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ABSTRACT
Predictive models developed with machine learning techniques are
commonly used to inform decision making and resource allocation
in high-stakes contexts, such as healthcare and public health. One
means through which this practice may propagate equity-related
harms is when the data used for model development or evaluation
exhibits label bias. In such cases, the target of prediction is a proxy
label of a construct of interest that may be difficult or impossible
to measure, while the relationship between the proxy and the con-
struct of interest differs systematically across subgroups. Label bias
can be especially challenging to identify and mitigate in practice
because consequential fairness violations are masked when the
model is evaluated with respect to the proxy label. In this work, we
aim to develop further formal understanding of label bias to inform
the development of approaches for the identification and mitiga-
tion of it. To do so, we present desiderata for unbiased and biased
proxy labels, introduce candidate causal graphical criteria for label
bias, and consider the extent to which proxy labels can be used to
reason about fairness with respect to a true construct of interest.
We validate our findings with a simulation study and experiments
with synthetic health insurance data used in the context of a care
management system.
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1 INTRODUCTION
There is a growing need to evaluate prediction models for algo-
rithmic fairness and bias in high-stakes decision making contexts
[17, 21, 54, 56, 62]. In these contexts, it is typical to fit a model to an
imperfect proxy of a construct of interest and then use predictions
of the proxy as the basis for a decision. Amajor concern is that these
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decisions may harm specific subgroups or otherwise introduce or
exacerbate disparities.

As a motivating example, we consider the policy and predictive
model studied in Obermeyer et al. [56], where it was shown that
the choice of label used for prediction can directly introduce fair-
ness concerns with potential to exacerbate racial health disparities
[55]. This an example of the broader label bias problem [36, 37, 44],
where systematic differences in the relationship between a proxy
label and an unobserved construct of interest across subgroups
can render standard evaluation approaches misleading and mask
consequential fairness and equity-related harms. In this example,
patients are referred to a care management program on the basis
of predictions of healthcare expenditure from a model developed
using administrative insurance claims data, where healthcare ex-
penditures are assumed to be a proxy for the need for healthcare
(health status). It was found that despite evidence that the model
estimated healthcare expenditures well for all groups, bias was
present given that the number of active chronic conditions was
greater for the Black population relative to the White population
conditioned on the value of the risk score, suggesting a difference
in the implicit threshold of referral [31, 67] on the basis of health
status for the two groups. Here, healthcare expenditure is a biased
proxy of health status because the relationship between healthcare
expenditure and health status differs across racial groups due to
differential exposure to structural racism that systematically limits
access to healthcare for the Black population in the United States
[5, 6, 51, 76].

In this work, we formalize and characterize label bias using
statistical and causal criteria, building on prior works that describe
related forms of bias with causal graphical models of measurement
[37, 43, 57]. We further consider implications for evaluation of
fairness, with particular attention paid to the sufficiency fairness
criterion that assesses differential miscalibration across subgroups
[9, 50]. In cases where multiple proxy labels are available, we study
how the joint causal structure between multiple proxy labels and
the unobserved label of interest enables assessment of bias with
respect to a given proxy. We present multiple causal structures and
describe conditions that relate fairness evaluation with respect to a
proxy label to fairness evaluation with respect to the unobserved
label of interest. Furthermore, we also highlight a secondary issue
related to the effect of including subgroup information as a predictor
on fairness properties measured with respect to a proxy label and
the unobserved label of interest. We evaluate the appropriateness
of this formalization using a simulation study and re-analysis of the
setting of Obermeyer et al. [56] using the synthetic dataset released
by the study authors. We provide technical background in section
2, detail our framework for understanding label bias in section 3,
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describe related work in section 4, describe our experiments and
results in section 51, and discuss our findings in section 6.

2 BACKGROUND
2.1 Causal direct acyclic graphs
We study the label bias problem using causal directed acyclic graphs
(DAGs). Following Pearl et al. [57] and Mhasawade and Chunara
[53], we define a causal model as a triple of sets (U,V, 𝐹 ) such that:

• U are a set of latent variables, which are not caused by any
of the observed variables in V.

• 𝐹 is set of functions such that for each𝑉𝑖 ∈ V,𝑉𝑖 = 𝑓𝑖
(
pa𝑖 ,𝑈𝑝𝑎𝑖

)
,

𝑝𝑎𝑖 ⊆ V \𝑉𝑖 and 𝑈𝑝𝑎𝑖 ⊆ U, where 𝑝𝑎𝑖 refers to the causal
parents of 𝑉𝑖 .

• The joint distribution over all variables is given by the prod-
uct of the conditional distribution of each variable given its
causal parents: Pr (V) = ∏

𝑖 Pr
(
𝑉𝑖 |pa𝑖

)
.

2.2 Modeling in the well-specified setting
We consider development and evaluation of a model ℎ using data
samples from 𝑃 (𝑋,𝑌,𝐴), comprising covariates𝑋 ⊆ X = R𝑚 , a cat-
egorical group attribute𝐴, and a label𝑌 . For simplicity, we consider
𝐴 to be binary to indicate two subgroups. Unless otherwise stated,
𝑌 is assumed to be binary in {0, 1}. The model ℎ is assumed to take
as input𝑍 ⊂ {𝑋, {𝑋,𝐴}} and to output a continuously-valued score
that can be compared to a threshold 𝜏 to produce a hard prediction
𝑌 . For the purposes of this work, we assume that the data used
for model development and evaluation are independent and identi-
cally distributed samples from the same underlying population and
that the distribution of that population matches that of the target
population that the model is intended to be used for [68].

