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ABSTRACT
We introduce impact charts and apply them to problems of sys-
tematic bias encoded in three different data sets. Impact charts are
highly visual, making the effects they find easy to understand by
both domain experts and non-experts. Impact charts are nonlinear
and non-parametric, so they are able to identify structural biases
whose functional forms are not a priori well understood.

Impact charts are based on SHAP, an interpretability method
initially designed to interpret predictions made by Machine Learn-
ing (ML) models, which is in turn based on Shapley values, an
approach to assigning responsibility for economic outcomes to dif-
ferent factors. Although impact charts use techniques from the ML
community, they are intended for use in general settings, whether
ML is present or not.

Impact charts provide valuable insights even when generated
from aggregate data sets. Aggregate data sets typically provide the
individuals whose data they are derived from an additional level of
privacy as compared to the original unaggregated data. In this work,
we relied predominantly on aggregate data from the U.S. Census
Bureau, which is known to have a robust privacy program.

We introduce and evaluate impact charts using three examples of
their use. Our first example uses impact charts to identify racial and
ethnic bias in eviction rates. Our second example uses U.S. Census
data to identify racial and ethnic bias in housing prices. Our third
example assesses the impact of several factors on local access to
supermarkets.

All three examples not only correct for the effects of income, but
also clearly demonstrate the relative impact of income as compared
to racial and ethnic features. For example, we demonstrate that in
some areas like DeKalb County, GA, the fraction of the population
that is Black impacts eviction rates three times more than income
does.

In addition to the impact charts specifically discussed herein, we
have produced thousands of geographically localized impact charts
for the data sets mentioned above.

There is wide variation in the shape and structure of impact plots
built using data from different local areas. We hypothesize that in
the future work we will be able to categorize these and identify
local policy decisions, whether de jure or de facto that cause the
differences from one area to the next.
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1 INTRODUCTION
In 1881, Frederick Douglass wrote an article entitled, "The Color
Line" [21]. The color line was his name for the "moral disorder,"
of racial prejudice. He saw it as neither natural nor inevitable.
Nineteen years after Douglass’ work, at the 1900 Paris Exposition,
W.E.B. Du Bois presented the color line in visual form. He exhibited
charts and graphs that presented a wide variety of data on the lives
and circumstances of Black Americans [4].

We take inspiration from Du Bois’ work seeking to visually ex-
pose the color line, but using a new method inspired by and applied
to the age of Machine Learning (ML). We need new tools because
since the color line was first identified, it has been objectivized [40],
systematized [46, 53] and digitized [6, 12, 23, 43]. Our contribution
is the idea of impact charts, a new tool that builds on SHAP [37] to
create a powerful means of interrogating data sets and exposing
the biases they contain.

Impact charts as a bias detection mechanism are also inspired by
prior work on helping users make less biased decisions [5, 59, 60],
and interactive systems that help them to do so [8, 14, 33, 41, 62].

In this work, we will concentrate our attention on data sets that
were initially collected to measure the status quo of social, political,
and economic systems. Census data sets are good examples of this.
When impact charts are built on top of this kind of data sets, they
can expose the underlying systematic biases the data encode more
directly and more flexibly than traditional tools such as scatter
plots [15] and regression analysis [20]. Furthermore, as we shall
see in examples below, impact charts can provide insights from
aggregated data sets without the need for or risk of personally
identifiable information. We deliberately used data sets whose raw
inputs are predominantly from the U.S. Census Bureau, which has
been a leader in deploying privacy preserving techniques in the
generation of aggregate data [2, 55].

Impact charts can also serve a diagnostic role in ML [1] when
built on top of data sets that are being used or might be used to
train ML models that replicate their biases. Impact charts can be
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generated as part of the testing phase of data set development [29]
or as part of a data set nutrition label [28, 51].

The remainder of this work is organized as follows: In Section 2
we define the general problem of impact assesment, and define
impact charts as a solution. Because impact charts are visualizations,
we introduce them and work through how they are constructed
and interpreted and what insights they can help us with in an
example-driven way over the course of Sections 3-5. In Section 3, we
introduce the visual vocabulary of impact charts and demonstrate
how they show the persistence of the color line when applied to
data on eviction rates, race, and ethnicity. In Section 4, we switch
to data on home values, which we use not only to expose the
color line again, but also to compare impact charts to alternatives.
In Section 4.2 we compare impact charts to scatter plots [15]. In
Section 4.3, we demonstrate the flexibility impact charts because
of their lack of assumptions and flexibility of scoring metric vs.
regression analysis. In Section 5, we show how a collection of impact
charts, one for each of several features, can help us quickly refine
hypotheses and identify the feature or features with the largest
impact. Finally, Section 6 offers some conclusions and suggested
next steps for the further research, development, and application
of impact charts.

2 DEFINITIONS
2.1 General Problem Statement
Before we dig into impact charts as a solution, we begin with a
general problem, stated as follows: given 𝑛 observations of the
values of𝑚+1 variables, what is the relationship between𝑚 of them
and the other one? Is there a relationship? How is it structured?
What quantitative, qualitative, and visual characteristics does the
relationship have? Within this relationship what is the contribution
to or impact of each of the𝑚 variables on the final one.

