Visibility into Al Agents

Alan Chan* Carson Ezell Max Kaufmann
alan.chan@mila.quebec Harvard University Independent
Centre for the Governance of Al Cambridge, USA London, UK
Oxford, UK
Mila (Quebec Al Institute)
Montréal, Canada
Kevin Wei Lewis Hammond Herbie Bradley

Harvard Law School
Cambridge, USA

University of Oxford
Oxford, UK

University of Cambridge
Cambridge, UK

Cooperative Al Foundation
Oxford, UK

Emma Bluemke
Centre for the Governance of Al

Nitarshan Rajkumar
University of Cambridge

David Krueger
University of Cambridge

Oxford, UK Cambridge, UK Cambridge, UK
Noam Kolt Lennart Heim" Markus Anderljung’
University of Toronto Centre for the Governance of Al Centre for the Governance of Al
Toronto, Canada Oxford, UK Oxford, UK
ABSTRACT CCS CONCEPTS

Increased delegation of commercial, scientific, governmental, and
personal activities to Al agents—systems capable of pursuing com-
plex goals with limited supervision—may exacerbate existing soci-
etal risks and introduce new risks. Understanding and mitigating
these risks involves critically evaluating existing governance struc-
tures, revising and adapting these structures where needed, and
ensuring accountability of key stakeholders. Information about
where, why, how, and by whom certain Al agents are used, which
we refer to as visibility, is critical to these objectives. In this paper,
we assess three categories of measures to increase visibility into
Al agents: agent identifiers, real-time monitoring, and activ-
ity logging. For each, we outline potential implementations that
vary in intrusiveness and informativeness. We analyze how the
measures apply across a spectrum of centralized through decen-
tralized deployment contexts, accounting for various actors in the
supply chain including hardware and software service providers.
Finally, we discuss the implications of our measures for privacy
and concentration of power. Further work into understanding the
measures and mitigating their negative impacts can help to build a
foundation for the governance of Al agents.

*Correspondence to alan.chan@mila.quebec
TEqual co-supervision.

This work is licensed under a Creative Commons Attribution International
4.0 License.

FAccT °24, June 0306, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0450-5/24/06
https://doi.org/10.1145/3630106.3658948

« Computing methodologies — Artificial intelligence; « Ap-
plied computing — Law; « Social and professional topics —
Governmental regulations.

KEYWORDS

visibility, transparency, ai agents, ai deployment, ai oversight, ai
monitoring

ACM Reference Format:

Alan Chan, Carson Ezell, Max Kaufmann, Kevin Wei, Lewis Hammond,
Herbie Bradley, Emma Bluemke, Nitarshan Rajkumar, David Krueger, Noam
Kolt, Lennart Heim, and Markus Anderljung. 2024. Visibility into AI Agents.
In The 2024 ACM Conference on Fairness, Accountability, and Transparency
(FAccT °24), Fune 03-06, 2024, Rio de Janeiro, Brazil. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3630106.3658948

1 INTRODUCTION

Many Al developers are creating systems with greater autonomy,
access to external tools or services, and an increased ability to
reliably adapt, plan, and act open-endedly over long time-horizons
to achieve goals [35, 97, 106, 133, 137, 146, 158]. We will say that
such systems possess relatively high degrees of agency and will
refer to them as (AI) agents or agentic systems [35, 104, 147].
Systems with relatively low degrees of agency are those that only
aid human decision-making or produce outputs without acting
in the world, such as image classifiers or text-to-image models.
Examples of agents could include reinforcement learning systems
[132, 160] that interact extensively with the real world! or more
capable versions of language models with tool or service access

'Including the physical environment but also digital environments such as online
platforms.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630106.3658948
https://doi.org/10.1145/3630106.3658948

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

that could, for example, plan and book a holiday or send an email
on a user’s behalf [27, 122, 137, 144].

Current Al agents sometimes struggle to perform even simple
tasks [98, 106, 108, 130, 163, 164], but given increasing investments
in Al research [61], scaling laws [15, 83, 94], pressures to develop
autonomous capabilities for military use [86, 102, 142], economic
applications [35], and scientific prestige [35, 67], we should not
discount continued improvements in capabilities [26]. Indeed, a
core goal of the Al field since its inception has been to build agents
[138, 159].

As Al agents improve in capabilities, speed, and cost,? it may be
easier and more competitive to delegate tasks currently done by
humans to Al agents instead. The development and deployment of
agents has surged recently [36, 124, 133, 150, 176] and could lead
to the ubiquitous deployment of agents in commercial, scientific,
governmental, and personal activities. Since such deployment may
exacerbate existing risks and introduce new ones [35, 147], it is
imperative to understand how to govern Al agents.

1.1 Risks of AI Agents

Rather than provide an exhaustive taxonomy of risks from Al
agents,® we highlight certain agent-specific risks. In comparison
to risks from other Al systems, these risks focus on the potential
for agents to remove humans from the loop [35, 101]. Without a
human in the loop, agents may take multiple consequential actions
in rapid succession and bring about significant impacts before a
human notices. The ability to remove humans from the loop also
means that an agent’s task performance is less limited by the ex-
pertise of its user, compared to a situation where user must guide
an Al system’s actions or take actions themself.

