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Figure 1: WorldBench leverages World Bank data to assess the ability of large language models (LLMs) to recall factual

information about specific countries. Above, we plot the absolute relative error per country, averaged over 11 global development

statistics queried to 20 state of the art open source and private LLMs.WorldBench reveals significant geographic disparities in

LLM factual recall.

ABSTRACT

As large language models (LLMs) continue to improve and gain
popularity, some may use the models to recall facts, despite well
documented limitations with LLM factuality. Towards ensuring
that models work reliably for all, we seek to uncover if geographic
disparities emerge when asking an LLM the same question about
different countries. To this end, we present WorldBench, a dy-
namic and flexible benchmark composed of per-country data from
the World Bank. In extensive experiments on state of the art open
and closed source models, including GPT-4, Gemini, Llama-2, and
Vicuna, to name a few, we find significant biases based on region
and income level. For example, error rates are 1.5 times higher
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for countries from Sub-Saharan Africa compared to North Ameri-
can countries. We observe these disparities to be consistent over 20
LLMs and 11 individualWorld Bank indicators (i.e. specific statistics,
such as population or CO2 emissions).WorldBench also enables
automatic detection of citation hallucination, where models cite
the World Bank itself while providing false statistics, and a manner
to assess when an LLM’s stored facts begin to go out of date. We
hope our benchmark will draw attention to geographic disparities
in existing LLMs and facilitate the remedying of these biases.
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1 INTRODUCTION

Large language models (LLM) exhibit remarkable performance on
a wide array of tasks, from summarizing the news to writing code
to answering trivia questions [22, 24, 30]. Impressively, LLMs have
also been effective on real-world benchmarks. For example, GPT-4
[21] has been shown to pass the licensing exams for both legal [16]
and medical professions [15, 19]. However, LLMs are also known
to hallucinate, where they generate inaccurate text in a plausible
manner [12]. This can pose particular risks for factual recall tasks.
Given the black box nature of LLMs, continued development and
application of diverse benchmarks is instrumental in understanding
when LLMs can be trusted to answer reliably.

In addition to issues with correctness, AI in general has well doc-
umented challenges with performance disparities, in which seem-
ingly strong models fail more frequently for some subset of inputs
than others. Performance disparities can manifest as fairness issues
when the subset of inputs where the model underperforms is char-
acterized by sharing a sensitive attribute. For example, Buolamwini
and Gebru [7] identified widespread performance disparities along
race and gender lines across commercial facial recognition systems,
while others have shown that object recognition models suffer per-
formance drops when images originate in lower income countries
[9, 10]. Similarly, Ojo et al. [20] show LLMs are less performant
when tasks are posed using African languages instead of English. A
key first step to building models that work for all is creating bench-
marks to quantify not only performance, but also performance
disparities.

To this end, in this work, we introduce a novel benchmark called
WorldBench to uncover if geographic disparities emerge in LLM
factual recall. In other words, we ask, are LLMs more accurate in
answering questions about some parts of the world than others? To
systematically tackle this question, we compute LLM performance
on a country-wise level, by way of utilizing per-country indicators
(i.e. statistics) from the World Bank [6]. We build and validate (via
human inspection) an automated, indicator-agnostic prompting and
parsing pipeline to interface with theWorld Bank data, summarized
in Figure 2. This way, any set of indicators can be used in future
variations of WorldBench, without having to change our code,
which we will make public. In our study, we incorporate 11 diverse
indicators, each having data for about 200 countries, resulting in a
total of 2, 225 questions per LLM.

We evaluate 20 state of the art LLMs released in 2023, rang-
ing from open-source models like Llama-2 and Vicuna [27, 32],
to private commercial ones accessible via API, including GPT-4
and Gemini [21, 26]. As visualized in Figure 1, when averaging
over all LLMs and indicators, we observe substantial differences
in per-country error, with African countries seemingly incurring
the largest errors. Using country categorizations defined by the
World Bank, we quantify disparities across 7 regions and 4 income
groups, finding that LLMs are most accurate for countries from
Western regions and the high income category. Problematically,
these error rates rise by a factor of about 1.5× when moving to the
region (Sub-Saharan Africa) and income group (low income) for

which models are least accurate. Moreover, we find these dispari-
ties and their order (i.e. which groups have most/least error) to be
consistent when inspecting LLMs or indicators individually. That
is, all 20 LLMs exhibit geographic disparities in factual recall.

In addition to our main result, we utilize the temporal aspect of
the World Bank data to conduct extra analyses, such as automati-
cally cross-checking LLM generated “citations” which turn out to be
hallucinated, and inspecting error as a function of the groundtruth
year, finding that some LLMs in our suite may already be slightly
out of date.

In summary, we present WorldBench, a flexible benchmark for
understanding LLM factual recall abilities on a per-country basis.
WithWorldBench, we conduct a large scale evaluation of 20 LLMs,
and find pervasive geographic disparities across regions and income
levels. We hope our benchmark can facilitate further research on
the fairness of LLMs, towards building models that work well for all.

2 RELATEDWORK

Evaluating Factual Recall. Recent works have documented the
performance of LLMs in factual recall: [17], [14], [23], [25]. The
general conclusion to these works is that while existing LLMs ap-
pear capable in answering certain factual question, their factual
recall is less than perfect, as models can hallucinate completely
fabricated information [12]. Zhang et al. [31] specifically inves-
tigated the recall of geographic information, though their study
is limited to GPT-4 and does not inspect disparities. Some works
(e.g., [17], [23]) linked factual recall to ‘popularity’, showing that
error rate increases for less popular entities. While those studies
categorize facts by popularity, each question in our benchmark
has an associated country, as well as Region and Income group.
These additional annotations enable going beyond overall error, so
to assess geographic performance disparities in factuality.

