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ABSTRACT
Federated learning is emerging as a privacy-preserving model train-
ing approach in distributed edge applications. As such, most edge
deployments are heterogeneous in nature, i.e., their sensing ca-
pabilities and environments vary across deployments. This edge
heterogeneity violates the independence and identical distribution
(IID) property of local data across clients. It produces biased global
models, i.e., models that contribute to unfair decision-making and
discrimination against a particular community or a group. Exist-
ing bias mitigation techniques only focus on bias generated from
label heterogeneity in non-IID data without accounting for domain
variations due to feature heterogeneity.

Our work proposes a group-fair FL framework that minimizes
group-bias while preserving privacy. Our main idea is to leverage
average conditional probabilities to compute a cross-domain group
importance weights derived from heterogeneous training data to
optimize the performance of the worst-performing group using
a modified multiplicative weights update method. Additionally,
we propose regularization techniques to minimize the difference
between the worst and best-performing groups while ensuring
through our thresholding mechanism to strike a balance between
bias reduction and group performance degradation. Our evalua-
tion of image classification benchmarks assesses the fair decision-
making of our framework in real-world settings.
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1 INTRODUCTION
Federated learning (FL) is a privacy-preserving machine learning
(ML) technique wherein local models are trained on decentralized
edge devices (clients) and subsequently aggregated at the server
to form a global model. This approach alleviates the need for raw
data transfers and ensures data privacy, making it particularly well-
suited for applications with privacy sensitivities, such as medical
diagnosis [21, 38, 59], next-character prediction[67], activity recog-
nition [17, 56, 66], and human emotion recognition [14, 46, 72],
where preserving data security is imperative. Despite its merits,
there is a growing concern regarding FL models, as they exhibit
exceptional performance for certain groups while simultaneously
underperforming for others (e.g., providing accurate image caption-
ing for pristine group images than noisy group images as shown
in Figure 1). A group categorizes data based on attributes such as
race, gender, class, or label [7].

Group biases and discriminatory practices threaten societal well-
being, undermining public confidence in ML models and their appli-
cations [7]. Research shows racial bias in electronic health records,
especially in medical analysis, potentially causing treatment dispar-
ities for minority groups [68]. Biased models often result from label
heterogeneity in non-IID data across clients, as discussed in works
like [52, 57], arising from diverse label distributions tied to data col-
lection device environments. For example, certain geo-regions may
have varying label distributions, reducing training data volume for
specific groups [8, 30].

Our work highlights feature noise heterogeneity as a significant
source of group bias in FL models, stemming from varied noise-
influenced features due to domain differences, especially in het-
erogeneous devices [48]. Heterogeneity leads to distinct feature
distributions in local client data. For example, low-quality sensors
on some devices introduce distortion like Gaussian noise, resulting
in different feature distributions compared to high-quality sensor
devices [47]. This inherent feature noise causes shifts in group data
moments, which are statistical properties such as mean and vari-
ance within a group in a dataset [35], influencing biased model
outcomes.

Previous FL research introduces Disparate Learning Processes
(DLPs) to tackle bias and fairness issues. Examples of DLPs include
in-processing methods like [9, 11, 12, 15, 16, 18, 23, 31, 43, 44, 52, 57,
61, 73, 74, 76] and Robustness and generalization strategies such as
[34, 41]. In-processing techniques modify learning to include group
fairness constraints, while robustness and generalization enhance
model resilience in diverse data settings. However, DLPs don’t
ensure fairness in settings with feature heterogeneity, especially
due to feature noise, as they don’t address misaligned moments
in feature distributions [35]. For DLPs that use "reweighting" with
importance weights to adjust the model’s objective function, their
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Figure 1: Illustrating the adverse effects of feature heterogeneity (noise) and its bias impact on image classification data [42] on
an example language model (LM) in FL settings. The global LM, engaging in image captioning based on features from multiple
clients, shows higher performance for images without distortions compared to those with a shift in feature distributions. This
emphasizes the intricate interplay of feature heterogeneity and bias in FL, highlighting the influence of heterogeneous client
datasets on the model’s outcome.
effectiveness relies on suitable importance weight selection [6].
Importance weights prioritize specific groups or features during
training to mitigate biases and enhance fairness [6]. If not chosen
carefully or not aligned with genuine sources of bias, these weights
can lead to continued unfairness [6]. We propose using weights
derived from noisy feature data for more efficient debiasing in FL
models affected by feature noise. This work introduces learnable
importance weights from heterogeneous data features to enhance
fairness in training, utilizing the multiplicative weight update (MW)
method [3] for better fairness based on feature characteristics, es-
pecially considering data characteristics with feature noise. Our
approach is inspired by insights from social science, particularly
addressing discrimination as a health disparity determinant [36].
By incorporating learnable importance weights, we aim to mitigate
biases across demographic groups, contributing to a more equitable
FL framework.

The efficacy of importance weighting diminishes due to explod-
ing weight norms from the empirical risk scaling with impor-
tance weights, especially in large models, risking overfitting [6].
To tackle this, we propose using neural network regularization
techniques [55] in Multiplicative Weight update with Regularization
(MWR) to mitigate group bias. Additionally, methods using impor-
tance weighting may introduce unfairness by overly emphasizing
poorly-performing groups, potentially reducing the performance
of better-performing groups to minimize overall variability [13].
To address this issue, we present a heuristic approach for deriv-
ing importance weights that mitigate group bias while maintaining
a performance threshold for better-performing groups, prevent-
ing their performance from dropping below a desirable level. We
summarize our contributions below:

• Enabling Privacy-preserving Group Fairness: We high-
light the notion of group fairness across clients in FL settings
and propose a Multiplicative Weight (MW) update method
to mitigate bias due to feature heterogeneity. Our approach
requires an estimate of the global group importance weights,
which we compute as a mixture of cross-domain likelihood

estimates of heterogeneous local data across clients in a
privacy-preserving manner.
• Ensuring Optimality through Regularization: We ex-
tend our approach by incorporating the L1 regularization
technique to increase its effectiveness in mitigating group
bias, which we callMWR. It combats diverging weight norms
that fail to converge to a model that optimizes worst group
performance.
• Satisfying Worst- and Best-group Performance: We en-
sure that MWR optimizes the performance of the worst-
performing group while also keeping the performance of the
best-performing group above a desirable threshold.
• Implementation and Evaluation: We implement and eval-
uate the MWR method against existing bias-mitigation tech-
niques on commonly used state-of-the-art image classifica-
tion benchmark datasets in FL (CIFAR10 [37], MNIST [40],
FashionMNIST [71], USPS [32], SynthDigits [24], andMNIST-
M [24]). Our findings show thatMWR outperforms baselines
methods, boosting accuracy of the worst group’s perfor-
mance up to 41% without substantially degrading the best
group performance.

