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Figure 1: The tasks examined in our study and the average quantity of carbon emissions they produced (in g of𝐶𝑂2𝑒𝑞) for 1,000
queries. N.B. The y axis is in logarithmic scale.

ABSTRACT
Recent years have seen a surge in the popularity of commercial AI
products based on generative, multi-purpose AI systems promis-
ing a unified approach to building machine learning (ML) models
into technology. However, this ambition of “generality” comes at a
steep cost to the environment, given the amount of energy these
systems require and the amount of carbon that they emit. In this
work, we propose the first systematic comparison of the ongoing
inference cost of various categories of ML systems, covering both
task-specific (i.e. finetuned models that carry out a single task) and
‘general-purpose’ models, (i.e. those trained for multiple tasks). We
measure deployment cost as the amount of energy and carbon re-
quired to perform 1,000 inferences on representative benchmark
dataset using these models. We find that multi-purpose, generative
architectures are orders of magnitude more expensive than task-
specific systems for a variety of tasks, even when controlling for

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0450-5/24/06
https://doi.org/10.1145/3630106.3658542

the number of model parameters. We conclude with a discussion
around the current trend of deploying multi-purpose generative ML
systems, and caution that their utility should be more intentionally
weighed against increased costs in terms of energy and emissions.
All the data from our study can be accessed via an interactive demo
to carry out further exploration and analysis.
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1 INTRODUCTION
Understanding the environmental impacts of different industries is
an important first step towards developing effective strategies to
mitigate those impacts. For newer industries such as information
and communication technologies (ICT) of which Artificial Intelli-
gence (AI) and Machine Learning (ML) are considered to be a part
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of, more work is needed to understand the extent of their environ-
mental impacts and the factors that influence it. Between 2017 and
2021, the electricity used by Meta, Amazon, Microsoft, and Google,
the main providers of commercially-available cloud compute, more
than doubled [22]. According to the most recent figures available,
global data centre electricity consumption has grown by 20-40% an-
nually in recent years, reaching 1-1.3% of global electricity demand
and contributing 1% of energy-related greenhouse gas emissions in
2022 [21]. However the contribution of the AI sector specifically
towards these figures is unclear.

Recent work documenting the environmental impacts of ML has
focused largely on quantifying the operational energy and carbon
required to perform the training phase of the ML model life cy-
cle [12, 30, 41, 49] due to the relative ease of measuring per-model
energy use for that phase and the impressive quantity of energy
required to perform a single training run [41, 49]. Yet, other phases
of the ML model life cycle, such as inference, stand to impact the
environment just as much, or more, than training due to the compu-
tational resources required to deploy modern models at scale. While
inference on a single example requires much less computation than
that required to train the same model, inference happens far more
frequently than model training — as many as billions of times a day
for a model powering a popular user-facing product such as Google
Translate.1 Yet, in-depth work quantifying the costs of model infer-
ence and deployment is limited and their environmental impacts,
in terms of energy and carbon as well as water and mining of rare
earth minerals, have yet to be estimated. According to AWS, the
largest global cloud provider, inference is estimated to make up
80 to 90% of total ML cloud computing demand [2, 28], whereas
a 2021 publication by Meta attributed approximately one-third of
their internal end-to-end ML carbon footprint to model inference,
with the remainder produced by data management, storage, and
training [57]; similarly, a 2022 study from Google attributed 60% of
its ML energy use to inference, compared to 40% for training [40].
Given the increasing ubiquity of AI model deployment, it is cru-
cial to go beyond these high-level statistics to get a better idea of
the energy requirements and carbon emissions of model inference
for different models and tasks. In particular, looking at inference
rather than training leads to drastically different conclusions when
considering the multi-purpose (or “general-purpose”) aspect specifi-
cally. Training a single model for multiple tasks can indeed be more
energy-efficient when considering training costs only, but these
gains can easily be lost and even reversed over the course of the
model’s lifetime, given how much inference is carried out when
these models are deployed in user-facing applications like chat and
web search.