Bias. The issues of bias and fairness in AI are of immense soci-
etal impact. Several studies have observed computer vision models
to exhibit disparate performance when grouping inputs by race,
gender, and across income levels and geographies, for tasks like
facial recognition, object classification, and diverse image gener-
ation [8–11]. In the realm of language processing, Ojo et al. [20]
observed a performance gap when tasks are presented in African
languages. To the best of our knowledge, our study is the first to
propose an automated and systematic examination of country-wise
disparities in LLM factual recall, which in turn enables inspection
of disparities across regions and income groups.

Benchmarks. Other works have noted and sought to improve
challenges associated with evaluating factuality, primarily for tasks
like summarization, where constructing a similarity metric between
generated and reference texts is nontrivial. In our case, we design
our benchmark to obtain numeric answers from LLM repsonses,
with which we can compare to groundtruth values with the simple
metric of absolute relative error. Further, we utilize a reputable third
party (the World Bank), so that (i) the questions asked are relevant,
(ii) inputs are grouped into salient cateogries, and (iii) groundtruth
answers are accurate and up-to-date.

https://doi.org/10.1145/3630106.3658967
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Figure 2: Overview of WorldBench. Our benchmark provides a manner to quantify the performance of large language models

(LLMs) on a per-country basis. We disentangle data collection from evaluation by utilizing the World Bank’s data bank, which

contains statistics (called indicators) pertaining to numerous diverse aspects of global development. Crucially, the data is

available for nearly all countries and is updated year to year. With WorldBench, one can flexibly select specific statistics

of interest, and dynamically re-evaluate models as time passes to see if they remain up to date. In this work, we uncover

substantial geographic disparities in LLM performance for a wide range of models released by industry leaders, revealing the

inequities pervasive across state of the art LLMs.

Indicator Metric
Population Total Population
Unemployment Unemployment As A Percent Of The Total Labor Force
Maternal Mortality Rate Maternal Mortality Ratio As Number Of Deaths Per 100,000 Live Births
Women In Parliament Proportion Of Seats Held By Women In National Parliaments (As A Percent)
Education Expenditure Government Expenditure On Education As A Total Percent Of Gdp
Electricity Access Percent Of The Total Population That Has Access To Electricity
Agricultural Land Percent Percent Of Total Land Area That Is Agricultural
CO2 Emissions Amount Of Carbon Dioxide Emissions In Metric Tonnes Per Capita
GDP Gdp Measured In Us Dollars
GDP PPP Per Person Employed Gdp At Purchasing Power Parity (Ppp) Per Person Employed
Renewable Energy Ratio Renewable Energy Consumption As A Percent Of Total Final Energy Consumption
Table 1: Global development indicators inWorldBench, each defined and maintained by the World Bank.

3 METHODS: WORLDBENCH

3.1 Data

Our benchmark is constructed directly from statistics collected
and maintained by the World Bank. The World Bank is a global
organization with nearly 200 member countries, whose mission
is to reduce extreme poverty via sustainable solutions to promote
shared prosperity, particularly in developing countries [6]. The
World Bank tracks numerous global development indicators, from
20 wide ranging categories, such as Climate, Health, and Poverty,
to name a few. These statistics are freely available to the public
and updated yearly. Importantly, the data are collected per country,
meaning that regardless of the size, wealth, or location of a country,
it is represented in the World Bank’s data. We leverage this publicly
available open data to buildWorldBench, a benchmark to quantify
the degree to which language models can recall facts about all
countries in the world.

Our benchmark offers a few unique advantages to most existing
benchmarks. First, and most importantly,WorldBench equitably
represents all countries. Thus, we can query a language model for
the same exact statistic for completely different countries, enabling
direct comparisons across countries to uncover disparities in per-
formance. Next, data quality and licensing is assured, as it comes
from a globally reputable source which explicitly allows for its use
by the public. Third, our benchmark is dynamic and flexible. The
dynamic nature comes from the fact that the statistics are updated
on a yearly basis, enabling the longevity of our benchmark, as well
as analysis of LLM factual recall along a temporal dimension (see
§6.2). The flexibility is borne out of the vast number of indicators
one could choose from. In other words, if one sought to better
examine the ability of language model to recall facts about the
environment, they can elect to choose indicators from the Climate
category. In contrast, if a language model is being developed for
financial purposes, one could focus on indicators from the Economy
and Growth categories.
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Loading [MathJax]/extensions/MathMenu.jsFigure 3: World Bank categorizations of countries into 7 regions (left) and 4 income groups (right).

In this study, we select 11 indicators, as shown in Table 1. The
indicators are chosen to represent multiple different categories,
and qualitatively are amongst the indicators that are easier to un-
derstand for lay people (i.e. non-experts in global development,
like AI researchers). In total, there are 2, 225 questions, reflecting
an average of 202 countries with groundtruth data per indicator
studied.

Country categorization. TheWorld Bank also provides various
categorizations of countries, based on geographic or economic
reasons [5]. We focus on two high level categorizations, visualized
in Figure 3, which divide the world into 7 Regions and 4 Income
groups. We note that, like the collection and maintenance of the
groundtruth data for our benchmark, country categorization is
carried out by an external body (i.e. the World Bank) to the model
producers and evaluators. We hope that the disentanglement of
these three parties enables a more objective comparative analysis,
informed by experts on global development.