2.3 Sufficiency, calibration, and subgroup
Bayes-optimality

For evaluation of fairness, we primarily focus on the subgroup
Bayes-optimality, calibration, and sufficiency criteria [9, 50]. The suf-
ficiency criteria is given by E[𝑌 | ℎ(𝑍 ), 𝐴 = 𝑎𝑖 ] = E[𝑌 | ℎ(𝑍 )] ∀𝑎𝑖 ,
i.e., that the calibration curves are the same for all groups. For a bi-
nary outcome 𝑌 , this is equivalent to 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 ). This is related
to calibration for all groups, i.e., E[𝑌 | ℎ(𝑍 ), 𝐴 = 𝑎𝑖 ] = ℎ(𝑍 ) ∀𝑎𝑖 , in
that calibration for all groups implies sufficiency. Subgroup Bayes-
optimality is the condition that the conditional expectation of 𝑌
given {𝑋,𝐴} is modeled as well as possible for each subgroup, i.e.,
ℎ = E[𝑌 | 𝑋,𝐴]. The relationship between the criteria is such
that subgroup Bayes-optimality implies calibration for all groups,
which implies sufficiency [9]. The converse statements do not gen-
erally hold, in that sufficiency does not imply calibration for all
groups, and calibration for all groups does not imply subgroup
Bayes-optimality [21]. However, violation of sufficiency does imply
violation of subgroup Bayes-optimality, and thus that the model is
a sub-optimal predictor for at least one subgroup [50].

Subgroup Bayes-optimality and sufficiency are important crite-
ria for reasoning about fairness and decision-making. A decision
rule that thresholds the subgroup Bayes-optimal model yields an

1Code to replicate experiments is available at https://github.com/google-research/
google-research/tree/master/causal_label_bias.

optimal decision rule overall and for each subgroup if certain as-
sumptions of the decision making context are met (e.g., if the utility
of the decision monotonically increases as a function of the cali-
brated risk score and is independent of group membership, such
as when fixed costs or utilities are associated with each of true
positive, true negative, false positive, and false negative classifica-
tion errors) [7, 60]. Furthermore, if a model satisfies sufficiency, a
single-threshold decision rule informally corresponds to an equal
treatment condition across subgroups with respect to the condi-
tional probability of the outcome given the predicted score, such
that violation of sufficiency implies different implicit thresholds
across subgroups [31]. Other common fairness criteria, such as de-
mographic parity [15, 27], equalized odds [40], and predictive parity
[19], can be misleading in this setting because they can be violated
for subgroup Bayes-optimal models when the data distribution
differs across subgroups [20, 50].

Analysis of causal structure provides some means to anticipate
the fairness properties of models learned from data faithful to the
causal structure [61]. For example, if the graph is such that 𝑌 ⊥⊥
𝐴 | 𝑋 (Figure 1a), then a population Bayes-optimal model that
accurately estimates E[𝑌 | 𝑋 ] is also optimal for each subgroup
given that 𝑌 ⊥⊥ 𝐴 | 𝑋 implies that E[𝑌 | 𝑋 ] = E[𝑌 | 𝑋,𝐴].
However, if 𝑌 ⊥̸⊥ 𝐴 | 𝑋 , i.e. if 𝑋 does not d-separate 𝑋 and 𝐴, then
E[𝑌 | 𝑋 ] ≠ E[𝑌 | 𝑋,𝐴] in general, the population Bayes-optimal
model that depends only on 𝑋 need not be subgroup Bayes-optimal
and may violate sufficiency. We represent this setting causally with
a bidirected arrow between 𝐴 and 𝑌 to indicate the presence of
an unobserved confounder that influences 𝑌 , unmediated by 𝑋 ,
with a differing distribution across subgroups𝐴 (Figure 1b). In such
cases, the gap between the population and subgroup Bayes-optimal
predictors can be addressed by incorporating subgroupmembership
information as an input to the model, which can take the form of
fitting a separate model for each subgroup or by considering an
indicator of subgroup membership as an additional covariate along
with 𝑋 . Here, we notate models that do not incorporate subgroup
information as ℎ𝐴̸ and those that do as ℎ𝐴 . We accordingly refer to
the population Bayes-optimal model E[𝑌 | 𝑋 ] as ℎ∗ or ℎ∗

𝐴̸
and the

subgroup Bayes-optimal model E[𝑌 | 𝑋,𝐴] as ℎ∗
𝐴
.

3 PROXY LABELS AND LABEL BIAS
Here, we formalize candidate statistical definitions for unbiased
and biased proxy labels in terms of the concepts introduced in
section 2 and discuss their relationship to related causal graphical
criteria. In a setting with proxy labels, we do not observe the true
outcome of interest 𝑌 but instead observe a set of proxy labels
YP = {𝑌1, · · · , 𝑌𝑛}. We consider a mode of evaluation considered in
prior work [56, 65, 78] where violation or satisfaction of sufficiency
with respect to a proxy variable is used to reason about sufficiency
with respect to the true label. Within this framework, we may
consider a proxy label 𝑌𝑖 to be unbiased if it enables reasoning
about whether a predictive model satisfies sufficiency with respect
to the true label 𝑌 on the basis of a test for sufficiency with respect
to 𝑌𝑖 . Moreover, we may consider a proxy label 𝑌𝑖 to be biased if a
subgroup Bayes-optimal estimate for 𝑌𝑖 violates sufficiency with
respect to𝑌 . This translates to a statistical criterion defined in terms

https://github.com/google-research/google-research/tree/master/causal_label_bias
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(a) Unbiased proxy labels and 𝑌 ⊥⊥ 𝐴 | 𝑋 .
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(b) Unbiased proxy labels and 𝑌 ⊥̸⊥ 𝐴 | 𝑋 .
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(c) 𝑌3 is a biased proxy label and 𝑌 ⊥⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌

𝑌1

𝑌2

𝑌3

(d) 𝑌3 is a biased proxy label and 𝑌 ⊥̸⊥ 𝐴 | 𝑋 .