2 BACKGROUND AND RELATEDWORK
2.1 Bias in Machine Learning.
Bias in ML refers to a model favoring specific individuals or groups,
leading to unfair outcomes [51]. Common sources of bias in cen-
tralized learning include prejudice, underestimation, and negative
legacy [1, 8, 49]. Techniques such as pre-processing, in-processing,
and post-processing [22, 26, 33] have effectively mitigated central-
ized learning bias. However, applying centralized learning tech-
niques in FL is challenging due to privacy concerns, requiring access
to features across clients and risking data privacy compromise.
2.2 Bias Metrics
In FL, group bias is assessed through three dimensions: 1) aiming
for equal opportunities by evaluating the performance discrepancy
in True Positive Rates (TPR) between groups [58, 69]; 2) optimizing
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the Worst-case TPR (WTPR) for each group [50, 58]; 3) minimiz-
ing the standard deviation of TPR (TPSD) to ensure fairness across
groups [58, 73]. The choice of TPR as a performance metric of in
assessing group group fairness aligns our approach with recent
advancements in bias mitigation literature [58]. This decision stems
from recognizing the critical importance of fairly detecting true
positives, which cannot be addressed solely by relying on accuracy.
While our primary focus is on achieving fairness with a minimax
property (optimizingWTPR outcome within each group), we evalu-
ate using various fairness metrics to ensure versatility and broad
support.

2.3 Bias Mitigation
The biasmitigationwork falls mainly into four categories, including:
1) Client-fairness techniques [12, 31, 43, 44, 52, 61], 2) Group-fairness
techniques [9, 11, 15, 16, 18, 23, 57, 73, 74, 76], 3) Collaborative Fair-
ness techniques [19, 48, 54, 75], and 4) Robustness and Generalization
techniques [34, 41, 60].
Client fairness targets the development of algorithms leading to
models that exhibit similar performance across different clients [44].
On the other hand, group fairness requires the model to perform
similarly on different demographic groups [73]. Many state-of-the-
art fairness techniques in FL, focusing on client fairness and group
fairness, use in-processing methods to modify the learning process
or objective function by incorporating fairness constraints [73].
In-processing involves assigning weights to the objective function
from different clients or groups during training to balance the in-
fluence of the model on different groups or clients. For instance,
AFL [52] optimizes the combination of worst-weighted losses from
local clients, proving resilient to data with an unknown distribu-
tion. q-FFL [44] reweights loss functions to give higher weights
to devices with poorer performance, addressing challenges in fair
resource allocation in computer networks. TERM handles outliers
and class imbalance by tilting the loss function with a designated
tilting factor [43]. GIFAIR-FL [73] introduces a regularization term,
regarded as loss function weighting, to guide the optimizer towards
group fair solutions. Despite the benefits, in-processing techniques
face challenges, particularly sensitivity to outliers and dependence
on the choice of reweighting schemes. If importance weights do not
align well with data characteristics, outliers introduced by noise can
have a significant impact, leading to biases. Feature noise may cause
alterations in the distribution of features among groups, inducing
discrepancies and bias in statistical properties.
Collaborative Fairnessmethodologies propose compensating each
client’s performance based on their contribution to learning the
global model, intending to align rewards with individual client
input. This approach entails providing more rewards to highly con-
tributing clients, thereby encouraging active participation in FL.
Conversely, offering lower rewards helps prevent free-riders, en-
suring a fair distribution of incentives [48]. It is important to note
that while we discuss Collaborative Fairness heredoes not specifi-
cally address mitigating group bias in FL, as these techniques do
no inherently focus on improving group performances.

Robustness and Generalization techniques address distribu-
tional shifts in user data. For instance, FedRobust [60] trains a model
to handle worst-case affine shifts, assuming that each client can
express its data distribution as an affine transformation of a global

distribution, focusing on group fairness. However, FedRobust re-
quires sufficient data for each client to estimate the local worst-case
shift, impacting global model performance when this condition
is unmet. FedNTD tackles catastrophic forgetting distillation [29]
but may not fully handle bias from feature noise. SCAFFOLD [34]
addresses client drift in heterogeneous data by estimating update
directions. However, SCAFFOLDmay not correct moments in noisy
feature distributions. In contrast, we use importance weights from
noisy features to prioritize disadvantaged groups during training,
enhancing fairness by indirectly correcting misaligned moments.
3 PRELIMINARY STUDY
This section analyzes group-bias arising from heterogeneous feature
distributions within local data across clients. The study utilizes
Federated Averaging (FedAvg [45]), a widely adopted aggregation
method for training global models in FL.

3.1 Experimental Setup
Applications and Datasets. Our study analyzes group-bias across
𝐾 ∈ {4, 5} clients (computers that simulate the FL environment,
mirroring real-world heterogeneous data collection devices fol-
lowing recent works in FL [30, 52, 73]) using two deep learning
models and two datasets. We employ the ResNet model [28] for
CIFAR10 [37] image classification and a Convolutional Neural Net-
work (CNN) on the DIGITS classification dataset, which comprises
data from diverse sources with feature shifts. The goal is to replicate
real-world FL scenarios with varied client data. We construct the
DIGITS dataset by combining data from SynthDigits [24], MNIST-M
[24], and MNIST [4].

We select these datasets to compare group-bias with existing
bias mitigation techniques in FL. Each dataset is evenly distributed
among 𝐾 clients in the FL framework, ensuring equal allocation of
group/class data points. Clients utilize replicated versions of the
original benchmark test set, aligning noise feature distributions
between training and test data.

We set all model parameters to match FL parameters for global
model convergence under IID data settings, including label and
feature noise homogeneity. Client settings include a mini-batch size
of 128, a learning rate of 0.01, and 40 and 12 training rounds for
CIFAR10 and DIGITS datasets, respectively.
Heterogeneous Feature Distributions.We add noise to mimic
real-world distorted images that fail to share the same feature dis-
tribution with the pristine training images [25, 62, 64]. In particular,
we add Gaussian noise with a variance greater than or equal to
0.03, consistent with the real-world deployments[48]. We create
two different distortion levels in each dataset across 𝐾 clients. For
the CIFAR10, three advantaged clients (A, B, C) lack distortions,
while the other two disadvantaged clients (D, E) host data with
Gaussian noise of variance 𝑣𝑎𝑟 ∈ {0.03, 0.07, 0.11, 0.3, 0.4, 0.8, 1.0}.
For the DIGITS dataset, two advantaged clients (C, D) lack distor-
tions, while the other two disadvantaged clients (A, B) host data
with Gaussian noise.

