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ABSTRACT
Modern advances in AI have increased employer interest in track-
ing workers’ biometric signals — e.g., their brainwaves and facial
expressions — to evaluate and make predictions about their per-
formance and productivity. These technologies afford managers
information about internal emotional and physiological states that
were previously accessible only to individual workers, raising new
concerns around worker privacy and autonomy. Yet, the research
literature on the impact of AI-powered biometric work monitoring
(AI-BWM) technologies on workers remains fragmented across
disciplines and industry sectors, limiting our understanding of its
impacts on workers at large. In this paper, we sytematically review
129 papers, spanning varied disciplines and industry sectors, that
discuss and analyze the impact of AI-powered biometric monitor-
ing technologies in occupational settings. We situate this literature
across a process model that spans the development, deployment,
and usage phases of these technologies. We further draw on Shelby
et al.’s Taxonomy of Socio-technical Harms in AI systems to sys-
tematize the harms experienced by workers across the three phases
of our process model. We find that the development, deployment,
and sustained use of AI-powered biometric work monitoring tech-
nologies put workers at risk of a number of the socio-technical
harms specified by Shelby et al.: e.g., by forcing workers to exert
additional emotional labor to avoid flagging unreliable affect moni-
toring systems, or through the use of these data to make inferences
about productivity. Our research contributes to the field of critical
AI studies by highlighting the potential for a cascade of harms to
occur when the impact of these technologies on workers is not
considered at all phases of our process model.
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1 INTRODUCTION
As technology has advanced, so have the implements used to moni-
tor workers — from manual and crude to automated and granular.
However, while monitoring technologies have historically sought
to measure work-specific behaviors and indicators such as “time on
task,” a new class of AI-powered biometric work monitoring (AI-
BWM)technology aims to measure not just work-specific behaviors
but also to apply machine learning techniques to infer workers’
cognitive and physical states like mood, attentiveness, and stress
(thought to be antecedents of work-specific behaviors) [34, 44, 123].
As firms across several industry sectors now seek to use these tech-
nologies to collect information on the internal states of their em-
ployees, the boundaries between work and personal life become less
well-defined [70, 102, 130]. As a result, AI-BWM technologies not
only further concentrate power in the workplace towards managers
but also expand the potential scope of workplace harm by allowing
employers to harvest personal information about workers that was
previously inaccessible. Ostensibly, organizations justify their use
of these technologies for reasons ranging from improving worker
well-being to providing managers with more objective means for
evaluating employee performance [28, 34, 102, 106]. However, the
affordances of these systems also satisfy long-held managerial vi-
sions like reducing cost inefficiencies and worker absenteeism —
ambitions fueled by the savvy marketing of the companies selling
these technologies[49, 114, 117].

Critical scholarship and journalism have shed light on the nega-
tive social consequences of biometric monitoring technology. News
headlines demonstrate concern about employers using workers’
biometric data to renegotiate the workplace social contract. For
example, Canon Information Technology deployed “AI cameras” to
“ensure that only happy employees are allowed into its offices”[137].
Another piece discusses the tensions surrounding the use of emo-
tion recognition technology to screen job candidates[71]. Prior
academic work on the continuous real-time monitoring of workers
has contributed to a clearer understanding of how the adoption of
this technology may lead to harmful labor conditions, exacerbate
power asymmetries between workers and management, and raise
new questions about bias, discrimination, and the right to privacy
in the workplace [11]. Case studies offer details about workers’
experiences subject to these AI systems and highlight the mech-
anisms through which unlawful surveillance, data coercion, and
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the intensification of labor might occur [58, 89, 118]. Given sparse
worker privacy protections and the lack of enforceable AI regula-
tions, some scholars have argued that the limits to intrusive and
exploitative labor practices under biometric surveillance are yet to
be seen [2, 11].

This prior work has advanced our understanding of the prob-
lems of using these technologies as isolated cases within specific
workplace contexts. However, we lack a comprehensive understand-
ing of the risks associated with biometric monitoring technologies
across their many forms and use contexts. Additionally, we do not
yet have a clear picture of how decisions made in designing and
implementing these systems harm workers who are subject to them.

A systemic view of what is currently known about AI-BWM tech-
nologies is necessary to anticipate and attenuate this technology’s
adverse effects on the future of work. Furthermore, cultivating a
better understanding of how design decisions made early on can
result in post-deployment harms might help construct resources
that help “high-road” managers make decisions that improve work-
ing conditions[14]. Similarly, technologists and policy makers can
use this review to understand the range of threats posed by these
systems as they devise harm-mitigating interventions. Our research
aims to fill these gaps by systematically reviewing the literature on
various AI-BWM technologies used across different occupational
settings. We explore the following research questions to achieve
this aim:
RQ1 How do decisions made in the development, deployment,

and sustained use of AI-powered biometric work monitoring
technologies in workplace create the potential for harms to
workers?

RQ2 What harms do workers experience and anticipate in re-
sponse to the managerial deployment of AI-powered biomet-
ric work monitoring technologies?

