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ABSTRACT
This paper investigates the inter-rater reliability of risk assessment
instruments (RAIs). The main question is whether different, socially
salient groups are affected differently by a lack of inter-rater relia-
bility of RAIs, that is, whether mistakes with respect to different
groups affects them differently. The question is investigated with
a simulation study of the COMPAS dataset. A controlled degree
of noise is injected into the input data of a predictive model; the
noise can be interpreted as a synthetic rater that makes mistakes.
The main finding is that there are systematic differences in output
reliability between groups in the COMPAS dataset. The sign of the
difference depends on the kind of inter-rater statistic that is used
(Cohen’s Kappa, Byrt’s PABAK, ICC), and in particular whether or
not the statistic corrects for prediction prevalences of the groups.

CCS CONCEPTS
• Applied computing → Psychology; • Computing method-
ologies→Machine learning; • General and reference→ Reli-
ability.
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1 INTRODUCTION
We all make mistakes. However, mistakes have consequences, and
the consequences are not the same for everybody. If we grade the
exam of an excellent student incorrectly by counting a correct an-
swer as wrong, their final mark may understate their achievement.
If we grade the exam of a bad student incorrectly by counting
a correct answer as wrong, they may have to repeat the grade,
or not graduate at all. The present paper investigates the conse-
quences of errors in the context of risk assessment in criminal
justice, specifically, the inter-rater reliability of risk assessment
instruments (RAIs). RAIs take features of individuals as inputs, and
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output a risk score or risk prediction. The outputs may be used to,
say, decide whether offenders are released on parole. The inputs of
RAIs are often compiled by humans, and thus may contain mistakes.
Inter-rater reliability measures whether different raters arrive at
different ratings of the same individuals, and how these different
ratings affect risk predictions.

The main question is whether there are systematic differences in
inter-rater reliability between different, socially salient groups, that
is, whether making mistakes affects different groups differently. It is
well-known that there are historically entrenched socio-economic
inequalities between different races. The consequences of these
inequalities in risk assessment have been widely discussed in the
wake of the investigation of COMPAS by ProPublica [1]. This dis-
cussion has primarily focused on predictive validity, while little
attention has been paid to reliability. The present paper highlights
the importance of (inter-rater) reliability, which can be interpreted
as the absence of noise between raters. Reliability, like validity, is
an important property of predictive models, but much less explored
than the latter notion; see Kahneman et al. [17] on the significance
of noise.

Simulations based on the so-called COMPAS dataset are per-
formed to investigate reliability differences between groups. In
recidivism risk assessment, the study of inter-rater reliability is usu-
ally based on empirical data. At least two human raters are tasked
with rating a set of individuals. The resulting ratings are used to
calculate inter-rater statistics for both ratings and risk predictions.
However, there is litte actual inter-rater data available, and existing
datasets are often small, which limits their usefulness, in particular
if one wants to study the reliability of subsets (groups). It is pro-
posed here that in view of scarce empirical data, simulations are
useful. In simulations, a controlled degree of noise is injected into
the input data of a predictive model; the noise can be interpreted
as a synthetic rater that makes a certain amount of mistakes. The
reliability of the resulting predictions is then measured. This helps
to gauge how different groups are affected by the same amount of
noise.

The main finding of the paper is that there are systematic relia-
bility differences between group 0 (non-White people) and group 1
(White people) in the COMPAS dataset. The sign of the difference
depends on the kind of inter-rater statistic that is used. Common
inter-rater statistics, an intraclass correlation coefficient, as well as
Cohen’s Kappa, find that group 1 has mostly lower levels of relia-
bility. However, a different inter-rater statistic, Byrt’s PABAK, finds
that group 0 has mostly lower levels of reliability. To interpret these
findings, a well-known fact about Cohen’s Kappa is crucial, viz. that
it is a prevalence-dependent measure of reliability. If a group has a
lower prevalence (base rate) of predicted risk, the reliability of that
group will be underestimated by Cohen’s Kappa in comparison to
the other group. The higher prevalence of predicted risk for group 0
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is a well-known consequence of historical inequalities. Thus, if we
measure reliability for these groups without correcting for different
prevalences, then we find that group 1 has predictions with lower
reliability than group 0, for the same amount of noise. The finding
is reversed if we use a prevalence correction, in which case group
0 has predictions with lower reliability.

2 BACKGROUND
2.1 Inter-rater Reliability (IRR)
Reliability is a well-known desideratum of recidivism risk assess-
ment instruments in criminal justice [8]. In the present paper, the
focus is on inter-rater reliability (IRR) [3, 8, 13]. In empirical stud-
ies, IRR data is collected by choosing a sample (of individuals) of
adequate size and composition. Adequately trained raters are then
tasked with compiling ratings for these individuals. These ratings,
and risk predictions based on these ratings, are then assessed with
respect to reliability. In the present paper, IRR with respect to two
raters, 𝑟 and 𝑠 , will be considered. Both raters rate a set of indi-
viduals {1, ..., 𝑛} with respect to 𝑗 items (features).1 The rating of
individual 𝑖 ∈ {1, ..., 𝑛} by rater 𝑘 on the 𝑗 items can be written as
𝑥𝑘 (𝑖) = (𝑥𝑘1 (𝑖), 𝑥𝑘2 (𝑖), ..., 𝑥𝑘 𝑗 (𝑖)). Thus, a full set of ratings for two
raters has the form of table 1.

ind. rater r rater s
1 (𝑥𝑟1 (1), ..., 𝑥𝑟 𝑗 (1)) (𝑥𝑠1 (1), ..., 𝑥𝑠 𝑗 (1))
2 (𝑥𝑟1 (2), ..., 𝑥𝑟 𝑗 (2)) (𝑥𝑠1 (2), ..., 𝑥𝑠 𝑗 (2))
... ... ...
n (𝑥𝑟1 (𝑛), ..., 𝑥𝑟 𝑗 (𝑛)) (𝑥𝑠1 (𝑛), ..., 𝑥𝑠 𝑗 (𝑛))

Table 1: Inter-rater reliability data: raters 𝑟 and 𝑠 rate items
1, ..., 𝑗 for individuals 1, ..., 𝑛.