Figure 1: a) Example causal DAG with unobserved outcome of interest 𝑌 represented by the gray node and three observed
proxy labels 𝑌1, 𝑌2, 𝑌3. All the proxy labels are downstream of the unobserved outcome of interest with 𝑌 → 𝑌𝑖 . Bidirected edges
represent confounding between variables. A red edge is used to indicate a biased proxy relationship. All three proxies are
unbiased in (a) and (b), while 𝑌3 is a biased proxy in (c) and (d). We show cases where 𝑌 ⊥⊥ 𝐴 | 𝑋 in (a) and (c) and cases where
𝑌 ⊥̸⊥ 𝐴 | 𝑋 in (b) and (d).

of {𝑌,𝑌𝑖 , 𝑋,𝐴}, where

E[𝑌 | E[𝑌𝑖 | 𝑋,𝐴], 𝐴 = 𝑎 𝑗 ] ≠ E[𝑌 | E[𝑌𝑖 | 𝑋,𝐴], 𝐴 = 𝑎𝑘 ] (1)

for two groups 𝑎 𝑗 and 𝑎𝑘 if 𝑌𝑖 is a biased proxy label. This notion
of bias can be motivated decision-theoretically in that decision
making at a single threshold on ℎ∗

𝐴
(𝑍 ) implies decision making at

a different implicit thresholds for 𝑌 across subgroups if ℎ∗
𝐴
(𝑍 ) is

a subgroup Bayes-optimal model for 𝑌𝑖 and E[𝑌 | ℎ∗
𝐴
(𝑍 )] mono-

tonically increases as a function of ℎ∗
𝐴
(𝑍 ) [7, 31, 60]. Under these

criteria for (un)biasedness, fitting a subgroup Bayes-optimal model
for a biased proxy induces sufficiency violation with respect to the
true label, which can be detected through sufficiency violation with
respect to an unbiased proxy, thus implying that efforts taken to
improve sufficiency fairness with respect to a biased proxy label,
such as by fitting separate models for each subgroup, can directly
introduce unfairness with respect to true label.

We study these phenomena in the context of a restricted set
of causal graphs intended to reflect a set of settings illustrative,
but not exhaustive, of data generating processes and measurement
mechanisms relevant to label bias. We consider two key classes of
DAGs defined in terms of whether the proxy of interest is causally
downstream (𝑌 → 𝑌𝑖 ; Figure 1) or upstream (𝑌𝑖 → 𝑌 ; Figure 2) of
the true outcome 𝑌 . For all settings considered, we assume that𝑋 is
a causal parent of 𝑌𝑗 with no effect on 𝑌𝑘 unmediated by 𝑌𝑗 , where

𝑌𝑗 and 𝑌𝑘 are the first and second of {𝑌 , 𝑌𝑖 } in the causal ordering.
Within the context of the DAGs considered, we consider a simple
causal graphical criterion for label bias based on the presence or
absence of a direct effect (or backdoor confounding path) between
𝐴 on 𝑌𝑘 unmediated by 𝑌𝑗 . Expressed in terms of conditional in-
dependence criteria implied by d-separation, we say that if 𝑌 is a
causal parent of 𝑌𝑖 , then 𝑌𝑖 is a a graphically unbiased proxy of 𝑌
if 𝑌𝑖 ⊥⊥ 𝐴 | 𝑌 and a graphically biased proxy if 𝑌𝑖 ⊥̸⊥ 𝐴 | 𝑌 ; if 𝑌𝑖
is a causal parent of 𝑌 , then 𝑌𝑖 is a graphically unbiased surrogate
proxy of 𝑌 if 𝑌 ⊥⊥ 𝐴 | 𝑌𝑖 and a graphically biased surrogate proxy
if 𝑌 ⊥̸⊥ 𝐴 | 𝑌𝑖 . We note that in this context, we refer to proxies as
being graphically (un)biased to differentiate these candidate causal
graphical criteria for label bias from the statistical criteria for label
bias related to sufficiency. We refer to upstream proxies as surrogate
proxies due to the connection to the surrogate outcomes setting
[4, 63].

In Figure 1, we depict illustrative causal DAGs corresponding to
settings where a set of proxy labels {𝑌1, 𝑌2, 𝑌3} are causal children
of the outcome of interest 𝑌 and verify properties of models trained
on data sampled from these causal graphs in a simulation study in
Section 5. We consider all three downstream proxies to be graph-
ically unbiased in Figure 1a,b. In Figure 1c,d we consider 𝑌3 as a
graphically biased proxy, and represent this through a bidirected
red arrow between 𝐴 and 𝑌3, corresponding to the presence of an
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𝐴

𝑋

𝑌1 𝑌

𝑌2

(a) Unbiased surrogate proxy labels (𝑌 ⊥⊥ 𝐴 | 𝑌1 and
𝑌2 ⊥⊥ 𝐴 | 𝑌 ) and 𝑌1 ⊥⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌1 𝑌

𝑌2

(b) Unbiased surrogate proxy labels (𝑌 ⊥⊥ 𝐴 | 𝑌1 and
𝑌2 ⊥⊥ 𝐴 | 𝑌 ) and 𝑌1 ⊥̸⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌1 𝑌

𝑌2

(c) 𝑌1 is a biased surrogate proxy (𝑌 ⊥̸⊥ 𝐴 | 𝑌1), 𝑌2 is an unbiased
proxy (𝑌2 ⊥⊥ 𝐴 | 𝑌 ), and 𝑌1 ⊥⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌1 𝑌

𝑌2

(d) 𝑌1 is a biased surrogate proxy (𝑌 ⊥̸⊥ 𝐴 | 𝑌1), 𝑌2 is an unbiased
proxy (𝑌2 ⊥⊥ 𝐴 | 𝑌 ), and 𝑌1 ⊥̸⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌1 𝑌

𝑌2

(e) 𝑌1 is a unbiased surrogate proxy (𝑌 ⊥⊥ 𝐴 | 𝑌1), 𝑌2 is a biased
proxy (𝑌2 ⊥̸⊥ 𝐴 | 𝑌 ), and 𝑌1 ⊥⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌1 𝑌

𝑌2

(f) 𝑌1 is a unbiased surrogate proxy (𝑌 ⊥⊥ 𝐴 | 𝑌1), 𝑌2 is a biased
proxy (𝑌2 ⊥̸⊥ 𝐴 | 𝑌 ), and 𝑌1 ⊥̸⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌1 𝑌

𝑌2

(g)𝑌1 is a biased surrogate proxy (𝑌 ⊥̸⊥ 𝐴 | 𝑌1),𝑌2 is a biased proxy
(𝑌2 ⊥̸⊥ 𝐴 | 𝑌 ), and 𝑌1 ⊥⊥ 𝐴 | 𝑋 .

