive VUA
through a comparison of existingmethods on interpretability,
trustworthiness and practicality for use within a municipal-
ity.

• An expert evaluation of the Perceptive VUA methods with
employees from the Municipality of Amsterdam and Rot-
terdam, Computer Vision Researchers, and Responsible AI
Researchers.

• Recommendations on usability and trustworthiness of mod-
els for obtaining insights about urban visual relationships for
policy-making and future research directions for Perceptive
VUA.

2 RELATEDWORK
2.1 Visual Urban Analytics
The field of VUA can roughly be subdivided into two categories:
Methods used as a tool to detect visual elements for which the
relevancy is based on domain knowledge, and methods that identify
the relevant visual elements themselves. An example of the first
category could be pothole detection [22]. Road maintenance is
costly and amodel trained to detect potholes can be built by training
an object detectionmodel on a dataset of roads with bounding boxes
around potholes. In this domain, knowledge is applied to force a
model to focus on a specific part of the image (i.e., potholes). Similar
methods can be applied for detecting trash [39], disparities in police
deployment [10], or the number of trees [32]. All these methods
aim to improve liveability by using a tool such as object detection to
recognise predefined visual elements that the municipality knows
affects liveability or safety.

The second category of VUA approaches uses methods to di-
rectly classify entire panoramic images into labels. This is what is
defined as Perceptive VUA, and what we focus on in this paper. As
opposed to the former category, these methods do not receive a pre-
disposed notion (i.e., domain knowledge) of what visual elements
are relevant for liveability but learn to extract image features which
are used to predict a label. This field of research has arisen from
the notion that urban perception can be quantified at a large scale
and can be used to predict either objective or subjective labels. Ob-
jective labels include socio-economic metrics such as mean income
[38], population density [2], and housing prices [18]. Subjective
labels that have been explored are human annotations regarding
perception of panoramic imagery such as beauty [7, 34], perceived
safety [27, 28] or liveliness [7] of neighbourhoods.

For our purposes we only focus on Perceptive VUA and not VUA
in general, as methods such as finding potholes are applied and built
on municipal knowledge. In order to evaluate whether Perceptive
VUA has practical use we similarly to prior work use an objective
label: we settled on housing prices as it is a quantifiable metric,
available at scale, and it relates to liveability making it important for
municipal policy-making. The objective nature of housing prices
is an important quality as evaluating an explanation is easier to
ground when the labels we are trying to predict are non-ambiguous.
Inferring how well the model explains why an image is considered

beautiful would be harder to evaluate as we as authors might be
biased against what is considered beautiful.

2.2 Explainability for Perceptive VUA
Within the field of Perceptive VUA little attention has been given
to explainability. [18] utilises computer vision to aid in predict-
ing housing prices alongside a set of multimodal attributes. Their
method focuses on the whole image and as such the interpretability
of their given desirability score is limited to the scale of their entire
image.

A two-step prediction method was used by Gebru et al. [12]. Us-
ing an extensively labelled dataset of car brands they were able to
predict voting patterns from the cars present in street view imagery.
This enabled understanding of what visual element, i.e. brand of car,
contributed to the prediction. However, this again only proves that
signal exists in this type of data; From a municipal application per-
spective this is less relevant as for policy-making it is more relevant
to find actionable visual elements, i.e., elements that can be changed
in order to increase the liveability of a neighbourhood. Moreover,
from a practical point of view we would like to avoid large scale
labelling practices in the form of human annotations as it is a costly
process and therefore not accessible for less wealthy cities or coun-
tries. Housing prices are already collected by the municipality and
thus freely available. A similar note can be made about panoramic
imagery, which can be costly to collect and may not be available
globally. However, (part of) this cost can be avoided by relying on
methodologies for using imagery obtained from Google Street View
[26].

An avant la lettre attempt at explainability is introduced by [2]
that uses patches from a method by [6] which has been defined as
an instance of explaining by examples [16]. This method samples
image patches using an HOG representation and trains SVMs to
cluster visually similar patches. [2] builds a regressor on top of the
resulting SVM bank and thus uses the patches to validate predictive
relationships between visual elements and non-visual attributes
such as housing prices. A note to the specific details of the approach
is to be made. While their approach used visual elements alongside
labels such as housing prices, they also used labels such as crime
rates. For our purpose it is important to hold back on the invasive
nature of AI technology and as such only use labels that we feel are
non-harmful. Furthermore, their choice of the housing price label,
and as such their analysis, reflected the relation between visual
elements and housing prices as is. In our approach the choice of
housing prices has been chosen within the scope of liveability and
as such will be analyzed within that frame of reference.

A common notion is that traditional methods are more inter-
pretable than Deep Learning methods. Whilst this does not apply to
many of the Bag-of-Visual-Words approaches that preceded Deep
Learning, we can nonetheless observe that many traditional meth-
ods are more straightforward in their execution which aids in inter-
preting the results, as for instance with the method by [6]. With the
rise of black box computer vision the necessity arose for explaining
these methods [35]. Initially, methods for interpretation focused
primarily on post-hoc explanation, such as GradCAM [33], LIME
[29], SHAP [20], and IBA[31]. Whilst these methods moved the field
of explainability forward they do not provide direct explanations
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of what contributed to the result. This has led to criticism of these
methods as the results can be misleading [1, 9, 14]. A proposed al-
ternative involves methods which are self-explaining or inherently
explainable [8]. An example of an inherently explainable method
is ProtoPNet [3]: a deep network that learns prototypes, that can
be grounded in the visual input, and which are directly used in the
prediction process. As the explanation is inherent it prevents many
of ways in which the explanation can be misleading.