To help shed light on this issue, we perform an extensive study
measuring the amount of energy required to deploy various ML
models and architectures, including large language models (LLMs)-
as such, our study is, to our knowledge, the first to focus solely
on the inference phase of the ML model life cycle. We study 88
models across 10 tasks and 30 datasets, spanning applications in
natural language and computer vision, analyzing the impact of
end task, modality, model size, architecture, and learning paradigm
1Google reported translating more than 100 billion words per day in 2016, assuming an
average query length of 100 words yields an estimate of 1 billion queries to the model
per day. Source: https://blog.google/products/translate/ten-years-of-google-translate/

(i.e. task-specific or multi-task/multi-purpose) on energy efficiency.
We identify orders-of-magnitude differences in the amount of en-
ergy required per inference across models, modalities and tasks
and shine light on an important trade-off between the benefit of
multi-purpose systems, their energy cost, and ensuing carbon emis-
sions. By painting a more detailed picture of widely varying energy
requirements for ML model inference, we hope this study can be
useful for practitioners to better understand accuracy-efficiency
trade-offs across tasks and models, as well as enabling better esti-
mates, and projections and policy decisions at the sector level.

2 PREVIOUS WORK
Estimating the energy and emissions of ML models has remains a
relatively under-explored topic, albeit one that has been gathering
traction since Strubell et al’s seminal article quantifying the energy
and carbon emissions of a variety of then-large NLP models [2019].
Since then, most studies have focused on estimating the energy
consumed and carbon emitted during the training phase of neural
networks – this includes studies by Patterson et al. [2022, 2021],
who compared different models and analyzed factors influencing
their emissions. There have also been studies of specific model
architectures, e.g. BLOOM [31] and Nour [27], which carried out
in-depth analyses of the different steps in the models’ life cycle
and their relative contribution towards the final quantity of carbon
emissions. Given the increasing deployment of ML models in the
cloud, several studies have therefore looked at cloud-specific ways
to reduce the emissions of ML models such as delayed schedul-
ing, workload elasticity and choosing the least carbon-intensive
electricity available Chien et al. [6], Dodge et al. [12], Hanafy et al.
[19].

Despite these empirical studies, there is currently a lack of stan-
dardized methodology for quantifying and comparing the energy
consumption and carbon emissions of ML models. There are several
tools that exist, such as Code Carbon [47], MLCO2 [26] and LLM-
Carbon [13], all of which adopt different approaches and output
different results (see [1] for a detailed comparison). It is therefore
difficult to systematically compare the carbon footprints of differ-
ent models. Existing tools and studies have also largely focused on
the dynamic power consumption (i.e. the electricity necessary for
powering hardware) and its resulting emissions. However, there
have been several proposals to also take into account the embodied
emissions of ML models (i.e. the emissions that can be attributed
to the manufacturing of computing equipment) into carbon emis-
sions estimates. This has been impeded by a lack of transparency
from the designers of common computing hardware such as GPUs,
although recent estimates have revealed that the embodied carbon
footprint of an LLM trained and deployed on Meta’s compute clus-
ter constitutes up to 50% of its carbon footprint [57]. While the
majority of existing work has been focused on ML model training
given that it is a more tractable part of the model life cycle (i.e. it
is most often carried out over a set period of time on a specific
compute instance), model inference has started to also become the
subject of scholarship [6, 11]. Luccioni et al.’s study of BLOOM was
the first of its kind to look at the specific energy costs related to
deploying an LLM [31] and found that, over time, this can represent
a significant portion of a model’s overall carbon footprint.

https://blog.google/products/translate/ten-years-of-google-translate/
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Task Datasets Task Datasets

image
classification

CIFAR 10 [25]
CIFAR 100 [25]
ImageNet 1K [45]

question
answering

SQuAD[44]
SQuAD v2 [43]
SciQ [23]

image
captioning

Visual Genome [24]
RedCaps [10]
COCO [29]

summarization
SAMSum [15]
CNN-Daily Mail [20]
XSum [35]

image
generation

DiffusionDB [54]
ImageReward [58]
SD Prompts [46]

text
classification

IMDB [32]
Rotten Tomatoes [39]
SST 2 [48]

masked
language
modeling

BookCorpus [59]
C4 [42]
OSCAR [37]

text
generation

WikiText [33]
BookCorpus [59]
OSCAR [37]

object
detection

Visual Genome [24]
CPPE-5 [9]
COCO [29]

token
classification

ReCoRD [53]
WikiANN [38]
CoNLL 2003 [50]

Table 1: A list of the tasks and datasets used in our study.