1.1.1 Malicious Use. Al agents could be a large impact multiplier
for individuals or coordinated groups who wish to cause harm [147].
Existing Al systems have already assisted in malicious use, includ-
ing voice cloning scams [168] and fake news generation [167]. How-
ever, more capable Al agents could automate end-to-end pipelines
for complex tasks that currently require substantial human exper-
tise and time. For untrained individuals, such agents could dras-
tically increase the accessibility of engaging in severely harmful
activities because no human in the loop would be required. For
example, there is interest in building agents to execute scientific
research, comprising autonomous planning and execution of scien-
tific experiments [22, 27]. If such agents were to become as capable
as human scientists, they might enable or accelerate the design and
development of harmful tools (e.g., biological [140, 155], chemical
[22, 27, 162]) for groups that currently lack the expertise for such
production. Extremely persuasive Al agents may also enable and
enhance influence campaigns [10, 78, 96].

Understanding the extent to which agents will facilitate mali-
cious use requires information about how they are used and how
they interact with external systems [173]. Moreover, when mali-
cious users do cause harm with Al agents, regulatory enforcers will
need measures to identify the users and hold them accountable.

2As an example of cost reduction, FLOP [82] or FLOP/s [81] per dollar could decrease
at the same time as performance per FLOP increases [62].

3See Critch and Russell [45], Shelby et al. [149], Weidinger et al. [173] for taxonomies
of risks from Al systems and [35, 147] for further discussion of risks from Al agents.

Chan et al.

1.1.2 Overreliance and Disempowerment. Overreliance on Al agents
to automate complex, high-stakes tasks could lead to severe conse-
quences. Humans can already rely on certain automated systems
more than is warranted [47, 59, 60]. More capable agents may en-
able automation of an increasing array of complex and useful tasks.
Users—including both individuals and institutions—may rely on
agents even in high-stakes situations, such as interfacing with the
financial or legal systems, because human alternatives (e.g., hir-
ing a lawyer) may become relatively slower and more expensive.
At the same time, these agents may malfunction for a variety of
reasons, including design flaws [117, 130, 181] or adversarial at-
tack [12, 175, 180]. Malfunction may not be immediately apparent,
especially if users lack the requisite expertise or domain knowl-
edge. Stopping the agent may be difficult if doing so would lead
to cascading failures or a competitive disadvantage for the user
[147]. More broadly, profit and efficiency motives may lead to col-
lective dependence on agents for essential societal functions, such
as the provision of government services [50, 179] or the operation
of essential infrastructure [17, 51]. Companies providing access to
AT agents would hold substantial power [28], while malfunction
of those agents could have societal-scale impacts. At minimum,
societies require information about the extent of reliance upon Al
agents and whether such reliance is justified.

1.1.3 Delayed and Diffuse Impacts. Potential negative impacts of
Al agents may be delayed and diffuse.* Delayed and diffuse im-
pacts may be difficult to manage because they may require sus-
tained attention over long periods of time even to notice. Impacts
of agents may be delayed if users give agents long-horizon goals,
while diffuseness of impact may come from the widespread de-
ployment of agents to automate complex processes. Consider an
agent given the goal of continually finding and hiring job candi-
dates who will most contribute to the company over the long-term.
This agent may screen résumés [66], perform interviews, make the
final hiring decision, and analyze the performance of hires. Given
the time horizon over which the agent is acting and its influence
over the company, any potential problems like algorithmic bias
[129] could be hard to identify and become deeply entrenched. The
most severe consequences of such problems may only be apparent
when looking at how companies in aggregate use Al agents for
hiring. Al agents could also subtly benefit their developers, akin
to the self-preferencing behaviour of large-scale digital platforms
[99]. Moreover, agents that mediate or even substitute for human
communication [5, 107] could have diffuse and delayed psycho-
logical and social impacts [10, 90, 96], analogous to certain effects
of social media [25, 110, 148]. The deployment of agents may also
induce changes in market structures or workforce impacts from job
displacement [6, 7]. Identifying delayed and diffuse impacts may
require long-term tracking of the extent and nature of Al agent
usage across a wide range of application areas.

1.1.4 Multi-Agent Risks. Interactions and dependencies between
many deployed agents could lead to risks not present at the level of

“Roughly speaking, we consider an impact to be diffuse if it is difficult to observe and
most apparent in aggregate across many individual cases.

Visibility into Al Agents

a single system [73, 77, 128, 143]. Agents could enter into destabilis-
ing feedback loops, such as those between automated trading algo-
rithms in the 2010 flash crash [46]. Agents partially built upon the
same components—such as a particular foundation model—could
have common vulnerabilities and failure modes [23, 40]; widespread
deployment of such agents could risk large-scale systemic harms.
More generally, there may be unpredictable behavioural changes
that are characteristic of complex systems [40, 143, 153]. Competi-
tive pressures and selection effects could lead to the development
of agents that act in more anti-social ways [31, 57, 79, 177]. These
potential issues motivate understanding not just individual agents,
but also interactions within groups of agents.