In ML settings, whose conventions we will use herein, the𝑚 vari-
ables are called features and denoted 𝑥0, 𝑥1, ...𝑥𝑚−1 while the final
variable is called the target and is denoted 𝑦 [9]. We will work with
a set of 𝑛 observations of the feature values (𝑥 ( 𝑗 )0 , 𝑥

( 𝑗 )
1 , . . . , 𝑥

( 𝑗 )
𝑚−1)

and the target value 𝑦 ( 𝑗 ) for 0 ≤ 𝑗 < 𝑛.

2.2 Impact Charts
Impact charts are a set of 𝑚 plots, one for each feature 𝑥𝑖 , that
attempt to show the impact of different values of 𝑥𝑖 that appear in
the data on the corresponding values of 𝑦.

Impact charts are based on SHAP [36, 37], a method designed to
interpret predictions made by ML models. SHAP is in turn based
on Shapley values [48], an approach to assigning responsibility for
economic outcomes to different factors. SHAP has also been used to
identify racial bias in credit decisions [58]. Although impact charts
use SHAP and other techniques from the ML community, they are
intended for use in general settings, whether ML is present or not.

Impact charts and the Shapley values that underly them are
structured such that the impacts of each of the features on the target
for a given data point add up to exactly the difference between the
target value of the point and the mean value of the target across the
entire data set [36, 37, 48]. Even if feature values are correlated, we
tease apart relative impact across the features such that each impact

is independent of the impacts of other features. Mathematically,

𝑦 (𝑥0, 𝑥1, ...𝑥𝑚−1) = E
0≤ 𝑗<𝑛

[𝑦 ( 𝑗 ) ] +
∑︁

0≤𝑖<𝑚
𝐼 (𝑥𝑖 )

where 𝐼 (𝑥𝑖 ) is the impact of 𝑥𝑖 . That is to say that the prediction 𝑦
made by some ML model is simply the mean of the target 𝑦 values
it was trained on plus the sum of the impacts of each of the features
𝑥𝑖 .

This property is important because it lets us look at a plot of
𝐼 (𝑥 ( 𝑗 )

𝑖
) vs. 𝑥 ( 𝑗 )

𝑖
for all 0 ≤ 𝑗 < 𝑛 showing the impact of a single

feature for all 𝑛 feature values seen in a data set. We don’t have to
worry that what we are seeing is actually the effect of some other
feature, because that appears in an entirely separate impact chart
for that other feature. In this respect it is fundamentally different
and more powerful than an (𝑥 ( 𝑗 )

𝑖
, 𝑦 ( 𝑗 ) ) scatter plot [15]. We will

see this in Section 4.2.
Two of the examples we will discuss below come from residential

real estate, which has beenwidely shown to harbor significant racial
biases [27, 44, 46, 47, 53]. In Section 3, we consider a data set with
𝑥𝑖 describing the median household income and racial and ethnic
distribution of renters in different neighborhoods, and 𝑦 indicating
the eviction rate in each of those neighborhoods. We might expect
an impact chart for the impact of renter income on eviction rate to
be that low-income neighborhoods have higher rates of eviction
and high-income neighborhoods have lower rates of eviction. And
in an unbiased world, we would expect there to be no impact from
the racial and ethnic features. Impact charts enable us to interrogate
hypotheses like these and, if they are invalid, quickly come up with
alternate hypotheses.

The additive nature of impacts can be easily seen in the other real
estate example that we discuss in detail in Section 4. There, we use
impact charts to say things like housing prices in neighborhoods
that are 80% white are impacted by $50,000. By this we mean that
they are $50,000 different than prices in otherwise comparable
neighborhoods where the level of whiteness varies. Similarly, in a
high income neighborhood, income may have a $100,000 impact
on housing prices. Even if this neighborhood is more white than
average, and whiteness is correlated with higher incomes in the
data, this impact is completely additive to the impact of the racial
demographics of a neighborhood. So a neighborhood might have
housing prices $50,000 above the mean because of it’s whiteness
and an additional $100,000 because of its high income for a total of
$150,000 above the mean. A similarly high-income neighborhood
that is majority minority instead of majority white would see the
income impact but not the racial impact, giving it housing prices
$100,000 above the mean.

Because of the way they break impact down into additive com-
ponents, impact charts can be used as a tool for identifying and
visualizing social biases embedded in a variety of data sets and
the social, political, and economic systems that produced them.
For example, in a hypothetical world where there is no systematic
racism and the data were perfectly representative, the impact charts
for the housing price data set would show that the whiteness of a
neighborhood had zero impact on housing prices. The same would
be true of the Blackness, Asianess, Hispacness, or any other racial
or demographic -ness represented in the data.
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The extent to which these impacts are non-zero in particular
circumstances can help guide our understanding of how and where
systematic racism [24] and other systematic biases exist and what
policy changes might be necessary to mitigate them.