We organize our findings on how these technologies impact
workers into a process model building on Shelby et al. spanning the
development, deployment, and use of AI-powered biometric work
monitoring technologies[122]. This approach provides a descriptive
means to systemically examine these technologies’ development,
deployment, and impact on workers as illustrated in Figure 2. In
summary, our review of the broad but disparate literature on AI-
powered biometric work monitoring technologies suggests that
workers are exposed to a wide range of socio-technical harms based
on, for example, the faulty assumptions underlying the develop-
ment of these technologies, the further shifting of workplace power
towards employers in affording them access to workers’ internal
cognitive and physiological states in deployment; and the increased
emotional labor required of workers in their use.

2 METHODS
We conducted a systematic literature review of articles on biomet-
ric work monitoring to answer our two research questions. Our
literature review was guided by the standards of the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines[110].

We began our literature review by examining 65 prelimi-
nary sources on workplace surveillance collected through Google
searches and suggestions from field experts. This collection of

sources included academic journal articles, policy briefs, indus-
try reports, and popular news media. We used these documents to
identify significant themes within academic research related to the
topic.

To broaden our collection of academic research articles on the
research topic, we queried different permutations of the search
terms “Employee,” “Worker,” “Surveillance,” and “Monitoring” in the
Scopus database, retrieving a total of 41,160 papers. We determined
that many of these papers were unrelated to workplace surveillance
and instead discussed topics like astronomy but were retrieved
because they contained words like surveillance and monitoring in
their abstracts.

To avoid noise in our results from non-archival papers and papers
in ancillary fields, we conducted a second round of searches using
the built-in pre-filtering function in Scopus only to include archival
research papers in social science, computer science, business, engi-
neering, business, and decision science. We limited our search to
these fields because other search filters did not retrieve relevant
articles. This second round of searches returned 9,598 papers.

To retrieve papers on AI-powered biometric work monitoring,
specifically, we derived a set of keywords based on related words
frequently appearing in article abstracts such as “EEG,” “Wearable,”
“Emotion Recognition” and “Internet of things.”We then constructed
different pairings of these keywords in relation to the different ways
biometric monitoring interacts with work-related concepts. The
rationale for this decision was to retrieve a more balanced mix-
ture of sources ranging from descriptions of technical applications
to worker case studies and analyses of the broader implications
of the technology’s development and adoption. To that end, we
constructed four types of searches:

(1) Biometric sensing modality 𝐴𝑁𝐷 workplace setting (e.g.,
heart rate monitoring 𝐴𝑁𝐷 warehouse) This search query
was constructed to retrieve papers discussing the occupa-
tional settings where biometric technology is used.

(2) Biometric sensing modality 𝐴𝑁𝐷 worker job classification
(e.g., affective monitoring 𝐴𝑁𝐷 customer service represen-
tative) This search query was constructed to retrieve papers
on the different job classifications subject to biometric moni-
toring.

(3) Biometric sensing modality 𝐴𝑁𝐷 metric targeted by moni-
toring (e.g., brainwave monitoring 𝐴𝑁𝐷 productivity) This
search query was constructed to retrieve papers on met-
rics of performance and productivity assessed by biometric
technologies.

(4) Biometric sensing modality 𝐴𝑁𝐷 technological con-
cept/paradigm (e.g., gait tracking 𝐴𝑁𝐷 internet of things
𝑂𝑅 Industry 4.0) This search query was constructed to re-
trieve sources describing how biometric monitoring maps
onto broader trends in technology and labor.

We then queried these searches within the Scopus database,
which indexes some but not all of the proceedings listed in IEEE
Xplore and the ACM Digital Library. To ensure that coverage of
relevant research articles was comprehensive, we later queried these
two databases independently to locate articles possibly missed in
our initial searches. Following this procedure, we retrieved a total
of 1,151 articles.
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Over six months, we reviewed abstracts and excluded any pa-
pers unrelated to workplace biometric performance monitoring,
including papers on biometric authentication and security, legal
scholarship on surveillance-related topics peripheral to our organiz-
ing framework, papers describing non-biometric electronic perfor-
mance monitoring technologies, and papers developing techniques
building on established biometric monitoring practices. Although
we did not include these papers in the final collection of articles,
they helped contextualize our research findings.

After applying these exclusion criteria and removing duplicates,
we arrived at a final corpus of 129 articles, spanning journals such
as Applied Bionics and Biomechanics, Accident Analysis and Pre-
vention, The Journal of Computer-Mediated Communication, ILR
Review, Digital Business, Conference on Human Factors and Com-
puting, and Journal of Organizational Behavior.

3 FINDINGS
Shelby et al.’s taxonomy of Socio-Technical Harms in Algorithmic
Systems provides a starting point for understanding how AI-BWM
technologies effect labor processes. This taxonomy provides a gen-
eral overview of how deployed algorithmic systems can negatively
impact individuals, communities, and social systems[122].

However, because the framework is descriptive, it does not of-
fer prescriptive information to address the harms caused by these
technologies. In order to devise actionable solutions to the lived
and anticipated harms experienced by workers subject to these sys-
tems, the research community needs to i) surface the decisions and
limitations of technologists as they develop AI-BWM systems, ii)
understand the considerations and constraints on employers as they
adopt and deploy them and iii) share the experiences and attitudes
of workers as they anticipate and interact with the technology.