On the basis of table 1, one can compute IRR statistics with
respect to individual items. In the present paper, data as in table
1 will be simulated. Starting with one set of ratings, the column
‘rater 𝑟 ’, the column ‘rater 𝑠’ will be generated by adding noise to
‘rater 𝑟 ’. Only the IRR of predictions will be computed. One obtains
predictions 𝑦 = 𝑓 (𝑥𝑘 (𝑖)) from the ratings in table 1 using a RAI,
represented by 𝑓 : 𝑋 → 𝑌 . Then one computes the IRR of the
predictions. Data suitable to compute the reliability of predictions
take the form of table 2.

ind. rater r rater s
1 𝑓 (𝑥𝑟 (1)) 𝑓 (𝑥𝑠 (1))
2 𝑓 (𝑥𝑟 (2)) 𝑓 (𝑥𝑠 (2))
... ... ...
n 𝑓 (𝑥𝑟 (𝑛)) 𝑓 (𝑥𝑠 (𝑛))

Table 2: Predictions based on ratings 𝑟 and 𝑠 of individuals
1, ..., 𝑛.

1Items may include “hard” facts like the number of priors, but also facts about mental
states that need to be measured by psychological evaluation. Both kinds of items may
be noisy, in particular if data entry is a manual process.

The IRR statistic to be used depends on the kind of prediction. In
the case of binary predictions, Cohen’s Kappa, or a variant thereof,
is appropriate. In the case of continuous predictions, a version of
an intraclass correlation coefficient is appropriate.

2.2 Cohen’s Kappa (CK)
For binary predictions (0 and 1), inter-rater reliability statistics can
be computed from a confusion matrix. The confusion matrix is a
summary of table 2. Let 𝑎 be the number of rows with the pair (1, 1),
𝑏 the number of rows with (0, 1), 𝑐 the number of rows with (1, 0),
and 𝑑 the number of rows with (0, 0). The confusion matrix is:

rater r
1 0 total

rater s 1 𝑎 𝑏 𝑠1
0 𝑐 𝑑 𝑠0

total 𝑟1 𝑟0 𝑛

A first, simple reliability statistic is observed agreement, 𝑝𝑜 =

(𝑎 + 𝑑)/𝑛. Observed agreement is the proportion of cases in which
the two raters agree. Observed agreement is easy to measure and
interpret, but has the disadvantage that it does not correct for the
possibility of agreement by chance, that is, agreement that we
would expect even if the two raters make random predictions. A
statistic that solves this problem is Cohen’s Kappa, (CK), proposed
by Cohen [7]. CKmeasures agreement between two (ormore) raters,
where we correct observed agreement with (expected) agreement
by chance. Agreement by chance is the proportion of cases in which
we expect the two raters to agree at random, estimated from the
raters’ base rates. To obtain agreement by chance, we multiply
the proportions by which the two raters assign decision subject to
either 1 or 0 (rater prevalences), finding agreement by chance as
𝑝𝑐 = (𝑟1 · 𝑠1 + 𝑟0 · 𝑠0)/𝑛2. CK now takes the form

𝐶𝐾 =
𝑝𝑜 − 𝑝𝑐
1 − 𝑝𝑐

, (1)

where 𝑝𝑜 is observed agreement. CK lies in [−1, 1]. A value
of 1 means perfect agreement, 0 means agreement is purely by
chance, and −1 means perfect disagreement. CK is one of the most
frequently reported IRR statistics. However, it has two well-known
problems, cf. Hallgren [13]. The first problem is the prevalence
problem: If the marginal distribution of predictions is unbalanced,
then CK may be too low, i.e., it may underestimate reliability. The
second problem is the bias problem: If the marginal distribution
of the two raters is substantially different, then CK may be too
high, i.e., it may overestimate reliability. In both situations, CK may
mis-represent IRR.

2.3 Prevalence-Adjusted Bias-Adjusted Kappa
(PABAK)

Different remedies for the two problems have been recommended
in the literature [13]. Here the approach proposed by Byrt et al. [6]
is adopted. The idea is to compute a corrected version of Kappa
called Prevalence-Adjusted Bias-Adjusted Kappa (PABAK), which
takes both prevalence and bias into account. PABAK corrects for
unequal prevalences by computing a Kappa statistic in which both
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positive and negative agreement, 𝑎 and 𝑑 , are replaced by their
average (𝑎 +𝑑)/2. At the same time, both disagreement statistics, 𝑏
and 𝑐 , are replaced by their average (𝑏 + 𝑐)/2 to correct for rater
bias. The resulting statistic, PABAK, also known as Bennett’s S, is
defined as:

𝑃𝐴𝐵𝐴𝐾 =
2(𝑎 + 𝑑)

𝑛
− 1 = 2𝑝𝑜 − 1. (2)

PABAK is a linear rescaling of observed agreement (𝑝𝑜 ) and lies
in [−1, 1]. PABAK corrects for bias and prevalence at the same time,
and as a consequence, it is not clear which correction is responsible
for differences between CK and PABAK. To solve this problem, Byrt
et al. [6] propose to monitor both bias and prevalence, measured
as the Bias Index (BI) and the Prevalence Index (PI). BI is defined as
the difference in proportions of disagreements: 𝐵𝐼 = (𝑏 − 𝑐)/𝑛. PI
is defined as the difference in proportions of positive agreements
and negative agreements: 𝑃𝐼 = (𝑎 − 𝑑)/𝑛.2 Byrt et al. establish the
following relation between CK and PABAK:

𝐶𝐾 =
𝑃𝐴𝐵𝐴𝐾 − 𝑃𝐼2 + 𝐵𝐼2

1 − 𝑃𝐼2 + 𝐵𝐼2
. (3)

This relation between CK and PABAK is relevant because, first,
it supports the above observation that PABAK corrects for bias and
prevalence, where imbalanced prevalences lead to an underestima-
tion of inter-rater agreement in CK (negative sign of the 𝑃𝐼 term),
while bias leads to an overestimation of inter-rater agreement in CK
(positive sign of the 𝐵𝐼 term). Second, it allows us to understand the
source of disagreements between CK and PABAK by monitoring
𝑃𝐼 and 𝐵𝐼 .