3.2 Key Findings
Non-IID Study.We study the FL model’s unfairness by examining
how the biased global model treats local groups differently on each
client. Using each client’s local test data (with a similar distortion



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Khotso Selialia, Yasra Chandio, and Fatima M. Anwar

A B C D E
0

25

50

75

100

Tr
ue

 P
os

iti
ve

 R
at

e 92

72

92

72

92

72

92

72

92

72

Pristine

A B C D E
Clients

92

64

92

64

92

64

94

54

94

54

Noise=0.08

A B C D E

92

61

92

61

92

61

94

48

94

48

Noise=0.11

WTPR BTPR

(a) CIFAR10 dataset

A B C D
0

25

50

75

100

Tr
ue

 P
os

iti
ve

 R
at

e 99
96

100

84
95

72

96

66

Pristine

A B C D
Clients

96

63

94

66

92

53

95

69

Noise=0.8

A B C D

92

46

95

56

92

50

95

66

Noise=1.0

WTPR BTPR

(b) DIGITS dataset
Figure 2: Varied noise levels in CIFAR10 and DIGITS datasets. The notation "Noise = 𝑥" denotes the introduction of Gaussian
noise with variance 𝑥 ," specifically applied to clients 𝐷 and 𝐸 in CIFAR10 and clients 𝐴 and 𝐵 in DIGITS.

(a) Correlation=0.46 (b) Correlation=-0.14
Figure 3: Gradient distribution in a fully connected layer on the CIFAR10 dataset. The red and blue bars depict the local gradient
distribution on client 1 client 2, respecitvely. In (a), the distribution of local gradients is demonstrated across the two clients
in IID settings. In (b), the distribution is shown in non-IID settings, with the introduction of Gaussian noise with variance 𝑥
(noise = 𝑥) on non-IID clients.
level as the training data), we measure the TPR performance gap
between the best and worst groups. Figure 2a shows group-bias
in CIFAR10, while Figure 2b illustrates this in DIGITS. The global
model’s recognition of local groups varies per client, as seen in the
discrepancy between their performances. Increasing Gaussian noise
on a client amplifies this difference, indicating that heterogeneous
local features across clients contribute to group-bias.
Limitation of Federated Averaging. We empirically investigate
how heterogeneous local data distributions affect local model gra-
dients. Post-convergence, we extract gradients from the last linear
layer of each local model across two clients. Figure 3 shows his-
tograms of these gradients, highlighting variations across clients
with heterogeneous features (3b) compared to more consistent
distributions in clients with homogeneous features (3a). In 3a, a
Spearman correlation [53] of 0.46 indicates strong correlation and
uniformity among clients with IID features. Conversely, in Fig-
ure 3b, clients with non-IID features show a correlation of −0.14,
suggesting dissimilarity.

Our non-IID study underscores the challenges in conventional Fe-
dAvg schemes, revealing consistently unfair model behavior across
distinct applications and datasets. This problem emphasizes the
need for bias mitigation methods to alleviate adverse outcomes,
including performance degradation in critical applications like med-
ical contexts and the inability to adapt to dynamic heterogeneous
environments.

4 METHODOLOGY
The primary objective of our work is to address group bias resulting
from feature heterogeneity across clients, all while preventing the
leakage of sensitive data. In this section, we formally define our
problem and then present our approach to mitigate group bias
without substantially degrading the best group performance.

4.1 Problem Statement and Workflow
Our configuration assumes a 4-tuple (x1≤𝑖≤ |X | , 𝑦1≤𝑖≤ |Y | , 𝑔1≤ 𝑗≤ |G | , 𝑐1≤𝑘≤ |C | )
drawn from distribution 𝑃 (X,Y,G,C). Here, x𝑖 ∈ X represents
training images from a total of |X| images, 𝑦𝑖 ∈ Y corresponds to
|Y| targets, 𝑔 𝑗 ∈ G denotes group membership (from |G| groups) of
x𝑖 , and 𝑐𝑘 is the client on which (x𝑖 , 𝑦𝑖 ) resides out of |C| clients.
Our primary goal is to derive a global model ℎ𝜽 (with parameters 𝜽 )
that mitigates group bias for each client, with following objective:

ℒ (ℎ𝜽 ) = argmin
ℎ

1
|C|

|C |∑︁
𝑐𝑖=1

ℒ𝑐𝑘 (ℎ𝜽 (x𝑖,𝑘 ), 𝑦𝑖,𝑘 ) (1)

In equation 1 ℒ 𝑐𝑘 (ℎ𝜽 (x𝑖,𝑘 ), 𝑦𝑖,𝑘 ), the empirical risk of client 𝑐𝑘
combines group empirical risks ℓ𝑔,𝑗 (ℎ(x𝑖,𝑘 ), 𝑦𝑖,𝑘 ) with group impor-

tance𝑤𝑔𝑗 . Importance is based on the ratio 𝑞 (𝑔𝑗 |x𝑖 )
𝑝 (𝑔𝑗 |x𝑖 ) , where 𝑝 (𝑔 𝑗 |x𝑖 )

and 𝑞(𝑔 𝑗 |x𝑖 ) represent training and test distributions in 𝐷 = ∪𝐷𝑐𝑘
(global dataset as a union of local datasets 𝐷𝑐𝑘 ), respectively. We
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Algorithm 1MW group-fairness in Federated Learning

1: Input: (x𝑖 , 𝑦𝑖 , 𝑔 𝑗 , 𝑐𝑘 ), global fairness learning rate 𝜂𝜇 , iteration
count 𝑇 , model class 𝐻 .

Let 𝜖𝑔𝑗 ←− 1
|G |

∑
(x,𝑦) ∈𝑔𝑗 ℒ (ℎ𝜃 (x), 𝑦); (for each 𝑐𝑘 )

2: Initialize 𝜆𝑔𝑗 ←− 𝑃 (G = 𝑔 𝑗 ) and 𝜃 randomly.
3: for 𝑡 = 1 to 𝑇 do
4: for each client 𝑐𝑘 ∈ C do

5: Compute𝑤𝑡𝑔𝑗 ←−
𝜆𝑔𝑗

𝑃 (G=𝑔𝑗 )
6: Find ℎ𝑐𝑘 ←− argminℎ∈𝐻

∑
𝑔𝑤

𝑡
𝑔𝑗
· 𝜖𝑔𝑗 (ℎ𝑐𝑘 ); (for ℎ𝑐𝑘 ∈

𝐻 )
7: Update 𝜆𝑔𝑗 ←− 𝜆𝑔𝑗 ·exp(−𝜂𝜇 ·𝜖𝑔𝑗 (ℎ𝑐𝑘 )); (Multiplicative
Weight Update)

