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ABSTRACT
The rising adoption of learning analytics and academic performance
prediction technologies in higher education highlights the urgent
need for transparency and explainability. This demand, rooted in
ethical concerns and fairness considerations, converges with Ex-
plainable Artificial Intelligence (XAI) principles. Despite the recog-
nized importance of transparency and fairness in learning analytics,
empirical studies examining student fairness perceptions, particu-
larly within academic performance prediction, remain limited. We
conducted a pre-registered factorial survey experiment involving
1,047 German students to investigate how decision tree features
(simplicity and accuracy) influence perceived distributive and in-
formational fairness, mediated by causability (i.e., the self-assessed
understandability of a machine learning model’s cause-effect link-
ages). Additionally, we examined the moderating role of institu-
tional trust in these relationships. Our results indicate that decision
tree simplicity positively affects fairness perceptions, mediated by
causability. In contrast, prediction accuracy neither directly nor
indirectly influences these perceptions. Even if the hypothesized
effects of interest are either minor or non-existent, results show
that the medium positive effect of causability on the distributive
fairness assessment depends on institutional trust. These findings
substantially impact the crafting of transparent machine learning
models in educational settings. We discuss important implications
for fairness and transparency in implementing academic perfor-
mance prediction systems.

CCS CONCEPTS
• Human-centered computing → Empirical studies in visual-
ization; User studies; Laboratory experiments; • Computing
methodologies→ Artificial intelligence.
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1 INTRODUCTION
Higher education institutions are exploring academic performance
prediction (APP) using machine learning (ML) in learning analytics
(LA). Ensuring transparency and explainability is crucial, mandated
by EU regulations and ethical guidelines, as well as student demand
[43]. This urgency is rooted in social fairness issues, where Explain-
able Artificial Intelligence (XAI) is relevant [1, 34, 36, 46]. Though
transparency is emphasized in educational policies [14], "the num-
ber of empirical user studies examining ethical considerations, such
as transparency in AI, is relatively low and often focused on LA in
general rather than specific LA systems" [19]. Our research thus
focuses on students’ perceptions of APP fairness. Using a factorial
survey and a pre-registered experiment with 1,047 German stu-
dents, we evaluated the impact of decision tree features—model
simplicity and accuracy—on perceived fairness. We also examined
the mediating role of causability, i.e., the self-assessed understand-
ability of the cause-effect relationships of a ML model [40, 78] in
these relationships and assessed if institutional trust moderates
these effects.

2 ACADEMIC PERFORMANCE PREDICTION
AS A FORM OF AI-BASED LEARNING
ANALYTICS

Within the last few years, many LA applications have been de-
veloped and adopted worldwide to support the work of students,
lecturers, and administrators alike [16, 84]. Some of those applica-
tions can be used to reach several goals at once. For instance, with
the implementation of APP systems, higher education institutions
(HEI) aim to improve student success and reach higher equality
in retention rates [5, 67]. APP systems are being used to predict
students’ performance based on large amounts of data–mainly his-
torical performance data, but in some cases also sociodemographic
data [2, 27]–with the help of ML [4]. The actual prediction can vary
from the prediction of students’ grades [6, 20] over the likelihood
of a successful study completion to the prediction of a potential

https://orcid.org/0000-0002-0553-7291
https://orcid.org/0000-0002-3145-5206
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630106.3658953
https://doi.org/10.1145/3630106.3658953


FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Lünich & Keller

dropout [12, 64]. Moreover, when APP is used to give individual-
ized feedback or to distribute support measures, APP can further
help especially those students who have often been disadvantaged
before, by providing them with a more tailored educational experi-
ence that ensures that each student’s unique needs and potential
are recognized and addressed [60, 67].

2.1 The Issues of Discrimination and Fairness
Perceptions

However, discrimination and fairness are critical concerns in apply-
ing LA and APP [9]. Discrimination can arise from flawed algorith-
mic design, biased data, or actions based on AI predictions [49, 63].
These issues can perpetuate societal biases [29, 58] and influence
human decision-making [49]. Efforts exist to enhance the fairness of
LA systems [26, 42, 61]. Perceived fairness issues are equally impor-
tant [46]. APP applications are sociotechnical systems; thus, stake-
holder perceptions, particularly students’, are crucial [38, 51, 55].
Ignoring students’ perceptions can negatively impact course satis-
faction [72], diminished reputation for, or even outright rejection
of HEIs [59], or provoke public protest [28]. Hence, stakeholder
involvement in APP design is essential [46, 70]. Our study focuses
on students’ perceptions of distributive and informational fairness.
Distributive fairness involves outcome evaluations [46], while in-
formational fairness relates to decision-making transparency [22].
Given ethical guidelines advocating transparency in AI [13, 14, 43],
and students’ lack of awareness about data use [44], transparency
is vital for perceived fairness [9, 46].