The current study further pursues this line of work, delving
deeper into the inference stage of ML models, the energy it con-
sumes and the carbon it emits. By testing a variety of architectures
on different tasks and datasets, we aim to gain a better understand-
ing of the degree of variance that can be observed and how seem-
ingly small user choices can result in large differences in model’s
environmental impacts.

3 METHODOLOGY
As stated above, our study focuses on the inference (i.e. deployment)
stage in the model life cycle, aiming to address the knowledge gaps
that currently exist with regards to its energy consumption and
ensuing emissions. We describe how we chose the tasks, datasets
and models in the sections below, and present the results of our
analysis in Section 4.

3.1 Task and dataset selection
As the starting point of our study, we chose 10 ML tasks
from 5 different modalities: Text-to-category (text classi-
fication, token classification, extractive question answering),
Text-to-text (masked language modeling, text generation, sum-
marization), Image-to-category (image classification, object de-
tection), Image-to-text (image captioning) and Text-to-image
(image generation). These tasks were chosen because they are com-
mon in both Natural Language Processing and Computer Vision,
allowing us to explore multiple modalities, and include several
multimodal tasks (i.e. image captioning and image generation), al-
lowing us to explore the nexus between several modalities as well.
To test each of the tasks listed above, we chose three of the most
downloaded datasets from the Hugging Face Hub. We present the
tasks and their corresponding datasets in Table 1.

3.2 Models
To be representative of a broad diversity of deployment use cases,
we sampled 88 models, some of which were trained or finetuned
specifically for the tasks that we selected, whereas others were
designed to be used as zero-shot or multi-task models, to allow
comparisons both for different architectures on a given task and
between tasks for the same architecture.

Task-specific Models. For all of the tasks listed above, we selected
the 8 most popular models from the HuggingFace Hub (by number
of downloads) 2 - we present the full list of model identifiers in Ta-
ble 6 in the Supplementary Materials. For each model, we ran 1,000
inferences for each of the 3 datasets from the task it was trained for
(listed in Table 1), using the Transformers [55] library. We ran each
set of inferences 10 times to ensure statistical significance of our
measurements. We set up the inferences sequentially – i.e., without
batching – in order to reflect the variability of model deployment
in situ, which can make it difficult to batch model inputs.

Multi-Purpose Models. In addition to the task-specific models
listed above, we also selected 8 multi-purpose models to analyze on
different tasks – models that were specifically trained to perform
well in various different application settings. We chose 4 sequence-
to-sequence models of different sizes from the Flan-T5 family [8]
(base, large, xl and xxl) and 4 decoder-only models from the
BLOOMz family [34]: BLOOMz-560M, BLOOMz-1B, BLOOMz-3B and
BLOOMz-7B. We tested these on a subset of the tasks to allow a
comparison of multi-purpose generative models with individual
task-specific systems in terms of their energy consumption and
emissions: question answering, text classification and summariza-
tion. We selected these three tasks because we were able to find
a set of models that were capable of carrying them out with a

2Wewere obliged to discard some models, e.g. if they were trained on another language
or if the specific task they were fine-tuned for was not compatible with any of the
datasets selected.



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Luccioni et al

unified model architecture (which wasn’t possible for all tasks, es-
pecially ones that involved multiple modalities.) We prompted these
8 models in a zero-shot setting that was constant across models, e.g.
"Summarize the following text: [text]. Summary:" on the same 1,000
samples as the fine-tuned models, also repeating each experiment
ten times to measure the significance of results.

We ran all of our experiments on a single NVIDIA A100-SXM4-
80GB GPU hosted on Amazon Web Services, and used the Code
Carbon package [47] to measure both the energy consumed and the
carbon emitted during inference. Given that all of our experiments
were run in the same compute region (AWS’s us-west-2), which
is based in Oregon and has an average carbon intensity of 297.6
grams of 𝐶𝑂2𝑒𝑞 per kWh3, this means that both the energy con-
sumed during inference and the carbon emitted are correlated; we
will therefore plot one or the other depending on which aspect of
our results we are discussing. While the energy consumed during
inference will remain similar for models deployed on A100 GPUs in
other compute regions, the carbon emissions will vary depending
on the source of energy used in the region – it is therefore helpful to
report both energy and carbon separately to allow for meaningful
comparisons across regions and hardware. We provide all the code
used for our experiments in our GitHub repository, alongside the
logs produced by Code Carbon, which not only provides the total
energy consumed but also a more fine-grained breakdown by hard-
ware component (GPU, CPU and RAM), which can be used to carry
out further analyses. In total, for all of model experimentation and
evaluation, we used a total of 754.66 kWh of energy and emitted
178.97 kg of 𝐶𝑂2𝑒𝑞.