𝐴

𝑋

𝑌1 𝑌

𝑌2

(h)𝑌1 is a biased surrogate proxy (𝑌 ⊥̸⊥ 𝐴 | 𝑌1),𝑌2 is a biased proxy
(𝑌2 ⊥̸⊥ 𝐴 | 𝑌 ), and 𝑌1 ⊥̸⊥ 𝐴 | 𝑋 .

Figure 2: Example causal DAG with the unobserved outcome of interest 𝑌 represented by the gray node and two observed proxy
labels, 𝑌1 and 𝑌2. 𝑌1 is a surrogate proxy label upstream of the unobserved outcome of interest 𝑌 (𝑌1 → 𝑌 ). 𝑌2 is a proxy label
downstream of the unobserved outcome of interest 𝑌 (𝑌 → 𝑌2). Bidirected edges represent confounding between variables. A
red edge is used to indicate a biased proxy relationship. 𝑌1 is an unbiased surrogate proxy of 𝑌 in (a), (b), (e) and (f) while it is a
biased proxy of 𝑌 in (c), (d), (g) and (h). 𝑌2 is an unbiased proxy in (a), (b), (c), (d) and a biased proxy in (e), (f), (g), (h).
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unobserved confounder with influence on the proxy𝑌3, unmediated
by 𝑌 , that differs in distribution across subgroups. In Figure 2, we
show a setting that incorporates a surrogate outcome 𝑌1 that is a
causal parent of 𝑌 and a downstream proxy 𝑌2 that is a causal child
of 𝑌 . Here, the upstream surrogate proxy 𝑌1 is biased when there
is an edge between 𝐴 and 𝑌 (Figure 2c,d,g,h) and the downstream
proxy 𝑌2 is biased when there is an edge between 𝐴 and 𝑌2 (Figure
2e,f,g,h).

In Table 1, we detail the relationships between the sufficiency
fairness criterion with respect to proxy labels and the sufficiency
fairness criterionwith respect to an unobserved true label of interest
for an arbitrary predictive model ℎ, for the causal DAGs of interest.
There are two main categories of properties: those that hold in
general, and those require additional assumptions dependent on
the claim and DAG of interest. A consequence is that the graphical
notions of bias are not strong enough, on their own, to imply the
ideal desiderata of proxy labels discussed above.

For the case where the proxy 𝑌𝑖 is downstream of 𝑌 (𝑌 → 𝑌𝑖 )
and graphically unbiased (e.g., 𝑌1 or 𝑌2 in any panel of Figure 1),
sufficiency satisfaction with respect to 𝑌 necessarily implies suf-
ficiency satisfaction with respect to 𝑌𝑖 . This follows from Lemma
4.2 of Dawid [23], which states that if 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 ), then 𝑓 (𝑌 ) ⊥⊥
𝐴 | ℎ(𝑍 ), where 𝑓 is a function that depends only on 𝑌 . By a
contrapositive argument, and without further assumptions, suffi-
ciency violation with respect to𝑌𝑖 implies sufficiency violation with
respect to 𝑌 . However, reasoning about whether sufficiency is satis-
fied with respect to𝑌 requires additional assumptions regarding the
informativeness of the proxy 𝑌𝑖 about 𝑌 . This is required because
it is possible for sufficiency violation with respect to 𝑌 to not be
observable in 𝑌𝑖 if the mapping from 𝑌 to 𝑌𝑖 is noisy or such that
the dependence between 𝐴 and 𝑌 is masked within levels of ℎ(𝑍 ).
We leave a full technical formalization of the necessary assump-
tions to future work, but note that the required assumptions extend
causal faithfulness [69], i.e., that no (conditional) independencies
are present other than those implied by the DAG, with additional
requirements regarding the functional forms of the𝑌 → 𝑌𝑖 relation-
ship and ℎ. However, if the necessary assumptions hold such that
𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥̸⊥ 𝐴 | ℎ(𝑍 ), it follows by the contrapositive
that 𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 ), i.e., that sufficiency with
respect to 𝑌𝑖 implies sufficiency with respect to 𝑌 .

To reason about the properties of downstream, graphically biased
proxies (𝑌3 in Figure 1c,d), we note that additional assumptions
beyond the presence of a direct or backdoor path between 𝐴 and
graphically biased 𝑌𝑖 is needed in order to conclude that sufficiency
satisfaction with respect to 𝑌𝑖 implies sufficiency violation with
respect to 𝑌 (𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 )). As before, we
note that these assumptions are related to causal faithfulness, but
leave further formalization for future work. For intuition, consider
the contrapositive statement, where sufficiency satisfaction with
respect to𝑌 implies sufficiency violation with respect to𝑌𝑖 (𝑌 ⊥⊥ 𝐴 |
ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥̸⊥ 𝐴 | ℎ(𝑍 )), which may be false if the effect between
𝐴 and 𝑌𝑖 unmediated by 𝑌 does not introduce dependence within
levels of ℎ(𝑍 ). However, if the necessary assumptions related to
faithfulness hold, we can conclude that fitting a model that satisfies
sufficiency with respect to 𝑌𝑖 will violate sufficiency with respect to
𝑌 . Furthermore, we note violation of sufficiency with respect to a

biased downstream proxy does not imply satisfaction of sufficiency
with respect to the true outcome of interest.

For the case of upstream surrogate proxy labels (𝑌𝑖 → 𝑌 ), the
results are analogous to the case of downstream proxy labels, with
the role of 𝑌𝑖 and 𝑌 reversed (Table 1). For instance, satisfaction of
sufficiency with respect to a graphically unbiased proxy 𝑌𝑖 implies
sufficiency is satisfied with respect to 𝑌 , but further faithfulness
assumptions are required for violation of sufficiency with respect
to 𝑌𝑖 to imply sufficiency violation with respect to 𝑌 . Furthermore,
when the proxy 𝑌𝑖 is graphically biased, due to the presence of an
effect between𝐴 and𝑌 unmediated by𝑌𝑖 , a faithfulness assumption
is required for sufficiency violation with respect to 𝑌𝑖 to imply
sufficiency violation with respect to 𝑌 .