2.2 On the Value of Explainable AI for APP
Fairness

To achieve fairness and trust in LA, recent research has turned to-
wards XAI methods [91]. According to Gunning et al., "the purpose
of an explainable AI (XAI) system is to make its behavior more in-
telligible to humans by providing explanations. (...) The XAI system
should be able to explain its capabilities and understandings; ex-
plain what it has done, what it is doing now, and what will happen
next; and disclose the salient information that it is acting on" [35].
Adadi and Berrada identify four reasons for the necessity of XAI:
justification, control, improvement of AI systems, and knowledge
production [1]. XAI is deemed critical for individuals to understand
and verify decisions [10] and is considered a prerequisite for fair-
ness [34]. Empirical evidence suggests that explanations improve
perceived fairness and trust in AI systems [8, 25, 78, 79, 82]. Specif-
ically, explanations have shown to affect informational fairness
[76, 89]. However, the impact varies depending on the dimensions
of fairness and types of explanations used [11, 25, 75, 77, 79]. Despite
the demand for transparency, particularly from students [68, 80, 86],
there is still a gap in understanding user prerequisites, needs and,
expectations [18, 30, 47]. In the context of LA, decision trees are
often used for XAI in APP [41]. These decision trees are trained on
historical data, such as past exam results, to predict future academic
outcomes [36, 50]. By making explanatory factors transparent, bi-
ases can be identifiedmore quickly, contributing to the development
of fairer algorithms [54]. However, the complexity and accuracy of
decision trees can vary [50].

2.3 Simplicity and Fairness Perceptions
As ML models grow in complexity, there is a risk they may become
too intricate for human comprehension. Balancing complexity and
simplicity is essential for explainability, although no definitive stan-
dards exist [74]. Cognitive limitations further complicate the issue;
for instance, young adults can process only three to five stimuli at
the same time [21]. Empirical studies reveal a nuanced relationship
between informational fairness and the amount of explanation pro-
vided [23, 48, 76]. However, the theory of explanatory coherence
suggests that simpler explanations are generally preferred [62, 83].
This preference for simplicity has been empirically supported and
observed in various applications, including health symptom checks
and mathematical fairness notions [69, 81, 87]. Yurrita et al.’s qual-
itative study indicated that too much information or complexity
could be counterproductive, especially for those with limited AI
literacy [89]. Hence, the simplicity of an APP decision tree is crit-
ical to ensure equitable understanding and to prevent potential
discrimination, such as favoring students with prior computer sci-
ence knowledge. Based on these considerations, we formulate the
first hypothesis:

Hypothesis 1 (H1). Simpler decision trees lead to higher perceived
informational fairness.

2.4 Accuracy and Fairness Perceptions
Accuracy is crucial for adopting and trusting APP systems. Low ac-
curacy hinders adoption and impacts the system’s fairness [37, 49].
Literature on algorithmic aversion indicates that observed errors in
AI systems reduce people’s confidence in them [24, 57]. Accuracy
strongly predicts intention to follow AI recommendations, even
more so than clarity of origin [32]. It also positively affects trust in
AI [65, 66, 88]. However, Conijn et al. found no effect of accuracy
explanations on student motivation in an essay grading context
[19]. Given the significance of accuracy and the inherent trade-offs
in system design–since principles like transparency, explainabil-
ity, and accuracy cannot be simultaneously maximized within a
single ML model or XAI approach [3]–we formulate the second
hypothesis:

Hypothesis 2 (H2). Decision trees with a higher accuracy lead to
higher perceived distributive fairness.

2.5 Fairness and Causability
Simplicity in APP systems aims to improve informational fairness
but does not guarantee understandability for all students. If ex-
planations are accessible only to a subset of students, unfairness
ensues [10]. In this regard, the concept of causability, introduced
by Holzinger et al., assesses the quality of explanations from the
user’s perspective [40]. Unlike explainability, which focuses on the
system’s capability to elucidate its functions [35], causability is user-
centric and measures a person’s understanding of an explanation.
Holzinger et al. operationalized this with the system causability
scale [39]. Shin’s study on AI journalism supports causability’s role
as an antecedent to explainability and its influence on perceived
fairness and trust [78]. Based on these insights, we formulate the
third and fourth hypotheses:



Explainable Artificial Intelligence for Academic Performance Prediction. FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Hypothesis 3 (H3). The relationship between the simplicity of deci-
sion trees and perceived informational fairness is mediated by caus-
ability, such that simpler decision trees lead to greater causability,
which in turn leads to increased perceived informational fairness.