Since these issues represent distinct problem areas addressable
through different interventions, we devise a process model which
highlights harms unique to the development, deployment and use
of AI-BWM technologies. This framework extends Shelby et al.’s
taxonomy to better highlight and differentiate between harms attrib-
utable to the different practices, beliefs, and goals of stakeholders
at each phase. We surface these issues through an analysis done at
two different apertures. First, by examining findings pertinent to
each phase of the process model, and second, through reviewing
biometric performance monitoring through case studies in three
occupations, specifically athletes, construction & mining workers,
and office workers. This approach allows us to cover a range of re-
lated topics spanning different industries, while also demonstrating
how harms may occur uniquely across diverse settings supporting
analysis along the lines of technical, design, management, labor
and policy considerations. For example, we find that while athletes
might be more accustomed to having their performance monitored
and scrutinized, they face new concerns in how this information is
distributed to the public after these technologies are deployed[57].
In contrast, office workers might be less accustomed to constant
performance monitoring and may benefit more greatly from having
their concerns represented earlier in the design and development
life-cycle of these technologies[34, 70, 111]. Since cases may dif-
fer both in how harms manifest and what actions can be taken to

mitigate them, we organize our findings such that that readers span-
ning disciplines might more easily identify problems addressable
through their specific domain expertise and approaches. In figure 2,
we present our application of the socio-technical harms taxonomy
to our process model.

3.1 Shelby et al.’s Taxonomy of Harms Applied
to AI-BWM

3.1.1 Harms in the Development Phase of AI-BWM Technologies.
The 95 research papers that spoke to the development phase include
1) technical descriptions of applications of AI-BWM technologies
found in technical research papers (57/95), 2) papers describing
the development of models used to develop these systems (14/95),
3) review papers discussing state of the art (12/95); 3) analyses
of the methodologies and datasets (5/95) used in development;
and 4) papers examining the premises and development practices
underlying the development of AI-BWM systems (7/95).

We included papers in the development phase if they described
applications of AI-powered biometrics currently in use or presented
a form of biometric monitoring that marked a significant leap from
earlier monitoring practice, as determined by the data it collected.
For example, Michelin et al. describe FaceGuard, a deep-learning
system for predicting when workers are likely to touch their faces
to reduce the spread of COVID-19 [103].

Interpersonal Harms in Development. Decisions made during the
development phase may lead to interpersonal harm when technol-
ogy is designed to collect information about workers’ private lives.
This information may be used to 1) support managerial practices
that may diminish worker privacy and agency (26/95), 2) reduce
the impact of emotions on job performance (4/95), and 3) direct and
manage attention during work (13/95).

Developers of affect monitoring technologies may frame their
considerations as reducing the impact of emotions on worker job
performance. Girardi et al.,[55] describe the development and test-
ing of an algorithm for detecting workers’ emotional triggers during
programming tasks, as emotions have been shown to affect cogni-
tive skills. Another paper similarly focuses on the high volatility of
service-industry employees’ emotions during the service delivery
process, claiming that it is essential to “effectively judge the emo-
tional states of customer service staff” to justify the development
of a multi-modal emotion recognition database[92].

Nižetić et al.[108] discuss the results of a field study where wear-
able devices are used to develop an AI model for tracking worker
metabolic rate as a proxy for worker comfort. Caporale et al.[22]
similarly discuss the development of an analytical model for esti-
mating metabolic rate to improve the work performance of aging
workers. The authors describe how their model can also be used
estimate workers’ age, gender, and physical fitness level. This func-
tion (or “mission”) creep occurs when AI-BWM technology is used
to infer things about workers beyond what they are originally
intended to use [130]. Despite developers’ attempts to introduce
privacy protections in the development phase, the potential for
privacy infringements remains through side-channels. For exam-
ple, [64, 84, 95] discuss how biometric sensing modalities such as
electroencephalogram (EEG) and accelerometer-based movement
tracking might leak sensitive private information about workers’
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Figure 1: PRISMA Flow Diagram

mental health and physical well-being, such as the presence of
mental illness or musculoskeletal disorders.

Representation and Allocation (Bias Harms) in Development. Rep-
resentation harms occur in the development stage when AI-BWM
monitoring technologies 1) determine worker performance and
productivity based on insufficient or unrepresentative data or 2)
categorize workers in ways that unfairly advantage and dispropor-
tionately allocate resources to specific groups.