2.2.1 Machine Learning and Prediction vs. Explanation. Impact
charts are built on top of ML models. The ones presented herein use
a technique called gradient boosted trees [25] as implemented in the
XGBoost package [17], but our software also supports using other
ML techniques to generate them. We chose gradient boosted trees
because they are generally regarded to be effective for modeling
tabular data [39]. Tree-based Shapley values are also less compu-
tationally intensive than those computed on other types of ML
models [36].

In general ML problems are posed as prediction problems, not
explanation problems [49]. Given a set of 𝑛 training data points
(𝑥 (0)0 , 𝑥

(0)
1 , ...𝑥

(0)
𝑚−1, 𝑦

(0) ) through (𝑥 (𝑛−1)0 , 𝑥
(𝑛−1)
,1 , . . . 𝑥

(𝑛−1)
𝑚−1 , 𝑦 (𝑛−1) ),

the goal is to learn a function𝑦 (𝑥0, 𝑥1, ...𝑥𝑚−1) that minimizes some
function of the difference, or error, between 𝑦 (𝑥 ( 𝑗 )0 , 𝑥

( 𝑗 )
1 , ...𝑥

( 𝑗 )
𝑚−1)

and 𝑦 ( 𝑗 ) across all 0 ≤ 𝑗 < 𝑛. ML systems then use this function
to make predictions 𝑦 (𝑥 ( 𝑗 )0 , 𝑥

( 𝑗 )
1 , ...𝑥

( 𝑗 )
𝑚−1) for 𝑗 ≥ 𝑛 of the value of

the target for points in feature space that were not seen at training
time.

While ML models can be good at prediction problems according
to commonly-used metrics (with the caveat that errors are often
concentrated in ways that disproportionately impact historically
marginalized groups [13, 43]) they tend not to be particularly ex-
plainable, which might make them appear not to be applicable to
our problem. The good news on this front is that interpretability
techniques have been developed [36, 37, 45, 61] and among them
SHAP [36, 37] in particular has the additive impact property we
need for impact charts.

The SHAP approach has the additive characteristics we want
impact charts to have, but it focuses on explaining the predictions
made by a specific model trained on a specific data set, not on
explaining the impact of features in a data set, much less the impact
of the systematic social, political, or economic processes whose
behavior is encoded in the data set.

To solve this problem, impact charts apply SHAP not to a single
ML model, but to an ensemble of 𝑘 ML models, each trained on a
random subset of the initial data. This is a form of bagging [11] but
we explain by aggregating Shapley values rather than predictions.
A related approach is to use bagging with carefully designed weak
but inherently explainable models [34, 35] rather than SHAP on a
more general set of modeling techniques.

We use bagging of 𝑘 models for two reasons. First, a single model
can be prone to the problem of over-fitting, which means that it
essentially memorizes the data it is trained on, but does not contain
any structure that allows it to generalize to accurately predict 𝑦
for feature values it has never seen [18]. By using an ensemble, we
ensure that none of the individual models is overfit to the data set
as a whole.

Second, and more critically important, when we have 𝑘 models,
we can look at the impact of a given feature on the target for a
given data point in each of the models independently. It is often
the case that models trained on different random samples of the

same data set have a similar overall error rate across the data set,
but concentrate their errors in different areas. The net result of this,
which we will see visually in Section 3 is that we get not just a single
estimate of the impact of a feature on the target, but an empirical
distribution of it. The structure, and in particular the variance of
this distribution helps us reason about how to interpret the estimate
of the impact. Intuitively, if the models in the ensemble agree, to
within a small amount of variance, on the impact of a feature on
the target, we can more reasonably believe that the models have
independently latched on to a relationship inherent in the data or
the process that created it, rather than that each of member of the
ensemble has overfit to the subset of the data upon which it was
trained.

3 EVICTION, RACE, ETHNICITY, AND
INCOME

3.1 A First Impact Chart: Eviction and
Blackness

Our first set of impact charts were generated from a data set with a
point for each census tract in DeKalb County, Georgia in each of
ten years from 2009 to 2018 inclusive. The data set has ten features.
Seven of the features indicate the fraction of renters in the tract who
identify as belonging to each of the following racial groups: White
Alone; Black Alone; American Indian or Alaskan Native Alone;
Asian Alone; Native Hawaiian or Pacific Islander Alone; SomeOther
Race Alone; and Two or More Races. The eighth feature indicates
the fraction of renters in the tract who identify as beingWhite Alone
not Hispanic or Latino. The ninth feature represents the fraction of
renters who identify as being Hispanic or Latino of any Race. The
tenth feature is median household income for renters in the tract
normalized to constant 2018 dollars. These features were derived
from U.S. Census American Community Survey (ACS) 5-year data
[56].1 The target of the impact charts is eviction rate, measured
as the number of evictions in a year per 100 rental households
in the tract. This data comes from the Eviction Lab at Princeton
University [26]. Although we discuss only DeKalb County here, we
have prepared similar eviction impact charts for 489 counties across
the country and published them at http://evl.datapinions.com/.

As in all the examples herein, we used aggregate data rather than
individual data, thus lessening both our risk of failing to preserve
privacy [42] and our risk of introducing noise by imputing unknown
racial features in data where they are missing [27].