2.4 Intraclass Correlation Coefficient (ICC)
To measure inter-rater reliability with respect to continuous predic-
tions such as scores and probabilities, other inter-rater reliability
statistics are needed. The most important family of such statistics
are so-called Intraclass Correlation Coefficients (ICCs); see Liljequist
et al. [20] for a useful overview and discussion. ICCs take values
in [0, 1]. ICCs can be described as ratios of variances, (variance of
interest)/(total variance) [20]. In the context of IRR, the variance of
interest includes differences between the “true” ratings of different
individuals, which we expect, because different individuals have
different underlying risk profiles. The total variance includes the
variance of interest, but also differences between raters (rater bias),
and differences between different ratings of the same individuals. If
the total variance is large in comparison to the variance of interest,
ICC will be close to 0. If the total variance is similar to the variance
of interest, ICC will be close to 1.

An appropriate version of ICC has to be chosen based on the
experimental situation. Here we draw on the flowchart in Koo and
Li [19, Fig. 1] to find the appropriate ICC. First, one has to deter-
mine whether or not the same raters rate all subjects, or if raters are
assigned randomly to subjects. In our case, the same two (synthetic)
raters 𝑟 and 𝑠 rate all subjects, cf. table 2. This means that a so-called
two-way model is appropriate. Second, these (synthetic) raters have
2BI and PI as defined here do not necessarily capture standard uses of “bias” and
“prevalence”. A difference in PI between groups can also be a form of (historical) bias:
Different, socially relevant groups have different prevalences of, e.g., recidivism due
to historically entrenched inequalities, cf. [25]. BI is a kind of rater bias, because it
measures an inequality in rater base rates.

specific and unique properties (known noise levels), which means
that a so-called mixed effects model is appropriate. Third, we use
two single (synthetic) raters 𝑟 and 𝑠 , rather than means of different
raters, such that a so-called single rater model is appropriate. Fourth,
and finally, we are interested in so-called absolute agreement rather
than consistency. Absolute agreement measures whether different
raters assign the same rating to the same subjects. Consistency
measures whether different raters assign the same ratings to the
same subjects with an additive correction. This means that for con-
sistency, the raters only have to agree on the order of ratings, while
their overall rating level can differ.3 For present purposes, consis-
tency is not appropriate because scores are usually transformed
into risk levels or (binary) decisions using thresholds, and for this
transformation, the absolute value of the score is used. Two classic
papers [24, 27] propose different ways of reporting ICCs. Following
the convention of McGraw and Wong [24], 𝐼𝐶𝐶 (𝐴, 1), a two-way,
single rater ICC for absolute agreement is measured.4

3 RELATEDWORK
Reliability is a very general desideratum of (predictive) modeling.
Statistical methods for measuring reliability have been developed
and applied in medicine and biology as well as social sciences and
psychology [3, 20]. The importance of reliability also applies to re-
cidivism risk assessment instruments, where it is often mentioned
as one of two important properties of such instruments, to be evalu-
ated alongside predictive validity [8]. There is a lack of knowledge
regarding predictive validity and reliability of risk assessment in-
struments [8], and this is particularly true for IRR. In a survey of risk
assessment instruments in the US, Desmarais et al. [8] included 53
publications and evaluated 19 risk assessment instruments. In the
results section, they write: “Perhaps one our most striking findings,
only two of the 53 studies reported on the inter-rater reliability of
the risk assessments” (Ibid., p. 20). Desmarais et al. continue that
there is a “critical need for data on the inter-rater reliability” of re-
cidivism risk assessment instruments in the US. Baird [2] provides
an even more scathing assessment of reliability research: “Nearly all
of the literature on popular risk models refers to their demonstrated
validity and reliability. In actuality, there is little information avail-
able that supports model reliability, and much of what is available
either addresses the wrong issue (internal consistency) or provides
inadequate tests of inter-rater reliability”.

Below, data on COMPAS, one of the most high-profile risk as-
sessment instruments, will be used. The evaluation of COMPAS by
ProPublica [1] constitutes one of the starting points of the debate
on fairness in machine learning [4]. The predictive validity of COM-
PAS has been empirically investigated in different studies, cf. [5].
In contrast, only one (test-retest) reliability study of COMPAS has
ever been conducted [10].5 Brennan and Dieterich [5] write that
two studies of IRR for COMPAS are planned. However, apparently,

3For example, if 𝑟 and 𝑠 assign different ratings to subjects 𝑖, 𝑖′ , i.e., 𝑥𝑟 (𝑖 ) ≠ 𝑥𝑠 (𝑖 )
and 𝑥𝑟 (𝑖′ ) ≠ 𝑥𝑠 (𝑖′ ) , then absolute agreement is violated. However, consistency can
still be satisfied if there is additive rater bias, i.e., if there is a constant 𝑐 such that
𝑥𝑟 (𝑖 ) = 𝑥𝑠 (𝑖 ) + 𝑐 and 𝑥𝑟 (𝑖′ ) = 𝑥𝑠 (𝑖′ ) + 𝑐 , cf. [19], i.e., 𝑟 and 𝑠 agree on the relative
order of 𝑖 and 𝑖′ .
4𝐼𝐶𝐶 (𝐴, 1) has different interpretations for the mixed effects and the random effects
case, but the computation is the same [20].
5The author tried to obtain the data used in [10]. Please contact the author if you have
access to the data, or know how to gain access.
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these two studies were never completed and/or published. Thus, the
IRR of one of the most high-profile risk assessment instruments in
use today has never been empirically investigated. The reason for
the lack of studies may be that collecting suitable data is expensive,
because at least two raters instead of one have to compile ratings,
study case files, conduct interviews, and so on. In the case of COM-
PAS, it is reported that rating a single individual may take between
10 to 60 minutes [8, p. 7], which shows how time-consuming mea-
suring IRR can be. Presumably, institutions such as correctional
facilities that use RAIs do not have the resources to conduct large
IRR studies.

Empirical studies of validity and reliability of risk assessment
instruments with respect to socially relevant groups have been
conducted. However, the author is not aware of empirical stud-
ies that have found systematic IRR differences between socially
relevant groups. Holtfreter and Cupp [15] provide a review of
gender-specific research of LSI-R, an important RAI. They find
that few studies examine validity or reliability separately for fe-
males. While one study reported high IRR (percent agreement) for
a sample of young women, there appears to be no study consid-
ering gender differences in reliability. Stewart and Wormith [29]
investigate validity and reliability of different RAIs, including LSI-
R, for female-only samples. Lowder et al. [22] examine reliability
and validity of START and LSI-R, two risk assessment instruments.
While they investigate (predictive) validity by race, and measure
ICC and Cohen’s Kappa for total scores and risk bins, they do not
report results by race. Jimenez et al. [16] investigate the LS/CMI
and examine whether total scores and raters yielded differences
between majority and minority groups. They find that there are
group-specific differences of ratings (higher scores for minorities
on seven of eight criminogenic factors), but that there is no evi-
dence that this difference is due to racial bias in the administration
of the instrument (rating). Jimenez et al. did not investigate rater
bias via IRR statistics. Lowder et al. [23] investigate racial bias with
respect to LSI-R assessments. However, IRR was not investigated
due to a lack of data. Rater cultural bias was explored in Venner
et al. [31]. Venner et al. found no evidence of rater cultural bias for
YLS/CMI-SRV.