3.2 Language Model Evaluation

While the World Bank’s open data is crucial to our analysis, addi-
tional steps are needed to interface with the available data scalably.
To enable large scale evaluation of LLMs, we design a procedure
to obtain a numeric answer given an arbitrary indicator, country,
and LLM of interest. Namely, we utilize a template prompt to guide
models to provide answers in a mostly uniform fashion, and then
apply an automated parsing method to extract the numeric value
from the raw LLM output. We detail these steps below, as well
as results from human studies to validate the correctness of our
pipeline. We also explain how we compute errors, given numeric
answers from LLMs and the World Bank’s groundtruth data.

Prompting. Our standard prompt consists of a base instruction,
an example, and a template question filled in with values for the
indicator and country of interest. Figure 4 displays the base instruc-
tion and example. For consistency, we fix our choice of example
country, electing Switzerland, as it has groundtruth data for all
indicators in our study; we confirm results are similar when using
alternate example countries in Appendix E. Importantly, we prompt
the model to only provide the number in its response. Without this
instruction, models generate longer free-from responses, increasing

the difficulty of automatically extracting numeric values and the
the computational cost of our benchmark. For every question (i.e.
combination of an indicator and country), we first initialize the
chat history of the LLM of interest with the base instruction and
example, and then ask the question. Notably, all three components
are modular with respect to the country and indicator of interest,
allowing for them to work for any World Bank indicator.

Parsing. Despite the instruction to ‘only provide the number’,
LLMs at times exhibit undesirable, like including other text (e.g.
special tokens) or repeating the question with new countries and
responding to itself again and again. We design an automated
parsing method to scalably extract a numeric value from the raw
LLM outputs. The parsing method removes special characters,
and in most cases, extracts the first numeric value provided. We
also account for special cases like, for example, where a suffix (e.g.
‘million’ or ‘billion’) is used. In a small number of cases, the LLM
either provides no output, an invalid output (e.g. a number with
two decimal points), or abstains from answering. For these outputs
and any others where the parsed number cannot be converted to
a float, we exclude them from further analysis.

Error metric. To compare numeric values, we utilize absolute
relative error, computed as follows: given two scalars 𝑎, 𝑏, we define
Absolute Relative Error as |𝑎−𝑏 |

max(𝑎,𝑏 ) . Essentially, this metric conveys
by what percent two measures are different from one another. For
example, an absolute relative error of 0.1 means that one value was
10% larger or smaller than the other. Notice that absolute relative
error always falls between 0 (because all values we encounter are
non-negative) and 1 (because the denominator is the maximum of
the two positive values). We elect to use relative error over absolute
error because the ranges of values varies dramatically across indica-
tors, with the population indicator having some groundtruth values
in the millions and billions, while others (e.g. unemployment) take
on values under 10.

Validation. Over 20 LLMs and 11 indicators (44.5𝑘 total ques-
tions), automated parsing obtains a numeric answer 88.9% of the
time. We further validate the correctness and completeness of our
pipeline via three manual inspection studies. First, we check 450
random cases where a numeric answer could not be extracted. In
85.2% of cases, the LLM did not provide a parseable answer. Thus,
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Figure 4: Standard pipeline for extracting numeric answers from LLMs. Each question is defined by a query (i.e. Before asking a

language model a question, we prompt it with a base instruction and example. Then, we automatically parse the raw output to

obtain a numeric value which can be compared to the groundtruth data.

our parsing is mostly complete, as we obtain a numeric value in

98.2% of cases where an answer can be parsed. To verify the
correctness of the parsing, we first check 945 randomly selected
raw LLM outputs where a numeric value was parsed. In 98.7% of

these cases, the parsed value was correct (details in appendix
C). Then, we take a closer look at parsed responses that incurred
high (over 0.85) absolute relative error compared to the groundtruth
value. For 825 randomly selected high error cases, the parsing was
manually verified to be correct 93.7% of the time. Motivated by
this slightly lower correctness rate, we also analyze median errors
over groups in Appendix B, where observed trends are consistent
(and disparities over Regions and Income groups are even larger).
We conclude that our prompting and parsing pipeline is largely
complete and correct. Nonetheless, when evaluating a new LLM,
we recommend verifying the parsing behavior using the four val-
idations we outline above, as individual LLMs can have unique
idiosyncracies (e.g. special tokens or output patterns) that poten-
tially could affect parsing. Along with all code, we will also publicly
release methods to facilitate automatic and manual verification of
parsing.

Groundtruth selection. For each indicator and country, data
is available over a span of many years, though certain values are
missing. To define a single groundtruth value for per country per
indicator, we average the statistic over the past three years. The
primary motivation for this strategy is to maximize the number of
countries included in our study. Alternatively, one could select a
specific year to draw all groundtruths from, though the number of
countries considered would be lower than the averaging strategy. In
Appendix D, we compare groundtruth values obtained via different
selection methods, and observe groundtruths to only vary by a
small amount. We also explore specifying a year when querying
LLMs, and observe consistent results with respect to performance
disparities to those observed without year specification in the query.
Lastly, we more closely inspect overall error rates between LLM
responses and groundtruths selected by specifying a year in section

6.2, to gain insight on if LLM responses are dated (i.e. more accurate
for a prior year than the most recent year).