3 EXPERIMENTS FOR PERCEPTIVE VUA
Our goal is to analyse whether the current paradigm of Perceptive
VUA has the potential to be used within a municipal setting. From
the perspective of policymakers the goal would be to understand
the relation between visual elements in street view imagery and
socio-economic variables. As most Perceptive VUA methods rely
on predicting a label directly we employ explainability methods
to generate explanations that can help us understand such a re-
lationship for a socio-economic variable such as housing prices.
We choose housing prices as they are objective, available at scale,
and capture aspects of liveability which is important for municipal
policy-making. Most socio-economic variables are highly corre-
lated and we believe housing prices is a straightforward choice as
it has a strong relation to the visual elements visible from street
view imagery [2]. In this section we describe the quantitative com-
parison between different implementations of the Perceptive VUA
paradigm including the results, followed by the expert user-study
in Section 4.

We use a curated panoramic imagery dataset of Amsterdam [13]
in addition to housing prices collected by the municipality covering
the entire city. We constrain our scope to the evaluation of three
methods that in our view broadly cover the landscape of Percep-
tive VUA while taking the added dimension of explainability into
account: (1) A traditional computer vision method that preceded
the black box models focusing on extracting visual elements and
as such is considered more interpretable [2, 6], (2) a deep vision
method taking the four viewpoint images of the capturing vehicle
into account as championed by [38] in combination with a post-
hoc explainability technique, (3) and an inherently interpretable
model trained through the same deep learning philosophy as [7, 34].
Other methods in the field exists as variations on these methods
(i.e. using a different backbone). As such we think these methods
adequately cover the existing Perceptive VUA landscape. Further-
more, segmentation-based methods designed to dissect the urban
landscape are considered outside of the scope of this research as
they are yet to be used for Perceptive VUA.

Patch-Doersch [6]. For our traditional computer vision method
we use the discriminative patches approach introduced by Doersch
et al. [6]. This method searches for repetitive and discriminative im-
age patches in a binary split image dataset. Patches are represented
using HOG descriptors and then clustered into similar looking
patches using a bank of SVMs. As there is no clear name given to
this method by the authors, we will refer to it as Patch-Doersch.
The original code was only available in MATLAB so for the sake
of practicality this was implemented in Python. The code will be
freely available at github.com/author/Timalph/Patch-Doersch.

Suel-IBA [38]. As the deep vision method we use the model
proposed by Suel et al. [38]. This model uses VGG16 [36] as a
backbone for extracting features from four directional images of a
capturing vehicle. Thereby using the four 4096D feature vectors as
input to a parallel fully connected layer aggregating and producing
a single value which is used as input for an ordinal loss across
all available classes. For our post-hoc explainability method we
use IBA [31], which is applied to the deep network to generate a
heatmap on top of a processed image using activation mapping.
This may allow the user to infer what regions of the image were
important for the decision of the model. IBA was found to both
qualitatively and quantitatively outperform GradCAM in medical
settings [5] and shown to have superior soundness when compared
to other XAI benchmarks [19].

ProtoPNet [3]. For the inherently explainable deep network we
choose ProtoPNet [3]. This network uses learnt prototypical parts
of the image as evidence for making a classification. Their network
has built-in case-based reasoning and as such has been described as
working similarly to the way human experts make their decisions
[3].

For the analysis we focus on Amsterdam, a city with a large
diversity in architectural styles between neighbourhoods. To main-
tain congruity with other approaches within the field of Perceptive
VUA we choose to work with the entire city as opposed to a subset.
This makes the task significantly harder as models might focus
more on geographical elements as a predictor as housing prices
in the city centre tend to be higher than in the outskirts. This is
shown in Figure 9a in Appendix B. Furthermore, class imbalance
was not accounted for, as we are evaluating the task for application
in a real municipal setting, as opposed to a lab setting. Furthermore
we analyse the practical aspects important for a municipality such
as implementation time, running time, and ease of use.

3.1 Datasets and Preprocessing
For our analysis we use a subset of the Amsterdam dataset [13]
which consists of 323,124 panoramas taken in 2019 linked to housing
prices recorded in 2018. A plot is shown in Figure 9a in Appen-
dix B. All panoramas are oriented to face the front of the capturing
vehicle and subsequently bent back to four directional images us-
ing equilateral projection. For each panorama in our dataset this
results in 4 images of 512x512 pixels of the front, right, back, and
left of the capturing vehicle. In the Amsterdam dataset [13] there is
metadata of buildings present on the image. Each one of these build-
ings has an object_id with an associated housing price. Housing
prices are averaged for each panorama, while ignoring NaN values
and panoramas without buildings. For our purposes the concept
of liveability extends to the direct surroundings only. The housing
prices are in euros per𝑚2 and binned according to the bins avail-
able on the municipality website1 as for some housing prices only
their respective bin is recorded. The bins are shown in Figure 9b in
Appendix B.

3.2 Experimental Setup
Given large differences between the methods used we specify the
experimental setup for each method individually:
1https://maps.amsterdam.nl/woningwaarde/
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Patch-Doersch [6]. The core of this method is centred around
learning to distinguish a positive set of images from a negative set,
as such the Patch-Doersch method requires a binary dataset. We
divided our curated dataset into a split with high housing prices
(class 8-11) and a split with low housing prices (class 0-3). The
middle classes of 4-7 were ignored to reinforce the binary nature
of the dataset. We randomly sample 1000 images for each class,
resulting in 4000 images for both the positive and negative set. We
run the model in both directions to find patches indicative of high
housing prices and vice versa. We use three training iterations for
the bank of SVMs.