The use of machine learning methods for risk assessment in
criminal justice has been the focus of renewed interest at least
since discussion surrounding COMPAS [1].6 Since Angwin et al.
[1], many issues of ML methods in application to risk assessment
have been discussed; the main issues have been predictive validity
(in particular the possibility of enhancing predictive performance
with ML methods), fairness, transparency, and various tradeoffs
between these desiderata. However, the issue of reliability is con-
spicuously absent from the debate. For example, Kigerl et al. [18], a
paper on ML methodology for risk assessment, focuses on predic-
tive performance; Kigerl et al. do not mention (inter-rater) reliability.
Similarly, Travaini et al. [30], a recent review of ML methodology
for recidivism risk assessment, provides comparisons of predictive
validity of different ML methods and datasets, but does not discuss
(inter-rater) reliability as a desideratum of ML-enhanced risk as-
sessment. The relation between (inter-rater) reliability or noise on
6Note that COMPAS is based on a so-called logistic regression model with 𝑙1 regular-
ization, well-known methods from machine learning and statistics [5]. A very similar
model will be used in the simulation study below.

the one hand and fairness on the other has been explored. More
specifically, the impact of noise in the labels (ground truth), and
noise in protected attributes, have been investigated in various
works; see the “related work” section in Räz [26]. However, the
consequences of feature noise for groups is relatively unexplored.

4 METHODS
The code for all experiments, results and figures can be found here:
github.com/timraez/ReliabilityGapsCOMPAS.

4.1 Outline of Experiments
The key idea is to simulate inter-rater data. Any dataset suitable to
test the predictive validity of a RAI with information about group
membership can serve as a basis. Access to a RAI or a predictive
model is necessary. Access to the labels of test data and inter-rater
data are not necessary. In more detail, we need a dataset 𝑋𝑜𝑟𝑖𝑔 of
single ratings of 𝑛 individuals, which has the form of column ‘rater
r’ of table 1. We assume that each individual belongs to exactly
one of two groups (𝑎 or 𝑏). The predictive model (RAI) 𝑓 : 𝑋 → 𝑌

should provide predictions for entries of𝑋𝑜𝑟𝑖𝑔 . The basic simulation
experiment has the following steps:

(1) Perturb the data 𝑋𝑜𝑟𝑖𝑔 :

𝑋𝑝𝑒𝑟𝑡 = 𝑃 (𝑋𝑜𝑟𝑖𝑔)

The perturbed data 𝑋𝑝𝑒𝑟𝑡 corresponds to the ratings of a
second rater, i.e., the column ‘rater s’ of table 1. The kind
of perturbation will depend on the form of items (binary or
numerical).

(2) Apply the predictive model (RAI) 𝑓 to original and perturbed
data (possibly after preprocessing) to obtain predictions:

𝑌𝑜𝑟𝑖𝑔 = 𝑓 (𝑋𝑜𝑟𝑖𝑔),
𝑌𝑝𝑒𝑟𝑡 = 𝑓 (𝑋𝑝𝑒𝑟𝑡 ) .

Predictions can be binary or risk scores. The resulting data
corresponds to table 2.

(3) Split the predictions according to group membership (𝑎 or
𝑏) of individuals to obtain group-specific predictions:

𝑌𝑎𝑜𝑟𝑖𝑔 ∪ 𝑌
𝑏
𝑜𝑟𝑖𝑔 = 𝑌𝑜𝑟𝑖𝑔,

𝑌𝑎𝑝𝑒𝑟𝑡 ∪ 𝑌𝑏𝑝𝑒𝑟𝑡 = 𝑌𝑝𝑒𝑟𝑡 .

(4) Pair original and perturbed predictions group-wise, with
predictions for each individual on the original and the per-
turbed data, and compute the inter-rater reliability statistics
𝐼𝑅𝑅 separately for the two groups 𝑎, 𝑏:

𝐼𝑅𝑅𝑎 = 𝐼𝑅𝑅
(
𝑌𝑎𝑜𝑟𝑖𝑔, 𝑌

𝑎
𝑝𝑒𝑟𝑡

)
𝐼𝑅𝑅𝑏 = 𝐼𝑅𝑅

(
𝑌𝑏𝑜𝑟𝑖𝑔, 𝑌

𝑏
𝑝𝑒𝑟𝑡

)
The reliability statistic 𝐼𝑅𝑅 is chosen based on the type of
prediction: Cohen’s Kappa (or variants thereof) for binary
predictions; intraclass correlation coefficients for risk scores.

(5) Examine the difference between reliability statistics for the
two groups, i.e., the difference between 𝐼𝑅𝑅𝑎 and 𝐼𝑅𝑅𝑏 .

https://github.com/timraez/ReliabilityGapsCOMPAS
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4.2 Data
Experiments were performed on the COMPAS dataset, compiled
by ProPublica [1] to investigate issues of group fairness with COM-
PAS. The version (and setup) of Hertweck and Räz [14] was used,
which, in turn, is based on Friedler et al. [11]. The COMPAS dataset
contains 𝑛 = 6167 entries of defendants form Broward County, FL,
USA, for which COMPAS risk scores were available. Ground truth
is part of the dataset; the label 𝑌 = 1 encodes actual rearrest within
2 years, while 𝑌 = 0 encodes no actual arrest within two years.
The sensitive attribute is race: 2100 defendants are assigned to the
category “White” (privileged group), encoded as 1, while 4067 defen-
dants were assigned to the category “non-White” (non-privileged
group), encoded as 0. The dataset contains 14 features, including 𝑌 .
Of the 13 input features, 8 are categorial (“misdemeanor charge”,
“felony charge”, “sex”, “race”, “sex-race”, 3 age categories), and 5 are
numerical (“age”, “juvenile felony charges count”, “juvenile mis-
demeanor charges count’, “juvenile other charges counts”, “priors
count”). To keep perturbations simple, the 3 one-hot encoded age
categories were used in training and for predictions, but they were
not perturbed. “race” and “sex-race” were also not perturbed in
order to not confound group membership. Note that the COMPAS
dataset contains features that can be used to predict recidivism, but
it does not contain input data for COMPAS (the COMPAS question-
naire contains over 130 items). Eventually, experiments should be
performed on actual risk assessment data, and with actual RAIs.
The experiments reported here should be interpreted as proof-of-
concept, demonstrating the in-principle feasibility of the method.