1.1.5 Sub-Agents. Agents could instantiate more agents to accom-
plish (components of) a task, which may magnify several of the
risks discussed so far. It may be advantageous for an agent to create
potentially specialized and more efficient sub-agents, especially if
doing so is cheap and fast. For example, an agent could call copies
of itself through an API, or itself train, fine-tune, or otherwise pro-
gram another agent. Sub-agents could be problematic because they
introduce additional points of failure; each sub-agent may itself
malfunction, be vulnerable to attack, or otherwise operate in a way
contrary to the user’s intentions. Stopping an agent from causing
further harm might involve intervening not only on the agent, but
also on any relevant sub-agents [30, 154]. Yet, this process may be
difficult because we lack methods for determining when an agent
has created a sub-agent. Information about the extent of sub-agent
creation and operation can enable a better understanding of the
significance of these risks.

1.2 The Case for Visibility into AI Agents

Addressing the risks of Al agents requires visibility:> information
about where, why, how, and by whom AI agents are used. Visibility
would help to evaluate existing governance structures, revise and
adapt these structures where needed, and ensure accountability
of key stakeholders. Regulatory oversight bodies which monitor
and enforce rules on the activities of human agents and certain
automated programs (e.g., trading algorithms) [14, 18, 19, 21, 32,
39, 76, 84, 85, 93, 103, 111, 165] may require additional information
to understand and address harms from Al agents. For example,
if agents are able to employ novel strategies for collusion [55]
when carrying out economic activities, new rules and updates to
investigative authority may be necessary. Furthermore, Al agents
may simultaneously provide services traditionally regulated by
different agencies, such as both financial and legal services. The
same agent developer or deployer may thus exercise power across
diverse and usually independent domains of regulation, creating
additional concerns related to market consolidation and conflicts
of interest.

Visibility measures also play a central role in addressing prob-
lems that arise when humans delegate to other humans or institu-
tions [103]. The precise purpose of such regimes varies, and can

SWe use visibility rather than transparency as we believe the former to be somewhat
more common in a regulatory context. Both terms are distinguished from explainability,
which refers to whether one can understand why an Al system generated a particular
output [109]

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

include reducing information asymmetries, shaping incentive struc-
tures, and triggering enforcement actions [84, 85]. For example,
employers often monitor the conduct and performance of employ-
ees through ongoing supervision and periodic performance reviews
[14]. In corporate governance, shareholders monitor management
through a range of institutional mechanisms, including financial
audits, shareholder meetings, and company reports, buttressed by
legally binding fiduciary duties (in the case of directors) and the
ability (in some cases) to dismiss management if they fail to act
in the collective interest of shareholders [93]. Comparable mech-
anisms exist to support citizens in monitoring the activities of
government bodies and public officials. These mechanisms include
maintaining records of government decisions, facilitating informa-
tion access through freedom of information requests, and commis-
sioning detailed public reports into government activities [19], a
combination of which may ultimately inform citizens’ electoral
choices. Although visibility measures can be costly [63] and raise
privacy concerns, they remain a necessary feature of frameworks
for shaping the incentives of, and governing, agents.

We emphasize visibility into deployed Al agents because the
scope and severity of potential impacts may not be apparent dur-
ing development. By deployed, we mean agents that are in use,
whether the agent is available to the general public, select cus-
tomers, or only for internal use within the organization that devel-
ops it. Visibility into the last case may be particularly important
if organizations that carry out crucial societal functions, such as
banks or cloud compute providers, develop and deploy their own Al
agents. We focus on deployment because pre-deployment testing
[9, 152] does not account for how users or deployers may exacerbate
risks [173] through fine-tuning [49], connecting to external tools
or services [122, 124, 125, 146], or structuring calls to the system
so as to better enable it to pursue goals [133, 146, 172, 176]. Even
instances of agents that come from the same underlying system can
access different tools and can be conditioned to behave differently
based on prompts.

1.3 Contributions

In this paper, we assess three categories of measures to increase
visibility into AI agents: agent identifiers, real-time monitoring,
and activity logs. For each, we outline potential implementations
that vary in intrusiveness of data collection and informativeness of
the data. We analyze how our measures apply across a spectrum of
centralized through decentralized deployment contexts, accounting
for various actors in the supply chain including hardware and
software service providers. Finally, we discuss the implications of
our measures for privacy and concentration of power. Rather than
advocating for immediate implementation of these measures, we
emphasize the need for further understanding them and how to
mitigate their negative impacts.

The measures extend existing work in deployment visibility to
better account for the risks of Al agents. Agent identifiers, which
indicate whether and which AT agents are involved in interactions,
generalize watermarks [105, 170] because they apply to all of an
agent’s outputs, including the use of external tools and services,
not just text, image, or audio outputs. This generalization is crucial
for improving visibility if agents increasingly substitute for human

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

actions. For real-time monitoring and activity logging, we assess
practices that extend existing schemes [80, 91, 92, 111, 151] so as to
better track complex interactions between multiple agents [45, 143],
an agent’s interaction with external tools or services, and delayed
and diffuse effects of an agent’s actions.

2 DEFINITIONS

Besides the definitions here, we also define each term when we
use it for the first time in the main body. We illustrate the most
common terms in Figure 1.