Hypothesis 4 (H4). The relationship between the accuracy of de-
cision trees and perceived distributive fairness is mediated by caus-
ability, such that decision trees with a higher accuracy lead to greater
causability, which in turn leads to increased perceived distributive
fairness.

2.6 Fairness and Institutional Trust
HEIs, as the stewards of APP systems, carry the ethical responsibil-
ity to safeguard students from the consequences of unfair decisions
[45]. Failure in this regard risks eroding institutional trust, as seen
in cases involving automated assessment discrimination [28] and
unethical data use [45]. However, trust in HEIs significantly influ-
ences students’ willingness to disclose data for LA [53, 80]. In the
sociotechnical landscape of APP, trust extends beyond the tech-
nology to include the organizations and individuals that deploy
it [56, 85]. Trust also acts as a complexity-reducing mechanism
in uncertain situations [52]. Therefore, students’ inherent trust
in their HEIs could potentially mitigate the need to fully compre-
hend APP’s intricacies, assuming the institution is perceived as
ethical and trustworthy [80, 90]. Based on these considerations, we
formulate the fifth and sixth hypotheses:

Hypothesis 5 (H5). The indirect effect of the simplicity of decision
trees on perceived informational fairness through causability is mod-
erated by institutional trust. Specifically, simpler decision trees lead to
greater causability, which in turn results in increased perceived infor-
mational fairness. However, the strength of this mediated relationship
is contingent upon the level of institutional trust. The indirect effect
is weaker at higher levels of institutional trust, as individuals with
high institutional trust have a higher perception of informational
fairness even when simplicity and accuracy are low, making the role
of causability as a mediator less influential in these cases.

Hypothesis 6 (H6). The indirect effect of the accuracy of decision
trees on perceived distributive fairness through causability is mod-
erated by institutional trust. Specifically, simpler decision trees lead
to greater causability, which in turn results in increased perceived
distributive fairness. However, the strength of this mediated relation-
ship is contingent upon the level of institutional trust. The indirect
effect is weaker at higher levels of institutional trust, as individuals
with high institutional trust have a higher perception of distributive
fairness even when simplicity and accuracy are low, making the role
of causability as a mediator less influential in these cases.

Our primary focus is on assessing the impact of accuracy on
distributive fairness and simplicity on informational fairness, with
attention to the roles of causability and institutional trust. Our
conceptual moderated mediation model is illustrated in Figure 1. In
this model, two paths are not hypothesized to have direct effects.
Subsequently, these paths will be freely estimated in our structural
regression analysis, allowing for data-driven insights as this study
aims to elucidate how simplicity and accuracy in decision trees
affect fairness perceptions. Consequently, we pose two research
questions:

RQ1. To what extent do simple decision trees affect perceived dis-
tributive fairness?

RQ2. To what extent do accurate decision trees affect perceived
informational fairness?

All hypotheses and research questions were pre-registered via
OSF.

3 METHOD
In a 2x2 between-subjects experimental design, we examine the
influence of decision tree simplicity and accuracy on students’ caus-
ability and subsequent fairness perceptions. We also evaluate the
moderating role of institutional trust on the causability-fairness
relationship through a moderated mediation model. Data analysis
was carried out using the statistical program R version 4.3.1 (2023-
06-16 ucrt) using structural equation modeling with the package
lavaan [73]. All estimated models utilize bootstrapping with 5000
bootstraps. Bootstrap intervals for parameter estimates were pro-
duced using the adjusted bootstrap percentile method with bias
correction.

The sample size for our study was determined through an a
priori power analysis conducted in R, aiming for a power level of
.75 with an anticipated sample size of around 1000 participants. This
increased to approximately .8 with 1100 participants. We targeted a
small effect size difference of .15 for the moderation of a mediation
effect at a conventional alpha error probability of .05. Despite the
risk of a 25% Type II error, we deemed this power level acceptable for
our specific research context, balancing data collection feasibility
with the robustness of our results. As the questionnaire needed
to be accessed via a non-mobile device to display the stimulus
correctly, the maximum number of respondents available via the
panel provider was approximately 1100. Participants were recruited
from the online panel Talk Online Data Collection AG, were 18
or older, and enrolled in higher education. The Ethical Review
Board of the Faculty of Philosophy of the Heinrich Heine University
Düsseldorf, Germany, approved the study.