4 RESULTS
We present our results in the subsections below: in Section 4.1, we
analyze the range of energy used and carbon emitted for each task
for task-specific models. In Section 4.2, we shift our focus to multi-
purpose (i.e. ‘zero-shot‘ models), looking at the variation between
different sizes and architectures of multi-purpose models and the
difference in the energy consumption and emissions between task-
specific and multi-purpose models. In Section 4.3, we carry out a
comparison between model training and inference costs for models
of different sizes, calculating when parity is reached.

4.1 Task-specific model analysis
We start by analyzing the degree of variability in terms of the en-
ergy cost of ML models specifically trained for a variety of tasks.
Table 2 shows each of the ten tasks that we analyzed as well as
the mean energy used across all models for 1,000 inferences and
its standard deviation. We can see that classification tasks for both
images and text are on the lower end of the spectrum in terms
of emissions (ranging between 0.002 and 0.007 kWh for 1,000 in-
ferences), whereas generative tasks such as text generation and
summarization use, on average, over 10 times more energy for the
same number of inferences (around 0.05 kWh for 1,000 inferences),

3The carbon intensity of an energy grid is measured in 𝐶𝑂2𝑒𝑞, and not in 𝐶𝑂2
specifically, because the different greenhouse gases that are generated during electricity
generation are reduced to a common denominator, that of carbon dioxide, or 𝐶𝑂2 .
For a more in-depth discussion of how this is done, see Luccioni and Hernandez-
Garcia [2023].

and multimodal tasks such as image captioning and image gen-
eration are on the highest end of the spectrum (0.06-2.9 kWh for
1,000 inferences). Text-based tasks are, all things considered, more
energy-efficient than image-based tasks, with image classification
requiring less energy (median of 0.0068 kWh for 1,000 inferences)
than image generation (1.35 kWh) and, conversely, text generation
(0.042 KwH) requiring more than text classification (0.0023 kWh).
For comparison, charging the average smartphone requires 0.022
kWh of energy [51], which means that the most efficient text gener-
ation model uses as much energy as 9% of a full smartphone charge
for 1,000 inferences, whereas the least efficient image generation
model uses as much energy as 522 smartphone charges (11.49 kWh),
or around half a charge per image generation 4, although there is
also a large variation between image generation models, depending
on the size of image that they generate.

inference energy (kWh)
task mean std
text classification 0.002 0.001
extractive QA 0.003 0.001
masked language modeling 0.003 0.001
token classification 0.004 0.002
image classification 0.007 0.001
object detection 0.038 0.02
text generation 0.047 0.03
summarization 0.049 0.01
image captioning 0.063 0.02
image generation 2.907 3.31

Table 2: Mean and standard deviation of energy per 1,000
queries for the ten tasks examined in our analysis.

We can also observe that there is a large variation in the amount
of energy used, from the least energy-intensive task, text classifica-
tion, with mean consumption of 0.002 KwH per 1,000 inferences,
to the most energy-intensive one, image generation, whose mean
consumption is 2.9kWh. This means that the different models ex-
amined in our study can vary by a factor of over 1450 in terms
of the energy required to perform the same number of inferences.
Intuitively, this is coherent given the decision space that different
types of models have - from a binary classification task such as
sentiment analysis (which can only output, for instance, a 0 for
negative sentiment and a 1 for positive) to an entire vocabulary
for text generation and summarization models. The length of text
generated also impacts energy usage: on average, text generation
uses 15 times more energy than masked language modeling, which
makes sense given that the masked language modeling task only
generates a single token, whereas in our setup the text generation
task generates 10 new tokens for each input text, with the length
of the input text rising as new tokens are generated, since each
sequence of tokens gets fed back into the model to generate subse-
quent tokens. Finally, for image-based tasks, the level of abstraction
is lower and the decision space is larger given that they generate
4Before January 2024, the EPA website estimated a smartphone charge to consume
0.012 kWh of energy, which was the number used for comparisons in an earlier version
of this study.