8: Send ℎ𝑐𝑘 (𝜽𝑐𝑘 ) to the server.
9: Server computes: 𝜃 ←− ∑

𝑐𝑘 ∈𝐶
𝑛𝑐𝑘
𝑛 𝜽𝑐𝑡 ; (FedAvg: 𝑛𝑐𝑘–number

of data points at client 𝑐𝑘 ; 𝑛–total data points in FL)
Output: Uniform distribution over the set of models ℎ1, ..., ℎ𝑇
with parameters 𝜽 1, ..., 𝜽𝑇 , respectively
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Figure 4: Overview of the proposed approach.

compute𝑤𝑔𝑗 as an aggregation of all per-client local group impor-
tance weights 𝑤𝑔𝑗,𝑘 , ∀𝑔 𝑗 ∈ G, 𝑐𝑘 ∈ C. Each 𝑤𝑔𝑗 obtained from a
multi-class logistic linear regression probabilistic model [27] is used
to train a local model, ℎ𝜃𝑐𝑘 , minimizing the empirical risk of the
worst-performing group. On the server side, ℎ𝜽𝑐𝑘

from all clients is
received and aggregated into a global model ℎ𝜽 .
Workflow.We illustrate the end-to-end workflow for training with
the proposed approach in Figure 4.

❶ In our setup, the server selects all the available clients in each
round to avoid the effect of client sampling bias [10, 70, 77]. Then,
the server distributes copies of the global model to the clients.

❷-❹ Each client computes the mixture of group likelihoods, de-
noted as 𝑝 (𝑔 𝑗 |x𝑖 ) (specifically, 𝑝 (𝑔 𝑗 |x𝑖,𝑘 )). In § 4.2, we outline the
privacy-preserving computation details of this denominator, occur-
ring once at the beginning of FL. After each round, clients commu-
nicate the local model and local 𝑝 (𝑔 𝑗 |x𝑖,𝑘 ) for all groups (only in
the first round) to the server.

❺ After clients submit their local models and local 𝑝 (𝑔 𝑗 |x𝑖,𝑘 ),
the server uses FedAvg to aggregate the local models and gener-
ate an updated global model. Additionally, the server computes a
mixture of group likelihoods for all groups using local likelihoods
(emphasizing that this computation occurs once at the beginning
of FL).

❻ Each client performs local training after distributing updated
global model copies and a mixture of likelihoods for all groups.
The training involves using our approach MWR to adjust group

importanceweights based on themixture of likelihoods for all groups
(§ 4.3).

❼ Each client computes the performance threshold for the best
group and compares it with the best group performance to evaluate
MWR’s effectiveness in mitigating group bias without compromis-
ing the best group performance (§ 4.5).

4.2 Enabling Privacy-preserving Group Fairness
Our approach centers on weighting empirical risks with group im-
portance weights,𝑤𝑔𝑗 , as shown in Equation 1. Calculating these
weights is straightforward in centralized learning [20], where a
global data view is available. However, In FL, lacking this global
view it is not trivial. We must estimate 𝑤𝑔𝑗 while safeguarding
client data privacy. Our solution addresses this by approximating
the denominator of𝑤𝑔𝑗 (𝑝 (G = 𝑔 𝑗 |X)) through a process involving
a mixture of group likelihoods across clients. Suppose G = 1, ..., 𝑗
represents groups across clients in FL. Each client 𝑐𝑘 employs
a multiclass logistic linear regression probabilistic model [2] to
predict the likelihood of an input sample x𝑖,𝑘 belonging to a spe-
cific group 𝑔 𝑗 . The model is defined as 𝑝 (G = 𝑔 𝑗 |X = x𝑖,𝑘 ) =∏𝐽
𝑗
𝑓𝜽 , 𝑗 (x𝑖 ) [𝑔𝑗=𝑗 ] , where 𝑓𝜽 , 𝑗 (x𝑖,𝑘 ) [𝑔𝑗=𝑗 ] is a multinomial proba-

bility mass function [39]. Each client uses the softmax function
𝑓𝜽 , 𝑗 (x𝑖,𝑘 ) [𝑔𝑗=𝑗 ] =

∏𝐽
𝑗

exp (x𝑖,𝑘𝜽𝑐𝑘
)∑𝐽

𝑗
exp (x𝑖,𝑘𝜽𝑐𝑘

)
to obtain group membership

probabilities ensuring that these probabilities are positive and sum
up to one. Clients share their group likelihood estimates with the
server. The server then computes each group’s global average like-
lihood using per-client group average likelihood estimates and the
law of total probability. For an event space {𝑐1, 𝑐2, ..., 𝑐 |C | } with
𝑃 (𝑐𝑘 ) ≥ 0 ∀𝑘 ,

𝑝 (G = 𝑔 𝑗 |X) =
|C |∑︁
𝑗=1

𝑝 (G = 𝑔 𝑗 |𝑐𝑘 , x𝑖 )𝑝 (𝑐𝑘 ). (2)

Here 𝑝 (G = 𝑔 𝑗 |𝑐𝑘 , x𝑖 ) represents per-group likelihood estimates
per client, and 𝑝 (𝑐𝑘 ) is the likelihood of a client 𝑐𝑘 . In our scenario,
𝑝 (𝑐𝑘 ) is uniform for all clients participating in each training round.
Utilizing the law of total probability due to independence in clients’
participation in FL, the server distributes group likelihood mixtures
𝑝 (G = 𝑔 𝑗 |X) to all clients. Clients use this information to compute
group importance weights𝑤𝑔𝑗 , updated using MWR in each round
based on 𝑝 (G = 𝑔 𝑗 |X). To ensure data privacy, clients and the
server share required information (𝑝 (G = 𝑔 𝑗 |𝑐𝑘 , x𝑖 )) by revealing
differentially private likelihood estimates.

To solve the group bias problem, we modify the MW algorithm
and transforming it into a constrained optimization problem to
improve the performance of the the worst-performing group. Al-
gorithm 1 details the workings of the MW algorithm. During the
local learning process, we assign each client with groups and a
set of |G| classes for the underlying application. The constraints
of optimization comprise decisions made by both the local and
global models for groups assigned to clients, ensuring fairness in
group classification. Using image features in the training dataset,
we validate constraint satisfaction in each local training iteration,
identifying suitable groups. We then associate decisions made by
each local model with a group empirical risk that quantifies how
well a decision made by the local model satisfies the constraints.
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Over time, we minimize the overall risk of the global model by
ensuring that each local model incurs a low per-group risk. This
involves tracking the global weight for each group and randomly
selecting groups with a probability proportional to their impor-
tance weights𝑤𝑔𝑗 . In each iteration, we update𝑤𝑔𝑗 using the MW
algorithm, multiplying their numerator 𝑞(G = 𝑔 𝑗 |G) with factors
dependent on the risk of the associated group decision. This update
is performed while maintaining the denominator 𝑝 (G = 𝑔 𝑗 |G) fixed
as in

𝜆 ·exp (𝜂 ·ℓ𝑔𝑗 (ℎ) )
𝑞 (G=𝑔𝑗 |X) , which penalizes costly group decisions.