Suel-IBA [38]. For the post-hoc method we randomly split the
curated dataset into a training, validation, and test set 70/20/10. We
ensured the classes were divided equally to establish the same class
distribution over all sets. We use the deep vision setup as described
in [38], and train four parallel fully connected architectures using
SGDwith a learning rate of 0.001 and amomentum of 0.9. Themodel
was trained for 25 epochs, after which IBA was applied in the form
of a Per-Sample Bottleneck to 𝑐𝑜𝑛𝑣4_1 as provided by the authors.
The bottleneck was trained separately for all four directions for
5000 iterations.

ProtoPNet [3]. For ProtoPNet we use the same 70/20/10 split as
for Suel-IBA. We skip data augmentation used by the authors as we
have 1.3M images which is vastly more than the 12,000 images used
in the original paper [3], even after they inflate this to 300k images
through data augmentation. We do push regression at epoch 11
and 22. The total training time is 23 epochs, which took two weeks.
Training was stopped here as training for longer was impractical
and outside the scope of our research.

3.3 Experimental Results
In this section we present the results of the comparison between
three Perspective VUA methods applied to panoramic data from
Amsterdam. For the Patch-Doersch method we clustered repetitive
visual elements using HOG descriptors and a bank of SVMs on the
binary split dataset, for the Suel-IBA and ProtoPnet methods we
used the entire dataset with 12 classes of housing prices. The results
inform us what types of patterns we can identify and what they tell
us about the relation between urban visual elements and housing
prices. In the supplementary material we show additional visual
results to complement the results shown here.

Patch-Doersch. Examples of patches identified by the tradi-
tional Patch-Doersch approach are shown in Figure 1. Each row
depicts a cluster of visual elements. In each row, the first patch is
the cluster center. The remaining 7 patches in each row are the
closest patches in feature space to the cluster center. The patches
for low-housing prices can be seen in Figure 1a. The results of this
approach are visually appealing; they show strong visual relation-
ships, but due to the nature of HOG features they primarily capture
patterns based on low-level visual features. Some clusters include
images that are visually similar but of a different category, such
as the red fence in the cluster of flats in the fifth row in Figure 1a.
From visual inspection the repeating patterns we can identify are
similar types of flats, low-rise houses, certain types of seemingly
isolated trees, and empty roads and bicycle paths.

Figure 1b shows the patches for high housing prices. At first
glance the areas shown in the patches look more well off. Most
patches show an abundance of visual elements which seems to
imply liveliness. Another interesting aspect is while the streets are
relatively homogeneous in nature, the architecture within build-
ings seems to be heterogeneous. This might add to the uniqueness
of these neighbourhoods. Furthermore, note that in both sets of
patches we can identify patterns of parked cars. One could argue
that the method has uncovered cheap or expensive cars as discrim-
inative elements, but the distinction appears to be mainly based
on the orientation of the cars. For this method the angle at which
parking spots are built results in a distinct visual element.

Suel-IBA. Results of the Suel-IBA approach can be seen in Fig-
ure 2. The heatmaps have been scaled to the minimum and maxi-
mum values of each image individually, represented by the legend
on the right of each image. For the results on images of low housing
prices in the left column we see patterns focusing on windows,
lamp posts, bins, and architecture. For the results on images of high
housing prices in the right column we see patterns focusing on
architecture, wheels, roofs, and miscellaneous objects.

In general, the heatmaps are spread out in their visualization. Due
to the scattered nature of the heatmap it is hard to infer recurring
patterns. Furthermore, while we can see that cars, and specifically
car tires, tend to elicit a predictive signal it is hard to rely on these
elements as it is unclear whether this is spurious correlation or a
reliable predictor. The danger of assigning meaning to such a visual
element is that a user might be influenced by confirmation bias.

ProtoPNet. The results for ProtoPNet are shown in Figure 3.
The left three rows show the prototypes for low housing prices.
They contain recurring highrise flats, a lot of green grass next
to the road with empty spaces, and a recurring type of low rise
architecture with similar small windows. The right three rows show
the prototypes for high housing prices: large older style buildings
withmanywindows, combinations of trees along the architecture as
seen in the centre of the city, and broad roadswith trees next to them
for mid-range housing prices areas. However, while semantically
similar it is not always clear what the model is highlighting. The
boxes are large and often contain multiple visual elements, again
making it easy to fall prey to confirmation bias.

Differences between methods. Both Patch-Doersch and Pro-
toPNet return patterns that appear more human interpretable. As
Patch-Doersch uses low-level features the visual patterns are low-
level as well. ProtoPNet identifies visual elements at a higher se-
mantic level, showing similar flats or roofs from different angles.
Furthermore, ProtoPNet is not restricted to square image patches,
which allows for more freedom in the returned visual elements.
Another advantage ProtoPNet has is that the results are visualised
in the original image as opposed to cut out and presented without
context. This is a design choice that allows the user to immediately
ground the explanation in the real world. Comparing these methods
to Suel-IBA is hard as the elements highlighted by Suel-IBA are not
constrained to be similar. As such the result is not directly inter-
pretable to a human observer, and the patterns cannot be concretely
identified. Another important point regarding Patch-Doersch is that
the method is restricted to a binary dataset and can therefore only
learn patterns for either low or high housing prices. This differs
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(a) Patches for lower housing prices (quantile 0-3). (b) Patches for higher housing prices (quantile 8-11)

Figure 1: Discriminative patches for low and high housing prices based on the Patch-Doersch method.