https://github.com/sashavor/co2_inference/
https://web.archive.org/web/20230903042020/https://www.epa.gov/energy/greenhouse-gases-equivalencies-calculator-calculations-and-references
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Figure 2: The 5 modalities examined in our study, with the number of parameters of each model on the x axis and the average
amount of carbon emitted for 1000 inferences on the y axis. NB: Both axes are in logarithmic scale.

raw pixels as opposed to tokens for text, making image-based tasks
more energy intensive than text based ones, e.g. image classifica-
tion uses over 3 times more energy than text classification (0.007 vs.
0.002 kWh) and image generation uses, on average, over 60 times
more energy than text generation (0.047 vs. 2.9 kWh).

Next, we examine the respective influences of model size and
task structure on model emissions. Figure 2 shows the relationship
between model emissions (in grams of 𝐶𝑂2𝑒𝑞 per 1,000 inferences)
and sizes (in terms of the number of parameters) across the task cat-
egories listed in Section 3.1. We do observe a relationship between
model size and quantity of emissions produced during inference,
with differing progressions for each modality – however, the task
structure accounts for more of the variation than the model size
does. We can observe once again that text-to-image is by far the
most carbon- and energy-intensive task, with smaller image gener-
ation models such as segmind/tiny-sd that have around 500M pa-
rameters producing magnitudes more carbon than text-to-category
models (100g vs. 0.6g of 𝐶𝑂2𝑒𝑞 per 1,000 inferences). Within the
text-to-text tasks, we see two separate sets of models: the masked
language modeling task following a lower trend, producing emis-
sions akin to text-to-category models, compared to text generation
and summarization tasks, which produce similar amounts of carbon
to the image captioning models with a similar number of param-
eters. For context, the most carbon-intensive image generation
model (stable-diffusion-xl-base-1.0) generates 1,594 grams
of 𝐶𝑂2𝑒𝑞 for 1,000 inferences, which is roughly the equivalent to
4.1 miles driven by an average gasoline-powered passenger vehi-
cle [51], whereas the least carbon-intensive text generation model
(distilbert-base-uncased) generates as much carbon as 0.0006
miles driven by a similar vehicle, i.e. 6,833 times less. This can
add up quickly when image generation models such as Dall·E and
MidJourney are deployed in user-facing applications and used by
millions of users globally (we discuss this point further in Section 5).

The (high-level) takeaway of this analysis is that even for models
specifically trained to carry out a single task, there is a large level

of variation both within each task and an even larger one between
tasks from different modalities. In essence, tasks that map both
image and text inputs to categorical outputs are less energy- and
carbon-intensive than those that generate text or images. Making
these distinctions can help inform policies seeking to mitigate the
environmental impacts of AI, given that it is important to be aware
of this variation, which can sometimes reach several orders of
magnitude. In the next section, we delve deeper into multi-purpose
systems, which are meant to carry out several tasks concurrently,
to better understand their environmental impacts and how they
compare to task-specific models.

4.2 The environmental cost of multi-purpose
systems

The second part of our analysis examines multi-task models of
two types: decoder only, from the BLOOMz family, and sequence-
to-sequence models from the FLAN-T5 family, with the goal of
comparing energy intensity and carbon emissions of models with
differing numbers of parameters when applied to different tasks.
To address this question, we selected a subset of 3 tasks – text
classification, extractive question answering, and summarization –
given their diversity and broad applicability in a variety of settings,
and compare the 8 zero-shot models of different sizes, based on the
same 3 datasets per task as described in Table 1.

4.2.1 Emissions of task-specific and multi-task architectures.

To start our analysis, we examined how the choice of model
and architecture type impacts emissions given a specific task and
dataset. For this analysis, we took the same 8 task-specific mod-
els described in Section 3.2 and compared their emissions to the
8 multi-purpose models described above. In Figure 3, we plot the
mean query emissions for each model on a dataset-by-dataset basis.
We can see that for the two discriminative tasks, sentiment anal-
ysis (which includes SST 2, Rotten Tomatoes and IMDB datasets)
and question answering (which encompasses SciQ, SQuAD and

https://openai.com/dall-e-2
https://www.midjourney.com/explore
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Figure 3: Model emissions (measured in g 𝐶𝑂2𝑒𝑞) and architecture type for each of the datasets from our analysis. The y axis is
in logarithmic scale, dot size is proportional to model size.