Agency is the degree to which an Al system acts directly in the
world to achieve long-horizon goals, with little human intervention
or specification of how to do so. An (AI) agent is a system with a
relatively high degree of agency; we consider systems that mainly
predict without acting in the world, such as image classifiers, to
have relatively low degrees of agency. Examples of agents include
reinforcement learning systems [132, 160] that interact extensively
with the real world® or more capable versions of language models
with tool access [27, 122, 137, 144]. We do not consider existing
foundation models themselves to be agents. Our definitions com-
press the characterization of agency in Chan et al. [35], which
points to four axes: the degree to which the system’s behaviour
is specified, the degree to which the system’s behaviour is goal-
directed, the degree to which the system has a direct impact in the
world, and the degree to which the system can achieve goals over
long time-horizons. For the purposes of this paper, we use agent
and agentic system interchangeably.

Scaffolding is any method that structures the calls to an Al
system so as to facilitate the pursuit of goals [36, 133, 176]. Scaf-
folding may include additional prompts, memory systems, access
to external tools, and planning mechanisms [169]. For example,
AutoGPT [133] has a language model accept a high-level goal and
sequentially produce (reasoning, plan, criticism of the plan, action)
tuples so as to achieve the goal. Scaffolding can make an Al system,
such as a foundation model, more agentic.

The term developer(s) refers to the actor(s) involved in the
construction of an Al system. While the developers of a system
include those who trained the underlying machine-learning model,
developers could also include those who build other components
of the complete system, such as the scaffolding [133, 176].

The user is the human individual or group that interacts with
and provides instructions to an Al system.

The deployer is the entity that operates an Al system and serves
it to users. The deployer may not be the same as the developer(s).
For example, Microsoft deploys OpenAI’s systems into its products
[171], but did not develop GPT-4. A deployer may provide access
to an agent in one of two ways. First, the deployer may serve a
foundation model which users may combine with other compo-
nents to make a more’ agentic system. For example, users may use
the scaffolding framework AutoGPT [133] to chain calls to GPT-
4 [123] and provide the model with tool access. Indeed, popular
scaffolding frameworks depend upon an underlying foundation
model [133, 176]. Second, the deployer may provide an agent or

®Including the physical environment but also digital environments such as online
platforms.

"The system may not be completely autonomous since user approval may still be
required for certain actions.

Chan et al.

may furnish ways for users to make a provided system more agen-
tic. For instance, OpenAl lets users build and share custom agents
[124, 125] augmented with a variety of tools, including browsing,
using Google Drive apps, and coding [122].

The compute provider is responsible for supplying and main-
taining the hardware infrastructure on which an Al system operates.
The compute provider could also be the same as the deployer or the
developer if either runs its own infrastructure. Compute providers
could be important partners for overseeing large-scale deployments
of agents that are not run by deployers, which we discuss further
in Section 4.

A tool or service refers to an external system or platform with
which an AI agent interacts to perform its tasks. For instance, a
flight booking website where the Al agent executes transactions,
such as purchasing plane tickets on behalf of the user, would be
a service. The provider of the tool or service is responsible for
maintaining the system or platform. We will often use tool and
service interchangeably. Agents often interact with tools or ser-
vices through dedicated APIs, which are interfaces and protocols
specifically structured for agents, rather than human users.

The outputs are the results or responses that an Al system
generates. Some types of outputs include images, text, or actions
(e.g., calling a tool). While the deployer generally has access to all
the outputs, the tool or service provider’s knowledge is limited to
outputs relevant to their specific service (e.g., the results of an API
call).

Inputs are the data that the AI agent receives from a user, a
tool or service, another agent, or any other party, which inform its
actions or responses. The deployer in principle has access to inputs
by virtue of running the system, but may choose not to collect or
store such information out of respect for user privacy.

3 MEASURES TO IMPROVE VISIBILITY

We propose three complementary categories of measures to im-
prove visibility into Al agents. Agent identifiers indicate whether
and which Al agents are involved in a given interaction, such as
watermarks or IDs that distinguish agents in their requests to ser-
vice providers. Real-time monitoring involves real-time analysis
of an agent’s activity, allowing deployers and/or service or tool
providers to flag and intervene on problematic behaviour as it is
occurring. Activity logs held by deployers and tool or service
providers record certain inputs and outputs of an agent, such as
interacting with external services or other agents, to facilitate post-
incident attribution and forensics. See Figure 2 for an overview of
the information flows for each measure.

Each category contains measures that vary in intrusiveness of
data collection and informativeness. More comprehensive informa-
tion collection may be justified for agents deemed to be high-risk,
potentially based on the results of evaluations [9, 98, 108, 135, 137,
152] or deployment in high-risk domains [2, 45, 100]. For example,
it may be desirable to subject agents involved in financial trading
to monitoring requirements at least as strict as those for human
traders [121]. Yet, more comprehensive data collection may have
serious privacy risks, which we discuss in Section 3.4. Our goal
is to provide an array of options, rather than an answer to these
trade-offs and the extent to which visibility measures should be

Visibility into Al Agents

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

/Deployers —run

Developers — build—>»| Agents

o

-

~

\

- inputs - - - ~ \
Users Tools and services
“outputs. _ -))

- - - » =information internal to the deployer that it may monitor, modify, or filter

Figure 1: We illustrate how our main terms in Section 2 interact with each other. Deployers are in red and encompass the agents
box to denote the fact that our paper focuses on agents that are run by deployers and served to users. Developers build agents
(or an underlying system) and deployers serve instances of agents to users. Since deployers run agents, the inputs and outputs
of agents are by default visible to the deployer, which facilitates the measures that we discuss in Section 3.

mandated. Finally, while we discuss potential implementations of
the measures, more research is required to understand their feasi-
bility and implications.