A study analyzing 86 patents for Automatic Emotion Recogni-
tion (AER) technologies used to monitor the emotions of workers
found that they described applications of technologies to help man-
agers optimize their workforce, lay off under-performing employ-
ees, and promote employees who display a positive attitude toward
customers [16]. However, the literature also describes how AER
technologies often fail to accurately represent human emotion due
to several faulty assumptions and well-documented methodological
shortcomings — for example, the idea that humans share a set of
universally expressed human emotions [9, 100]. These approaches

fail to account for cultural and neurological differences among in-
dividuals [75, 79], potentially exacerbating inequities. Furthermore,
the datasets used for training these deep learning models may rely
on a single classification label based on simulated emotions from
actors instead of genuinely expressed emotion [9, 16]. Errors in
emotion perception may lead to representative harm to workers
whose unique physical features and means of expression are not
well captured in the training data [75, 77, 132]. When the metrics
these systems target are limited or fail to include critical aspects of
workers’ job performance (i.e., creative and affective labor) and are
used to justify punitive measures or promotions, allocative harms
can occur[102, 118]. Further complicating the situation is that AI-
BWM technologies are trained on datasets that might be designed
specifically for clinical applications or are not robust enough to
support the inferences they make. For these reasons, the research
literature describes how datasets used to develop AI-powered work
monitoring technologies may be unsuitable for use in occupational
settings, potentially resulting in unrepresentative categorizations
of workers’ internal physical states [12, 101].
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Figure 2: Socio-technical Harms Taxonomy Applied to AI-BWM Process Model

Quality of Service and Social System Harms in Development. Qual-
ity of service harms occur when AI-BWM technologies are de-
veloped to enforce worker compliance towards a narrow set of
behaviors and performance metrics and result in an intensification
of workers’ labor towards fulfillment of the indicative of having met
those metrics[16, 79, 118]. Applications of AI-BWMmay stereotype
and raise suspicions about certain groups of workers, creating a
burden of negative evaluation and alienation that may be greater
than others. For example, Joshi et al., [72] describe machine learning
approaches for predicting worker attrition based on data related to
their behavior, job classification, and even marital status. Similarly,
Zaman et al.,[135] propose an algorithm for determining worker
satisfaction based on real-time emotion recognition.Workers’ eco-
nomic well-being is threatened when AI-BWM technologies are
used to predict the likelihood they will leave their jobs. These harms
may be amplified by the challenges developers face in designing
AI-BWM systems for use within real-world contexts. Raghavan
et al.,[116] describe how the lack of conceptual clarity in hiring
assessment metrics such as "cultural fit" and retention likelihood,
for example, can result in developers making incorrect or biased
decisions about which data best support these predictions. In many
cases, workers are left often unaware of what these systemsmeasure

and infer about them. Social system harms arise when biometric
monitoring technologies are designed without providing equitable
benefits (typically in the form of information) to both management
and workers, informational asymmetries may result. For example,
electronic logging devices designed to collect data and track the
driving behaviors and whereabouts of truckers inform new metrics
which and challenge their own accounts of their labor [89].

3.1.2 Harms in the Deployment Phase of AI-BWM Technologies.
The deployment phase is related to how managers implement these
technologies within their operations. We find 34 articles discussing
managerial deployment of AI-power biometric monitoring sys-
tems. These include papers that 1) discuss the motivations for the
managerial deployment of AI-BWM technologies (22/34) and 2)
examine how the technology is used to support or replace Hu-
man Resource Management (HRM) and other managerial decision
functions(24/34).

The miniaturization of electronic devices, in tandem with ad-
vancements in data storage and networking, has lowered the costs
of implementation, making the technology more accessible for or-
ganizations to deploy than ever before [2]. Some firms justify their
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increased adoption of biometric monitoring technologies with con-
siderations of worker safety and wellness [120]. Other employers
may view the collection of worker biometric data as an opportunity
to exercise tighter control over workers to mitigate risk and reduce
inefficiencies (i.e., via worker attrition and absenteeism)in their
workforce[6, 115].

Offices represent the fastest growing work contexts deploying
AI-BWM technologies for worker performance and productivity
monitoring, such as Automatic Emotion Recognition [79, 98]. Other
forms of biometric monitoring technologies, like smart wearables,
have seen more widespread usage in higher-risk industries like
construction and manufacturing [5, 18, 59, 74, 111]. Several other
applications for wearable biometric monitoring technologies have
emerged in recent years including human activity recognition for
adaptive manufacturing, worker fatigue management, and envi-
ronmental stress detection[27, 113, 121]. However, the deployment
of these systems may also cause harm when they create or ex-
acerbate extant informational and power asymmetries between
managers and workers, assume the functions of human resource
management (i.e., job candidate screening), and replace formal and
informal controls, creating more rigid and depersonalized work
interactions.[3, 70, 102].

Interpersonal Harms in Deployment. Interpersonal harms in de-
ployment relate to the collection of workers’ biometric data and its
nefarious use. 1) The sharing of worker data with third parties and
2) reliance on the data collected by these systems to make decisions
for workers that they might otherwise make for themselves.

Managers in office settings deploy a variety of passive sens-
ing devices, wearable devices, and camera-based emotion recogni-
tion systems[34, 132]. Well-being sensing technologies can suggest
when workers should take a break or, in more extreme cases, deter-
mine when theymay be suffering frommental health crises[93, 106].
These applications cause interpersonal harm to workers when they
impinge on workers’ agency, for example, in determining the ap-
propriate time to take a break, or when they private information
about a worker’s mental health in ways that could disadvantage
them[28, 30] The research literature demonstrates that some man-
agers also recognize the potential for well-being sensing technolo-
gies to cause interpersonal harm as they consider deployment. For
example, a survey study of managers in Western Europe found that
while they generally viewed IoT well-being sensing technologies as
beneficial, they also had reservations about its capacity to impinge
on worker privacy and sovereignty [115].