All in all, n = 1047 students completed the survey. The aver-
age age of students was 25.46 (SD = 5.6). Altogether, 572 (54.7%)
students identified as women, 462 (44.2%) as men, and 11 (1.1%)
did not identify strictly as male or female, indicating ‘diverse’. Of
all students, 393 (37.5%) indicated studying a STEM subject and
606 (57.9%) indicated studying a non-STEM subject with 48 (4.6%)
students indicating to study something else which could not be
assigned to either STEM or non-STEM subjects. Regarding the ques-
tion of which degree students are currently pursuing in their core
subject, 636 (60.7%) students report pursuing a bachelor’s degree,
246 (23.5%) report pursuing a master’s degree, 129 (12.3%) report
pursuing state examination, and 36 (3.4%) pursue a doctorate.

3.1 Procedure and Survey Design
First, respondents were briefed on the study’s objectives, question-
naire duration, and data protection measures. After giving informed
consent, they confirmed current enrollment in a HEI. Sociodemo-
graphic data and institutional trust levels were then collected. A
brief overview of AI and Academic Performance Prediction APP
was provided before randomly presenting one of four decision tree
stimuli, varying in complexity and accuracy. A treatment check
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Figure 1: Conceptual Moderated Mediation Model

and questions about the decision tree’s causability followed. Par-
ticipants then evaluated the tree’s distributive and informational
fairness before answering additional academic-related questions.
Finally, they were debriefed, redirected to the panel provider, and
compensated. The average time to complete the questionnaire was
6.06 minutes (SD = 2.55).

3.2 Measurements
Independent Variable (IV). Simplicity

As stimuli, students viewed one of four decision trees detailing
factors affecting APP. The trees varied in simplicity, serving as
an independent variable. The simpler tree had two decision levels
leading to an outcome prediction, while the more complex one had
up to five decision rules. These factors were based on a real APP
system in development [27] and excluded potentially discriminatory
data. Tailored to computer science and social sciences students,
the factors were abstracted for cross-field comparability, allowing
identification for respondents across subjects.

IV. Accuracy
Regarding accuracy, the second independent variable, rates dif-

fered between a higher accuracy of 95% and a lower accuracy of 65%.
This information was displayed conspicuously below the decision
tree. These rates were chosen to capture performance variance. In
the 2x2 between-subject design, students viewed a decision tree
that was either simple or complex and had an accuracy of either
65% or 95%. For visual reference, see Figures 2 and 3.

DV. Informational Fairness.
As a dependent variable (DV), we focused on students’ percep-

tions of fairness. Thus, information fairness was measured with
several items in the first step. To achieve good factorial validity
(Cronbach’s 𝛼 = 0.80; AVE = 0.57), we decided to choose the follow-
ing three items for the latent variable of our structural equation
model: “The reasons for the prediction are understandable.”; “The
explanation of the AI-based performance prediction procedure is
comprehensive.”; “The explanation of the prediction is coherent.”
The first item is self-developed, while the other two were adapted
from Schoeffer et al. [77]. All variables used for the study were
measured on a five-point Likert scale ranging from 1 = “strongly
disagree” to 5 = “strongly agree”. Respondents also had the option

of expressing no preference (“don’t know”; except in the case of
institutional trust).1

DV. Distributive Fairness.
Students’ perceived distributive justice wasmeasured using three

commonly used items developed by Colquitt and Rodell [17] and
adapted to the APP context. Students rated whether they agreed
with the following statements: "The prediction of performance for
students by AI is fair."; "Everyone gets what he/she deserves."; "No
one is unduly disadvantaged by student performance prediction by
AI." All three items also show good factorial validity (Cronbach’s 𝛼
= 0.83; AVE = 0.62).

With the two dependent variables, informational fairness and
distributive fairness, demonstrating good convergent validity, the
question arises as to what extent they are distinct constructs, ad-
dressing the issue of discriminant validity. A high correlation is
observable in a model where both constructs are estimated as in-
dividual latent factors, r = 0.68. However, discriminant validity
assessment does not only focus on the observed correlation be-
tween the constructs. By applying the Fornell-Larcker criterion
[31], which stipulates that the squared correlation between the con-
structs must be less than the individual AVE of each factor, results
suggest that there is discriminant validity, 𝑟2 = 0.46.

Mediator. Causability
To assess students’ understanding of the APP presented, namely

causability, we used the System Causability Scale from Holzinger et
al. [39]. Again, however, we had to exclude items to improve facto-
rial validity. Respondents were asked to indicate how much they
agreed with the following statements regarding the explanations in
APP’s decision tree: "I understand the explanations in the context
of my studies."; "The explanations help me understand the criteria
of the prediction."; "I am able to understand the explanations with
my prior knowledge." Previously, it was explained that the term
"explanations" refers to the decision process shown earlier, which
shows at the end whether a dropout is predicted by the AI system
or not. The items show good factorial validity (Cronbach’s 𝛼 = 0.78;
AVE = 0.54).