We focus in this section on agents run by (agent) deployers—
entities that deploy agents, or important subcomponents like a
foundation model, as a service to users. We include foundation
models because many frameworks for constructing agents use a
foundation model as the central component [122, 133, 176]. While
deployers are unlikely to account for all agent activity, they likely
constitute a substantial fraction because the most capable founda-
tion models are only available through deployers [11, 123, 161],8
and using a deployer may be more convenient than running a sys-
tem oneself. Moreover, since deployers can already see the inputs
and outputs of deployed systems, they can attach agent identifiers to
outputs, perform real-time monitoring, and collect activity logs. In
Section 4, we analyze how to extend our measures to decentralized
deployments of agents.

3.1 Agent Identifiers

An agent identifier indicates whether and which AI agents are
involved in interactions. Agent identifiers are attached to select
outputs, are visible to certain actors, and may include additional
information about the agent.

The ability to identify agents could be useful to several actors.
A regulator could require Al agents to identify themselves as non-
humans during interaction with humans [13, 65], similar to bot
disclosure laws [54].° Members of the general public may wish
to know whether they have interacted with Al agents. Summary
statistics based on agent identifiers could inform governments and
the general public about the extent to which agents operate in high-
risk settings [2]. Identifiers for when agents send requests to tools
or services providers could help to identify significant actions, such
as when agents transfer sensitive information. A service provider
may even reject a request absent certain guarantees attached to

8Currently, these deployers also happen to be developers.
“Note that not all non-human activities may come from AI agents. For example,
consider currently automated trading activity or ads auctions.

the identifier, such as those related to the security of the agent.
Unique identifiers for each Al agent could facilitate accountability
by linking an action to an Al agent and its user, developer(s), and
deployer.

3.1.1 Types of Agent Identifiers. We consider three key design
decisions for an agent identifier:

Which outputs contain the identifier? Decisions to attach an
identifier may consider both the format and content of the output.
By format, we mean whether the agent outputs data such as images,
text, audio, or API requests to a service provider. An agent iden-
tifier’s specific implementation depends upon the output format.
For example, identifiers for image outputs could be watermarks
[105, 170], while an identifier for an API request could be a simple
header, similar to headers in HTTP requests. The difficulty of im-
plementing identifiers varies based on the format of the output: for
instance, adversarial users may easily remove watermarks [178].
Regarding content, identification may be especially important for
significant outputs. Certain outputs, such as purchases made on
behalf of the user, may merit identifiers by virtue of the task the
agent is accomplishing. Other outputs may only be significant be-
yond a certain threshold, such as requests for compute resources
that exceed a certain amount.

Which actors can see the identifier? An identifier may need
to be visible to different actors. For example, in the context of a
financial transaction, an agent identifier could be visible to any
combination of the bank, the other party in the transaction, or
the service provider for the bank API (which could be the bank
itself). Some actors may need agent identifiers to fulfil their existing
duties, such as e-commerce websites which must authenticate users
and safeguard customer payment information [44]. Furthermore,
facilitating the identification of multi-agent risks may require that
agent identifiers be visible to other agents.

How specific is the identifier to a particular agent? An iden-
tifier could point to a particular agent, or simply denote that some
agent was involved in the interaction. The former could facilitate in-
cident reporting and investigation. To implement unique identifiers

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

ﬁ)eployers \

Agents

Chan et al.

Other parties in an
interaction

——+——outputs

Tools and services
, . providers
\‘—agent identifiers

(a) An agent identifier indicates to certain actors whether an Al agent is involved in an interaction. Developers (not shown) and deployers
cooperate to implement agent identifiers, which the latter adds onto outputs. Here, we illustrate an agent identifier that informs other parties
in a given interaction with an agent, as well as tools and services providers. If these actors know that they are interacting with an agent, they

may wish to verify certain properties such as the security or robustness of the agent. See Section 3.1 for further discussion.

4 N

fTools and services

Regulators and
governments

—information

providers/v

<+«—inputs
Agents \
|
outputs VL
\ \ Deployers/

(b) An agent’s inputs and outputs are visible to the deployer. Inputs come from tool and service providers and users (not shown). Certain

outputs, such as requests to external tools and services, are also visible to tools and services providers. These actors can monitor and filter the
actions in real-time (Section 3.2) or keep logs (Section 3.3) for post-incident attribution or forensics. Insights gained from real-time monitoring

or from logs can inform regulators and governments.

Figure 2: We illustrate the flow of information for our measures in Section 3.

for each deployed instance of an agent, cryptographic methods—
such as those used in software attestation—may be needed to assure
the agent’s provenance. In Section 3.1.2, we discuss additional, use-
ful information that could be attached to an identifier.