4.3 Data Split and Model
The dataset was split into 5 folds, as for 5-fold cross-validation. A
standard logistic regression model (with automatic 𝑙2 regularization
and L-BFGS solver) was fit to each of the 5 train splits, obtaining 5
models in total. This model serves as a stand-in for a RAI. Before
fitting the model, a standard data normalization (scaling) was per-
formed on the numerical features, as required for regularization.
The scaling was applied to perturbed and unperturbed test data
before obtaining predictions. There was no further optimization or
parameter tuning of the 5 models. All subsequent experiments were
performed with the 5 models on the 5 test splits. Reported results
were obtained as averages of the 5 splits to increase stability.

4.4 Perturbations
For each experiment, perturbed copies of the test sets were ob-
tained by applying the following procedure to each of 5 test sets
from the 5 folds. The original test set𝑋𝑜𝑟𝑖𝑔 was copied, and a pertur-
bation (noise) 𝑃 was added to the copy to obtain a perturbed version
𝑋𝑝𝑒𝑟𝑡 = 𝑃 (𝑋𝑜𝑟𝑖𝑔). Experiments were performed with noise of dif-
ferent strengths and on different subsets of variables. For categorial
(binary) variables, values were flipped (0 ↦→ 1, 1 ↦→ 0) at random
with a given probability (noise level) 𝑝 . This was achieved by adding
a random vector with a proportion 𝑝 of 1s to the binary data, and
then taking the result mod 2. For numerical variables, normal noise
with 𝜇 = 0 and variance 𝜎2 was added with a given probability
(noise level) 𝑝 . This was achieved by generating a random vector
with draws from the normal distribution N(0, 𝜎2), rounded to the

closest integer. The resulting vector was multiplied component-
wise with a vector of 0s and 1s, with a proportion 𝑝 of 1s, obtaining
a vector with a proportion 𝑝 of entries drawn from N(0, 𝜎2) and
0 elsewhere, which was added to the data. In the experiments de-
scribed below, noisewas addedwith the following parameter ranges:
𝑝 ∈ [0, 0.3], with increments of 0.01, and 𝜎2 ∈ {1, 5, 10}. The pa-
rameter 𝑝 controls for the level of noise, while 𝜎2 determines the
size of errors for numerical variables. For example, the combination
of 𝑝 = 0.2, 𝜎2 = 5 means that noise was added to a fraction of .2
of inputs in question, and in the case of numerical variables, this
noise has distribution N(0, 5). Each such combination of values
corresponds to a basic experiment as described in Sec. 4.1.

The noise scheme was chosen to create a level of noise (pro-
portion of perturbed values) that could be varied continuously for
categorical and numerical variables at the same time.7 Of course,
this noise may be unrealistic. In a first set of experiments, no scal-
ing was used to prevent negative values for numerical features.
Depending on the RAI in question, negative values for, e.g., the
count of priors, or values for age below 18, are excluded a priori.
Further experiments with such minima for numerical variables
were performed.

If noise were generated (for one or several features) without
taking group membership into account, the noise would be in-
dependent of group membership (in expectation), but a certain
random fluctuation would be introduced by not controlling for how
the noise is distributed over the two groups. Therefore, noise was
generated separately for each group, using identical noise levels.
It was found that this control of distribution of noise over groups
yielded more stable results, but did not have a qualitative impact, as
would be expected for large enough samples. Adding noise in this
way guarantees that the second “rater” makes mistakes without
group bias.

4.5 Interpretation of IRR Values, Statistical
Significance, and Qualitative Differences

One of the difficulties of measuring IRR is the interpretation of the
(absolute) values of IRR statistics. The range of IRR statistics do not
have precise interpretations (except for extrema, see above). It has
become common practice to report certain levels of these statistics
as excellent, good, acceptable, etc. . However, saying that, e.g., an
ICC in the interval [0.9, 1] is “excellent”, as suggested in Koo and Li
[19], is purely conventional, arbitrary, and lacks justification. For
this reason, such qualitative evaluations will not be reported below.
Also, the focus of the present paper is on systematic differences
of values of these statistics for different groups, which means that
absolute values are less significant.

What does it mean that the difference between the values of two
groups is systematic? It can mean that the difference between the
values of two groups is statistically significant. For some of the
statistics considered here (CK, ICC), test of statistical significance
and confidence intervals are available and can be easily computed.
In the case of simulation experiments, we can examine group differ-
ences between IRR statistics over a range of noise levels, as opposed
to empirical studies, which usually only report point measurements

7Note that the level of noise for numerical variables is an upper bound, because draws
from, e.g., N(0, 1) will be 0 with a probability of .38.
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(one value per IRR statistic and group). The different noise levels
can be interpreted as a range of different synthetic raters. This
makes it possible to determine qualitative differences. If the val-
ues of one group are always or mostly lower than the values of
the other group for the entire set of synthetic raters (all levels of
noise), this indicates that there are qualitative IRR differences, even
if the absolute differences between groups is small. Of course, the
absolute difference has to be taken into consideration. A systematic
difference may be negligible in practice if it is very small.

5 RESULTS
The goal of the experiments is to examine the overall effect of noise
on group differences. The level of noise 𝑝 was increased from 0 to 0.3
in increments of 0.01. Different kinds of noise were used for catego-
rial and numerical features, as explained in the methods section. For
the numerical features, three settings for the error size, measured
as the variance of centered normal noise (𝜇 = 0, 𝜎2 ∈ {1, 5, 10}),
were examined. The same level of noise was injected separately
for the two groups. All features were perturbed at once with the
same level of noise. Perturbed categorial features: “misdemeanor
charge”, “felony charge”, “sex”. Not perturbed: “race”, “sex-race”,
and age bins. Perturbed numerical features: “age”, “juvenile felony
charges count”, “juvenile misdemeanor charges count’, “juvenile
other charges counts”, “priors count”. Additional experiments are
summarized in Sec. 5.4; the corresponding figures are in the appen-
dix.