Representation and Allocation Harms in Deployment. Represen-
tation harms in deployment arise when managers adopt AI-BWM
technologies to identify a subset of desirable task-specific attributes,
though they may not accurately represent workers’ performance
and or productivity[16, 118]. Managers across a wide variety of oc-
cupational settings may use technologies which monitor workers’
physical condition to make determinations about their performance,
which may deprive them of certain opportunities and benefits given
to workers deemed healthier [7, 43].

Quality of Service and Social System Harms in Deployment. Qual-
ity of Service, Harms in Deployment, may arise when AI-BWM
technologies are used to replace the formal controls in workplaces

(i.e., periodic evaluations conducted by human managers) and cause
workers to adapt their behaviors to continuous monitoring, which
may result in intensified work[3, 11, 118] A study of 2500 found that
managers are more likely than workers to consider the benefits of
workplace monitoring technologies, even though the implementa-
tion of Information and Communications (ICT) technologies is pos-
itively correlated with technology-related stress for both workers
and management as it may increase the demands of their work [20].
Another survey of 192 practitioners from different manufacturing
firms adopting Industry 4.0 technologies suggests that misalign-
ments between the outputs of sensing-communication technologies
and organizational practices may negatively impact workers’ health,
performance quality, and productivity[128]

Societal harms in deployment arise when insights about the
biometric information collected on workers are not shared with
them but instead used to exert more control over them.

Given the opaque nature of the deep learning models typically
at the heart of these technologies, developers of these systems are
unable to communicate their capabilities and limitations to the man-
agers using them clearly. [78, 116]. Similarly, workers frequently
do not know what personal data are being collected about them
and to what end[23, 24, 31]. These working conditions lead to in-
formation asymmetries and may lead workers to form suspicious
mental models of how these systems operate and are used [31, 51].
The lack of transparency in how these systems operate poses bar-
riers to managerial understanding of the exact means by which
workers are being evaluated. For example, managers may rely on
AER technologies to evaluate workers even though these systems
often suffer from bias and the technical limitations described in the
development phase [1, 75, 98].

3.1.3 Harms in the Use Phase of AI-BWM technologies. The use
phase encompasses workers’ initial reactions to AI-BWM, its effect
on their labor, and the strategies they employ to adapt to it. We
find 28 articles describing worker experience and attitudes towards
the deployment of these technologies. The papers included 1) field
and case studies (23/28) and 3) papers analyzing surveys of workers
(5/28). We included articles that highlight worker experiences with
AI-powered AI-BWM in different occupational settings, in addition
to papers describing their concerns about its current and potential
use.

Interpersonal Harms Experienced and Anticipated in Use. One cen-
tral theme uncovered in our findings is that workers are concerned
that using biometric monitoring technology will result in inter-
personal harms like unjust performance evaluations and unlawful
surveillance. Workers may view the inferences made by monitor-
ing techniques like Automatic Emotion Recognition (AER) as deep
privacy violations as they consider its potential to reveal things
about their intimate private lives which may be used against them
in punitive or exclusionary ways[106, 118]. Worker agency may be
diminished when workers are unable to consent to the collection of
their biometric data and challenge the determinations made about
them [34, 58, 89].

A variety of demographic factors mediates attitudes toward
biometric monitoring. Prior work [39] also observes differences
in public and private sector office workers’ perception of facial-
recognition-basedmonitoring technologies (FRT), finding that older
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public sector workers were less likely than other groups, particu-
larly younger private sector workers, to tolerate monitoring due
to concerns about transparency, agency and excessive manage-
rial control stemming from authoritarian practices. Another study
reviewing employee responses to a national survey on the imple-
mentation of FRT in workplaces found that women were less likely
than men to accept the technology and consider the differential
impact of workplace surveillance technologies on women, which
may moderate their perception of privacy risk in the face of work-
place surveillance [124]. These results are echoed by a third study
identifying differences between how minority and majority group
workers frame privacy concerns related to employer use of bio-
metric technology. This study found that while perceived distrust
and vulnerability were reduced through continued use of biometric
technologies in minority and majority groups, perception of vul-
nerability was consistently lower for individuals belonging to the
majority group [23].