4 EVALUATION SUITE

We seek to evaluate a wide array of language models, including both
open source and private. For the open source models, we utilize
Huggingface’s transformers library [29] to obtain and operate 15
models (and respective tokenizers). Namely, from Meta’s LLama-
2 [27], we include both base and chat-tuned versions of the 7𝐵
and 13𝐵 models, where 7𝐵 indicates 7 billion parameters. We also
include two Vicuna models (7𝐵 and 13𝐵), which are fine-tuned
from Llama-2. From Microsoft, we have 7𝐵 and 13𝐵 Orca-2 models
[18], as well as Phi-2, the smallest model in our suite with just 2.7𝐵
parameters. From Mistral-AI, we include the 7𝐵 instruction-tuned
model [13]. We also study Zephyr-7𝐵 𝛽 [28], tuned from a Mistral-
AI model. Lastly, we include 7𝐵 and 14𝐵 Qwen models from Alibaba
Cloud, both with and without chat-tuning [4]. For closed source

models, we include the following LLMs. From OpenAI, we evaluate
gpt-3.5-turbo and gpt-4 [21]. From Google, we evalute Gemini [26].
From Cohere, we evaluate the ‘command’ model, as well as the same
model equipped with retrieval augmented generation (RAG) [2].
RAG is a procedure where a langauge model can retrieve relevant
documents (in this case, from the internet) and look over them
before generating a response.

5 RESULTS: PERVASIVE AND CONSISTENT

GEOGRAPHIC DISPARITIES

5.1 Large disparities across Regions and Income

groups

Figure 5 visualizes our central finding. Over 20 LLMs and 11 World
Bank indicators, we observe substantially disparate average per-
formance based on the Region and Income group of the country
of interest. Namely, the mean absolute relative error is 0.316 and
0.321 for countries from North America and Europe & Central Asia



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Moayeri, Tabassi, and Feizi.

Figure 5: Language models exhibit disparate performance for countries from different regions and income groups. Error rates

are lower for western and high income countries. Mean absolute relative error rate per region and income group reported over

all 11 queries and 20 language models studied. When computing median instead of mean, similar trends hold, with even larger

disparities (see Figure 15). We note that the best performing LLMs have much lower error rates than the averages presented

above (see figure 7).

Figure 6: Error rates can vary significantly across countries, with some countries experiencing nearly 3× higher absolute relative

error than others. Strikingly, all of the 15 countries with the lowest error rates fall in the high income category, while all of the

15 countries with the highest error rates fall in the low income category.

respectively. In contrast, the mean absolute relative error rises to
0.461 for countries from Sub-Saharan Africa, which is about 1.5×
higher than the error for North America. For Income groups, mean
absolute error rises steadily as the income level drops, with the
lowest error being 0.346 for high income countries, and the highest
error being 0.480 for low income countries.

5.2 Error nearly triples between some countries

On a per country basis, disparities can become even more pro-
nounced. Figure 6 visualizes mean absolute error rate per country
for the countries that, when asked about, language models (on av-
erage) have the most and least amount of error. We observe that

13 of the 15 countries that incur the least amount of error are Eu-
ropean, while all 15 of these countries fall are categorized as high
income. On the other hand, countries that incur the most error are
all categorized as low income. Strikingly, error rises by a factor of
nearly 3 across the two groups.

5.3 Consistent disparities across LLMs and

indicators

Previously, we presented results averaged over all LLMs and
indicators, grouped either by country or category (i.e. Region or
Income group). We now inspect performance along the axes of
LLMs and indicators separately, starting with LLMs. In addition
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Figure 7: Performance of 20 LLMs averaged over 11 indicators from WorldBench. We present the absolute relative error (left),

as well as disparities across regions (middle) and income groups (right). For disparities, the blue dashed lines correspond to the

disparity incurred using a random categorization of countries (into 7 groups for Regions and 4 for Income groups), averaged

over ten trials. Observed disparities far exceed the amount expected for a random categorization of countries across nearly all

LLMs.

to absolute relative error, we also employ a second metric to
summarize differences in performance across certain categories.
Namely, we define Disparity as max

𝑒𝑖 ,𝑒 𝑗 ∈𝐸
𝑒𝑖 − 𝑒 𝑗 , where 𝐸 is the set

of mean absolute relative errors for each category of a given
categorization. In other words, for example, Disparity over Regions
is the gap between the mean absolute relative errors for the region
with the greatest error and the region with the least error. Disparity
also always falls between 0 and 1. To contextualize disparity scores,
we compute a baseline corresponding to the disparity achieved
using a random categorization of countries into 𝑘 groups; we set
𝑘 = 7 for Regions and 𝑘 = 4 for Income groups. We approximate
the baseline disparity given a set (i.e. for one LLM of interest) of
per-country errors by applying ten random country categorizations
and averaging the observed disparity over all trials.

Figure 7 visualizes average error and disparities per LLM. From
the left most panel, we see that the lowest mean absolute relative
error achieved is 0.19, and the value for most models is near 0.4,
indicating that there is substantial room for improvement for this
task. Shifting from error to disparity (middle and right panels), we
observe that all models exhibit disparate performance over

regions, with gaps of at least 0.1 between the regions with the most
and least error per LLM. Across income groups, disparities are also

consistently present, though to a lesser degree, with only 4 of the 20
models studied achieving a disparity below 0.1. Nonetheless, both
over Regions and Income groups, observed disparity almost always
far exceeds the expected disparity for a random categorization (blue
dashed lines).