5.1 Experiment 1, Perturbation of All Features,
𝜎2 = 1

In this experiment, the error size for the numerical variables is
small – of the proportion 𝑝 of values that are perturbed, over 68%
are either 0 or 1. We can see in Fig. 1a that Kappa decreases for both
groups as the noise level rises, as expected. There is no systematic
reliability difference between the two groups. PABAK reliability
decreases as the level of noise rises (Fig. 1b). There is a systematic
difference between groups: Group 0 has lower reliability levels than
group 1 for the same noise. The injection of the same level of noise
affects different groups differently, such that group 0 achieves lower
reliability. This is one of the main findings of the present paper.
ICC(A, 1), in Fig. 1c, shows a different picture than both CK (Fig.
1a) and PABAK (Fig. 1b). The ICC reliability of group 1 is lower for
same level of noise than the ICC of group 0.

Now turn to the explanation of the difference between the results
according to CK (Fig. 1a) and PABAK (Fig. 1b). We know that the
difference between CK and PABAK is due to the combination of
bias and prevalence correction, because PABAK and CK are related
via equation (3). Prevalence and bias correction have a marked
impact on reliability. While there is no systematic group difference
according to CK, PABAK finds lower levels of reliability for group
0. But is the difference due to the bias correction, to the prevalence
correction, or both? We can answer this question by decomposing
the difference between PABAK and Cohen’s Kappa using equation
(3). Specifically, we can examine, for each group separately, what
happens if we only use a bias correction or a prevalence correction
by setting either BI or PI in equation (3) to 0, and comparing the
result to both CK and PABAK. The result for group 0 is in figure 2a.

We see that there is not a big difference between CK and PABAK.
We also observe that if we only use the BI correction in equation
(3), that is, if we let PI = 0, the result largely coincides with CK. If
we only use the PI correction by letting BI = 0, the result largely
coincides with PABAK. This means that the prevalence correction
is responsible for the (small) difference between CK and PABAK of
this group. Now consider the result for group 1 in figure 2b. For this
group, we observe that there is a bigger difference between CK and
PABAK. This difference is responsible for the difference between
figures 1a and 1b. We observe that if we only use bias correction
(PI = 0) in equation (3), the result again coincides with CK, whereas
if we use prevalence correction (BI = 0), the result coincides with
PABAK. This means that the difference between CK and PABAK is
largely explained by the prevalence correction. CK underestimates
the reliability for group 1 because this group has a lower prevalence
than group 0. The correction can be observed in Fig. 2b.

A third important finding is that the results of ICC and PABAK
contradict each other. How can this be explained? For one, ICC is
measured with respect to scores, which means that we need not
expect the same results as for PABAK.8 A plausible explanation of
the difference is that PABAK is prevalence-corrected, while ICC
does not take prevalences into account. Of course, we cannot di-
rectly measure (binary) prevalences for probabilistic predictions,
but we can measure and compare average predicted risk scores for
the two groups (not reported here). These group-specific average
scores show a similar picture as binary prevalences: Group 0 has
a higher average score than group 1, and this difference persists
over the range of 𝑝 , although the difference gets somewhat smaller
as 𝑝 increases. Thus, the lower ICC level of group 1 may be due
to the lower average score of this group. It should be stressed that
this explanation is only a conjecture. It is unclear how prevalence
affects ICC on a theoretical level, and there is no such thing as a
prevalence-corrected version of ICC.9

5.2 Experiment 2, Perturbation of All Features,
𝜎2 = 5

In this experiment, the same features are perturbed, but with a
larger variance of 5 for numerical variables. Again, CK (Fig. 1d)
decreases, but to a lower overall level than for 𝜎2 = 1 (Fig. 1a). This
is what we expect: larger errors lead to lower reliability. We also
observe a (small) systematic group difference: reliability is (mostly)
lower for group 1. PABAK reliability (Fig. 1e) also decreases to a
lower level than for 𝜎2 = 1 (Fig. 1b). Reliability is lower for group 0
than for group 1. The PABAK group difference has opposite sign of
CK (Fig. 1d). Again, we can examine how the difference between
CK and PABAK came about by decomposing the PABAK correction
into a bias correction and a prevalence correction. The explanation
is the same as in experiment 1: the prevalence correction for group
1 is mostly responsible for the difference between CK and PABAK.
For plots see appendix A. ICC (Fig. 1f) shows the same qualitative
behavior as in experiment 1 (Fig. 1c).

8The fact that ICC is calculated from scores may also explain why the ICC graph is
smoother than graphs of binary predictions.
9There are empirical studies showing that ICC does depend on (probabilistic) preva-
lence [12]. According to this study, ICC increases as prevalence increases towards
0.5. This supports the explanation given here, because group 0 with higher scores is
assigned a higher ICC level.
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(a) Exp. 1, Cohen’s Kappa, 𝜎2 = 1. (b) Exp. 1, Byrt’s PABAK, 𝜎2 = 1. (c) Exp. 1, ICC(A,1), 𝜎2 = 1.

(d) Exp. 2, Cohen’s Kappa, 𝜎2 = 5. (e) Exp. 2, Byrt’s PABAK, 𝜎2 = 5. (f) Exp. 2, ICC(A,1), 𝜎2 = 5.

(g) Exp. 3, Cohen’s Kappa, 𝜎2 = 10. (h) Exp. 3, Byrt’s PABAK, 𝜎2 = 10. (i) Exp. 3, ICC(A,1), 𝜎2 = 10.

Figure 1: Three experiments with perturbation of all features. Each row corresponds to one experiment. Row 1: 𝜎2 = 1; row 2:
𝜎2 = 5; row 3: 𝜎2 = 10.

5.3 Experiment 3, Perturbation of All Features,
𝜎2 = 10

Again, all features are perturbed; the variance for numerical features
is increased to 10. We observe the same general tendency in Fig.
1g as in experiments 1 (Fig. 1a) and 2 (Fig. 1d). CK descends to
a low overall level. Reliability is systematically lower for group
1. Qualitatively, PABAK (Fig. 1h) shows a similar picture as in
experiments 1 (Fig. 1b) and 2 (Fig. 1e). Overall levels are lower, and
reliability of group 0 is below group 1. Again, we can explain how
the difference between CK and PABAK came about. The reason is
the same as in the first two experiments; for plots see appendix
A. ICC shows the same qualitative behavior as in experiments 1
and 2, with lower overall levels; group 1 has systematically lower

reliability. Note that all three statistics show some sign of non-
linearity as 𝜎2 grows; this is likely due to the numerical noise
(normal distribution).