4 RELATEDWORK
4.1 Fairness and proxy label bias
Prior work has investigated the fairness implications of biased
proxy labels in different settings. This challenge has been exten-
sively documented in judicial [14, 29], child welfare [18, 48] and
hiring [16] settings. For example, in a hiring setting, past perfor-
mance reviews have been considered as a proxy for future job
performance [59], while defendant re-arrest may be considered as a
proxy for recidivism risk in criminal justice settings [8, 30]. Further-
more, differential selection bias and censoring across subgroups are
well-documented phenomena in these settings and carry similar
implications as label bias [47].

One approach to studying bias in proxy labels is to use causal
directed acyclic graphs as a form of measurement model to en-
code assumptions about the relationship between the proxy and
the true label [43]. Guerdan et al. [37] provides a review of this
approach and presents a generic causal framework that can be used
to reason about several forms of bias relevant to use of proxy la-
bels for decision-making. Our work is complementary to that of
Guerdan et al. [37] in that we study fairness properties implied by
the "group-dependent error" setting discussed in that work. Our
work is further related to that of Guerdan et al. [36], as they study
counterfactual prediction with outcome measurement error and
include a re-analysis of the data of Obermeyer et al. [56] to study
differences in outcome measurement error between the enrolled
and unenrolled populations. Our analysis of Obermeyer et al. [56]
differs as we primarily contextualize the implications of label bias
in terms of its impact on the sufficiency fairness criterion with
respect to a true label and proxy variables.

Several studies propose approaches to correct for label bias dur-
ing model development that are well-motivated when the structure
of the bias is known. For example, Menon et al. [52] and Wang et al.
[74] show that it is possible to learn an unbiased estimator for the
true label given assumptions on the measurement error mechanism.
In a more general setting, De-Arteaga et al. [25] propose to address
label bias by learning from observed outcomes with deferral to
historical expert decisions when they display certainty and con-
sistency. Jiang and Nachum [44] and Blum and Stangl [13] take a
different approach, and use fairness constraints to recover from
data biases.
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Table 1: Relationship between sufficiency with respect to a binary proxy label (𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 )) and a true binary outcome of
interest (𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 )). We show cases where the proxy is downstream (𝑌 → 𝑌𝑖 ) and upstream of the true outcome (𝑌𝑖 → 𝑌 ).
Downstream and upstream proxies are graphically biased when 𝑌𝑖 ⊥̸⊥ 𝐴 | 𝑌 and 𝑌 ⊥̸⊥ 𝐴 | 𝑌𝑖 , respectively, within the class of
causal DAGs studied.

Setting Property satisfied in general Requires further assumptions
𝑌 → 𝑌𝑖 and 𝑌𝑖 ⊥⊥ 𝐴 | 𝑌 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 ) 𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 )

𝑌𝑖 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) 𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥̸⊥ 𝐴 | ℎ(𝑍 )
𝑌 → 𝑌𝑖 and 𝑌𝑖 ⊥̸⊥ 𝐴 | 𝑌 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥̸⊥ 𝐴 | ℎ(𝑍 )

𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 )
𝑌𝑖 → 𝑌 and 𝑌 ⊥⊥ 𝐴 | 𝑌𝑖 𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 ) 𝑌 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 )

𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) 𝑌𝑖 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 )
𝑌𝑖 → 𝑌 and 𝑌 ⊥̸⊥ 𝐴 | 𝑌𝑖 𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 )

𝑌 ⊥̸⊥ 𝐴 | ℎ(𝑍 ) =⇒ 𝑌𝑖 ⊥⊥ 𝐴 | ℎ(𝑍 )

4.2 Proxy Fairness
While in this study we focus on fairness assessment using proxies
for a true label, prior work has also studied fairness assessment
where the true sensitive attribute is unobserved. In these cases, it is
common to use a “proxy model” to predict the unobserved sensitive
attribute from covariates, as a proxy of the true sensitive attribute.
For example, Diana et al. [26], study the problem of training a model
that obeys fairness constraints when the sensitive attributes are
not available at training time. They highlight if the proxy model
is unable to accurately learn the unobserved sensitive attribute,
downstream fairness implications with respect to the proxy of the
sensitive attribute may not hold. Gupta et al. [38] highlight that the
fairness evaluation depends on not just how well the proxy group
aligns with the true groups based on the sensitive attribute but also
on the choice of the fairness metric. Zhu et al. [81] analyzes this
issue further by proposing a theoretical framework that shows that
directly using proxies for the sensitive attribute can give a false
sense of (un)fairness with respect to the true unobserved sensitive
attributes. In this setting, there are additional challenges when the
non-sensitive covariates are highly correlated with the sensitive
attributes, affecting the proxy model. Hajian and Domingo-Ferrer
[39] study the issue of indirect discrimination resulting from a high-
degree of correlation between the non-sensitive attributes and the
unobserved sensitive attribute.

Approaches for alleviating concerns with the use of proxy mod-
els for fairness assessments have focused on causal assumptions
between the proxy model and the sensitive attribute. In the con-
text of rankings, Ghazimatin et al. [34] propose causal conditions
that result in fair assessments of rankings with proxies of sensitive
attributes. Specifically, if the ranking score is conditionally inde-
pendent of the unobserved sensitive attribute given its proxy, the
rankings would be fair. While this approach relates to the causal
assumptions we propose between the proxy of the unobserved true
outcome and the sensitive attribute, our assumptions about the
proxies are different than those of Ghazimatin et al. [34], instead
focusing on proxies of the unobserved true label. Kilbertus et al.
[49] also study fairness assessment in settings with proxies of sen-
sitive attributes, where the proxies are causal descendants of the
sensitive attribute.