4.3 Ensuring Optimality through
Regularization

The MW algorithm maximizes worst-group performance by scal-
ing the empirical risk and deep neural network weights. However,
the weight magnitude does not ensure optimal risk function con-
vergence [6]. In our setup, model parameters 𝜃 are trained with
cross-entropy loss and stochastic gradient descent (SGD) [5] op-
timization, converging toward the solution of the hard-margin
support vector machine1 in the direction 𝜽 𝑡

| |𝜽 𝑡 | | [65]. Introducing
weight to the loss function may introduce inconsistencies in the
margin. Instead of directly applying importance weighting to the
empirical risk, we aim to minimize the following objective for each
client 𝑘 :

∑ |C |
𝑐𝑘=1 ℒ𝑐𝑘 (ℎ𝜽 (x𝑖,𝑘 ), 𝑦𝑖,𝑘 ) + 𝜆

𝑚

∑𝑚
𝑗=1∥𝜽 𝑗,𝑐𝑘 ∥ .

Since the optimization problem with importance weighting is
vulnerable to scaling weights and biases, we introduce regulariza-
tion to the norm of 𝜃𝑐𝑘 to increase the margin and mitigate the
risk of its enlargement due to scaling, forming the basis of the
ourMultiplicative Weight update with Regularization (MWR)
algorithm.

4.4 Bias Mitigation without Degrading
High-Performing Groups

WhileMWR ensures group fairness, importance weighting approaches
may exbibit unfairness by disproportionately focusing on the worst-
performing groups, potentially degrading the performance of the
best-performing groups in an attempt to reduce the variance in
estimating their contributions to the overall performance [13]. Prac-
tically, an algorithm for biasmitigation should achieve fairness with-
out significantly degrading the performance of best-performing
groups. To address this, we propose a heuristic approach to reweigh-
ing the likelihood (group importance weights) associated with each
data point belonging to group G = 𝑔 𝑗 in the dataset. Suppose we
have a set of unnormalized importance weights𝑤1,𝑤2, ...,𝑤𝑛 cor-
responding to 𝑛 data points in a dataset, where each data point has
an associated importance weight, we normalize these weights for
each group by computing𝑤1,𝑤2, ..., ˆ𝑤 |G | using:

ˆ𝑤𝑔𝑗 =
∑𝑛
𝑖=1𝑤𝑖 I(G = 𝑔 𝑗 )∑𝑛

𝑖=1𝑤𝑖
(3)

The rationale behind Equation3 is to distribute emphasis evenly
among different groups, preventing a scenario where a single group
dominates the estimation due to an excessively high importance
weight. Through weight normalization, we ensure that each group’s
1A linear classification algorithm that seeks a hyperplane with a strict margin, allowing
no misclassification in the training data. [63]

contribution aligns more closely with its true importance or repre-
sentation within the dataset.

4.5 Satisfying Performance Thresholds
Finally, we establish a performance threshold for the best true posi-
tive rate (BTPR) to mitigate group bias without significantly com-
promising the BTPR . We denote BTPR for a client 𝑐𝑖 as 𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖
and WTPR as 𝑇𝑃𝑅𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 . We define the threshold for the best
TPR as 𝑇𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . Our fairness enforcement objective aims to
minimize the gap between the best and worst-performing groups
while maintaining a specified level of TPR performance, as follows:

𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖 −𝑇𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝜂𝜇 × (𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖 −𝑇𝑃𝑅𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 ) (4)

𝑇𝑃𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖 − 𝜂𝜇 × (𝑇𝑃𝑅𝑏𝑒𝑠𝑡,𝑐𝑖 −𝑇𝑃𝑅𝑤𝑜𝑟𝑠𝑡,𝑐𝑖 ) (5)

Here 𝜂𝜇 is a parameter governing the trade-off between group fair-
ness and performance. Inequality in 4 scales the difference between
BTPR and WTPR by 𝜂𝜇 and compares it to the difference between
the BTPR and the threshold. For each client, we rearrange the in-
equality in 4 to obtain the minimum BTPR threshold as expressed
in equation 5.
5 EVALUATION
This section, we evaluate ourMWR group-bias mitigation technique
on four image classification datasets (CIFAR10, DIGITS, MNIST,
and FashionMNIST). We benchmark our approach against standard
bias mitigation techniques in FL.
5.1 Experiment Testbed
Our evaluation setup uses the same number of clients, data parti-
tioning scheme, and other learning components (such as learning
rate, train/test split, batch size, epochs, rounds) described in §3.1
unless stated otherwise.
Baseline. We evaluate our approach across four key categories,
scrutinizing both bias reduction and overall model performance.
The FL baseline category (FedAvg) represents a conventional learn-
ing scheme in FL. In the FL bias-reduction category, we include
methods such as AFL[52], TERM[43], and GIFAIR-FL [73]. These
methods employ empirical risk reweighting to mitigate bias and
adapt the global model to diverse local data distributions. The FL
heterogeneity category (FedNTD [41]) specifically addresses per-
formance loss in FL models arising from data heterogeneity by
managing global model memory loss. In the FL robustness category
(SCAFFOLD [34]), the focus is on enhancing the resilience of FL
models against outliers and noisy data, thereby mitigating the im-
pact of irregularities in specific device local datasets. To ensure a
fair evaluation across all baselines, we meticulously calibrate hy-
perparameters across datasets, guaranteeing the convergence of
the global model.
Hyperparameter Tuning for MWR. We use the same experimen-
tal setup as FedAvg, AFL, FedNTD, TERM, GIFAIR-FL, and SCAF-
FOLD. However, to apply MWR update algorithm per-group loss,
we set the value of 𝜂𝜇 (see Algorithm 1) to different values in the
set {0.01, 0.02, 0.001, 0.009, 0.0001} based on the level of Gaussian
noise in data partitions. Finally, MWR uses an 𝐿1 regularization
parameter of 0.00001 for all datasets.
5.2 Efficacy and Robustness Analysis
We now assess the efficacy and robustness of our MWR group-bias
mitigation technique alongside the baseline methods.
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Algorithms Datasets
CIFAR10 DIGITS Fashion-MNIST MNIST

FedAvg [45]

Client # 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 5
TPRD ↓ 28 28 28 40 40 33 28 39 26 48 48 48 55 55 2 2 2 18 18
TPRSD ↓ 9.13 9.13 9.13 13.29 13.29 9.01 9.91 13.53 6.1 14.19 14.19 14.19 16.1 16.1 0.6 0.6 0.6 5.29 5.29
WTPR ↑ 64 64 64 54 54 63 66 53 69 47 47 47 40 40 98 98 98 74 74
BTPR ↑ 92 92 92 94 94 96 94 92 95 95 95 95 95 95 100 100 100 92 92