We will start with Figure 1, an impact chart that looks at the
impact of the percentage of renters who identify as Black on the
rate of eviction filings in DeKalb County, Georgia between 2009
and 2018.

Let’s look at this first impact chart and see what it tells us. We
will start with the leftmost fifth of the chart, representing tracts
that that are less than 20% Black. They are to the left of the light
gray vertical grid line labeled 20% at the bottom. All have impacts

1For more on the variables that racial and ethnic features were based on, see the
ACS variables B25003A_003E, B25003B_003E, . . . , B25003I_003E as described at https:
//api.census.gov/data/2018/acs/acs5/variables/B25003A_003E.html and similar. For
income data, see the variable B25119_003E as described at https://api.census.gov/data/
2018/acs/acs5/variables/B25119_003E.html. Replace 2018 with other years in the URL
as needed.

http://evl.datapinions.com/
https://api.census.gov/data/2018/acs/acs5/variables/B25003A_003E.html
https://api.census.gov/data/2018/acs/acs5/variables/B25003A_003E.html
https://api.census.gov/data/2018/acs/acs5/variables/B25119_003E.html
https://api.census.gov/data/2018/acs/acs5/variables/B25119_003E.html
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Figure 1: The impact of the percentage of renters who identify as Black on the rate of eviction filing in DeKalb County, Georgia
between 2009 and 2018, measured at the census tract-year level. The horizontal axis is the percent of renters who identify as
Black alone. It ranges from 0% to 100%. Some census tracts in the county are almost entirely non-Black and others are almost
entirely Black. The vertical axis is the impact of the percent of renters who identify as Black on the eviction filing rate, as
measured by number of eviction cases filed per 100 renters per year. Each green dot represents one of the census tracts in the
county during a single year.

(green dots) below -10. Most are between -10 and -15. A handful
are below -15. What this means is that the eviction rate for these
tracts are 10 to 15 evictions per 100 renters lower than otherwise
comparable neighborhoods (similar income and mix of other racial
and ethnic groups). The impact chart makes this plainly visible.

An even more extreme impact can be seen at the right side of the
chart, to the right of the vertical grid line labeled 80% at the bottom.
These are tracts where more than 80% of renters identify as Black.
If we look at the green dots in this region, they almost all have an
impact greater than +5 on the vertical axis. Many, including almost
all that are above 90% Black, have an impact greater than +10. This
means that neighborhoods that are overwhelmingly Black have
higher rates of eviction even though the underlying models can
also assign impact to income and would do so if income had an
impact across different racial demographics.

3.2 A Second Impact Chart: Eviction and
Whiteness

The point of an impact chart is to look at the impact of one single
variable, regardless of the statistical relationship it may have to
other variables in the model. We can look at other variables as well;
each gets its own impact chart. For example, Figure 2 is the impact
chart for the percentage of renters who are white.

In this impact chart, the green dots for tracts where renters are
less than 7% white are all in the positive impact range. This means
that neighborhoods that are mostly non-white have higher rates

of eviction than others. Again, this is corrected for income. What
this impact chart is telling us is that regardless of what groups of
non-white renters live in a tract, the simple fact that few of the
renters are white is, on its own, sufficient to drive eviction filing
rates up.

On the other hand, when neighborhoods are 50% or more white,
there is an impact of −2 to −5 points on the eviction rate. Neigh-
borhoods with a lot of white renters have fewer evictions than
neighborhoods where renters are predominately not white.

When we looked at the impact chart for Black renters, the trend
looked like it might reasonably be explained with a straight line.
But the white impact chart has a more complicated behavior. This
ability to identify effects with shapes that are not just straight
lines or other fixed parametric shapes is one of the key things that
distinguishes impact charts from regression analysis. Because we
used ML instead of linear or other parametric regression, we are
able to identify these nonlinear impacts, even when we don’t know
anything about the shapes we expect to see before we start the
analysis.

3.3 What About the Impact of Income?
The impacts in Figures 1 and 2 demonstrate that the racial demo-
graphics of a neighborhood systematically impact eviction rates.
But what about income? That is the one feature that we would
hypothesize would have an impact, independent of the color line.
Figure 3 looks at the impact of the income feature.
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Figure 2: The impact of the percentage of renters who identify as non-Hispanic or Latino white on the rate of eviction filing in
DeKalb County, Georgia between 2009 and 2018, measured at the census tract-year level. Compare to Figure 1, which is for the
feature representing the percent of renters who identify as Black in those same tracts over the same time period.

Figure 3: The impact of the median income for renters in a census tract of eviction filing in DeKalb County, Georgia between
2009 and 2018. Compare to Figures 1 and 2, which are for the features representing the percent of renters who identify as Black
and non-Hispanic or Latino white in those same tracts over the same time period.
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We hypothesized that low-income tracts would have higher evic-
tion rates. But the impact chart tells us something more nuanced.
There is a spike between $20,000 and $40,000, but it drops away
on either side. For tracts on the right side of the spike, this fits the
hypothesis that higher income areas have lower rates of eviction
and above a certain income level ($75,000 here) income has essen-
tially no effect on eviction rate. But on the left side, the opposite
happens. Lower income tracts have stronger negative impact, in-
cluding the lowest seen anywhere on the chart, below -5 for some
tracts where median renter household income is around $20,000. It
is possible that this is the case because low-income renters qualify
for programs or housing with less stringent eviction practices than
the open market. It is certainly something that points us in that
direction for further inquiry.