4.3 Surrogate Outcomes
In the causal inference literature, it is common to reason about
estimation of the effect of a treatment on a long-term outcome
using a short-term “surrogate” outcome [1–3, 11, 22, 24, 28, 35, 42,
46, 63, 64, 71, 75, 77, 79]. A key causal assumption required for the
use of the surrogate in place of the true unobserved outcome, i.e.,
for a variable to be a valid surrogate, is that the long-term outcome
is independent of treatment conditional on the surrogate, which is
often called as the surrogacy assumption [11, 32]. This is related to
our graphical notion of unbiasedness in the case of a proxy label
that is causally-upstream of a true outcome of interest.

Freedman et al. [33] highlight a major concern regarding the use
of surrogates, where biased estimates of the effect of the treatment
on the true outcome may result if the full effect of the treatment on
the true outcome is not completely mediated by the surrogate. Fur-
thermore, Frangakis and Rubin [32], Joffe and Greene [45], Rosen-
baum [66], VanderWeele [73] postulate that if there is unmeasured
confounding between the surrogate and the true outcome, the sur-
rogacy assumption would still be invalid even if the treatment has
no direct effect on the true outcome and the entire effect of the
treatment on the true outcome is completely mediated by the surro-
gate. Considering the issues that can manifest from using a single
surrogate, Athey et al. [4] consider the use of multiple proxies or
surrogates in place of the true outcome. They propose learning a
surrogate index based on multiple surrogates, showing that the
average treatment effect on the surrogate index equals the treat-
ment effect on the long-term outcome under the assumption that
the long-term outcome is independent of the treatment conditional
on the surrogate index. Furthermore, Athey et al. [4] utilize the
methodology of Bibaut et al. [12] that further allows to proxy for
effects not perfectly mediated by the surrogates, to handle both
confounding and effect leakage as violations of standard statistical
surrogacy conditions.

Our assumptions about the conditional independence between
the true outcome and the sensitive attribute are also related to the
literature on mediation and missing data. The mediation literature
[10, 41, 70, 72, 73, 80] decomposes the average treatment effect into
the direct effect of a treatment on an outcome and indirect effects
that flow through a mediator. In the case of surrogate outcomes,
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the surrogate plays the role of the mediator and aligns with the con-
ditional independence assumptions we consider between the true
unobserved outcome, the surrogate (proxy label) and the sensitive
attribute. Moreover, rather than focusing on merely the absence of
the direct effect of the treatment on the true outcome to ensure that
the surrogate proxy is unbiased, we also study settings analogous
to the case where the true outcome and the treatment could be
confounded.

5 EXPERIMENTS
5.1 Simulation study
To verify the properties studied in Section 3, we conduct a simula-
tion study to investigate how the causal structure of the data gen-
erating processes influences the relationship between sufficiency
assessed with respect to proxy labels and a true label of interest for
subgroup-specific predictive models. These settings correspond to
cases where (a) all proxies are downstream and we observe both
biased and unbiased proxies (Figure 1d); (b) an upstream proxy
is biased and a downstream proxy is unbiased (Figure 2d); (c) an
upstream proxy is unbiased and a downstream proxy is biased (Fig-
ure 2f); and (d) both upstream and downstream proxies are biased
(Figure 2h). The data generating processes are illustrated in Figure
3.

For each data generating process, we samples 10,000 instances
and use half for training and half for evaluation. In all cases, we fit
separate models for each target variable {𝑌1, 𝑌2, 𝑌3, 𝑌 } using both
𝑋 and 𝐴 as inputs. We use the Scikit-learn v1.4.0 [58] implemen-
tation of gradient boosting (HistGradientBoostingClassifier)
on the training data with default hyperparameters. For evaluation,
we generate calibration curves via logistic regression fit on the
held-out test set to estimate the probability of each target variable
conditioned on the logit of the model output.

For the case where the proxies are downstream of the true out-
come (Figure 3a), 𝑌1 and 𝑌2 are unbiased proxies of 𝑌 , with 𝑌2
being a noisier proxy (i.e., with a structural equation with an error
term with a greater standard deviation) and 𝑌3 is a biased proxy
of 𝑌 with an additional effect of 𝐴 on 𝑌3 that is not mediated by 𝑌
(𝑌3 ⊥̸⊥ 𝐴 | 𝑌 ), consistent with Figure 1d. The results of this evalua-
tion on the simulated data are shown in Figure 4 and are generally
consistent with the analytical relationships reported in Table 1. We
find that the model trained on the biased proxy 𝑌3 satisfies suffi-
ciency with respect to 𝑌3 but violates it with respect to the true
outcome 𝑌 and the unbiased proxies 𝑌1 and 𝑌2. The magnitude of
the sufficiency violation is larger for the less noisy proxy 𝑌1 than
it is for 𝑌2. Training on 𝑌 results in sufficiency satisfaction for the
unbiased proxies 𝑌1 and 𝑌2. Training on 𝑌 or either of unbiased
proxies results in sufficiency violation with respect to the biased
proxy 𝑌3.

We also assess various settings with multiple proxy labels where
one of the proxy labels is upstream of the true outcome while the
other proxy label is downstream of the true label. First, we generate
simulated data according to the data-generating process outlined
in Figure 3b, for the controlled experiment where the proxy label
upstream of the true outcome is a biased proxy whereas the proxy
label downstream of the true outcome is an unbiased proxy. Here,
𝑌1, which is upstream of𝑌 , is a biased proxy of𝑌 , whereas𝑌2, which

is downstream of 𝑌 , is an unbiased proxy. Figure 5 illustrates the
results for this evaluation. The results are generally consistent with
the analytical relationships reported in Table 1. The model trained
on the biased proxy 𝑌1 violates sufficiency with respect to the true
outcome 𝑌 and the unbiased proxy 𝑌2, while satisfying sufficiency
with respect to 𝑌1. Training on 𝑌 results in sufficiency satisfaction
with respect to the unbiased proxy 𝑌2 but violates sufficiency with
respect to the biased proxy 𝑌1. Similarly, training on the unbiased
proxy 𝑌2 results in sufficiency satisfaction with respect to the true
outcome 𝑌 but not with respect to the biased proxy 𝑌1.