A few expected trends emerge: base models are outperformed
by their chat-tuned versions; smaller models are outperformed by
their larger versions. One such trend we highlight is the impact
of retrieval augmented generation (RAG), which is utilized for to
augment the Cohere LLM. Incorporating RAG reduces mean abso-
lute error by nearly a factor of two, reducing it from 0.416 to 0.231.
Impressively, RAG causes disparity across Income groups to nearly
vanish, going from 0.15 to 0.02, the lowest such disparity observed
across our model suite, and on par with a random categorization
of countries. However, it is worth noting that RAG comes at the
cost of latency, as internet searches are required and the LLM must
review retrieved documents in addition to the provided prompt.
Nonetheless, RAG appears to be a promising direction for reducing
errors and also potentially disparities.

Turning our attention now to indicators, Figure 8 shows errors
and disparities per indicator. Mean absolute relative error exceeds
0.3 for all but two of the indicators. Again, disparities are present
for most cases, though they are more pronounced across Regions
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Figure 8: Error rates and disparities per indicator, averaged over LLMs. For disparities, the blue dashed lines correspond to the

disparity incurred using a random categorization of countries (into 7 groups for Regions and 4 for Income groups), averaged

over 10 trials.

Figure 9: The order of regions and income groups by absolute relative error is largely consistent per LLM (top) and per indicator

(bottom). For both LLMs and indicators, the regions with the lowest errors are most frequently North America and Europe &

Central Asia, while the regions with the highest error are most frequently Sub-Saharan Africa and East Asia & Pacific. For

Income groups, error nearly always increases as income decreases.
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Figure 10: In addition to hallucinating false answers, we also observe LLMs to occassionally hallucinate citations. Above, a few

examples of hallucination citation are shown.

than across Income groups. Moreover, over both Regions and In-
come groups, observed per-Indicator disparity far exceeds the random
baseline in almost all cases. Indicators that seem to be driving the ob-
served disparities include CO2 Emissions, Renewable Energy Ratio,
and Unemployment. For a complete breakdown of performance and
disparities for each (LLM, indicator) pair, we refer to Appendix A.

5.4 Ordering of Regions and Income groups by

error are consistent per-LLM and

per-Indicator: Lowest error is with Western

and high income groups

Having demonstrated that significant disparities are present for
each LLM and each indicator separately, we now show that the
order of disparity is consistent as well. that is, the regions and
income groups with highest and lowest error (respectively) are the
same within each subset. Namely, LLMs achieve the lowest error
when answering questions about Western or high income countries,
and they suffer the greatest error when answering questions about
countries from the low income category. In figure 9, we show the
distribution of error ranks. That is, e.g. in the top right heatmap,
for each LLM, we rank the regions by their mean absolute relative
erros, and then report the fraction of LLMs for which a region
obtains a specific rank. Thus, we see that for 75% of the LLMs, the
highest error occurs for Sub-Saharan African countries. Strikingly,
the pattern across income groups is strongly pronounced. Error
ranks are almost perfectly inversely related to amount of income,
wiht the high income group having lowest error for 95% of LLMs and
the low income group having highest error for 90% of LLMs. Again,
the same trends emerge when inspecting error rates per indicator.

Thus, the original trends we observe when averaging over all
LLMs and indicators, visualized in Figure 5, appear to hold when
we inspect each LLM individually and each indicator individually.
These results suggest that geographic and income-based disparities
in LLM factul recall are pervasive throughout existing LLMs.

6 NOTEWORTHY OBSERVATIONS

In analyzing per-country performance and geographic disparities
in LLM factual recall, we additionally came across a number of
noteworthy observations made possible by our benchmark. First,
we found that LLMs occasionally offer what resembles citations in
their responses, including instances where the WorldBank itself
was mentioned. Since we have that exact data, we were able to
cross-check the LLM “citations”. Second, because we have data
per-country per-year, we could compute error rates while selecting
groundtruths from specific years, so to see how up-to-date LLM
responses are. We explore these observations in more detail below.

6.1 Citation Hallucination

Despite being prompted to only return a numeric value, the LLMs
we studied still would often produce additional text. Interestingly,
sometimes generated text would resemble a citation1, claiming
the provided answer was sourced from institutes like the World
Health Organization, the International Monetary Fund, and even,
the World Bank. In the last case, we cross-checked the provided
responses to see if the numeric response matched the groundtruth
World Bank data, contained in WorldBench. Overall, responses
with “citations” were no more accurate than those without “citations”,
still incurring substantial mean absolute relative errors. Specifically,
in 650 instances where the string “World Bank” (case insensitive)
was mentioned, mean absolute error rate was 0.465. This suggests
that the LLM-produced “citations” are hallucinated, as the provided
responses do not actually come from the sources listed. Figure 10
displays a few examples of LLM produced “citations”. For each ex-
ample, we highlight the “citation”, and provide the absolute relative
error of the parsed answer compared to (1) the groundtruth value
from the specific year cited, and (2) the lowest absolute relative
error to groundtruths for any of the past ten years. In the first ex-
ample, the LLM answer is way off, despite the arguably convincing
1Such behavior has been observed in [1]
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Figure 11: Error rate of LLM outputs compared to year from which groundtruth is extracted. Many models show the lowest

error rate when their outputs are compared to groundtruths from 2021, indicating that models may already be slightly out of

date.