AFL [52]

TPRD ↓ 29 29 29 36 36 36 33 37 25 48 48 48 55 55 2 2 2 18 18
TPRSD ↓ 8.82 8.82 8.82 10.3 10.3 9.91 12.04 12.74 5.18⊙ 14.19 14.19 14.19 16.05 16.05 0.6 0.6 0.6 5.03 5.03
WTPR ↑ 62 62 62 56 56 59 60 55 70 47 47 47 40 40 98 98 98 75 75
BTPR ↑ 91 91 91 92 92 95 93 92 95 95 95 95 95 95 100 100 100 93 93

FedNTD [41]

TPRD ↓ 26 26 26 36 36 27 28 33 ∗ 28 46 46 46 50 50 2 2 2 17 17
TPRSD ↓ 8.38 8.38 8.38 11.51 11.51 8.02 7.88 12.54 7.71 13.83 13.83 13.83 14.96 14.96 0.6 0.6 0.6 4.24 ⊙ 4.24 ⊙
WTPR ↑ 66 66 66 57 57 66 65 56 64 49 49 49 45 45 97 97 97 76 76
BTPR ↑ 92 92 92 93 93 93 93 89 92 95 95 95 95 95 99 99 99 93 93

TERM [43]

TPRD ↓ 26 26 26 34 34 34 33 36 24 48 48 48 55 55 2 2 2 19 19
TPRSD ↓ 8.02 8.02 8.02 11.32 11.32 9.41 11.32 13.03 5.9 14.06 14.06 14.06 16.11 16.11 0.6 0.6 0.6 5.41 5.41
WTPR ↑ 69• 69• 69• 61 61 61 61 54 70 47 47 47 40 40 98 98 98 74 74
BTPR ↑ 95 95 95 95 95 95 94 90 94 95 95 95 95 95 100 100 100 93 93

GIFAIR-FL [73]

TPRD ↓ 24 ∗ 24∗ 24∗ 36 36 26 30 48 39 43 43 43 50 50 2 2 2 16 16
TPRSD ↓ 8.47 8.47 8.47 11.17 11.17 7.82 8.55 15.63 13.16 12.82 12.82 12.82 14.48 14.48 0.6 0.6 0.6 5.47 5.47
WTPR ↑ 68 68 68 56 56 68 64 44 52 53 53 53 46 46 98 98 98 76 76
BTPR ↑ 92 92 92 92 92 94 94 92 91 96 96 96 96 96 100 100 100 92 92

SCAFFOLD [34]

TPRD ↓ 29 29 29 65 65 60 64 84 73 50 50 50 60 60 2 2 2 25 25
TPRSD ↓ 10.19 10.19 10.19 20.42 20.42 18.02 20.94 26.35 24.64 14.63 14.63 14.63 17.24 17.24 1.36 1.36 1.36 6.57 6.57
WTPR ↑ 63 63 63 32 32 37 28 12 20 46 46 46 35 35 97 97 97 70 70
BTPR ↑ 92 92 92 97 97 97 92 96 93 96 96 96 95 95 99 99 99 95 95

MWR

TPRD ↓ 25 25 25 30 ∗ 30 ∗ 21 ∗ 19 ∗ 39 23 ∗ 37 ∗ 37 ∗ 37 ∗ 30 ∗ 30 ∗ 1 ∗ 1 ∗ 1 ∗ 13 ∗ 13 ∗
TPRSD ↓ 7.94⊙ 7.94⊙ 7.94⊙ 10.05⊙ 10.05⊙ 5.79⊙ 5.86⊙ 11.79⊙ 5.9 11.02⊙ 11.02⊙ 11.02⊙ 11.17⊙ 11.17⊙ 0.4⊙ 0.4⊙ 0.4⊙ 4.83 4.83
WTPR ↑ 68 68 68 63• 63• 77• 77• 58• 73• 61• 61• 61• 66• 66• 99• 99• 99• 80• 80•

BTPR-threshold 92.5 92.5 92.5 92.4 92.4 97.8 95.8 96.6 95.7 97.6 97.6 97.6 95.7 95.7 99.9 99.9 99.9 92.9 92.9
BTPR ↑ 93▷ 93▷ 93▷ 93▷ 93▷ 98▷ 96▷ 97▷ 96▷ 98▷ 98▷ 98▷ 96▷ 96▷ 100▷ 100▷ 100▷ 93▷ 93▷

Table 1: Performance evaluation of bias mitigation techniques across various datasets and benchmark models under low-grade
noise. Symbols used: ↑indicates that higher values are more desirable, while ↓ indicates that lower values are more desirable.
For each client across each benchmarks in a particular dataset ∗ signifies the best TPRD; ⊙ designates the best TPRSD; •
represents the best WTPR; and ▷ indicates the best BTPR . (Note: On DIGITS dataset,training involves only 4 clients, reflecting
its composition of merely 4 heterogeneous datasets.)

5.2.1 Effect on Group Bias. We assess the efficacy of MWR’s
group-bias mitigation through: (i) evaluating the best- and worst-
group performance (TPR), (ii) analyzing the TPR group variance
per client, and (iii) examining the TPR discrepancy per client. This
evaluation is conducted on four datasets, incorporating low-grade
distortion to simulate prevalent real-world heterogeneity [30].

Table1 presents the TPR, TPRSD, WTPR, and BTPR perfromance
scores across various bias mitigation techniques and datasets. No-
tably, among these techniques, MWR stands out by achieving a
significantly fairer outcomes for groups. We can see that our al-
gorithm substantially decreases TPRSD across most clients while
maintaining a consistently high TPR. Importance weighting, espe-
cially when derived from features characteristics, is powerful in
mitigating biases caused by feature noise. If the bias is primarily
driven by certain features, assigning appropriate weights to these
features can help the model focus on relevant information and re-
duce the impact of noisy features, resulting in more consistent and
equitable predictions.

Although AFL and FedNTD occasionally outperform MWR in
some instances concerning the TPRSD metric as can be seen in
DIGITS dataset’s client4 and MNIST dataset’s clients4 and 5, the
differences between the results are marginal. Importance weighting
is sensitive to distribution shifts in the feature space. If there are
instances where the distribution shifts significantly, the importance
weights may not be as effective. On the other hand, techniques such
as FedNTD, through knowledge distillation, seem to be more robust
to feature noise as it involves transferring knowledge from a more
complex model (teacher) to a simpler one (student), potentially

leading to better generalization and lower standard deviation in
true positive rates across groups. Additionally, it becomes evident
from Table 1 thatMWR results in an increased WTPR for the group
with the smallest TPR, accompanied by the smallest TPRD among
the evaluated bias mitigation techniques.