3.1.2 Attaching Additional Information to Agent Identifiers. Addi-
tional information attached to an agent identifier may be of further
use. Additional information could be specific to the instance of the
agent deployed to the user, or could pertain to the underlying
system used during agent development. Information about the
former could include the goals the user has given its agent, while
information about the latter could include the results of evalua-
tions performed on the underlying system. We refer to the set of
such additional information as an agent card, drawing inspiration
from previous work on documenting Al systems [24, 68, 69, 112].
In Appendix A we provide a more comprehensive list of what could
be included on an agent card, but in this section we discuss three
particularly important types of information that could be included.

The underlying system. This information could include the
results of evaluations [152]; previous incidents; the dependencies

involved in the system’s construction [24, 68, 112]; or training
methods and data used. Such information could inform the decisions
of actors that interact with agents. For example, tool providers
may reject requests from agents that do not meet certain security
standards [16].

The specific instance of the agent. This information could
consist of how the agent was deployed (e.g., by its user directly or
by another agent); a list of external tools or services that the agent
can access (e.g., applications or software, any physical tools); the
scaffolding framework (e.g. memory or planning mechanisms); the
intended scope, permissions, and goal(s) of the agent [69]; or the in-
tended sector of deployment (e.g., finance). This type of information
could be useful for regulators to develop an overall understanding
of the extent and significance of agent use.

The actors involved in agent development and deploy-
ment. These actors could include the user, the compute provider,
developers, and other humans with whom the agent has interacted.
Authentication of the agent’s user may be useful when individuals
are providing sensitive information to agents (e.g. agents used by

Visibility into Al Agents

banks to assist customers). Furthermore, this information helps to
clarify whom to hold accountable in case an agent causes harm
during its operation [43, 118]. A regulator could use identifying
information associated to each of the actors, ideally in synergy
with data from Sections 3.2 and 3.3, to help investigate and address
problems. For example, a regulator may receive reports from third
parties of an agent engaging in financial scams. If the transactions
of the agent contain agent identifier, a regulator could match the
identifier to the corresponding agent card and ask the deployer of
the agent to investigate further or shut it down.

A more comprehensive agent card may be more useful, but may
also be more intrusive to collect and require more substantial re-
sources and expertise for analysis. Comprehensiveness of informa-
tion should likely scale with the risk of the activity in question.

3.2 Real-Time Monitoring

Real-time monitoring involves oversight of agent activity in real-
time, with the goal of flagging and potentially filtering problematic
behaviour. Such monitoring is likely to be automated so as to be
able to cope with the speed and scale of agent activities [74, 147];
see Naihin et al. [116] for a preliminary implementation of a real-
time monitoring system for agents. Crucially, real-time monitoring
does not require the collection or storage of activity logs. As an
analogy, consider the difference between moderation filters and
chat logs in the context of a text messaging application—moderation
filters might instantly delete harmful content that trips a filter, but
this measure is separate from keeping logs for subsequent analysis.
This difference can be critical for users who are concerned about
the privacy implications of a deployer keeping logs of user inputs,
such as business customers who need to consider the security of
their corporate IP. Indeed, some cloud providers already offer no-
logging provisions!? for their language model deployments to some
customers, subject to real-time monitoring for abuse [37, 71, 114].

Once behaviour is flagged, a deployer can intervene on the
agent and potentially inform relevant authorities. A user could
be given the opportunity to request human review of any action
taken to impede its agent. We leave details about the implemen-
tation challenges of automation and human review to other work
[72, 95, 157, 166].

Since real-time monitoring requires an immediate decision to
flag a behaviour, deployers would only be able to find problems
which they can identify in real-time. Thus, real-time monitoring
may be most suitable for identifying violations of clear rules such
as restrictions on allowed activities of agents, limits on tools and
permissions made available to agents, leakage of sensitive infor-
mation, or usage caps for particular users or agents. Behaviors can
also be flagged for anomalies.

Flagging behaviors might also involve combining information
from multiple agents because an individual agent’s behaviour may
only be problematic in the context of other agents. For instance,
collusion requires a group of agents, not just a single agent, to
coordinate to set high prices [55]. Similarly, a single agent rapidly
moving resources (e.g., data or financial investments) between enti-
ties may not be an issue in isolation, but vast numbers of agents

1OFor feasibility, sometimes logs must be kept for a short amount of time. The no-
logging provision of Google [71] keeps logs for 72 hours.

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

engaging in the same behaviour might overload a given system (e.g.,
server outages or stock crashes). A real-time monitoring system
could use agent identifiers to track which agents were involved in
interactions together. This system could raise flags if indicators of
the collective activity of these agents pass certain thresholds. For
example, an indicator for algorithmic collusion could be correlation
in price movements.

Real-time monitoring could also flag when an agent exerts sig-
nificant influence in its environment [127]. Such activities could
include economic transactions above a certain amount, usage of sub-
stantial compute resources, running a large number of sub-agents,
or simultaneous interfacing with a large number of physical sys-
tems. While the acquisition of significant influence may not itself
cause harm, the impact of an agent’s failure would be magnified.
A potential response to such a flagged activity could be pausing it
until the deployer can verify explicit user approval, just as banks
monitor transactions and temporarily suspend accounts if they
suspect fraud.