We also assess a complimentary setting to the previous simu-
lation, where the proxy label upstream of the true outcome, 𝑌1, is
the unbiased proxy while the proxy label downstream of the true
outcome, 𝑌3, is biased, corresponding to the causal graph in Figure
2f. The data-generating process for this setup is described in Figure
3c. The model trained on the unbiased proxy 𝑌1 satisfies sufficiency
with respect to the true outcome 𝑌 but violates sufficiency with
respect to the biased proxy 𝑌2, as shown in Supplementary Figure
A1. Training on 𝑌 results in sufficiency satisfaction with respect
to the unbiased proxy 𝑌1 but violates sufficiency with respect to
the biased proxy, 𝑌2. Whereas, training on 𝑌2 results is sufficiency
violation with respect to both 𝑌1 and 𝑌 .

Finally, we also assess a setting where both proxy labels, up-
stream and downstream of the true outcome are biased. The simu-
lated data is generated according to the process described in Figure
3(d) corresponding to the causal graph in Figure 2(h). In this setup,
training on 𝑌 results in sufficiency satisfaction only with respect
to 𝑌 but violation with respect to both biased proxy labels, 𝑌1 and
𝑌2 as illustrated in Supplementary Figure A2. Moreover, training
on either of the biased proxy results in sufficiency violation with
respect to the true outcome of interest.

Overall, we verify in simulation that a model that is apparently
fair with respect to a biased proxy may not be fair with respect to
the true outcome. Furthermore, we find that unbiased proxy labels
sampled from these data generating processes generally reproduce
the sufficiency characteristics of the true label of interest, such that
violation of sufficiency with respect to an unbiased proxy provides
evidence of sufficiency violation with respect to the true outcome
of interest.

5.2 Label bias with synthetic health insurance
data

Here, we conduct experiments with publicly-available synthetic
health insurance data released by Obermeyer et al. [56]. This data
matches the size and structure of the data used in the original
study, such that claims from the original work can be reproduced
using the synthetic data. The synthetic data represents data from
48,784 patient-years with 160 pre-processed variables indicating
demographics, comorbidities, medications, laboratory orders and
results, and healthcare expenditures. Following the formulation of
the Obermeyer et al. [56] study, we consider “medical expenditure”
to be a biased proxy and “chronic conditions” to be an unbiased
proxy of true label of interest, “health status”. In this setting, the
97th percentile of the risk score is used for direct enrollment in
a care management program and the 55th percentile is used for
potential enrollment following a consultation between the clinician
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𝐴 ∼ Bernoulli (0.5)
𝑋 ∼ N(0, 3)
𝑌 ∼ Bernoulli (𝜎 ((1 − 2𝐴)𝑋 + (2𝐴 − 1)))
𝑌1 = Bernoulli (𝜎 (𝑌 + N(0, 0.5))
𝑌2 = Bernoulli (𝜎 (0.5𝑌 + N(0, 4))
𝑌3 = Bernoulli (𝜎 (1.5𝑌 + tan(−2𝐴)))
𝜎 (𝑥) = 1/(1 + exp(−𝑥))

(a) Data generating process based on Figure 1d, where 𝑌1 and 𝑌2
are downstream unbiased proxies and 𝑌3 is a downstream biased
proxy.

𝐴 ∼ Bernoulli (0.5)
𝑋 ∼ N(0, 3)
𝑌1 ∼ Bernoulli (𝜎 ((1 − 2𝐴)𝑋 + (2𝐴 − 1)))
𝑌 = Bernoulli (𝜎 (1.5𝑌1 + tan(−2𝐴)))
𝑌2 = Bernoulli (𝜎 (1.5𝑌 ))
𝜎 (𝑥) = 1/(1 + exp(−𝑥))

(b) Data generating process based on Figure 2d, where 𝑌1 is an
upstream biased surrogate proxy and 𝑌2 is a downstream unbi-
ased proxy.

𝐴 ∼ Bernoulli (0.5)
𝑋 ∼ N(0, 3)
𝑌1 ∼ Bernoulli (𝜎 ((1 − 2𝐴)𝑋 + (2𝐴 − 1)))
𝑌 = Bernoulli (𝜎 (1.5𝑌1))
𝑌2 = Bernoulli (𝜎 (1.5𝑌 + tan(−2𝐴)))
𝜎 (𝑥) = 1/(1 + exp(−𝑥))

(c) Data generating process based on Figure 2f, where 𝑌1 is an up-
stream unbiased surrogate proxy and 𝑌2 is a downstream biased
proxy.

𝐴 ∼ Bernoulli (0.5)
𝑋 ∼ N(0, 3)
𝑌1 ∼ Bernoulli (𝜎 ((1 − 2𝐴)𝑋 + (2𝐴 − 1)))
𝑌 = Bernoulli (𝜎 (1.5𝑌1 + tan(−2𝐴)))
𝑌2 = Bernoulli (𝜎 (1.5𝑌 + tan(−2𝐴)))
𝜎 (𝑥) = 1/(1 + exp(−𝑥))

(d) Data generating process based on Figure 2h, where 𝑌1 is an
upstream biased proxy and 𝑌2 is a downstream biased proxy.

Figure 3: Data generating process based on the causal graphs from Figure 1d in (a), Figure 2d in (b), Figure 2f in (c), and Figure
2h in (d).

Figure 4: Sufficiency characteristics of models trained on proxies and true outcomes generated according to the data generating
process described in Figure 1d and Figure 3a, evaluated across two subgroups represented by orange and blue lines. In this
setting, all proxies are downstream of the outcome 𝑌 , where 𝑌1 and 𝑌2 are unbiased proxies, and 𝑌3 is a biased proxy.
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Figure 5: Sufficiency characteristics formodels trained with proxies and true outcome generated according to the data generating
process described in Figure 2d and Figure 3b, evaluated across two subgroups represented by orange and blue lines. In this
setting, the upstream proxy 𝑌1 is biased and the downstream proxy 𝑌2 is unbiased.

and patient. Here, we use the 55th percentile as the threshold of
interest.