“citation”. Interestingly, we also observe an instance where the pro-
vided answer does not match the groundtruth from the cited year,
yielding an error of 0.383, but it does match the groundruth from
the following year, with error dropping to 3.97%. Finally, we see an
example where the provided answer is off by almost exactly a factor
of 10 (relative error of ∼ 0.9). This highlights a pitfall in using LLMs
to return numeric information, as the difference in tokens between
two numbers can be very small, while the resultant encoded value
can be very large.

In summary, hallucinated citations pose a serious challenge in
LLM reliability. On one hand, producing false citations obfuscates
model errors, and generally denigrates the overall trust the end
user has in the system. On the other, that the LLMs appear to know
what sources would contain the answer seem to be an encouraging
sign to the potential benefits of retrieval-augmented systems.

6.2 Are some LLMs already out of date?

Now, we compare LLM responses to groundtruths from specific
years for all LLM responses, not just the rare few where “citations”
are present. Figure 11 shows the mean absolute relative error over

indicators and all countries per LLM, computed using groundtruths
selected in a variety of ways. The orange dashed line corresponds
to the default groundtruth selection (averaging over any available
data from the past three years), while the light blue one corresponds
to using data from the most recent year (per country; details in D.2).
The solid blue lines correspond to using the groundtruth value from
the year on the x-axis. A trend that emerges in 13 of the 20 LLMs
is that the lowest error occurs when comparing to data from 2021.
In one extreme, error increases from 0.5 to 0.54 when changing
the groundtruth year from 2021 to 2022. These results suggest that
the facts internally stored in some LLMs may already be out of
date, reporting statistics closer to previous years, especially if their
training data was curated in years past. Of course, an LLM cannot
recall a fact that did not exist at the time of its training. Nonetheless,
as the use of LLMs continues to grow, the ability to stay up to date
will be paramount. We hope WorldBench can aide in this pursuit.
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Correlation with Indicator
Indicator Pearson’s 𝑟 𝑝-value

Maternal Mortality Rate 0.383 0.029
Renewable Energy Ratio 0.135 0.180

Unemployment 0.078 0.344
Education Expenditure -0.047 0.453

Agricultural Land Percent -0.075 0.372
Population -0.138 0.112

CO2 Emissions -0.189 0.106
GDP -0.194 0.074

Women In Parliament -0.344 0.046
Electricity Access -0.348 0.005

GDP PPP Per Person Employed -0.396 0.015

Self-consistency
Indicator Pearson’s 𝑟 𝑝-value
Population 0.749 0.000

Electricity Access 0.653 0.000
Women In Parliament 0.386 0.036

CO2 Emissions 0.338 0.012
Renewable Energy Ratio 0.337 0.004
Education Expenditure 0.325 0.016

Agricultural Land Percent 0.324 0.057
Unemployment 0.319 0.004

GDP 0.246 0.136
Maternal Mortality Rate 0.155 0.245

GDP PPP Per Person Employed -0.016 0.206
Table 2: (Left) Correlation between per-country mean absolute relative error and individual indicator values. (Right) Per-

indicator, correlation between per-country mean absolute relative error and normalized standard deviation of responses

obtained over five trials.

6.3 What kinds of countries experience high

error rates?

We now present a purely correlational study to better understand
what countries experience the highest error rates. Using the per-
country data for each indicator studied, we compute the correlation
between these values and per-country error. We also compare the
normalized (by mean) standard deviation of responses per country
per indicator, with responses taken over five trials. The hypothesis
here is that LLMs will have greater variance in answering questions
about countries they are less accurate for, similar to [1]; we call this
self-consistency. We compute correlation to country-wise errors
for each (LLM, indicator) pair separately, as the values can take on
substantially different ranges as either LLM or indicator changes,
and then average over all such pairs. Results are reported in table 2.
We find that most indicators are not correlated with per-country
error. The strongest correlation is −0.396 for GDP PPP per person
employed, suggesting that LLMs perform worse on countries with
lower per-person wealth. Notably, neither population nor GDP are
correlated well with error. As for self-consistency, in most cases,
correlations are within 0.3 − 0.4. In a couple instances, high cor-
relations are observed, suggesting that sampling multiple outputs
and inspecting variance can sometimes (but not always reliably)
aide in estimating the uncertainty of the LLM.

In summary, our simple correlational analyses do not shed
much insight in to why particular countries incur higher error
rates for LLMs. We conjecture that the availability of training data
plays a large role. However, the groundtruths are available for
all countries, and World Bank data is likely in the training sets of
many LLMs, as indicated by the hallucinated citations to them. We
leave investigation to the cause of the geographic disparities we
observe to future work.

7 LIMITATIONS

Is it reasonable to expect language models to perform this

task? LLMs are not directly optimized for information retrieval,
and developers often caution that LLMs many not always provide
factual answers. Furthermore, retrieving specific numbers can be

challenging, given the fact that many sequences of numbers are
feasible/reasonably likely to appear in natural language, where as
the distribution of words has far less entropy. Nonetheless, LLMs
have been observed to produce factual responses to certain queries,
achieving as high as 86% exact match on TriviaQA [3]. Indeed, in
our experiments, we observe mean absolute error rates as low as
3.6% for the Population indicator and 5.8% for the Electricity Access
indicator (see Appendix A), suggesting that LLM-based factual
recall is feasible. We emphasize that the point of our benchmark
is to enable comparison in LLM performance across countries, so
to uncover systemic disparities. Moreover, despite warnings from
developers, as LLMs become more ubiquitous, end users will likely
still make factual queries, to which we’d hope language models
respond accurately, and importantly, without substantial differences
in performance due to factors like geography or wealth of the
country of interest. Thus, we hope our benchmark aide in assuring
that LLMs exhibit fair performance when deployed.