(a) Suel-IBA output for low housing prices (b) Suel-IBA output for high housing prices

Figure 2: Bounding box annotations of IBA output. Left column is low housing prices, right is high housing prices. Red values
are scaled for min/max values separately for each image.

from both ProtoPNet and Suel-IBA that can learn patterns for all
housing price bins.

Quantitative Results The prediction performance of the Suel-
IBA and ProtoPNet approaches can be found in Table 1. As the
Patch-Doersch approach performs clustering on a binary dataset
it has no predictive capability. Important to note is that the Suel-
IBA method was trained with an ordinal classification loss, while
ProtoPNet was trained with categorical classification. This gives
the Suel-IBA method an advantage for the ± 1-2 accuracy. The
accuracies show that predicting housing prices purely from visual
elements is hard, which may compromise interpretability.

Apart from accuracy we are also interested in practical applicabil-
ity, i.e., ease of implementation and deployment time. The Suel-IBA
approach was the fastest to implement. Preprocessing the VGG16
feature vectors took 45 hours, after which the training time took
about 12 hours. All of this was done on a single GPU. ProtoPNet
took significantly longer: where training was stopped after training
for two weeks on 4 GPUs. The traditional Patch-Doersch approach
took about 60 hours. Note that the majority of this model runs on a
CPU, utilising a single GPU only for computing nearest neighbours.
It also has the large number of hyperparameters that due to the long
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(a) ProtoPNet prototypes for lower housing prices. (b) ProtoPNet prototypes for higher housing prices.

Figure 3: Results from ProtoPNet. Closest neighbours to each prototype in the left column. The top three rows are prototypes
found for low-housing prices. The bottom three rows are prototypes found for high-housing prices.

training time and lack of quantitative evaluation were impractical
to explore.

Models ±0 Acc ±1 Acc ±2 Acc
Patch-Doersch - - -

SuelIBA .32 .70 .86
ProtoPNet .16 .33 .47

Table 1: Prediction accuracy for the class labels. Patches
method has no predictive capability. ± 1-2 indicates accu-
racy within 1-2 labels of the correct label.

4 SURVEY STUDY
To evaluate the usability of the Perceptive VUA paradigm for mu-
nicipal purposes we performed an Expert User-Study. For this we
approached researchers from the UvA (University of Amsterdam)
in Computer Vision and Responsible AI, and employees from the
municipality that have a relevant AI/Data Science background and
asked them to fill out a survey that compares the three Perceptive
VUA methods.

4.1 Participants
In order to get a representative group of respondents we built sepa-
rate populations for each participant group: employees at themunic-
ipalities of Amsterdam and Rotterdam, Responsible AI researchers
and Computer Vision researchers. As there are only a select amount
of employees at the municipality that have a relevant background
we approached participants directly. They are all employees that
work either in policy-making regarding new technology, or work
in Data Science or Artificial Intelligence at the municipality. As
such we approached 7 employees that work in the tech innovation
department, who’s job it is to assess whether new technological
innovations can be implemented around the city. We also approach
13 employees from AI, Computer Vision, and Data Science teams
that work on AI, Computer Vision, and Data Science solutions

specifically for the city. For the Responsible AI researchers we built
a population consisting of all researchers working directly for, or
in labs associated with, the UvA who’s primary research focus is on
explainability, trustworthiness, fairness, privacy, or transparency
in AI. The population consisted of 49 researchers of which we sam-
pled 15 participants. Finally, our population of Computer Vision
researchers consisted of all researchers working directly for, or
in labs associated with, the UvA who’s primary research focus re-
volves around using Computer Vision techniques. The population
consisted of 70 researchers out of which we sampled 18 participants.
Informative consent was received orally before taking the survey
in addition to written consent which was received after. All surveys
were anonymous and compensation in the form of chocolate was
offered but not always accepted. This resulted in 51 valid responses:
19 municipal employees, 18 CV researchers, and 14 Responsible AI
researchers. 2 incomplete responses were discarded.

4.2 Materials and Procedure
At the start of the survey the participants are told that the housing
price bins are referred to with textual equivalents: Lowest, Low, Av-
erage, Above Average, High or Very High. This to de-emphasise the
actual prices and to reduce confusion while evaluating the expla-
nations. The survey consists of 5 sections in order. A visualisation
can be seen in Figure 4. The survey can be viewed in its entirety in
Appendix C.

(1) Section 1 consists of a primer of 5 questions where partici-
pants are presented with two panoramic images of Amster-
dam neighbourhoods and are required to pick the one with
the highest average housing prices. This to evaluate whether
they are capable of judging the relationship between visual
elements and housing prices. The images are selected by the
first author with the criteria of covering a variety neighbour-
hoods and housing types. Where possible we tried to control
for lighting and weather conditions. Both the order of the
5 questions as the order of the two images presented are
randomized.

(2) Section 2 is an evaluation of eachmethod separately in which
we show each of the three methods in sequence, and present
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the participant with six explanations permethod: 3 for higher
housing prices, and 3 for lower housing prices. The methods
are shown in a random order. The explanations within each
method are also randomised. Each explanation consists of
two sub-questions. The first aims to evaluate whether the
visual elements used by the method were the same as a
human would use for this task: I personally would have used
the same visual elements for this decision. This, because it has
been shown that human reasoning is an important quality
for real world XAI applications [17]. The second question
aims to evaluate whether based on the returned explanation
the participant thinks it makes sense to rely on the AI’s
decision: Based on these visual elements, I think it makes sense
to rely on the AI’s decision. This, because in the public sector
reliability is important within the context of AI safety in
order to minimize potential downstream harm to citizens
[40]. These statements are then rated on a five-point Likert
scale. The order of these two sub-questions was determined
randomly at the start of a survey and then kept consistent
throughout.
The 6 explanations are then followed by a summative ques-
tion in which all the explanations are shown at the same time
alongside the summative question on how much the partic-
ipant trusts the model’s understanding of the relationship
between visual elements and housing prices.