In order to study the effect of training on the biased proxy, as is
done in the original [56] study, we follow a similar training strat-
egy involving a lasso model trained on the “medical expenditure”
proxy label. The original training algorithm did not include the
subgroup attribute, ‘race’; that is replicated here as well. Accord-
ingly, we evaluate the bias of a race-agnostic model on both medical
expenditure and chronic conditions. Here, sufficiency is satisfied
with respect to neither of the proxies.

Figure 6a presents the total medical expenditure values as a
function of the percentile of predicted algorithmic risk score. For a
particular percentile of the algorithmic risk score (e.g., consider the
55th percentile) the medical expenditure is higher for the White
patients in comparison to Black patients. When the same model
is evaluated on the unbiased proxy, “chronic conditions”, Black
patients have a greater number of chronic conditions in comparison
to the White patients at the same predicted risk score (Figure 6b).

In the absence of awareness that healthcare expenditure is a
biased proxy, it may be of interest to mitigate sufficiency violation
with respect to it by incorporating the subgroup attribute into the
predictor. Accordingly, we also evaluate the sufficiency characteris-
tics of a model that includes the race attribute. Figure 7 presents
the average medical expenditure conditioned on the percentile of
the predicted risk score produced by such a model. At the 55th
percentile, the medical expenditure for White patients is equal to
that of Black patients, which may tempt one to conclude that the
predicted risk score will lead to downstream fair decision making.
However, when we evaluate the same model for the unbiased proxy,
chronic conditions, we observe that sufficiency is violated because
the number of chronic conditions are not the same across Black and

White patients conditioned on the risk score. Furthermore, when
we compare the sufficiency characteristics of the race-agnostic and
race-dependent models the gap between the number of chronic
conditions for the two groups is wider when the model is race-
dependent.

Overall, our experiments with synthetic health insurance data
are consistent with the theoretical causal perspective on label bias
we develop in section 3 and with the simulation results. We also
observe that mitigating apparent fairness violation with respect to
the biased proxy (medical expenditure) introduces further fairness
violation with respect to the unbiased proxy (chronic conditions).

6 DISCUSSION
Label bias is a critical issue for fairness assessments with proxy
labels. Our theoretical construction includes candidate graphical
criteria for bias in proxy labels that depend on the causal structure
of data generating process, i.e., whether the proxy is upstream or
downstream of the true label of interest, and connects them to
conditions under which violation or satisfaction of sufficiency in
unbiased and biased proxies that are upstream or downstream of
the true label may be used to reason about sufficiency with respect
to the true label.

Our theoretical presentation serves to potentially explain em-
pirical phenomena related to the model calibration and sufficiency
fairness properties in settings with label bias, such as those reported
in Obermeyer et al. [56]. In our simulation study, we observe trends
that qualitatively match those implied by our theory. The results
of our replication of the Obermeyer et al. [56] analysis are further
consistent with what would be expected in a setting with both
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(a) (b)

Figure 6: Average total medical expenditure (A) and number of active chronic conditions (B) vs. the percentile of the algorithm
risk score for ℎ𝜃𝐴̸ , the model that does not incorporate subgroup membership to predict medical expenditure. Conditioned on
the risk score, mean medical expenditure is higher for white patients than for black patients, and the number of active chronic
conditions is higher for black patients than for white patients.

(a) (b)

Figure 7: Average total medical expenditure (A) and number of active chronic conditions (B) vs. the percentile of the algorithm
risk score for ℎ𝜃𝐴 , the model incorporate subgroup membership to predict medical expenditure. Sufficiency is approximately
satisfied with respect to medical expenditure, but violated for the number of active chronic conditions, with a larger gap as
compared to the case where subgroup membership is not used for prediction (Figure 6B).

unbiased and biased proxies. Overall, our empirical results are con-
sistent with expectations. We find that evaluation of fairness with
respect to biased proxy labels masks fairness violation with respect
to the true label of interest. Furthermore, in cases where a model is
apparently unfair with respect to unbiased proxy label, we find that
mitigation of sufficiency fairness violation through incorporation
of subgroup information as a predictor worsens fairness violation
with respect to the true label, and that this effect can be measured
through an unbiased proxy of the true label. This highlights that
the appropriateness of incorporating subgroup information into
the model may depend on the presence of bias in the proxy label
used for prediction.

This work opens up important directions for future work. It is an
open question as to how to identify whether a proxy is biased in the
absence of the domain knowledge required to define an appropriate
causal graph, which may be challenging to obtain in scenarios with
insufficient domain expertise available, or when the causal graph is

large and complex. Our approach further requires the availability of
at least one unbiased proxy in order to identify a biased proxy, and it
is unclear whether and how biased proxies can be identified in cases
where no auxiliary unbiased proxy is available. Furthermore, our
work introduces opportunities to further formalize the necessary
assumptions and conditions that allow for meaningful inference
regarding the label of interest using proxy labels.
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A APPENDIX
A.1 Additional simulation results
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Figure A1: Sufficiency characteristics for models trained with proxies and true outcome generated according to the data
generating process described in Figure 2f and Figure 3c, evaluated across two subgroups represented by orange and blue lines.
In this setting, the upstream proxy 𝑌1 is unbiased and the downstream proxy 𝑌2 is biased.
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Figure A2: Sufficiency characteristics for models trained with proxies and true outcome generated according to the data
generating process in Figure 2h, evaluated across two subgroups represented by orange and blue lines. In this setting, 𝑌1 is a
biased upstream proxy and 𝑌2 is a biased downstream proxy.


	Abstract
	1 Introduction
	2 Background
	2.1 Causal direct acyclic graphs
	2.2 Modeling in the well-specified setting
	2.3 Sufficiency, calibration, and subgroup Bayes-optimality

	3 Proxy labels and label bias
	4 Related Work
	4.1 Fairness and proxy label bias
	4.2 Proxy Fairness
	4.3 Surrogate Outcomes

	5 Experiments
	5.1 Simulation study
	5.2 Label bias with synthetic health insurance data

	6 Discussion
	Acknowledgments
	References
	A Appendix
	A.1 Additional simulation results