Can LLMs ever ace this task? Some of the indicators studied
are volatile, in the sense that they change non-trivially from year
to year. Also, some metrics can take on slightly different values
based on which organization measured them (e.g. the World Bank’s
numbers may differ from the United Nation’s numbers). Thus, we
do not expect LLMs to achieve perfect performance on this metric.
Nonetheless, we believe our benchmark can offer valuable signal in
measuring geographic disparities. That is, even though error rates
may never be exactly zero, we can hope that they will not vary
substantially across countries.

8 CONCLUSION

We present WorldBench, a benchmark to quantify geographic
disparities in LLM factual recall. We find pervasive and consistent
biases across 20 evaluated LLMs, with Western and higher income
countries experiencing lower error rates. By utilizing World Bank
data, our benchmark is flexible and will remain up to date. Thus, we
hope our benchmark can aide in reducing geographic disparities of
future generations of LLMs, towards models that work well for all.
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A COMPLETE RESULTS BREAKDOWN

We now present the results as completely as possible. In Figure 12,
we present mean absolute relative error per LLM per indicator. In
Figure 13, we present disparities over regions per LLM per indicator,
and in Figure 14 we show the same for disparities over income
groups. In general, the indicators that are most challenging are
challenging for all LLMs.

B LARGER DISPARITIES WHEN USING

MEDIAN INSTEAD OF MEAN ERROR

We now present results when aggregating with median instead of
mean. Figure 15 shows that disparities grow larger when inspecting
median absolute relative error instead of mean. We attribute this
difference to some outlier countries, such as Bermuda for North
America and Greenland for Europe & Central Asia.

C VALIDATION DETAILS FOR THE

PROMPTING AND PARSING PIPELINE

Wepropose a general (i.e. for any LLM) pipeline for prompting LLMs
responses to flexible (with respect to the country or indicator in
question) queries. We seek to validate two aspects of this pipeline:
completeness, where the parsing successfully extracts numeric
answers in all instances where a numeric answer was provided, and
correctness, where the parsed number should match the original
numeric value embedded in the text. By simply running our parsing
method, we can obtain our first statistic: parsing extracted a numeric
answer for 88.9% of responses. For the 11.1% of responses where
parsing failed, failures are either due to the LLM not providing
a parseable answer (e.g. abstaining from answering or providing
gibberish) or due to incompleteness of the parser. Through our
manual verification, we find that 85.2% of failed parsing instances
are due to the LLM provding unparseable responses. Thus, we
obtain parseable responses in 88.9% + (1 − 0.852) ∗ 11.1% = 90.54%
of total instances. Of this portion, 88.9/90.54 = 98.2% of times, we
obtain a numeric value when it is possible. Thus, our parsing is
mostly complete. Correctness is easier to demonstrate, via manual
verification of parsing outputs to original raw responses. Here, we
find that 98.7% of parsed numbers are indeed correct, matching the
number embedded in the raw response. This parsing allows us to
employ the simple metric of relative absolute error, as it operates
directly on numeric values, as opposed to more opaque metrics that
leverage LLMs as a judge.

D ALTERNATE GROUNDTRUTH SELECTION

STRATEGIES

D.1 Variance across groundtruth values selected

from different years

We confirm that variance due to alternate groundtruth selection
strategies is minimal. Groundtruths can be selected by specifying a
particular year, or by averaging over the past three years, as we do
in the main text. Table 3 shows the mean absolute relative error ob-
tained by comparing the groundtruth value obtained by selecting a
specific year and the groundtruth value obtained by averaging over
the past three years. We find that, averaged over all indicators, the
absolute relative error between two different groundtruth values
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Figure 12: Absolute relative error averaged over countries per LLM and Indicator. Language models and indicators are each

sorted by overall average error respectively.

Specified Year for Alternate Groundtruth
Indicator 2018 2019 2020 2021 2022 Average
Agricultural Land Percent 0.011 0.008 0.002 0.002 NaN 0.006
CO2 Emissions 0.104 0.092 0.000 NaN NaN 0.065
Education Expenditure 0.108 0.095 0.054 0.053 0.075 0.077
Electricity Access 0.026 0.017 0.006 0.006 NaN 0.014
GDP 0.106 0.093 0.109 0.038 0.086 0.087
GDP PPP Per Person Employed 0.059 0.047 0.033 0.014 0.028 0.036
Maternal Mortality Rate 0.087 0.074 0.000 NaN NaN 0.054
Population 0.037 0.025 0.013 0.001 0.012 0.018
Renewable Energy Ratio 0.114 0.093 0.009 0.025 NaN 0.060
Unemployment 0.140 0.139 0.063 0.033 0.082 0.091
Women In Parliament 0.170 0.130 0.084 0.066 0.068 0.103
Average 0.087 0.074 0.034 0.027 0.059 0.056

Table 3: Comparing alternative groundtruth values to the value computed using our method (averaging over any available

groundtruth numbers from 2020 to 2022). Using groundtruths from earlier years invokes higher error. On average, absolute

relative error is only 5.6% between different choices for groundtruth.

is 5.6%, driven by the Unemployment and Women in Parliament
indicators. We conclude that it may be unreasonable for any LLM

to achieve zero error on this benchmark, as values can change from
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Figure 13: Disparities over Regions per LLM and Indicator. Language models and indicators each sorted by overall average error.

year to year, with some indicators being more volatile. Nonethe-
less, our benchmark can still offer valuable signal for measuring
disparities (its intended purpose), as volatilities are present for all
countries.