Importance weights derived from image features captures the
distinctive characteristics of different groups more effectively than
other methods. This adaptability is crucial in mitigating bias since it
tailors the mitigation strategy to the specific features and challenges
present in each group. Despite TERM appearing to outperform our
proposed method for the minimax group fairness metric (WTPR)
in CIFAR10 dataset’s clients 1, 2, and 3, this can be understood as a
consequence of the reduction in TPR among privileged clients lack-
ing local data with distortions. This reduction elevates the lower
TPR among disadvantaged clients affected by distortions Impor-
tantly, the differences between the results are marginal, indicating
a closely competitive performance between the methods despite
this disparity while elevating the group-fairness among clients.
Takeaway: MWR ensures fairness across groups and maintains pre-
dictive accuracy by using importance weights that prioritize the worst-
performing groups. Its key strength lies in maintaining fairness with-
out sacrificing performance, achieved through even distribution of
importance weights among different groups.

5.2.2 Robustness of Bias Mitigation. In our previous analysis,
we added low-grade Gaussian noise to mimic noise in edge device
images [47]. To further test MWR’s resilience against increased
feature heterogeneity, we raised noise levels in segmented datasets
like CIFAR10, MNIST, DIGITS, and Fashion-MNIST to variances of
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Algorithms Datasets
CIFAR10 DIGITS Fashion-MNIST MNIST

FedAvg [45]

Client # 1 2 3 4 5 1 2 3 4 1 2 3 4 5 1 2 3 4 5
TPRD ↓ 31 31 31 46 46 46 39 42 29 48 48 48 59 59 2 2 2 29 29
TPRSD ↓ 9.91 9.91 9.91 14.7 14.7 13.39 12.48 13.85 6.87 14.39 14.39 14.39 17.05 17.05 0.78 0.78 0.78 8.45 8.45
WTPR ↑ 61 61 61 48 48 46 56 50 66• 46 46 46 35 35 97 97 97 51 51
BTPR ↑ 92 92 92 94 94 92 95 92 95 94 94 94 94 94 99 99 99 80 80

AFL [52]

TPRD ↓ 33 33 33 44 44 47 43 40 29 49 49 49 59 59 2 2 2 28 28
TPRSD ↓ 9.36 9.36 9.36 14.13 14.13 13.6 14.01 13.35 ⊙ 6.9 14.65 14.65 14.65 17.11 17.11 0.7 0.7 0.7 7.63 7.63
WTPR ↑ 61 61 61 49 49 43 49 52 66 45 45 45 35 35 97 97 97 52 52
BTPR ↑ 94 94 94 93 93 90 92 92 95 94 94 94 94 94 99 99 99 80 80

FedNTD [41]

TPRD ↓ 26 26 26 56 56 35 29 37 27 46 46 46 50 50 2 2 2 25 25
TPRSD ↓ 8.91 8.91 8.91 16.69 16.69 10.65 9.03 13.64 8.76 13.83 13.83 13.83 15.01 15.01 0.74 0.74 0.74 6.77 6.77
WTPR ↑ 65 65 65 40 40 54 59 51 64 49 49 49 45 45 97 97 97 56 56
BTPR ↑ 91 91 91 96 96 89 88 88 91 95 95 95 95 95 99 99 99 81 81

TERM [43]

TPRD ↓ 23 ∗ 23 ∗ 23 ∗ 40 40 47 40 43 30 48 48 48 59 59 2 2 2 30 30
TPRSD ↓ 7.9 7.9 7.9 13.41 13.41 13.72 13.07 14.13 5.87 ⊙ 14.39 14.39 14.39 17.08 17.08 0.78 0.78 0.78 8.64 8.64
WTPR ↑ 69• 69• 69• 53 53 44 55 49 65 46 46 46 35 35 97 97 97 51 51
BTPR ↑ 92 92 92 93 93 91 95 92 95 94 94 94 94 94 99 99 99 81 81

GIFAIR-FL [73]

TPRD ↓ 30 30 30 53 53 32 37 48 40 45 45 45 53 53 2 2 2 27 27
TPRSD ↓ 8.16 ⊙ 8.16 ⊙ 8.16 ⊙ 14.92 14.92 10.13 10.18 15.69 13.06 13.4 13.4 13.4 15.46 15.46 0.66 0.66 0.66 7.64 7.64
WTPR ↑ 63 63 63 42 42 56 56 43 51 51 51 51 42 42 98 98 98 54 54
BTPR ↑ 93 93 93 95 95 88 93 91 91 96 96 96 95 95 100 100 100 81 81

SCAFFOLD [34]

TPRD ↓ 38 38 38 94 94 47 60 84 74 51 51 51 63 63 5 5 5 54 54
TPRSD ↓ 13.21 13.21 13.21 26.53 26.53 14.73 18.13 27.46 23.65 14.77 14.77 14.77 18.27 18.27 1.32 1.32 1.32 14.06 14.06
WTPR ↑ 57 57 57 5 5 48 35 10 22 45 45 45 31 31 95 95 95 29 29
BTPR ↑ 95 95 95 99 99 95 95 94 96 96 96 96 94 94 100 100 100 83 83

MWR

TPRD ↓ 29 29 29 33 ∗ 33 ∗ 28 ∗ 24 ∗ 44 29 38 ∗ 38 ∗ 38 ∗ 34 ∗ 34 ∗ 2 ∗ 2 ∗ 2 ∗ 20 ∗ 20 ∗
TPRSD ↓ 10.29 10.29 10.29 12.27 ⊙ 12.27⊙ 8.01⊙ 8.09⊙ 13.76 7.98 11.35 ⊙ 11.35⊙ 11.35⊙ 12.44⊙ 12.44⊙ 0.63⊙ 0.63⊙ 0.63⊙ 6.45⊙ 6.45⊙
WTPR ↑ 66 66 66 58• 58• 68• 69• 51• 65 59• 59• 59• 62• 62 98• 98• 98• 60• 90•

BTPR-threshold 94.7 94.7 94.7 90.6 90.6 95.7 92.7 94.6 93.7 96.6 96.6 96.6 95.6 95.6 99.9 99.9 99.9 79.8 78.8
BTPR ↑ 95▷ 95▷ 95▷ 91▷ 91▷ 96▷ 93▷ 95▷ 94▷ 97▷ 97▷ 97▷ 96▷ 96▷ 100▷ 100▷ 100▷ 80 ▷ 80▷

Table 2: Performance evaluation of bias mitigation techniques across various datasets and benchmark models under low-grade
noise. Symbols used: ↑indicates that higher values are more desirable, while ↓ indicates that lower values are more desirable.
For each client across each benchmarks in a particular dataset ∗ signifies the best TPRD; ⊙ designates the best TPRSD; •
represents the best WTPR; and ▷ indicates the best BTPR . (Note: On DIGITS dataset,training involves only 4 clients, reflecting
its composition of merely 4 heterogeneous datasets.)
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Figure 5: Examining the performance trade-off in𝑀𝑊𝑅 concerning privacy and accuracy across various levels of differential
privacy (DP) noise factors on FashionMNIST. In (a), a base Gaussian noise with a variance of 0.3 is introduced to all methods,
while in (b), Gaussian noise with a variance of 0.4 is applied to all methods.