Taken together, these three impact charts tell two compelling
stories. The first is that the color line of systematic racism is alive
and well in eviction filings in DeKalb County, Georgia. The impact
of fraction of renters in a census tract who are Black (a range of
±15) is three times the size of the impact of the median income of
renters in the tract (a range of ±5). The second, less complete but
potentially more positive story of the existence of some kind of
eviction safety net for very low income households.

3.4 What About the Gray Dots?
The green dots we have been looking at represent the average
impact from 50 different machine learning models. Each of these
models uses the same code, but is trained on a different random
sample of 80% of the data. The grey dots are the impact of the
variable in each of the 50 different models. So for each green dot,
there are 50 gray dots behind it, in a vertical line.

The reason we plot the gray dots is that ML models can be fickle,
giving very different results when trained on data that to humans
looks relatively the same [50, 52]. By training many models, we
can see if they agree on the impact of each input or if they are all
over the place, indicating that our final estimate of the impact (the
green dot) isn’t that accurate.

The length of the vertical distribution of gray dots gives us a
visual idea of how confident we can be on what the corresponding
green dot tells us. They are like error bars. If all 50 models closely
agree, the gray dots don’t extend very far above or below the green
dot. But in some cases they do. You can see a few examples in each
of the impact charts above. Often, the green dots for these tracts
look somewhat out of place relative to the trend of the green dots
immediately around them. This means that the models are having
trouble agreeing on what is going on in the tract, perhaps because it
is heavily influenced by some other feature that we did not include
in our model.

We also sometimes see cases, like for incomes between $40,000
and $80,000, where there are what look like two different impact
lines of green dots, each surrounded by tight groupings of gray dots.
In cases like these the difference between the two groups of green
dots may lie in a missing feature that could explain the impact but
was not given to the model.

4 HOUSING PRICES, INCOME, RACE, AND
ETHNICITY

Our next data set moves us from rental markets to owner-occupied
housing. The underlying data set in this case is derived entirely
from U.S. Census ACS 5-year data [56] from 2021. Like our first
data set, if has features for race and ethnicity, but for those of
homeowners rather than renters, and a feature for the median
income of homeowners 2. The data is at the block group level, which
is finer granularity than the census tract level and captures data
about small neighborhood-sized areas. The target is median home
value for owner-occupied homes in the block group. We will look at
impact charts for data from the Los Angeles, California area (a CBSA
in Census terminology [54]). As was the case with our eviction data,
we generated hundreds of additional impact charts for other CBSAs.
They can be found at http://rih.datapinions.com/impact.html.

Our goal in generating impact charts with this data is to get a
more nuanced understanding of the impact of the racial and ethnic
makeup of neighborhoods on home values than previous studies
were able to do using regression analysis [44, 47]. We were also able
to do this using only aggregate data, thus reducing the possibility
of exposing private information about individuals. This does not
mean that researchers using impact charts needn’t be concerned
with privacy and related ethical issues, but it does mean that they
can often do their work with data that makes it easier to preserve
privacy.

4.1 The Impact of Whiteness
Consider Figure 4, an impact chart which looks at the impact of
whiteness on median home values at the block group level in the
Los Angeles area CBSA.

The green dots are denser in Figure 4 than we saw in the impact
charts in Figures 1, 2, and 3, mainly because there are a lot more of
them (7,019 vs. 1,340). There are also a lot more grey dots, (7,019 ×
50 = 350,950) but for most of the graph, the band of grey dots
is between $50,000 and $75,000 wide from top to bottom. More
importantly, for block groups that are below about 24% white, all
of the grey dots are below zero.

We built 𝑘 = 50 different models with random 80% subsets of our
data, but not a single one of them ever indicated there was a single
block group with white population under 24% where the impact
of this low level of whiteness was positive. So homes in low-white
population neighborhoods have lower value, even when income is
included in the models and regardless of what races and ethnici-
ties are present. Non-whiteness is a color line that systematically
devalues a neighborhood.

At the other end of the scale, neighborhoods that are overwhelm-
ingly white saw home values an average (green dots) of $75, 000 or
more higher than comparable neighborhoods. With the exception
of a few outliers, the error bars implied by the grey dots measured
this impact as being at least $50, 000 in all cases.

2For more on the variables that racial and ethnic features were based on, see the
ACS variables B25003A_002E, B25003B_002E, . . . , B25003I_002E as described at https:
//api.census.gov/data/2021/acs/acs5/variables/B25003A_002E.html and similar. For
income data, see the variable B25119_002E as described at https://api.census.gov/data/
2021/acs/acs5/variables/B25119_002E.html.

http://rih.datapinions.com/impact.html
https://api.census.gov/data/2021/acs/acs5/variables/B25003A_002E.html
https://api.census.gov/data/2021/acs/acs5/variables/B25003A_002E.html
https://api.census.gov/data/2021/acs/acs5/variables/B25119_002E.html
https://api.census.gov/data/2021/acs/acs5/variables/B25119_002E.html
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Figure 4: The impact of the fraction of homeowners in a block group who identify as white on median home value in that
block group in the Los Angeles-Long Beach-Anaheim, CA CBSA.