Moderator. Institutional Trust.

1To compare groups, it is crucial to ensure that the latent constructs measured us-
ing multiple items demonstrate measurement invariance. We assessed measurement
invariance across the groups within the experimental conditions for the latent con-
structs. Following the criterion suggested by Cheung and Rensvold [15], deviations
in the CFI did not exceed .01, suggesting that the measurements maintain consistent
psychometric properties and factor structure across different conditions.
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Figure 2: Simple Decision Tree for Academic Performance Prediction with High Accuracy

Figure 3: Complex Decision Tree for Academic Performance Prediction with Lower Accuracy

Finally, institutional trust was measured regarding the HEI at
which students are enrolled. We used and slightly adapted four
items developed by Gosh et al. [33] and previously validated by Li
et al. [53]. The students were asked to rate the extent to which they
agreed with the following sentences: "Since I cannot personally
supervise all of my university’s activities, I rely on the university
staff to do their jobs properly."; "I believe that my university is a
credible organization."; "I feel that I can rely on my university.".
However, to improve factorial validity, we excluded the reverse
coded item ("In general, I do not have confidence in my university.").
After doing so, the items show good factorial validity (Cronbach’s
𝛼 = 0.75; AVE = 0.53).

3.3 Treatment Check
Two treatment check items assessed participants’ perceptions of
the manipulated conditions. Participants responded on a five-point

scale, ranging from 1 (strongly disagree) to 5 (strongly agree). The
first item examined the perception of decision tree simplicity: If you
think about the decision tree just shown: To what extent do you agree
or disagree with the following statements? The decision tree of the
performance prediction is straightforward. The results indicated a
significant difference among the four conditions (F(3, 577.9) = 42.8,
p < 0.001). Using a Games-Howell post hoc test, the conditions with
a less simple decision tree and high accuracy (M = 3.40; SD = 1.11)
and lower accuracy, respectively (M = 3.45; SD = 1.16), were found
to differ significantly from the conditions with a simpler decision
tree and high accuracy (M = 4.17; SD = 0.93) and lower accuracy,
respectively (M = 4.14; SD = 0.96), confirming that respondents
recognized the extent to which the displayed simplicity of the
decision tree varied. The second item assessed the perception of
decision tree accuracy: The performance prediction decision tree
shows high accuracy. The results indicated a significant difference
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among the four conditions (F(3, 1043) = 20.34, p < 0.001). Using a
Games-Howell post hoc test, the conditions with high accuracy
and a less simple decision tree (M = 3.31; SD = 1.05) and simpler
decision tree, respectively (M = 3.36; SD = 1.06), were found to
differ significantly from the conditions with low accuracy and a
less simple decision tree and (M = 2.77; SD = 1.08) and simpler
decision tree, respectively (M = 2.89; SD = 1.08), confirming that
respondents recognized the extent to which the displayed accuracy
of the decision tree varied.

4 RESULTS
4.1 Main Effects Model
We first address a main effects model to test H1 and H2, reporting
the direct effects of the exogenous variables simplicity and accuracy
that were manipulated in the stimulus as IVs on the DVs informa-
tional and distributive fairness. For the sake of completeness, in this
analysis, we estimated a model that also includes the interaction
of simplicity and accuracy. The structural regression model shows
good fit (𝜒2(20) = 68.89, p = < 0.001; RMSEA = 0.05, 90% CI [0.04,
0.06]; TLI = 0.97).

Regarding the simplicity of the decision tree, results suggest
that there is a small positive and significant effect of the simplicity
of the decision tree on perceptions of informational fairness; the
simpler the decision tree, the greater the perceived informational
fairness, B = 0.32, SE = 0.10, 95% CI (0.14, 0.51), p = < 0.001, 𝛽 = 0.16.
Accordingly, H1 is accepted. Additionally, there is a small positive
and significant effect of simplicity on perceived distributive fairness;
the simpler the decision tree, the greater the perceived distributive
fairness, B = 0.31, SE = 0.12, 95% CI (0.07, 0.52), p = 0.008, 𝛽 = 0.12.

Regarding the accuracy of the decision tree, there was neither
an effect on perceptions of informational fairness, B = 0.06, SE =
0.10, 95% CI (-0.14, 0.25), p = 0.553, 𝛽 = 0.03, nor on on perceived
distributive fairness, B = -0.01, SE = 0.12, 95% CI (-0.24, 0.22), p =
0.913, 𝛽 = -0.01. Accordingly, H2 is rejected.