0.11, 1.10, 1.00, and 0.4, respectively. Model performance evalua-
tion used the same fairness metrics as before. Table 2 displays TPR,
TPRSD, WTPR, and BTPR scores across various bias mitigation
techniques and datasets, exploring high-grade distortion scenarios
in local data. Consistent with our earlier findings, MWR delivers
significantly fairer outcomes across diverse groups. The table shows
MWR reduces TPRSD across most devices while maintaining high
TPR. Compared with Table 1, MWR increases WTPR for the low-
est TPR group, resulting in minimal TPRD among bias mitigation
techniques. This enhancement in WTPR for disadvantaged groups
minimally affects high-performing groups’ performance.

Although some bias mitigation techniques may slightly outper-
form in TPRSD and WTPR fairness metrics, this often occurs at
the expense of decreased TPR in privileged clients not affected by

distortions. However, this decrease compensates for an increase in
lower TPR among disadvantaged clients. Despite these differences,
the results remain closely competitive among methods, indicat-
ing similar performance despite disparity, while simultaneously
improving group fairness among clients.
Takeaway. our robustness analysis suggests that MWR stands out
as a robust and fair approach even in scenarios with high-grade
heterogeneity, showcasing its effectiveness in mitigating bias across
diverse datasets and client groups.

5.3 Privacy Analysis
This section explores how differential privacy affects group fairness
and performance in MWR, particularly in scenarios where local
group probability distributions 𝑝 (G = 𝑔𝑖 |x𝑖,𝑘 ) are shared with the
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Figure 6: Examining the performance trade-off in𝑀𝑊𝑅 concerning privacy and accuracy across various levels of differential
privacy (DP) noise factors on MNIST. In (a), a base Gaussian noise with a variance of 0.8 is introduced to all methods, while in
(b), Gaussian noise with a variance of 1.1 is applied to all methods.

server to compute importance weights. Differential privacy is crucial
for preserving privacy in client metadata, preventing disclosure of
sensitive details like group selection probabilities.

We use the MNIST and FashionMNIST datasets for our privacy
budget analysis, maintaining consistency in experimental setups
and various learning components as detailed in §3.1. We introduce
different levels of Laplace noise, denoted by 𝜖 , to local probabil-
ity distributions. An 𝜖 value of 0.00 represents perfect differential
privacy in the implementation of MWR.

Figures 5 to 8 show the impact of varying levels of Laplace noise
(𝜖) on group-fairness metrics (WTPR, TPRSD, and TPRD) and group
performance (TPR) in MWR, addressing bias in local data with
different levels of feature noise. In Figures 5a to 7b, we see that using
a privacy budget (𝜖 ∈ 0.0, 0.4, 0.8) for metadata exchange maintains
fairness metrics similar to deploying MWR without privacy (𝜖 −→
∞) on MNIST and FashionMNIST. This is evident from minimal
variations in WTPR, TPRSD, and TPRD across all clients (with
high and low feature heterogeneity) under all privacy budgets.
Moreover, the privacy budget ensures fairness while preserving
the best and worst TPR performance. This aligns with the fairness
guarantee of MWR, as the privacy budget values (𝜖 ∈ 0.0, 0.4, 0.8)
fall within a range that provides algorithmic fairness, as noted in [1].
Our privacy analysis underscores that our method ensures client
privacy through differential privacy on shared metadata without
significantly affecting bias or accuracy.
Takeaway. MWR demonstrates the feasibility of preserving sensitive
information while effectively reducing group bias.

5.4 Fairness Budget Analysis
MWR incorporates a fairness budget, denoted as 𝜂𝜇 , to regulate
importance weight adjustments for fairness. This control mech-
anism in MWR adjusts importance weights based on past group
performance (group loss) for fairness metrics. We assess the im-
pact of 𝜂𝜇 on group fairness metrics (WTPR, TPRSD, TPRD) using
MNIST and FashionMNIST datasets, setting 𝜂𝜇 to different values
(−0.009,−0.003,−0.001,−0.0002). Tables 3 and 4 show how the fair-
ness budget 𝜂𝜇 affects both group fairness and group performance
(TPR) withMWR. Increasing 𝜂𝜇 values improve fairness guarantees,
leading to better WTPR, TPRSD, and TPRD due to faster conver-
gence and adaptation to fairness issues. Conversely, lower 𝜂𝜇 values

result in more gradual adjustments, slowing down the algorithm’s
fairness improvements. This experiment is crucial for understand-
ing how adjusting fairness settings impacts outcomes, helping us
strike a balance between fairness and the specific fairness parameter
we use.
Takeaway. Fine-tuning the fairness budget in 𝑀𝑊𝑅 significantly
shapes the degree of fairness. Higher values amplify fairness, while
lower values diminish it, underscoring the pivotal role of this parame-
ter in mitigating group bias.
6 CONCLUSION AND FUTUREWORK
This study explores FL group bias in decentralized, heterogeneous
edge deployments, where devices capture data with diverse features
often influenced by noise. Our framework, MWR, uses importance
weighting and average conditional probabilities based on data fea-
tures to improve group fairness in FL across varied local datasets.
Heterogeneous features in local group data can bias FL models for
minority clients, impacting specific groups on those clients. MWR
addresses this bias by optimizing worst-performing groups with-
out compromising the best-performing ones compared to other
FL methods. While effective, MWR relies on group information
to mitigate bias across clients, which can lead to persistent loss
discrepancies under severe feature heterogeneity. Future work aims
to incorporate methods for estimating and denoising data features
to reduce noise without compromising data quality. MWR is highly
adaptable and can be extended to complex applications beyond
image classification. It can optimize diagnostic outcomes in health-
care datasets, handle multimodal and text-based applications like
next-character prediction and image captioning, and mitigate bias
in emotion prediction applications within FL settings, ensuring
equitable outcomes across diverse groups.
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Table 3: Impact of the fairness budget 𝜂𝜇 on Fashion-MNIST. A base Gaussian noise with a variance of 0.3, 0.4 is introduced to
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