Representation and Allocation (Bias Harms) Experienced and An-
ticipated in Use. AI-BWM technologies may fail to accurately rep-
resent workers’ emotions and behaviors linked to performance
and productivity. Workers express fears about how these sys-
tems may disadvantage them[15, 51]. Like interpersonal harms,
worker experiences and perception of risk related to bias harms
may vary significantly across demographic groups and are in-
fluenced by the purpose for which AI-BWM technologies are
employed[23, 30, 39, 98, 124]. Kaur et al.,[78] report low alignment
between the inferences made by affect monitoring technologies and
self-reported emotions in office settings. These accuracy challenges
are further complicated by the technology’s comparatively poor
ability to accurately detect the facial expressions of marginalized
groups like racial minorities, disabled, and neuro-divergent popu-
lations [75, 98]. Unsurprisingly, then, the use of AER technologies
for hiring and other HR functions was associated with increased
anxiety in minorities, women, and lower-income individuals in
a study of job seekers across 48 countries [98]. The same study
found that higher-income men were less likely to have a worried
outlook toward AER technologies used for hiring and other HR
functions.[ibid]A study analyzing 395 survey responses on worker
perception of AI emotion monitoring technologies used in work-
places finds that workers are concerned about how these systems
may amplify biases and stigmas, specifically along the axes of race,
gender, disability, and mental health[30]. In this study, almost one-
third of the respondents did not view AI-emotion recognition tech-
nology as offering any benefits when presented with a series of
vignettes related to its deployment. More generally, participants’
conceptions of the technology’s potential risks led them to consider
avoiding or mitigating harms either through engaging in additional
emotional labor or even quitting [ibid].

Quality of Service Harms and Societal Harms Experienced and An-
ticipated in Use. The literature discusses howAI-BWM technologies
may require workers to engage in additional labor to meet job de-
mands. In a scenario-based interview study, Roemmich et al.,[118]
found that automatic emotion recognition (AER) technologies may
cause workers to take on additional emotional labor and go to great
lengths to keep their emotions hidden. In a study consisting of
eleven qualitative interviews of employers and workers, Bowell

et al., [15] found that workers internalized workplace monitoring
and described the process of embodiment as "the tangible coales-
cence of being monitored within themselves – in their interactions
with workplace tracking." These harms are exacerbated by worker
uncertainty about how these systems hold them accountable for
certain behaviors. One worker described the experience of being
monitored as " walking on eggshells just waiting, you know, to
stand on an egg that just was not a shell!"[15]. When workers are
unable to make sense of how the data collected about them is used,
they may reject the technology [51].

4 DISCUSSION
Our first research question sought to determine how the decisions
made in developing and deploying AI-powered biometric work
monitoring technologies create the potential for worker harm. We
found that during development, human emotions may be framed
as obstacles to job performance and build technologies that tar-
get a limited set of features to make inferences about workers
potentially leading to interpersonal harms [55, 92]. These tech-
nologies are often trained on datasets which are unsuitable for
deployment in occupational settings[9, 12, 16, 101]. Developers
may also create technologies that collect sensitive private informa-
tion about workers but, given the inherent vulnerabilities of specific
sensing modalities, are unable to prevent data leakages and func-
tion creep[46, 64, 95]. Moreover, in deployment, these technologies
— while generally unreliable — work especially poorly for some
groups of workers (e.g., those with disabilities [75, 98]), leading to
representation and allocation harms[1, 3, 132] When these tech-
nologies are designed to provide management with information
about workers but fail to provide workers with the means to access
their own data or challenge the inaccurate determinations made
by these systems, workers are at risk of facing social system harms
associated with asymmetric power relations[69, 89]. When man-
agers deploy these systems to promote worker well-being but deny
workers opportunities to opt out of these programs, workers face
interpersonal harms[28]. Similarly, AER technologies, which re-
place functions that were traditionally the responsibility of human
management, like performance evaluations, may lead to alienation
and intensification of workers’ labor[16, 107, 118].

Our second research question concerned the harms workers
experience and anticipate due to managerial use of AI-powered
biometric work monitoring technologies. We found that worker
experience of these technology in the use phase is mediated by
their perceived vulnerability (e.g. as a member of a disenfranchised
group) as well as their understanding of the reasons motivating
managerial deployment of AI-powered biometric work monitoring
technologies[23, 39, 98, 124]. Workers required to use these systems
consider how their data might be used in ways which reveal private
information, and potentially used to disadvantage them[30, 51].
For example, workers subject to AER technologies may go to great
lengths to keep their emotions hidden and may engage in additional
labor to avoid unfavorable evaluations from these systems[15]. In
some cases, workers may internalize monitoring and engage in self-
regulating behaviors even when they are not explicitly monitored
[15, 40, 118].
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4.1 Application of Taxonomy to Case Studies
Through the lens of three case studies, we show how the poten-
tial for harm manifests at each stage of our process model. This
approach illustrates that problems often overlap and that a holistic
understanding of the development and adoption process is needed
to fully understand the harm these systems pose to workers if left
unchecked.

Professional Sports Industry. The professional sports industry
presents a mature, large-scale, and highly visible example of de-
ploying AI-BWM technologies. We draw on this example to high-
light that while these systems can be used to benefit athletes, they
may also facilitate exploitative practices when worker agency and
privacy are not considered. When deployed in ways that do not
allow workers to understand or challenge what is being sensed and
inferred about them, they may exacerbate power asymmetries and
alienate workers, resulting in harm.