(3) Section 3 consists of comparative questions; four multiple
choice questions comparing the methods on a similar scene
where each choice is an explanation. We do this by generat-
ing explanations for a single housing price bin for each of
the methods. We do this four times, and ask: Which of these
methods does the best job at returning visual elements that you
would use for this decision?

(4) Section 4 consists of utility questions whether the participant
would use the methods for their work. This to measure the
practical use of these methods. The order of the methods is
randomized.

(5) In section 5 we asked demographic questions, including rank-
ing their knowledge of Artificial Intelligence and their knowl-
edge of Computer Vision separately. Furthermore we ask
whether they work at a municipality and if they do, to what
extent they are involved in policy-making and to what ex-
tent their work is technical or non-technical. If they do not
work at the municipality, we ask them to rate how much
their research focuses on Responsible AI. All questions are
evaluated on a scale of 1-10, apart from the policy-making
question which is multiple choice.

4.3 Analysis
For the primer, in which the participants were asked to select the
picture containing a neighbourhood with higher average housing
prices, the results were as follows: 31 participants made 0 mistakes,
15 participants made 1 mistake, and 5 participants made 2 mistakes.
As all participants made less than 50% mistakes we included all
responses in our results. For section 2 we aggregated the results
per method by summing over all explanations. These are shown in
Figure 5. Our directional hypotheses are that Patch-Doersch scores

most favourably, followed by ProtoPNet, and lastly Suel-IBA. As
our data does not follow a normal distribution we perform pairwise
right tailed Wilcoxon signed-rank tests. Bonferroni correction is
applied for all pairwise tests with𝑚 = 3 and as such our null hy-
potheses will be rejected if 𝑝 < 0.01667. For the trustscores we test
the ranking using pairwise one-sided independent t-tests. Our direc-
tional hypotheses are that Patch-Doersch has the highest trustscore,
followed by ProtoPNet, and lastly Suel-IBA. Our null hypotheses
will be rejected if 𝑝 < 0.01667. For the section 3 comparative ques-
tions, we aggregate the responses by computing the mean value
and calculate confidence intervals using the margin of error. For
the section 4 utility questions regarding the use of the methods
in participants’ daily work we test the directional hypotheses that
Patch-Doersch scores most favourably, followed by ProtoPNet, and
lastly Suel-IBA. We do pairwise right tailed Wilcoxon signed-rank
tests with Bonferroni correction for𝑚 = 3 and as such reject our
null hypotheses if 𝑝 < 0.01667.

4.4 Results
In Figure 5 we see the summed responses for the individual ex-
planations for each method. The first thing to note is that we see
that most responses do not extend to the strongly agree or strongly
disagree areas. Of the three methods, along the two dimensions,
Patch-Doersch seems to have elicited the strongest response, with
the largest portion of the answers leaning to the right side of neu-
tral. The next most favourable seems to be ProtoPNet, followed
by Suel-IBA. We tested this ranking using pairwise right tailed
Wilcoxon signed rank-tests and observed all three p-values to be
< 0.001. As such the results favoured the alternative hypotheses
and confirm this ranking. More in-depth statistics regarding tests
are shown in Table 2 in Appendix A.

The participants often have contradicting opinions when shown
the individual explanations, but for some cases there is positive
consensus; More than two-thirds of participants vote to the right
side of neutral on both subquestions. The three explanations that
satisfied this are all by Patch-Doersch. These explanations also
received the highest percentage of Strongly Agree responses. They
are shown in Figure 6, and show expensive houses in the city centre,
windows belonging to expensive housing, and cheaper flats.

The obtained trustscores are shown on the left in Figure 7 and
show a similar picture. Themean trustscores are 5.67 (Patch-Doersch),
4.16 (Suel-IBA), and 4.84 (ProtoPNet). The ranking of Patch-Doersch
> ProtoPNet > Suel-IBA can not be confirmed however, as only the
p-value for Patch-Doersch > Suel-IBA is below our Bonferroni cor-
rected 𝛼 . The p-values for the comparisons between the trustscores
of different methods are shown in Table 2 in Appendix A alongside
the CI’s and Cliff’s Delta.

The result and confidence intervals for the comparison of meth-
ods on the question Which of these methods does the best job at
returning visual elements that you would use for this decision can
be viewed on the right in Figure 7. Patch-Doersch is most often
chosen as the method that does the best job.

In Figure 8 we see that no methods would be directly usable.
We again tested the pairwise ranking using right tailed Wilcoxon
signed rank-tests and observed p-values < 0.001, thus we accept



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Alpherts et al.

Figure 4: Survey Study Procedure. Informed consent was received orally prior to the survey and written post-survey.

Figure 5: Total summed responses for survey of individual explanations for the two statements in section 2. Bars add up to
n=(306).

(a) Patch-Doersch explanation for high housing prices. Q1: 55% Agree, 27% S. Agree. Q2: 63% Agree, 19% S. Agree.

(b) Patch-Doersch explanation for low housing prices. Q1: 53% Agree, 17% S. Agree. Q2: 53% Agree, 14% S. Agree.

(c) Patch-Doersch explanation for high housing prices. Q1: 57% Agree, 18% S. Agree. Q2: 57% Agree, 12% S. Agree.