In sum, the different IRR statistics yield contradictory results as
to which group has lower reliability due to the uniform injection
of noise. On the one hand, CK and ICC find a lower level of reli-
ability for group 1, putting this group at a disadvantage. Results
become more pronounced as the error size (𝜎2) grows. PABAK, on
the other hand, finds lower reliability levels for group 0. The differ-
ences between CK and PABAK can be explained by the prevalence
correction in PABAK: Prevalence correction yields higher reliability
levels for group 1.
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(a) Group 0 (b) Group 1

Figure 2: Exp. 1, PI and BI correction, 𝜎2 = 1.

5.4 Further Experiments
Perturbation of All Features with Minima for Numerical Features.

Fixed minima for the numerical features were tested in three exper-
iments. If the perturbed value was below a minimum for a certain
feature, it was reset to that minimum. The value of the feature
“age” was set to a minimum of 18; the value of the “counts” features
was set to a minimum of 0. The results are in appendix B. The
comparison with the results of the first three experiments shows
a qualitative agreement, with some quantitative differences. The
overall level of reliability is slightly higher in the experiments with
minima. Also, the PABAK gap closes as 𝜎2 is increased. This sug-
gests that qualitatively, the results from the first three experiments
do not depend on the specifics of the noise scheme.

Perturbation of Numerical Features. Only numerical features were
perturbed in three experiments; categorial features were not per-
turbed. The results are in appendix C. The results in these experi-
ments are a bit noisier, in particular for 𝜎2 = 1. It can be observed
that there is a systematic, qualitative difference between CK and
PABAK here as well. For 𝜎2 = 1, the two groups have gaps with
opposite sign. As 𝜎 increases, the gap appears to become slightly
more pronounced for CK, and smaller for PABAK. This shows that
even if only the numerical features are perturbed, the qualitative
finding is confirmed that there are reliability gaps between groups,
and that the sign of the gap depends on the IRR statistic.

Perturbation of Categorical Features. Only categorial features
were perturbed in one experiment. The results can be found in ap-
pendix D. Here it is observed that there appears to be no systematic
CK gap between groups. The gap for PABAK is consistent with
the first three experiments, but even more pronounced. This sug-
gests that the PABAK gap we observe in the first three experiments
may be driven by the categorial features to some extent, but not
exclusively, as we observed in the experiments with only numerical
features.

6 DISCUSSION
Summary. The most important result is that there are reliabil-

ity gaps between groups according to common IRR statistics (CK,
PABAK, ICC(A, 1)), putting one of two groups (White people and
non-White people) at a disadvantage. Qualitatively, we find that
ICC(A,1), which measures the reliability of predicted scores, almost
universally assigns a lower reliability to group 1. CK, which mea-
sures the reliability of binary predictions, mostly finds the same
result, with less consistency than ICC. PABAK, which also mea-
sures the reliability of binary predictions, assigns lower reliability
to group 0. We can explain the contradictory findings in the case of
binary predictions, viz. CK and PABAK: The bulk of the difference
is due to the prevalence correction, measured by PI, which accounts
for an underestimation of reliability for group 1 by CK. PI mirrors
differences in the distributions of (𝑌,𝐴), group-specific ground
truth, because the predictor 𝑓 (𝑋 ) = 𝑌 is an approximation of the
data (𝑋,𝐴,𝑌 ), and the distribution of group-specific predictions
(𝑌,𝐴) reproduces the data to some extent.

Normative Upshot. A lack of reliability can be morally unde-
sirable in its own right, because reliability can be interpreted as
individual fairness, a notion requiring that similar people should
get similar predictions; see Räz [26] an elaboration of the argument.
A consequence of this interpretation is that if a group has lower
reliability, the representations of its members are less adequate
for predictive purposes. It could be asked whether a reliability gap
constitutes discrimination; see Lippert-Rasmussen [21] for a stan-
dard philosophical account. It is possible that a rater intentionally
treats members of different groups differently due to their group
membership, which constitutes direct discrimination. However, it
can also happen that differences in reliability are due to the fact
that different groups have different feature distributions, such that
mistakes have different consequences for different groups. These
differences are due to historical bias in the data, not to biased rat-
ings. Of course, such differences may need to be mitigated, but
they do not constitute direct discrimination by the raters. Relia-
bility gaps are relevant not only in the context of RAIs, but also
in the context of medicine and other disciplines. The normative
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significance of reliability may be context dependent. In the context
of RAIs, base rates are due to historical inequalities and thus in
need of mitigation. In other contexts, base rates may have different
sources, which means that different or no mitigation is adequate.

Methodological Ramifications. In empirical research, reliability
is usually measured by CK, and by versions of ICC. The above
findings suggest that this may be problematic in recidivism risk
assessment, because CK strongly depends on prevalences, which,
in turn, mirror historical inequalities between groups. Specifically,
CK underestimates reliability for groups with lower prevalence –
in the present case, the privileged group 1. It is therefore suggested
that reliability research should also report base rates (in the form of
PI and BI), and measure PABAK besides CK to gauge the extent of
prevalence and bias dependence of CK.We also saw that ICC almost
universally found group 1 to have lower reliability. This finding is
mostly consistent with reliability as measured by CK. This suggests
that ICC depends on prevalence with respect to predicted scores.
It was noted above that empirical results suggest a prevalence
dependence of ICC. However, the author is not aware of prevalence
corrected versions of ICC. Understanding this issue better from
a theoretical (statistical) point of view is important, in particular
because reliability of scores is almost exclusively evaluated with
ICC.