D.2 Clarification on using ‘most recent year’

In Figure 11, we plot the error incurred when comparing to
groundtruth values selected over different years, so to investigate
if LLM reported statistics are closer to values from previous years
(see section 6.2). One baseline selection strategy was termed ‘most
recent year’. We now clarify how this value is computed. We pick
the most recent available statistic per-country, as some countries
may have more recent statistics than others. We exclude any coun-
tries that have no statistics for each of the past five years. Note that
at the time of this study (December ’23), the most recent available
statistics for any country was from 2022. Thus, for some countries,
the ‘most recent year’ groundtruth was be drawn from as early as
2017, though in the vast majority of cases, it was drawn from 2022.

D.3 Specifying a year in the question
We also investigate if observed errors or disparities by LLMs could
be caused by ambiguity in our prompt. Namely, in our prompt, we

do not specify the year from which we desire the LLM to provide
the requested metric for the given country. In the absence of a
specification, we believe it is reasonable to assume that the most
recent value is desired. Nonetheless, we conduct extra experiments
where a specific year is mentioned in the prompt. We ask for values
from 2021 and from 2016. Table 4 shows the results. Trends are very
similar for both cases where a year is specified, and the case where
no year is specified (matching the results we present in the main
text). Note: GPT-4 was excluded in this ablation, purely for reasons
of reducing cost.

E SIMILAR RESULTS WHEN USING

DIFFERENT EXAMPLE COUNTRIES

We also verify that changing the choice of example country does not
alter our main findings. Recall that we provide an example in our
standard prompt. We originally chose Switzerland, as it had data
for all indicators in the study. Now, we also inspect results when
using Colombia and Mali as example countries. We choose these
countries as they pertain to Regions that experience different levels
of error (Colombia incurs around an average level of error, while
Mali incurs high error). Table 5 shows the results. Again, main
trends are consistent, with Western and High income countries
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Figure 14: Disparities over income groups per LLM and Indicator. Language models and indicators each sorted by overall

average error.

Figure 15: Median absolute relative error per region and income group. See figure 5 for mean errors.
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Figure 16: Median absolute relative error per country for countries with most and least median error. Again, the countries with

least error belong to Western regions and the high income category. See figure 5 for mean errors.

Groundtruth Year→ 2021 2016 Average 2021 2016 Average
Category ↓ Mean Abs. Rel. Error Median Abs. Rel. Error
North America 0.336 0.302 0.325 0.175 0.133 0.19
Europe & Central Asia 0.303 0.329 0.331 0.177 0.233 0.227
Latin America & Caribbean 0.367 0.389 0.39 0.274 0.324 0.326
South Asia 0.378 0.405 0.425 0.277 0.339 0.363
Middle East & North Africa 0.396 0.427 0.429 0.299 0.378 0.373
East Asia & Pacific 0.403 0.434 0.439 0.319 0.391 0.394
Sub-Saharan Africa 0.44 0.475 0.475 0.417 0.461 0.462
High income 0.333 0.351 0.356 0.193 0.249 0.25
Upper middle income 0.364 0.389 0.393 0.276 0.32 0.326
Lower middle income 0.405 0.442 0.444 0.339 0.41 0.405
Low income 0.466 0.498 0.497 0.462 0.503 0.498

Table 4: Mean and median absolute relative errors when using different groundtruth years. Importantly, in the columns for

2021 and 2016, those specific years are included in the question. That is, we instruct the LLM to provide the statistic for a specific

year, and compute error with respect to the groundtruth from that year. General trends are the same compared to when a year

is not specified (denoted ‘Average’, our usual strategy), with Western and high income countries achieving lower error rates.

incurring lowest error. The size of disparity is slightly reduced
when using Mali as the example country, though this effect is not
as strong when inspecting median errors, suggesting that outliers

may be effecting the exact size of the disparity. Note: closed source
LLMs were excluded in this ablation, purely for reasons of reducing
costs.
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E.g. Country→ Switzerland Colombia Mali Switzerland Colombia Mali
Category ↓ Mean Abs. Rel. Error Median Abs. Rel. Error
North America 0.346 0.356 0.379 0.215 0.23 0.252
Europe & Central Asia 0.361 0.362 0.389 0.272 0.291 0.322
Latin America & Caribbean 0.42 0.395 0.429 0.374 0.348 0.389
South Asia 0.468 0.431 0.443 0.443 0.39 0.421
Middle East & North Africa 0.463 0.451 0.482 0.441 0.419 0.489
East Asia & Pacific 0.472 0.446 0.472 0.452 0.406 0.465
Sub-Saharan Africa 0.515 0.485 0.466 0.52 0.48 0.456
High income 0.382 0.388 0.412 0.289 0.32 0.348
Upper middle income 0.428 0.402 0.437 0.378 0.35 0.393
Lower middle income 0.483 0.442 0.458 0.47 0.41 0.448
Low income 0.537 0.517 0.479 0.554 0.525 0.474

Table 5: Mean and median absolute relative errors when using different example country (columns) in prompt. General trends

are the same across choice of example country, with Western and high income countries achieving lower error rates.
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