Figure 6: Three individual explanations with the highest amount of participants responding to the right side of neutral for
both section 2 subquestions: "I personally would have used the same visual elements for this decision" and "Based on these visual
elements, I think it makes sense to rely on the AI’s decision". Q1 and Q2 refer to the order as presented in Figure 5.

the alternative hypothesis for the ranking of Patch-Doersch > Pro-
toPNet > Suel-IBA. This, together with the favourability for the
individual explanations, the trustscores given by the experts for
each method and the comparisons in Figure 7 show us that of the
three methods, Patch-Doersch is most often favoured. The self-
reported demographics for section 5 are shown in Table 10 in in
Appendix B. Further statistics for each method are shown in Table 3
in Appendix B.

Textual responses showed certain nuances regarding the less
favourable view of Suel-IBA. Participants responded that themethod
tended to highlight irrelevant features which lowered the trust in
the model.

"It focuses on very few and/or small areas. It also has a tendency
to focus on the car the camera was on which was in many of
the examples, it also highlights random parts of the street, sky,
or facade that make it untrustworthy" "Things like parts of the
camera car are taken into account when they clearly shouldn’t be.

This lowers my trust in the model." "This heatmap ’looks’ far to
much at car windows, tires, bicycles, poles and other non-relevant
elements. The only heatmap I thought was slightly passable was
the one that coloured bell gables red. (I would personally look at that
too)." - Translated from Dutch. "This method seems super focused
on cars."

Consistency is consistently mentioned as an important factor for
viewing a method positively. ProtoPNet is often accused of return-
ing patterns of dissimilar visual elements. "I noticed that a single
weird example in the list [returned by Patch-Doersch] would throw
me off " "The [Patch-Doersch] images clearly show the same visual
aspects (it’s consistent, unlike [ProtoPNet] in my opinion), which
gives a sense of certainty of the model prediction." "[ProtoPNet]
seems reasonable but again not very consistent. "I am sometimes
confused as the box highlighted [by ProtoPNet], to my eye, [it] does
not show any similarity to the predicted picture." "The selection
of the visual element [ProtoPNet] focus on it’s very broad." Multiple
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Figure 7: Left: After six examples for a method respondents were presented with an overview of all the examples of that method
and asked: How would you rate your trust in the AI having a good understanding of the relationship between visual elements
and housing prices? With 10 meaning you trust the AI completely, and 0 meaning you do not trust the AI at all. The green line
shows themedian. Right: Percentual responses for the comparison of explanations run within a certain neighbourhood/housing
price group for the question:Which of these methods does the best job at returning visual elements that you would use for this
decision?

participants mentioned concerns regarding the uncertainty that
comes with linking their symbolic interpretation to the interpre-
tation given by the model. This is a pitfall for confirmation bias.
"Mostly, in these [Suel-IBA] examples, I am not sure what part is
highlighted and/or don’t see the relevancy of it. Even if a sensible
part of the image is highlighted, I wouldn’t know why if themeaning
I attribute to it is the same as what the model detects, and I may
fall prey to confirmation bias." "I like this method. However, it is
not straightforward to link the continuous type of interpretation
(pixel intensity) to our more symbolic interpretation. This is to
say that this method is somehow prone to confirmation bias. None"
"again, some boxes are drawn. I’ve no way for verifying what
they are / mean." "i don’t know/understand what those red areas
[returned by Suel-IBA] are; there is no way to verify what that
means or to verify the veracity of the highlighted regions.

Finally, missing context and the naive approach for the tasks
led to some participants mentioning the methods need to be im-
proved. "I think that for detecting a price of the house in Amsterdam
neither of those methods alone are sufficient." "I generally like
[Patch-Doersch], but it does not consider the context surrounding
the houses, which I find a crucial aspect for this task (at least
important for me when performing it)." "[ProtoPNet] missing social
economic en cultural context. AI is not precise enough at this
moment."

5 DISCUSSION
Based on the results we obtained we can make a number of obser-
vations. The Patch-Doersch approach is clearly the most favoured
for giving insight into the relation between visual elements and
housing prices, both from our own perspective as from the rankings
of the methods uncovered through the survey. This is reflected in
both the returned visual elements as the trust scores, and as such
the Patch-Doersch approach seems to be the closest to municipal
use. ProtoPNet scores less well, as it often confuses visual elements

that are not similar or highlights too broad a selection making it
unclear what visual elements the explanation contains. The Suel-
IBA approach returned heatmaps highlighting both relevant and
irrelevant elements thus making it hard to trust due to potential
confirmation bias. Our survey confirms this both through textual
responses as through the trustscore, which on average was the
lowest. More than half of the experts also indicated they would not
use this. The lack of identifiable patterns is partly to be expected, as
there is no mechanism in IBA to learn these patterns. As a method
for supporting municipalities we can thus say both ProtoPNet and
Suel-IBA are not adequate.

While the Patch-Doersch approach does produce patterns, it has
a number of limitations that need to be taken into account. First
off it demands a binary dataset. This is because it was originally
developed to find repetitive visual elements for a single city (i.e.,
“What makes Paris look like Paris?” ), with multiple other cities in
the negative set. When trained, Patch-Doersch often finds visual
elements predictive of a neighbourhood, instead of predicting the
socio-economic dimension. The visual elements in most of the
returned clusters were within the same neighbourhood, as housing
prices are very much geographically distributed in Amsterdam.
While these might still be indicators of housing prices, we assume
that stronger indicators might exist that are now being obscured by
geographical indicators in the form of visual elements. Secondly, it
has no predictive capability. As such all clusters are visualizations of
training data. A predictor has been built on top of it by [2], but due to
training times this was infeasible for our approach. Patch-Doersch
is also relatively slow making it hard to run many experiments. A
single training run on less than 10k images takes 60 hours for three
SVM iterations. This makes it infeasible to run a large dataset. The
dataset used by Patch-Doersch is a fraction of the 300k, and 323k
images ProtoPNet and Suel-IBA are respectively trained on, and as
such cannot be viewed as reliable representation of the city. Lastly,
the low-level HOG features used in this method are not rotationally
invariant and do not describe any semantics of the patches. As
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Figure 8: Results for the question whether a participant would use this in their daily work. Percentages for the three I don’t like
this method options are summed.

such, the clusters are heavily influenced by camera orientation and
low-level patterns.