4.2 Scatter Plots as an Alternative Visualization
The impact of whiteness on home values is made abundantly clear in
the impact chart in Figure 4. It is so clear, in fact, that onemight won-
der why this kind of impact is more normally publicized through
individual stories of specific individuals who were impacted. Rather
than systematic studies, stories are regularly published that describe
how Black families replaced family photos and other personal ef-
fects in their homes with artifacts chosen to imply that the home
was owned by a white family. The result was that professional
appraisers increased their assessment of the value of the home,
sometimes by hundreds of thousands of dollars [22, 30, 31].

Impact charts let us go from individual anecdotes to compelling
systematic conclusions using readily available privacy-preserving
data. Recall that everything in Figure 4 was derived from publicly
available aggregate U.S. Census data.

For the sake of comparison, the most widely used visualization
that is designed to help us visualize the impact of a feature on a
target is the scatter plot [15]. Figure 5 is a scatter plot of the data
set behind the impact chart in Figure 4.

The fundamental problem with Figure 5 is that we are showing
the home values 𝑦 ( 𝑗 ) on the vertical axis, not the impact 𝐼 (𝑥 ( 𝑗 )

𝑖
) of

the single whiteness variable as we did in Figure 4. The scattering
across $2,000,000 on the vertical axis obscures the effect of the
single variable on the horizontal axis with the effects of all the
other variables. We could add a regression line, or a regression
curve if we fit a non-linear model, but even if we did so, the impact
would not be explicitly shown. At best we could say something
about impact based on the slope𝑚 of the line, like, "for every 10
points the percentage of homeowners who are white goes up, home
values tend to go up by $0.1𝑚."

Alternatively, we could partition the block groups into those
with high white (or Black, etc. . . ) population, say 95% or more, and
low white (or Black, etc. . . ), say 50% or less. We could then use
classical statistical techniques to evaluate the difference between
the distribution of median home values in the different groups,
correcting for median income [44]. We think that impact charts
produce a richer and more compelling story than this approach.

Some existing approaches to understand bias using scatter plots
[33] focus on helping users understand the relationship and impact
of interacting features, which is complementary to the insights on
the impact of individual features that impact charts offer.

4.3 Regression Analysis and Measures of Error
Another consideration, which is often useful in constructing impact
charts, and which was critical in the construction of the impact
charts for the housing value data set, is the choice of error function.
All ML models try to minimize error on the data they are trained
on, but how we decide to measure error can significantly influence
their behavior. In regression models, Mean Squared Error (MSE) is
widely used both because it often gives good results and because it
is computationally efficient in many cases [20].

Among the assumptions that regression analysis makes is that
of homoscedasticity [20], which means that the variance in the
observations of the target, median housing price in our example, is
the same regardless of the value of the variable’s value.

But it’s hard to imagine this condition holds in our case. Suppose,
for example, that for homes that are actually worth $200,000, our
input data captures them towithin an accuracy of±$20,000, or±10%.
What about homes worth $1,000,000? We don’t expect to be able to
also measure their value to within ±$20,000, which would be ±2%.
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Figure 5: A scatter plot of median home value (vertical axis) vs. the fraction of homeowners in a block group who identify as
white (horizontal axis) at the block group level in the Los Angeles-Long Beach-Anaheim, CA CBSA.

Instead, we might measure them to within the same ±10% as the
lower priced homes, which would be ±$100,000. This is very much a
classic case of heteroscedasticity, the opposite of homoscedasticity.

Similarly, if we built a model to predict median home prices, we
would not expect its mean error to be the same in dollar terms on
homesworth around $200,000 as homesworth around $1,000,000. At
best, we might hope for the same mean relative error. For example,
the model might have a mean absolute error of 20% of the actual
home value regardless of whether it was $200,000 or $1,000,000. In
the former the error would be ±$40,000 and in the latter it would be
±$200,000. This measure of error is called Mean Absolute Percent
Error (MAPE).

Note that we use the mean of the absolute value of the error
percentage rather than the mean of the percentage error. Otherwise
a large positive error in half the cases (say an 80% overestimate)
could be counteracted by a large negative error (an 80% underesti-
mate) in the other half. The mean would be 0%, making this poor
model look like an excellent one.

Optimizing model construction to minimize MAPE tends, es-
pecially in cases of heteroscedasticity, to produce very different
models than optimizing for minimum MSE. If we optimize for MSE
in cases like ours, the influence of the high-priced end of the mar-
ket can overwhelm the influence of the lower priced end because
absolute errors are larger there. Squaring compounds this effect. So
in effect, we try really hard to be good at predicting prices at the
high end of the market even if that means, in MAPE terms, we end
of with a pretty bad model at the low end of the market. We’d like
to have a good model at both ends of the market, so we’d prefer to
optimize our model for MAPE rather than MSE.