3.3 Activity Logs

Activity logs are records of certain inputs and outputs of an agent.
Inputs and outputs could be from both users or tools and services,
as we illustrate in Figure 1. Records could also report changes in the
state of the agent, such as updates to the weights. Logs can include
varying levels of detail and may only record actions above a certain
degree of significance, depending on the behaviour one is trying
to track, privacy considerations, and storage requirements. Frame-
works for building agents already implement logging of certain
actions [36, 133, 176].

Activity logs can inform an understanding of the agent’s im-
pacts as well as allow one to tie behaviour to specific user choices,
facilitating post-incident attribution and forensics [119]. During
audits and incident investigation, investigators may need detailed
information to trace the source and causes of harms arising from Al
agents’ actions [115, 131]. Researchers may benefit from detailed
logs to improve our understanding of agents and to develop bet-
ter deployment controls. Analysis of logs may also identify novel
behaviours to improve real-time monitoring.

3.3.1 Agent-Specific Information. While activity logs are useful
for understanding risks from Al systems in general [91, 92] and
are common practice in many domains [3, 4, 41, 42, 89], they can
be especially helpful for addressing the risks we identified in Sec-
tion 1.1. Different categories of logs could exist, such as for tool use,
internal reasoning [172], self-critique [141], memory management,
etc, each of which may be useful to different actors.
Understanding the impacts of agents involves identifying which
scaffolding, tools, and services they use. For example, an agent with
external memory can plan and act over longer horizons. Logs of
how an agent manages its memory may be helpful for a user in
trying to understand the agent. More generally, a log could explicitly
label when an agent has accessed an external tool and the tool’s
output. Both the deployer and the tool provider could engage in
such logging: deployer logs may be more useful for understanding
how the tool affects the overall behaviour of the agent, while tool
provider logs may provide more insight into the impacts of the
tool itself. Indeed, tool providers may have strong incentives to

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

engage in such logging themselves: for example, tool providers can
study logs to update APIs or user interfaces to prevent abuse. Tool
providers can also decide to restrict services to certain Al agents
with identifiers (and potentially other attached certifications), as
discussed in Section 3.1.

Identifying delayed and diffuse impacts may require logs to be
retained for extended periods of time. Details about the persistence
of the agent could be included in the logs, such as its running
time, whether it is writing to and accessing external memory, or
the amount of compute used so far to run the agent. These details
could inform interventions, such as limiting the lifetimes of cer-
tain agents. Yet, significant impacts may arise after the lifetime
of an individual agent. The impact of the original agent could be
delayed, or a user could run another agent for the same purposes,
potentially even with the same inputs and memory as the original
agent. Accounting for these possibilities means that logs may have
to persist for a significant amount of time after the lifetime of the
corresponding agent. Furthermore, logs for different agents may
have to be combined if one agent can be viewed as a continuation
of another.

Combining information from multiple logs may also help to un-
derstand sub-agent and multi-agent dynamics. For example, agent
logs could be used to build models of how a particular malfunc-
tion might propagate through a network of agents or identifying
undesirable forms of communication between agents [136].

3.3.2 Logging at Different Levels of Detail. A key design decision
is the level of detail at which to record the agent’s actions. Less
detailed logging may only record high-level summaries of agent’s
behaviour or certain samples thereof. At the finest level, a regulator
may require a deployer to record in detail all of an agent’s behavior,
especially if an agent is operating in a high-risk environment. More
detailed logging is more useful, but may impose more significant
costs on the deployer, require more resources and expertise for
analysis, and pose more significant privacy concerns.

3.4 Risks

Privacy considerations may conflict with obtaining detailed infor-
mation about agent activity. Language model deployers are increas-
ingly offering customers, particularly business customers, privacy
assurances around data collection and use. Measures to reassure
customers about confidentiality include:

e Language model APIs with no logging of inputs or outputs,
and the ability to turn off safety filters and moderation clas-
sifiers [37].

o Guarantees that customer data, including system outputs,
will not be used to train any Al system and will be kept in a
customer’s cloud instance [38].

o The ability to delete logs kept by the provider after a certain
amount of time [37].

Additionally, existing data protection laws, such as GDPR, impose
further restrictions. Agent cards may contain identifying infor-
mation about users. Agent logs may be considered personal data,
such as when agents are given access to a filesystem containing
personally identifiable information [64].

In general, if agents substitute for humans in a wide variety of
activities, information about those agents might be tantamount to

Chan et al.

information about the users of those agents. Indeed, agent activities
may be easier to monitor than human activities because deployers
are a central intermediary. Governments or deployers may thus
abuse their power to carry out excessive or unjustified surveillance
of personal activities [70, 75]. These considerations justify limiting
data collection in accordance with the risk of the agent’s activities
or domain of deployment. Another potential mitigation may be
decentralized data custody schemes or data trusts [52, 53] whereby
users or accountable representatives would make decisions about
data usage.