ProtoPNet runs relatively fast, albeit on multiple GPUs, but does
not scale well to the entirety of Amsterdam. This is to be expected,
as the dataset of roughly 1.2M images is much larger than the 300k
images ProtoPNet was trained on. The visual elements returned by
ProtoPNet are more sophisticated than those by the Patch-Doersch
approach, but they are still naively informed visual elements. While
the method could use improving, the approach is more suitable than
a standard deep vision model. Ideally, we would like to deconstruct
a panorama and understand the visual elements that relate to the
socio-economic variable, something that ProtoPNet at the very least
attempts to do.

Finally, all predictions shown to respondents were correct predic-
tions made by the model. As mentioned before, for Patch-Doersch
these were clusters it had been trained on. As such these were
the best possible examples for each method. Of the possible socio-
economic variables that have previously been used in Perspective
VUA settings, housing prices is low-hanging fruit as opposed to
metrics such as, education rates [38], scenicness [34], or theft [2] or
crime rates [11]. With that in mind, one could argue that the moder-
ate trustscores recorded in the survey, with all methods averaging
below 6, does not make for viable methods in practice. Further
discussion on limitations and recommendations for municipalities
can be found in Appendix A.

6 CONCLUSION
We set out to evaluate whether the current paradigm of Perceptive
VUA is suitable yet for policymakers at a municipality. For this we
compared three different Perceptive VUA methods in combination
with explainability techniques for analysing the relationship be-
tween visual elements and housing prices in the city of Amsterdam.
In the results we saw that the Patch-Doersch approach was able to
provide recurring visual patterns, while the ProtoPNet and Suel-IBA
were inconsistent and therefore less trustworthy. We evaluated the
methods with experts from the Municipality of Amsterdam and Rot-
terdam, as well as Responsible AI and Computer Vision researchers
and found that none of the models met the trustworthiness criteria.
We make recommendations for a model to explain urban visual

relationships including both practical dimensions and explainable
capabilities. Overall, none of the methods explored meet the criteria
yet to successfully support policy-making in a municipal context.
This is confirmed by the experts. Patch-Doersch comes closest, and
in our opinion shows the direction the Perceptive VUA paradigm
needs to move in: a supporting tool that returns consistent and
trustworthy explanations. As such we believe our conclusion to be
a hopeful one: Perceptive VUA has the potential to be a powerful
tool for policymakers, but in order for that to happen the focus
needs to shift from exploring theoretical capabilities to meeting the
needs of the people it is supposedly designed for.

7 ETHICS
Urban Analytics in its current state is an inherently sensitive subject.
Predicting socio-economic variables through a representation of a
neighbourhood in the form of panoramic imagery might be possible
when evaluated purely on an accuracy metric, but policy built
on this could suffer from turning a blind eye to individual harm
exerted by such an application. As these applications revolve around
categorizing areas people live, there is potential for downstream
harm to citizens.

At first glance harmless objectives, such as uncovering the re-
lationship between visual elements and housing prices, can have
undesired side effects if methods can not be trusted to identify
concrete and trustworthy visual elements, as opposed to spurious
correlations. As our conclusion is that at this time methods for
perceptive VUA are not sophisticated enough to produce results
that can reliably be used for policy-making, we would urge munici-
palities to hold-off on implementing such methods.
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A APPENDIX
A.1 Recommendations for VUA with

application in policy-making
Based on our experiments and evaluation with experts we believe
the current paradigm for Perceptive VUA is inherently flawed. This
is due to three problems that are currently not addressed by the
existing methods:

The current paradigm for Perceptive VUA revolves around brute-
forcing a distribution over the urban visual landscape. However,
cities are complex entities[23] that do not exist in the same theo-
retical setting as most computer vision tasks do. There are complex
causal relations between socio-economic factors and what we see
on the street. As such, visual elements returned by the explanations
are often spurious correlations as observed in our qualitative eval-
uation as well as through the textual survey responses. This is an
inherent problem with the current paradigm of Perceptive VUA:
The visual nature of the city allows for ’shortcuts’ for predictive
models in the form of spatially distributed visual elements that do
not necessarily have a causal relation with the predicted variable.

Secondly, current methods are not built with explainability, trust-
worthiness, or domain knowledge in mind. With the exception of
Patch-Doersch, the existing paradigm focuses solely on accuracy.
While the accuracy of these predictive models is high, the act of con-
densing the entire urban visual landscape into a single predictive
feature in turn makes the method inexplicable and untrustworthy.
As mentioned by multiple experts in the survey, trust is extremely
important. Municipalities need to be able to rely on the predictions
or explanations generated by the AI as they potentially affect real
people.