Lastly, there was neither an interaction effect of the IVs on per-
ceptions of informational fairness, B = -0.14, SE = 0.14, 95% CI (-0.41,
0.14), p = 0.323, 𝛽 = -0.06, nor on perceived distributive fairness, B
= -0.12, SE = 0.16, 95% CI (-0.43, 0.21), p = 0.470, 𝛽 = -0.04.

4.2 Mediation Model
Second, to test H3 and H4, we estimated a mediation model that
integrates the mediator, causability, to understand how the IVs
affect the DVs through an indirect pathway. Specifically, the model
not only tests whether simplicity and accuracy directly affect both
informational and distributive fairness but also influence them
indirectly via causability. The structural regression model shows
good fit (𝜒2(36) = 99.30, p = < 0.001; RMSEA = 0.04, 90% CI [0.03,
0.05]; TLI = 0.98).

Regarding the effects of the IVs on the mediator, causability (i.e.,
the first path of the indirect effect), we first examine the impacts
of simplicity and accuracy. For the simplicity of the decision tree,
there was positive effect on causability; the simpler the decision
tree, the greater the causability. The effect is small and significant,
B = 0.16, SE = 0.07, 95% CI (0.03, 0.29), p = 0.016, 𝛽 = 0.08. For the
accuracy of the decision tree, there was no significant effect on

causability, B = 0.04, SE = 0.07, 95% CI (-0.10, 0.17), p = 0.552, 𝛽 =
0.02.

Second, we assess the effects of the mediator, causability, on
the DVs informational fairness and distributive fairness (i.e., the
second path of the indirect effect). First, there was positive effect
of causability on informational fairness; the higher the causabil-
ity, the greater the perceived informational fairness. The effect is
strong and significant, B = 0.72, SE = 0.05, 95% CI (0.62, 0.82), p =
< 0.001, 𝛽 = 0.69. Second, there was positive effect of causability
on distributive fairness; the higher the causability, the greater the
perceived distributive fairness. The effect is strong and significant,
too, B = 0.55, SE = 0.05, 95% CI (0.45, 0.66), p = < 0.001, 𝛽 = 0.43.

Altogether, the results showed that there was a significant total
effect between simplicity and informational fairness, B = 0.25, SE
= 0.07, 95% CI (0.11, 0.39), p = < 0.001, 𝛽 = 0.13. Controlling for
causability, the direct effect of simplicity on informational fairness
remained significant, indicating that the effect is partially mediated,
B = 0.14, SE = 0.06, 95% CI (0.01, 0.25), p = 0.025, 𝛽 = 0.07. The indirect
effect was significant supporting the presence of a mediation effect,
B = 0.12, SE = 0.05, 95% CI (0.02, 0.22), p = 0.019, 𝛽 = 0.06. Accordingly,
H3 is accepted.

Furthermore, the results showed that there was a significant
total effect between simplicity and distributive fairness, B = 0.25,
SE = 0.08, 95% CI (0.08, 0.41), p = 0.004, 𝛽 = 0.10. Controlling for
causability, the direct effect of simplicity on distributive fairness
remained significant, indicating that the effect is partially mediated,
B = 0.16, SE = 0.08, 95% CI (0.01, 0.32), p = 0.049, 𝛽 = 0.06. The indirect
effect was significant supporting the presence of a mediation effect,
B = 0.09, SE = 0.04, 95% CI (0.02, 0.17), p = 0.023, 𝛽 = 0.04.

Contrarily, the results showed that there was no significant total
effect between accuracy and distributive fairness, B = -0.07, SE
= 0.08, 95% CI (-0.24, 0.09), p = 0.389, 𝛽 = -0.03. Controlling for
causability, the direct effect of accuracy on distributive fairness was
non-significant, B = -0.09, SE = 0.08, 95% CI (-0.25, 0.06), p = 0.230,
𝛽 = -0.04. The indirect effect was non-significant, too, B = 0.02, SE
= 0.04, 95% CI (-0.06, 0.09), p = 0.551, 𝛽 = 0.01. Accordingly, H4 is
rejected.

Likewise, the results showed that there was no significant total
effect between accuracy and informational fairness, B = -0.01, SE
= 0.07, 95% CI (-0.15, 0.12), p = 0.883, 𝛽 = -0.01. Controlling for
causability, the direct effect of accuracy on informational fairness
was non-significant, B = -0.04, SE = 0.06, 95% CI (-0.16, 0.07), p =
0.510, 𝛽 = -0.02. The indirect effect was non-significant, too, B =
0.03, SE = 0.05, 95% CI (-0.07, 0.12), p = 0.552, 𝛽 = 0.01.