AI-BWM technologies are developed to track athletes’ vital signs,
and computer vision technology can analyze their behaviors and
movements. For example, Burke [17] proposes an application of
deep neural networks to estimate quarterback decision-making,
describing the proposed model as a mechanism to assess and un-
derstand quarterback decision-making quantitatively–information
they claim provides value to teams, the media, and fans alike. An-
other paper elicits one sports scientist’s justification for the need
for AI-powered biometric monitoring technology, describing it as
critical for asset management[58]. Other applications of AI-BWM
technologies include fitness and injury tracking, which can be used
to inform coaching strategies such as the appropriate duration
of practice sessions in order to prevent injuries related to over-
training, which could potentially be career extending[53]. Karkazis
and Fishman [76] describe how Professional sports organizations
may use AI-BWM as motivational tools to modify athletes’ behav-
ior, detect laziness, or deter complacency, which may result in an
intensification of their labor. When these technologies are deployed
in ways that constrain players’ autonomy related to behaviors both
on and off-the-field [38, 112], or in ways that collect private in-
formation about them and share with third parties, athletes are at
risk of interpersonal harms like privacy violations and diminished
agency.

In 2020, the U.S. National Football League (NFL) partnered with
Amazon Web Services (AWS) to collect players’ biometric data for
the purposes of generating player statistics [119]. The Next-Gen
Stats program uses machine learning algorithms to analyze player
data in the cloud to compare players and generate statistics like
what player has the fastest sprint in the league [ibid]. Deploying
these systems may result in alienation when the classification labels
used to determine an athlete’s performance either distort or fail
to capture the entirety of that athlete’s performance[58]. Alloca-
tion harms may arise when incomplete representations of athletes’
performance (based on prior performance or target a limited set of
metrics) are used as a replacement for coaches’ experience and judg-
ment when deciding to field certain players over others [58, 112].

Additionally, predictive analytics may be used to predict the
likelihood that a player will be able to complete a play based on
past performance and give coaches suggestions on what decision
they should make regarding the team’s next action[17, 112]. One

paper describes worker confusion about the meaning of metrics
used to evaluate their performance, which the authors argue is
one indication of how workers are managed through power asym-
metries, whereby managers possess information about athletes’
performance which they do not have access to[57]. For example,
Greene et al., [58] describe how a softball coach directed their team
to be “92% routine on defense” and how one player felt compelled
to satisfy this demand without actually knowing what it meant.

Construction Industry. The construction industry provides an
example of a high-danger setting where the use of AI-BWM tech-
nologies may in some cases provide life-saving benefits.

For example, devices that monitor skin conductance might be
used to measure heat exhaustion and physical strain [121]. Guo
et al.[59] develop a computer vision system designed to detect vi-
olations ranging from unsafe behaviors to potential catastrophic
actions that might lead to a severe accident involving many casual-
ties and property loss. One paper proposes the use of brainwave and
pulse data as a means for identifying cumulative fatigue, physical
vitality, and autonomic nerve health in construction workers to
evaluate them for risk factors related to safety consciousness and
safety commitment. The authors describe how this approach can
be implemented using big data, artificial intelligence, and sensed
bio-signals in real-time [111]. Cai et al. describe an algorithm de-
signed to estimate construction workers’ visual focus of attention to
interpret their intentions and predict their movements[18]. Each of
these examples demonstrates how AI-BWM can be used to protect
workers from dangerous environments and situations. However,
when workers are not made aware of what data is collected or
given guarantees about how their data is being used, they may
reject these technologies. For example, a study analyzing surveys
from construction workers across 15 independent contracting firms
in California found that nearly half of the workers were unwilling
to adopt safety wearables, such as attention-tracking smart hel-
mets [51]. Their rejection of these tools — marketed as potentially
“life-saving” — was rooted in concerns that the technology might
reveal private information about their physical well-being and or
possibly be used to measure their productivity instead of protecting
them from safety risks [ibid]. In other words, despite the fact that
construction work is hazardous (accounting for nearly one-fifth of
all workplace deaths in the U.S. in 2021 [109]), workers weighed
concerns over facing harms like privacy violations, alienation and
the intensification of their labor over the potential safety benefits
provided by these devices.

The research literature suggests that different outcomes are pos-
sible when these technologies are implemented with consideration
for worker rights and dignity and guarantees about how the technol-
ogy will be used fairly [67]. For example, Killoran et al., [81]describe
how BHPGroup Limited — the largest mining company in the world
— utilizes smart helmets that use electroencephalogram (EEG) brain-
wave monitoring technology to track worker fatigue and drowsi-
ness to monitor their safety. They explain how the company was
able to deploy the AI-BWM in a way that was transparent, respect-
ful, and understanding of worker concerns and their role in the
decision-making process. Ostensibly, this case provides an example
of AI-BWM providing value to both workers and their employers.
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Office Work. Offices represent the fastest-growing applications
for AI-BWM technologies for purposes such as candidate screening,
worker performance monitoring, and well-being sensing[28, 79,
116] This case provides an example of biometric data collection
to extend managerial control and enforce worker compliance to
rigid standards and behaviors for cost-savings and reducing labor
inefficiencies[49, 102].

Office workers may receive fitness wearables as part of corporate
wellness initiatives designed to encourage the adoption of healthier
lifestyles. Employers implement these programs for the purposes
of lowering costs associated with medical insurance and extension
illness-related absenteeism[43, 94, 102]. However, when managers
collect information for purposes beyond what workers consent to
or in ways that disadvantage them, they are put at risk of harms[28,
106, 107, 114].