Finally through the textual survey responses we observed munic-
ipal employees, and other participants, kept evaluating the methods
by relying on their knowledge of the city. Municipal employees
know the city and as such look for practical tools that can support
their knowledge as opposed to a one-size-fits-all model. It is our
observation that the current paradigm of Perceptive VUA attempts
to serve as an oracle as opposed to a tool; This paradigm is too
focused on the nature of learning patterns in big data instead of
grounding the models in domain knowledge. Cities are complex,
and an approach that takes a set of images and labels as a repre-
sentation grossly underestimates that complexity and attempting
to solve this by teaching an AI socio-economic and cultural con-
text is a solution that will bring even more problems than already
exist. As such, we believe the paradigm of Perceptive VUA needs
to shift to becoming more of a tool. While Patch-Doersch is not
useable due to it’s practical and technical drawbacks, we think the
relatively positive survey outcome highlights the direction the par-
adigm of Perceptive VUA needs to move in: A method focused on
supporting municipalities that provides consistent and trustworthy
results where our symbolic interpretation is the same as meaning
provided by the AI’s prediction. We present the lessons we learned
as a recommendation for further research in this field:

• Themethod, and explainability technique, should be grounded
in domain knowledge as we are interested in explanations
regarding the real world, not just visually similar images.

• The approach should focus on trustworthy and consistent re-
sults, ideally by dissecting the image into single interpretable
visual elements.

• The focus should lie on developing tools for experts. One
should always ask themselves: How would an expert use
this tool? To what extent does an expert need to trust the
model to be correct?

A.2 Limitations
We acknowledge our study has certain limitations. Our use of a
single label and single city limits the scope of this research such
that these results might not be generalisable when applied to a
new city. However, we would argue that these methods need to be
evaluated by municipalities before they are implemented in a local
context. Secondly, while the use of a single label can be viewed
as a limiting factor, our choice for housing prices is motivated
by the high correlation between most socio-economic labels. We
considered housing prices to be reliable as a variable as it does
more directly relate to the visual elements visible from street view
imagery [2] than a label such as unemployment [38]. We argue
that if it is not possible for a Perceptive VUA method to correctly
identify relevant visual elements for an ‘easy’ label such as housing
prices, it will be less reliable or useful for a hard and potentially
problematic label such as unemployment. Finally, our claim is not
to be read as an assessment of VUA or Perceptive VUA in general,
but an assessment about Perceptive VUA in municipal contexts
only. We argue that this recipe, or paradigm, of naively training
models to directly map urban imagery to a socio-economic variable
is, as of now, insufficient to be implemented within a municipal
context.
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(a) Map of Amsterdam with a heatmap overlay
of the housing prices in euro p/𝑚2 in 2018.

(b) Housing price bins as provided by the municipality
website.

Figure 9: Map of housing prices alongside housing price bins. Note how the distribution of high housing prices is clustered
around the centre, with housing prices declining gradually as we move further towards the edge of the city.

# Kn. of AI Kn. of CV Research focused
on resp. AI

Kn. of policy-making
within municipality

Technical nature of
day-to-day work

Municipal employees 19 6.7 ± 2.6 6.4 ± 1.8 X 6.1 ± 2.4 6.6 ± 2.3
CV Researchers 18 8.2 ± 0.9 8.1 ± 0.7 5.4 ± 3.1 X X

Resp. AI researchers 14 7.9 ± 1.8 5.4 ± 2.1 8.3 ± 1.6 X X

Figure 10: Self-reported survey demographics, columns show mean ± sd.
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Right tailed Wilcoxon signed rank-tests
I personally would have used the same visual elements for this decision
Patch-Doersch > Suel-IBA Patch-Doersch > ProtoPnet ProtoPNet > Suel-IBA

p-value < 0.001* < 0.001* < 0.001*
Test statistic 8460 2464 3160
Cliff’s Delta 0.209 0.091 0.132
Sample size 306 306 306

Based on these visual elements, I think it makes sense to rely on the AI’s decision
p-value < 0.001* < 0.001* < 0.001*

Test statistic 6328 4136 435
Cliff’s Delta 0.185 0.139 0.050
Sample size 306 306 306

Would you use this method in your daily work?
p-value < 0.001* < 0.001* < 0.001*

Test statistic 780.0 55.00 528.0
Cliff’s Delta 0.384 0.326 0.086
Sample size 51 51 51

One-sided independent t-tests
Differences in trustscores

Patch-Doersch > Suel-IBA Patch-Doersch > ProtoPnet ProtoPNet > Suel-IBA
p-value 0.0003* 0.0308 0.0384

Test statistic 3.547 1.890 1.788
Cliff’s Delta 3.991 0.262 0.220

CI 1.5 ± 0.84 0.82 ± 0.86 0.686 ± 0.75
Sample size 51 51 51

Table 2: P-values for right tailed Wilcoxon signed rank-tests for responses to section 2 (individual explanations) and section 4
(utility questions) and p-values for one-sided independent t-tests for the differences in trustscores. After Bonferroni correction
𝛼 = 0.01667. Statistically significant results are denoted in bold font with an asterisk.

Patch-Doersch Suel-IBA ProtoPNet
I personally would have used the same

visual elements for this decision 4 ± 1 (n=306) 3 ± 1 (n=306) 3 ± 1 (n=306)

Based on these visual elements,
I think it makes sense to rely on the AI’s decision 3.5 ± 1 (n=306) 3 ± 1 (n=306) 3 ± 1 (n=306)

Trustscores 5.67 ± 2.4 (n=51) 4.16 ± 1.9 (n=51) 4.84 ± 2.0 (n=51)
Would you use this method in your daily work? 4 ± 1 (n=51) 3.0 ± 1.5 (n=51) 4.0 ± 1.0 (n=51)

Table 3: Medians and semi-iqrs except for trust, which are the means and sds. Likert-scale questions are converted to scale on
1-5.
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