Simulation vs. Empirical Approach. The above experiments show
that at the proof-of-concept level, using simulated IRR data is a
promising approach that can complement experimental measure-
ments of IRR. Simulated data can be generated and investigated
at no cost to judicial agencies. Also, the simulation approach used
here takes away the emphasis from the (un-)reliability of human
raters and puts it on the reliability of instruments, and in particu-
lar on the features used by RAIs, because synthetic “raters” have
transparent properties (noise scheme). The simulation approach
also provides a richer, more qualitative picture of possible reliability
gaps by providing not only point measurements, but the behavior of
IRR measures on an entire range. This should not be read as a plea
against real inter-rater data. Rather, inter-rater data can be used
in combination with simulations. For example, if inter-rater data
for a representative but small sample is available, one can use this
limited dataset to create a simulation study of a larger dataset for
the same instrument, by creating synthetic raters (noise) based on
the error profile of the raters from the empirical inter-rater sample.
The real inter-rater data would provide empirical information about
the distribution of errors for the different features; the simulation
study would reproduce these empirical distributions, but could vary
the noise level to some extent, as in the experiments performed
above. In this way, the strengths of the empirical and the simu-
lation approach can be combined. An approach using empirical
information about noise distributions would be preferable to the
approach taken above, where the noise scheme is somewhat ad
hoc. The use of normal noise in the case of numerical features is
not particularly realistic, and results should be taken with a grain
of salt. This approach can only provide a qualitative idea of how
errors in numerical features affect IRR. We have also seen that there
appears to be a qualitatively different behavior of reliability with
respect to some of the IRR statistics. It cannot be excluded that this
is due to the noise scheme used here.

Mitigation. The above experiments and discussion focus on the
identification of possible reliability gaps between socially salient
groups. Little has been said about mitigation. One lesson is that,
generally speaking, the very same level of noise can impact different
groups of people differently. This provides a further, fairness-driven
motivation to better understand and improve reliability of RAIs,
besides the usual argument that reliability is necessary for predic-
tive validity. One plausible way to increase the general level of
reliability is via sparse models. This approach has been advocated
and tested to improve predictive validity. For example, Dressel and
Farid [9] have argued that a model using two features has the same
accuracy as COMPAS. It is very likely that sparsity would also
improve reliability, because fewer features also means fewer oppor-
tunities for mistakes. However, it is important to carefully test this
approach, because if fewer features are used, these at least prima
facie also become more important, and so do mistakes in these
features. Generally speaking, different model architectures should
be investigated with respect to their reliability, using both real and
simulation data.

7 CONCLUSION
In simulation studies based on the COMPAS dataset, it was shown
that there are inter-rater reliability gaps between socially salient
groups. According to common statistical measures (Cohen’s Kappa,
ICC(A,1)), White people have a lower level of reliability for the
same level of noise. However, according to another statistical mea-
sure (Byrt’s PABAK), which controls for different prevalences of
the groups involved, non-White people have a lower level of reli-
ability. One important recommendation for empirical research is
that prevalence (and bias) should be reported in the form of PI and
BI when measuring inter-rater reliability with Cohen’s Kappa and
ICC. Important open issues include the integration of empirical
error distributions in the noise scheme, the exploration of different
possibilities to mitigate reliability losses, and theoretical work on
the prevalence dependence of ICC.
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APPENDIX
A BIAS AND PREVALENCE CORRECTION, EXPERIMENTS 2 AND 3

(a) Group 0 (b) Group 1

Figure 3: Exp. 2, PI and BI correction, 𝜎2 = 5.

(a) Group 0 (b) Group 1

Figure 4: Exp. 3, PI and BI correction, 𝜎2 = 10.
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B PERTURBATION OF ALL FEATURES, MINIMA FOR NUMERICAL FEATURES

(a) Cohen’s Kappa, 𝜎2 = 1. (b) Byrt’s PABAK, 𝜎2 = 1. (c) ICC(A,1), 𝜎2 = 1.

(d) Cohen’s Kappa, 𝜎2 = 5. (e) Byrt’s PABAK, 𝜎2 = 5. (f) ICC(A,1), 𝜎2 = 5.

(g) Cohen’s Kappa, 𝜎2 = 10. (h) Byrt’s PABAK, 𝜎2 = 10. (i) ICC(A,1), 𝜎2 = 10.

Figure 5: Three experiments with perturbation of all features and minima for numerical features. Each row corresponds to one
experiment. Row 1: 𝜎2 = 1; row 2: 𝜎2 = 5; row 3: 𝜎2 = 10.
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C PERTURBATION OF NUMERICAL FEATURES

(a) Cohen’s Kappa, 𝜎2 = 1. (b) Byrt’s PABAK, 𝜎2 = 1. (c) ICC(A,1), 𝜎2 = 1.

(d) Cohen’s Kappa, 𝜎2 = 5. (e) Byrt’s PABAK, 𝜎2 = 5. (f) ICC(A,1), 𝜎2 = 5.

(g) Cohen’s Kappa, 𝜎2 = 10. (h) Byrt’s PABAK, 𝜎2 = 10. (i) ICC(A,1), 𝜎2 = 10.

Figure 6: Three experiments with perturbation of numerical features only. Each row corresponds to one experiment. Row 1:
𝜎2 = 1; row 2: 𝜎2 = 5; row 3: 𝜎2 = 10.



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil T. Räz

D PERTURBATION OF CATEGORICAL FEATURES

(a) Cohen’s Kappa (b) Byrt’s PABAK (c) ICC(A,1)

Figure 7: Experiment with perturbation of categorical features only.

ACKNOWLEDGMENTS
I thank audiences in Bern, Tübingen and Zürich, as well as the FAccT reviewers, for helpful feedback on previous versions of the present
paper. This work is funded by the Swiss National Science Foundation through grant number 197504.


	Abstract
	1 Introduction
	2 Background
	2.1 Inter-rater Reliability (IRR)
	2.2 Cohen's Kappa (CK)
	2.3 Prevalence-Adjusted Bias-Adjusted Kappa (PABAK)
	2.4 Intraclass Correlation Coefficient (ICC)

	3 Related Work
	4 Methods
	4.1 Outline of Experiments
	4.2 Data
	4.3 Data Split and Model
	4.4 Perturbations
	4.5 Interpretation of IRR Values, Statistical Significance, and Qualitative Differences

	5 Results
	5.1 Experiment 1, Perturbation of All Features, 2 = 1
	5.2 Experiment 2, Perturbation of All Features, 2 = 5
	5.3 Experiment 3, Perturbation of All Features, 2 = 10
	5.4 Further Experiments

	6 Discussion
	7 Conclusion
	References
	A Bias and Prevalence Correction, Experiments 2 and 3
	B Perturbation of All Features, Minima for Numerical Features
	C Perturbation of Numerical Features
	D Perturbation of Categorical Features
	Acknowledgments