4.3 Moderated Mediation Model
Lastly, to test H5 and H6, we estimated a moderated mediation
model that integrates the moderator, institutional trust, to test
whether the effect of causability on informational fairness and
distributive fairness as part of the indirect effect of the IV on the
DV via the mediator depends on the extent of students’ institutional
trust. We first report a model with parameter estimates that treat
the moderator as a continous latent variable. Second, we compare
the model across three groups to illustrate the changes in the effect
at different levels of the moderator: a) a group of students whose
institutional trust scores are at least one standard deviation (SD)
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below the mean, b) a group whose institutional trust is within one
SD of the mean, and c) a group whose institutional trust is one SD
above the mean.

The first estimated model, which treats the moderator as a con-
tinuous latent variable, suggests a poor fit (𝜒2(213) = 1851.31, p =
< 0.001; RMSEA = 0.09, 90% CI [0.08, 0.09]; TLI = 0.81). This poor
fit arises from the introduction of the interaction terms, which
multiply both the amount and magnitude of covariances between
variables that are assumed to be independent. When combined with
the sample size, this increase in covariance elevates the chi-square
value, a measure of goodness of fit, possibly leading to rejection of
the model under conventional thresholds. However, the model does
reach a plausible solution, and an examination of the parameter
estimates indicates no major deviation compared to the previously
estimated models.

The parameter estimate for the first interaction effect suggests
no effect of institutional trust on the relationship between the
causability and informational fairness, B = -0.04, -0.03, SE = 0.05,
95% CI (-0.12, 0.09), p = 0.591, 𝛽 = -0.02.

Figure 4 below shows the parameter estimate for the effect of
causability on informational fairness for students at least one SD
below the mean of institutional trust, within one SD of the mean,
and at least one SD above the mean. As there is no moderation
effect, we reject H5.

The parameter estimate for second interaction effect suggests
a small negative and significant effect of institutional trust on the
relationship between the causability and distributive fairness, B =
-0.11, SE = 0.06, 95% CI (-0.21, 0.01), p = 0.054, 𝛽 = -0.07.

Figure 5 below shows the parameter estimate for the effect of
causability on distributive fairness for students at least one SD
below the mean of institutional trust, within one SD of the mean,
and at least one SD above the mean. While our confidence intervals
for the individual parameter estimates in the figure do overlap,
suggesting uncertainty in the distinctions between some groups,
our more direct tests of differences between specific groups show
significant contrasts. For instance, the difference of the regression
parameter ‘Distributive Fairness ~ Causability’ between ‘More than
1 SD below Mean’ and ‘More than 1 SD above Mean’ is statistically
significant, B = 0.42, SE = 0.21, 95% CI (0.04, 0.86), p = 0.046, Δ𝛽 =
0.29. This suggests that even though the confidence bands for these
groups might overlap when calculated and visualized individually,
the statistical evidence points towards a difference in their actual
parameter estimates. However, as there was overall no total effect
of accuracy on distributive fairness and no indirect effect via the
causability, the different indirect effects for the first group, B = -0.00,
SE = 0.14, 95% CI (-0.26, 0.28), p = 0.981, 𝛽 = -0.00, the second group,
B = 0.01, SE = 0.05, 95% CI (-0.08, 0.09), p = 0.831, 𝛽 = 0.00, and the
third group, B = 0.09, SE = 0.07, 95% CI (-0.04, 0.26), p = 0.236, 𝛽 =
0.03, are too small to reach significance and suggest practically no
effect for fairness perceptions. Accordingly, H6 is rejected.

5 DISCUSSION
Concerning H1 and H3, simplicity in decision trees for APP posi-
tively influenced perceptions of informational fairness mediated by
causability. This is consistent with explanatory coherence theory
[83] suggesting more simple explanations are preferred, and it is

thus crucial to balance providing sufficient information and avoid-
ing overwhelming students with excessive details. Confirming H3,
we find evidence for the assumption that more information does not
necessarily lead to a better understanding and higher fairness per-
ceptions by default [7, 23], highlighting the importance of students’
self-assessed understandability of the decision trees that visualized
the ML model’s outcome [40]. Moreover, H5, positing institutional
trust as a moderator, was not supported, highlighting that trust
cannot replace individual comprehension to ensure informational
fairness [80]. Regarding RQ1, simplicity had a non-hypothesized
positive effect on informational and distributive fairness mediated
by causability. This supports existing literature arguing that overall
simpler explanations are favored [69, 81, 83, 87].