For example, In 2019, the AARP sued Yale University for requir-
ing workers to share their personal health data with the school
or pay a $1300 yearly fee as part of its Health Expectations ini-
tiative. This program gave third parties access to information re-
lated to workers’ health insurance claims, which used to discrim-
inate against elderly, disabled, and chronically ill workers. One
worker was forced to disclose private information about a mastec-
tomy operation to multiple people in order to avoid the program’s
penalties[129]. As a result, these workers were pressured to disclose
their private information and were victims of privacy violations.
Additionally, their dignity and agency regarding the ownership of
their data was compromised [47]. Ultimately, the controversy re-
sulted in a class action lawsuit against the school. This case demon-
strates that neither side benefits when managers collect sensitive
information without regard for workers.

In examining the impacts of AI-powered biometric work moni-
toring technologies in the workplace, our research focused on two
primary questions: first, the potential harms to workers stemming
from decisions made during the development and deployment of
these technologies, and second, the outcomes experienced by work-
ers interacting with these systems. Based on our literature review,
we synthesize broad responses to these questions below.

4.2 Opportunities for Future Work
When used responsibly, AI-BWM technologies can contribute

to worker health and safety. However, our findings suggest that in
many current applications of these technologies, the limited benefits
skew towards employers, and put workers at risk of harms that
threaten their privacy, well-being, and access to fair and unbiased
employment. This is largely attributable to the fact that the majority
of workers subject to AI-BWM do not have mechanisms or legal
protections to make sense of how their data is collected and used
[11]. Based on our review of literature, we identify a number of
opportunities for future research in this area. These ideas center
around worker agency and understanding in relation to AI-BWM
technologies.

Workers should be informed about when AI-BWM technologies
are being used in the workplace. They should also be able to consent
or refuse the use of AI-BWM technologies whichmake critical deter-
minations tied to their physical and mental condition, performance,

and productivity. For example, workers should have the option to
refuse technologies that make inferences about their private inner
emotional lives, especially in light of the fact that these systems
are often inaccurate and may not provide information related to
the demands of a particular job [28, 34, 79, 118]. More research
is needed to understand how workers can be supported to make
informed decisions when determining whether the conditions of
employment under these systems is in alignment with their values,
personal comfort levels, and privacy expectations.

Workers’ voices should be heard in the design, development
and training of these systems. This inclusion of worker voices will
contribute to positive and equitable outcomes for both workers and
employers[67, 81]. Our literature review identifies several harms
experienced by workers ranging from alienation and the denial of
opportunity to the intensification of their labor as they attempt to
avoid negative evaluations. Awareness of these harms and how they
interact can be used by design and development teams to anticipate
the effects of these technologies during development and prior to
adoption.

Our process model provides a map for stakeholders to anticipate
the tensions surrounding the use of these technologies and how
harms caused by their use might manifest across occupational con-
texts and phases of development. For example, when anticipating
the impact of brainwave monitoring systems on office workers, our
process model could be used to understand the technical factors
which contribute to worker alienation — e.g., the surveillance, ag-
gregation, and physiognomic privacy risks inherent to many AI
technologies [33, 86]. The model could then be used to assess how
social factors such as opaque managerial practices surrounding
the technology’s use might exacerbate worker’s negative experi-
ences rooted in their concerns about privacy. Finally, after devising
strategies for redress, the process model can be used plan how
the technology will be monitored in the future, for example by
highlighting its differential impact on specific demographic groups.

We hope that the research community can provide viable case
studies of how a number of stakeholders — including technology
developers, managers, workers, policy advocates, and the public —
ground their product and policy initiatives on the acceptable devel-
opment, deployment, and uses of AI-BWM technology. We find that
in particular, more work is needed to understand how the design of
AI-powered biometric work monitoring technologies shapes man-
agerial perceptions of its affordances and workers’ mental models
about its purpose and potential to harm them. More research is also
needed to determine whether the introduction of these systems has
a lasting effect on organizational behavior and worker psychology.
For example, in what contexts might managers attempt to exert
more control over workers’ personal lives? Or if accustomed to
continuous monitoring, do workers alter their behavior due to a
lingering sense of surveillance outside of the workplace? Shared
understandings about the purposes and limitations the systems
then creates a basis for negotiation and broader discussions on
AI-BWM.
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5 CONCLUSION
In analyzing the research literature on AI-powered biometric moni-
toring through the well-defined lens of socio-technical harm, fur-
ther stratified across the deployment life-cycle of these technologies,
we established a novel taxonomy of workplace BPM harms. We
find that developer decisions in creating AI-BWM technologies put
workers at risk of several socio-technical harms, which managerial
decisions in deploying these technologies across industries may
compound. Our research contributes to the field of critical AI stud-
ies by highlighting the potential for harm to occur when the impact
of these technologies on workers is not considered during the de-
velopment and deployment of these technologies. Our approach
highlights critical issues in the development and deployment of
these technologies. It demonstrates a need for more research ex-
amining the cascading effects of these technologies throughout
the process model and to better understand the differential im-
pact of these technologies across different demographic groups, job
classifications, and occupational settings.
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