XGBoost [17], the open-source implementation of gradient boosted
trees that we used behind the impact charts herein, supports MAPE.
We used it for all of the housing price impact charts we generated.
For the eviction rate, we use Mean Average Error (MAE), since the
target was already expressed as a rate of eviction per 100 renters.

5 ACCESS TO SUPERMARKETS, INCOME,
RACE, AND ETHNICITY

Our final motivating example uses 2019 data from the U.S. Depart-
ment of Agriculture (USDA) Food Access Research Atlas (FARA)
[57] along with 2019 U.S. Census ACS data [56] to assess the im-
pact of race, ethnicity, income and access to a vehicle on access to
local supermarkets that carry fresh healthy food. Areas without
such access are commonly referred to as food deserts. The target
variable, as defined by the FARA data set is called lapophalfshare.
It represents the fraction of the population of a census tract that
lacks access to a supermarket within a distance of 1/2 mile of their
home. This is expressed on a scale from 0, meaning everyone in the
tract has a supermarket within 1/2 mile of their residence, to 100,
meaning nobody does. 30 would means 30% of the tract’s popula-
tion does not have access to a supermarket within 1/2 mile but the
other 70% does.

The data sets we constructed are at the census tract level for all
census tracts within the most populated census places (cities and
towns, typically) across the United States. It is sparser than the the
previous two data sets, because the FARA data is itself more sparse.
We will concentrate on the New York City data set herein.

As was the case for the two previous data sets, the impact charts
we generated for food access in New York City indicated that racial
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and ethnic disparities exist, even when the model corrects for in-
come. Some of these are shown in Figures 6(a)-(d). We could cer-
tainly dig into hypotheses about what these impact charts tell us,
remembering that in a hypothetical post-racial society the green
dots would form a horizontal line at an impact of zero. But hav-
ing done that in Sections 3 and 4, we will instead look at another
important and useful feature of impact charts: even at thumbnail
scale, as in Figure 6, impact charts enable us to quickly, easily, and
visually evaluate our a priori hypotheses.

Figure 6(e) shows the impact of median income. This is where
our initial hypothesis that lower income people would be more
affected by food deserts failed. All of the impacts are within ±5
percentage points, as most were for racial and ethnic features, but
for household incomes below $75,000, the impacts are all negative,
meaning that those census tracts have more access to grocery stores
as a result of their lower income, not less.

This counterintuitive finding, however, makes more sense in
light of Figure 6(f), which shows the impact of access to a vehicle,
which we also included as a factor in our model. The range of
impacts here went well beyond the ±5 we saw in Figures 6(a)-(e).
For tracts where fewer than 40% of households have access to a
vehicle, the impact hovers around −10. For tracts where more than
90% of households have access to vehicles the impact extends +7.

So what we see here is that although there are racial, ethnic,
and income impacts, the feature with the biggest impact is vehicle
access. This does not imply causality. More likely it shows that
there are both high and low income tracts in New York City where
there are high and low numbers of residents with access to vehicles.
Where vehicle access is low, access to nearby supermarkets is high,
and where vehicle access is high, access to nearby supermarkets
is lower, regardless of income level, race, or ethnicity. Though
validating it is beyond the scope of this work, we hypothesize that
car-friendly development results in residents needing to obtain cars,
which cycles back to encourage more car-dependent development
over the course of many years.

In summary, in this application impact charts made it easy to
invalidate our initial hypothesis that income would have a large
impact on supermarket access. Instead, vehicle access is the feature
that has the greatest impact. Impact charts also showed us the full
nonlinear nature of the impacts across the spectrum of feature
values without any need to constrain our exploration to specific
parametric forms that the impacts might take on.

6 SUMMARY AND FUTUREWORK
We introduced impact charts and applied them to the problem
of visualizing the impact of the color line in two housing-related
applications. In the eviction analysis in Section 3, we showed us-
ing impact charts that the impact of Blackness was 3 times that
of the impact of income on eviction rates. In the home valuation
analysis in Section 4, we illustrated the impact of whiteness, in-
troduced the use of MAPE as an error metric, and demonstrated
the degree to which impact charts can clearly demonstrate impact
when scatter plots and regression analysis do not. We also discussed
impact charts relative to regression analysis using constructed sub-
populations. Finally, in Section 5, we used USDA FARA data to

illustrate how by visually scanning a collection impact charts, we
can refine hypotheses.

Our current work is empirical, but we are also working on a
theoretical analysis to characterize the impacts that impact charts
expose vs. any they may miss by looking at their behavior on
synthetic data produced by parametric and causal models.

Finally, we note that the case studies here each involved a data
set representing a single geographic area (a county, a CBSA, and
a city). Because we chose ML techniques that produce accurate
models and also enable us to compute impact charts efficiently
(as opposed to more general techniques that consume resources
exponential in the number of features [37]) we have been able to
generate thousands of impact charts for different geographies3.