H2 and H4, which posited that accuracy would impact distribu-
tive fairness and be mediated by causability, were not supported.
This raises questions about students’ awareness of the risks as-
sociated with low-accuracy AI. The absence of an effect from a
30-percentage point accuracy manipulation is notable but may also
be linked to external validity, as respondents faced no real-world
consequences from model errors. Like informational fairness, caus-
ability was a strong determinant in distributive fairness, emphasiz-
ing its key role in perceptions of fair AI decisions. In the absence
of both the overall effects of accuracy on distributive fairness and
the indirect effects via causability, H6 had to be rejected. However,
institutional trust did affect the relationship between causability
and distributive fairness. This suggests that higher institutional
trust reduces the importance of the decision tree’s understandabil-
ity on perceptions of distributive fairness. Accordingly, institutional
trust may still contribute to APP being judged fairly even if the AI
system is not entirely understood, as there can be trust that the
university will act ethically and respect students’ interests [45, 80].
Lastly, as questioned in RQ2, accuracy also shows no influence on
informational fairness. This finding remains constant when adding
causability as a mediator in the model, indicating no significant
effect. While the concrete level of accuracy of the performance of
the APP model does not help to increase informational fairness,
this does not mean that the knowledge about the APP’s accuracy
per se is not important in terms of system transparency. However,
since Conijn et al. found that accuracy has no effect on student
motivation or confidence in an essay grading system[19], one might
assume that accuracy is more critical to the question of whether
APP is good enough to be used at all than to the question of whether
accuracy increases informational fairness perceptions.

Overall, the results underscore the limited impact of objective at-
tributes like simplicity and accuracy on fairness perceptions, empha-
sizing the role of subjective factors like causability. Future research
should focus on these subjective perceptions to better understand
fairness in APP.

6 IMPLICATIONS AND CONCLUSION
6.1 Practical Implications
Our study finds that the design features of the decision tree had
a limited impact on its perceived comprehensibility (i.e., causabil-
ity) and fairness. However, design decisions remain critical for fair
and effective communication in XAI. Relevant, high-quality expla-
nations are essential for understanding the APP process and its
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Figure 4: The Effect of Causability on Informational Fairness Depending on Institutional Trust

Figure 5: The Effect of Causability on Distributive Fairness Depending on Institutional Trust

outcomes. Yet, these should be presented without overwhelming
complexity. Our findings suggest that decision trees with two to
five levels do not adversely affect self-assessed understanding or

perceived fairness. Overall, respondents indicated that they un-
derstood the cause-effect relationships in the white-box model. It
would be interesting to explore whether the complexity of other
approaches, such as random forest classifiers, could positively or
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negatively impact causability. However, it is vital to tailor the com-
plexity of explanations to the audience’s cognitive abilities and
prior knowledge, especially in diverse educational contexts. Failure
to do so risks exacerbating inequalities by favoring those with a
greater prior understanding of AI systems. It would thus be prema-
ture to dismiss the demands for accuracy regarding these models,
as high accuracy is equated with the reliability and trustworthiness
of AI systems. Nonetheless, it is essential to acknowledge that well-
intentioned policy changes to improve system transparency and
fairness may not resonate across all audience segments by default.
In sum, the key is providing explanations and ensuring they are
perceived as comprehensible to those they affect.

6.2 Research Implications
Our study points to the nuanced roles of simplicity and accuracy in
shaping fairness perceptions in APP, urging further investigation
into other XAI attributes [71]. For example, how counterintuitive
factors in decision trees, like high grades predicting poor perfor-
mance, influence student perceptions remains an open question.
The study also calls for understanding how varying student at-
tributes affect the comprehensibility of explanations, raising the
issue of whether a one-size-fits-all explanation is adequate. Further
research is needed to ascertain the optimal level of explanation
that avoids information overload in increasingly complex models.
Moreover, the role of universities in APP implementation requires
further examination. While institutional trust is vital, it cannot
replace the need for individual comprehension of LA explanations.
Our findings suggest that decision tree simplicity positively affects
fairness perceptions, mediated by causability, whereas prediction
accuracy has a less pronounced impact. Our study thus offers criti-
cal insights for stakeholders in HEIs, highlighting the importance
of balancing explainability and comprehensibility to foster ethical
and equitable practices in academic settings.

In conclusion, our study underscores the importance of explain-
ability and comprehensibility in implementing LA and APP tech-
nologies in HEIs. Decision tree simplicity emerges as a factor pos-
itively influencing fairness perceptions, mediated by causability,
while prediction accuracy appears to play a less significant role in
shaping student perceptions of fairness. Importantly, our findings
highlight the need to explore further institutional trust’s multi-
faceted influence on fairness perceptions in academic contexts. As
HEIs strive for fair and transparent APP systems, our research offers
valuable insights for policymakers, administrators, and students,
fostering ethical and equitable practices in higher education.
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