Modulating the degree of access to collected information can
also help to mitigate privacy concerns. Access can vary with re-
spect to granularity, the amount of detail contained in the records,
and quantity, the number of records that a party is allowed to
access. With respect to granularity, information can be aggregated,
de-identified, or identifiable. Aggregated information involves sum-
mary statistics but not individual records or logs; differentially
private [20] computations of summary statistics may help to pre-
serve the privacy of individual records. Records and logs can be
de-identified with respect to individual users or identifiable. With
respect to quantity, a party can have full access to all records, access
based on approved search queries or filters, or access upon-request
to pre-specified records to which they must provide a compelling
reason for access.

The granularity and quantity of access should be the minimum
necessary for the accessing party to achieve its (legitimate) objec-
tives. When investigations pertain to specific users, identifiable
information could be made available upon request given a showing
of compelling need and/or after approval from a third-party adjudi-
cator. Regulators may need logs containing identifiable information
in some cases, such as oversight of certain high-risk or high-volume
activities. For example, for traders transacting above a specified
threshold, CFTC collects identifiable personal information to enable
aggregation of data across different accounts and brokers [33].

4 DECENTRALIZED DEPLOYMENTS

Some deployments of agents may occur in a decentralized way
and bypass deployers. Users, whether enterprises or individuals,
may run downloadable (i.e., open release) [156] agents either on
cloud compute or on their own hardware. A user may even be
able to combine systems from different deployers to form an agent.
Although visibility on the resulting agent may be desirable, the
individual systems may not be significant enough by themselves to
justify implementation of visibility measures by deployers. Indeed,
a malicious actor could build and run an agent in this way so as to
avoid detection by regulatory authorities. In this section, we discuss
how our visibility measures may be extended to such situations, as
well as the risks of doing so.

4.1 Compute Provider Oversight

Compute providers could enable oversight over deployments that
involve large quantities of compute. Large-scale deployments could
be concerning because they might involve vast numbers of agents,
which could translate into a large impact multiplier for the user.
Large-scale deployments are also noticeable because they consume
significant resources. Compute providers may have cost advantages

Visibility into Al Agents

over users deploying their own hardware because of economies of
scale. Indeed, using compute as a service (e.g., infrastructure as a
service or cloud) is the default way for a business to deploy its IT
services. If a compute provider can identify large-scale deployments
and whether they correspond to agent activities, they may ask
the user for proof that they have implemented certain visibility
measures [56, 119].

4.2 Tool and Service Providers as Distributed
Enforcement Mechanisms

The need for agents to interact with external tools offers another
leverage point. By conditioning tool and service access on imple-
mentation of certain visibility measures such as agent identifiers,
tool and service providers can incentivize adherence to the mea-
sures. For example, financial institutions could restrict access to
Al agents without identifiers from certain trusted deployers. Such
identifiers might explicitly confirm permissions to access certain
services, such as performing financial transactions or accessing
certain websites. This approach could also allow tool providers to
minimize misuse and enable detailed analytics of Al agent interac-
tions with their tools.

One limitation is that AT agents could circumvent APIs by di-
rectly interacting with tools in a way that mimics human behavior.
The development of tools capable of detecting disguised Al activ-
ity, akin to modern CAPTCHA systems designed to differentiate
between human and software interactions, may be helpful. An al-
ternative is to require proof of human identity for high-risk actions.
Certain industries perform identity verification for high-risk ac-
tivities with know-your-customer protocols [56]. Similarly, tool
or service providers operating in high-risk domains could require
human identification. One difficulty is preventing Al agents from
spoofing humans, such as through generating fake identification
documents or stealing real ones. While CAPTCHA-like tests are a
possibility, measures should be robust to improvements in the capa-
bilities of agents. How to balance privacy considerations with the
need for identity verification is another open question. A potential
direction is to understand what mechanisms may allow humans to
prove their status without identity disclosure.

While direct interaction with tools is possible, users and devel-
opers may still opt for the convenience and efficiency offered by
APIs, especially if direct interaction is more complex. APIs can
provide standardized interfaces, tailored services for Al agent use,
and can set specific conditions like access rates or the scope of
services available. This preference for API interaction could reduce
the difficulty of obtaining visibility into decentralized deployments.

4.3 Risks

Extending visibility measures to decentralized deployments has se-
rious implications for privacy and concentration of power. Compute
providers that surveil deployments may be able to infer sensitive
information about users. Given that a handful of compute providers
dominates the market [134], monitoring users of those providers
would equivalent to monitoring much of society. In addition to po-
tential abuses of collected information, compute providers may also
have lax security standards that enable attackers to gain sensitive
information.

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

Enforcement through tool and service providers also faces similar
concerns. If useful tools and services were unavaiable to agents that
were not from certified deployers, users may face strong pressure
to use agents from such deployers. Whether because of government
demand [75] or regulatory capture [48], those deployers may have
practises that are inimical to users or may not be responsive to user
interests. Visibility measures for those deployers may be extremely
invasive, such as excessive and unjustified logging. Agents from
those deployers may not be well-suited to the user’s use cases; for
example, the user might require an agent to be able to operate
in a low-resource language. If the market of deployers is heavily
concentrated, further reliance upon