6.1 Code and Data Availability
Having introduced impact charts and shown their use on three data
sets, we believe we have only scratched the surface. In order to
enable further development and make it easy for researchers to
bring their own data sets and generate impact charts from them, we
have made a reference implementation of impact charts available at
https://github.com/impactchart/impactchart. This repository is the
recommended starting point and holds the most current version of
the impact chart library.We hope that in using our code, researchers
will both find additional insights like those discussed herein and
identify limitations of either the approach or the software imple-
menting it so that we can make appropriate improvements.

For completeness, the original code that constructed the data
sets and produced the impact charts in Section 3 has been preserved
at https://github.com/datapinions/evldata and https://github.com/
datapinions/evlcharts respectively. The original code for Section 4
has been preserved at https://github.com/datapinions/rihdata and
https://github.com/datapinions/rihcharts. The original code for Sec-
tion 5 has been preserved at https://github.com/vengroff/faradata
and https://github.com/vengroff/faracharts.

6.2 Future Work
In future work, we believe it will be possible to characterize the
impacts we see across hundreds of geographies based on political
features of the geographies themselves. For example, we will be able
to say that the color line creates greater disparities in cities in one
state or region than in another, or in cities that have implemented
a particular program vs. those that have not. This, we believe, will
provide policy makers and citizens alike with powerful information
on how to address color line impacts in their communities.

We would also like to look into integrating the generation of
impact charts into the lifecycle of data sets used to train ML mod-
els [29] and summary reports on such data sets, such as data set
nutrition labels [28, 51]. Impact charts could also be integrated into
existing systems for visually assessing bias in data sets and ML
systems [5, 8, 14, 41, 59, 60, 62].

In engaging practitioners, whether ML practitioners, data en-
gineers, data scientists, social scientists, or policymakers, it will
be critical that we understand how they use and interpret impact
charts. In studying this we intend to build on existing work on how

3For reference, a full run that generates almost 5,000 eviction impact charts runs in a
matter of hours on a single laptop.

https://github.com/impactchart/impactchart
https://github.com/datapinions/evldata
https://github.com/datapinions/evlcharts
https://github.com/datapinions/evlcharts
https://github.com/datapinions/rihdata
https://github.com/datapinions/rihcharts
https://github.com/vengroff/faradata
https://github.com/vengroff/faracharts
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(a) Impact of White Percentage (b) Impact of Black Percentage

(c) Impact of Asian Percentage (d) Impact of Hispanic or Latino Percentage

(e) Impact of Median Income (f) Impact of Access to a Vehicle

Figure 6: Impact charts showing the impact of the percentage of residents identifying as members of certain racial and ethnic
groups ((a)-(d)), the impact of median income (e), and the fraction of residents with access to a vehicle (e) on the fraction of
residents who lack of access to a supermarket within half a mile of home.

practitioners work with anti-bias tools and how tools can be con-
structed to be more useful to practitioners [3, 7, 10, 16, 19, 32, 38].

Coming full circle to Douglass’ color line [21] as we introduced
it at the outset, we hope that the use of impact charts can contribute
in some small way to exposing the color line as it exists today and
inspiring solutions that lead to its elimination.

7 ETHICS AND SOCIAL IMPACT
When working at the intersection of data and structural racism,
we believe there are important ethical and social concerns that
researchers must address.

7.1 Ethical Concerns and Mitigation
Whenever we deal with data including race, ethnicity, gender iden-
tity or any of many other sensitive variables or proxy variables,
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we have to be concerned about privacy. We were while developing
impact charts. A common approach to managing privacy involves
researchers gaining access to sensitive data in a highly controlled
environment, for example via https://www.researchdatagov.org/,
doing their analysis, and carefully structuring the results they pub-
lish so as to preserve the privacy or the (possibly unwilling or
unknowing) participants whose data they studied. We deliberately
did not take this approach, and instead challenged ourselves to
develop an analysis technique that could effectively find structural
impacts using aggregate data. In particular, most of our data comes
from the U.S. Census, which has a robust privacy program [2, 55].
We cannot claim that aggregate data can never be manipulated in
ways that expose individuals [42], but we can say that it can be
analyzed with substantially less risk in most circumstances.

7.2 Author Positioning and Reflection
Having been trained as a Computer Scientist in an era when ethics
were not a part of most undergraduate or graduate CS curricula,
the author has historically been biased towards technology-centric
solutions to problems. And without question impact charts are
technology-centric.

However, like all technologies, we must come to view them as
tools and evaluate the extent to which their uses are concentrated
in applications that are socially useful or socially damaging. We
believe that they are the former and that this has been demonstrated
by the example in Sections 3, 4, and 5.

That having been said, impact charts are only one small tool.
Pointing out adverse impacts does not eliminate them. At best, it
is diagnostic [1]. But as such it can motivate those generating the
charts to become a part of a larger movement, to engage with, to
listen to, and to be led by those often less privileged individuals
who bear the brunt of the impacts the charts highlight.

7.3 Adverse Impact
Impact charts, no less so than any other data-driven technological
artifacts, can be useless or even dangerous when fed the wrong
data. While at its core the technique is designed to identify and
expose biased impacts in society as reflected in data, there is nothing
stopping motivated actors from repurposing the vocabulary of
impact charts to tell the stories they want told on top of data they
have generated, manipulated, or commissioned to meet their own
needs.
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