SQuAD v2) there is a clear distinction between task-specific dis-
criminative models (in blue), which have less emissions than both
multi-purpose sequence-to-sequence (in yellow) and decoder-only
generative models (in green). Given that the y axis in Figure 3 is
in logarithmic scale, this indicates that the difference is several
orders of magnitude, with the most efficient task-specific models
emiting 0.3g of 𝐶𝑂2𝑒𝑞 per 1,000 inferences for extractive question
answering on a dataset like SciQ, multi-purpose models emit 10g
for the same task. This result follows intuitions derived from the
model structures: while a task-specific model trained on binary text
classification will carry out a softmax on a two-category vector
to predict a class, a multi-purpose model will generate ‘positive’
or ‘negative’, which logically requires more energy because the
prediction is based on the model’s entire vocabulary.

For the generative task, summarization (represented by the SAM-
sum, XSum and CNN-Daily Mail datasets), the task-specific and
multi-purpose models are closer in terms of emissions: task-specific
sequence-to-sequence models generate 4-10g of 𝐶𝑂2𝑒𝑞 for 1,000

inferences, while multi-purpose models emit 20-30g for the same
task. The difference appears to mostly come from model size – all
of the task-specific summarization models we looked at were 600
million parameters at most, compared to the larger multi-purpose
architectures, which attained the 11 billion parameters.

We also carry out an evaluation of both the task-specific and
multi-purpose models examined in our study to ensure that they
have comparable performance. For task-specific models, we used
the evaluate library [52] and the LM Evaluation Harness [14] for
zero-shot models. Fundamentally speaking, it is hard to compare
task-specific and multi-purpose models using the same metrics,
given that task-specific models have a much more constrained deci-
sion space (e.g. two classes in the case of binary text classification),
whereas multi-purpose models have a large output vocabulary to
choose from, and are dependent upon the prompt schema and
prompting strategy used. However, by utilizing two standardized
packages (evaluate and lm-evaluation-harness) and keeping

Figure 4: Model size, measured in number of parameters (x axis, logarithmic scale) and text classification accuracy (y axis), with
dot size indicating the quantity of emissions (logarithmic scale).
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Figure 5: A plot of the total emissions (in grams of 𝐶𝑂2𝑒𝑞) for 1,000 inferences for all multi-purpose models.

the prompting approach stable across zero-shot models, we en-
deavor to standardize our evaluation approach as much as possible.

We hone in on one specific task, text classification, in Figure 4,
which illustrates the relationship between model size (x axis, in
logarithmic scale), accuracy (y axis) and emissions (dot size, in loga-
rithmic scale). Among task-specific encodermodels, we observe that
accuracy varies more widely, i.e. there are several smaller models
of similar size and comparably small amounts of carbon emissions,
with widely varying levels of accuracy. The multi-purpose models
vary less in terms of accuracy, having higher average accuracy over-
all. Both sequence-to-sequence and decoder-only models produce
comparable amounts of emissions (several orders of magnitude
more than task-specific models).We can see that mid-size multi-
purposemodels (in the 3B parameter range)may have slightly better
accuracy compared to both larger and smaller models. However,
given the many caveats and specificities involved in multi-purpose
LLM evaluation, this difference may not be significant. We present
the full results of our evaluation, which include the other 2 tasks,
in Section B in the Supplementary Materials.

4.2.2 Differences within multi-purpose architectures.

Beyond the differences between task-specific and multi-purpose
models generally, we also observed variation within the multi-
purpose models that we examined. We present our results in
Table 3; in it, we can observe that on a per-architecture basis

(i.e. within the family of decoder-only models and the family of
sequence-to-sequence models), size and emissions are correlated,
with smaller models emitting less carbon and using less energy.
However, sequence-to-sequence models are more efficient than
their decoder-only counterparts when models of the same size are
compared: for instance, Flan-T5-XL and BLOOMz-3B are both of
a similar size (around 3B parameters), but the former generates,
on average, 2 grams of emissions less for 1,000 inferences than the
latter. This difference holds when comparing Flan-T5-XXL, which is
the biggest model in terms of parameter count in the multi-purpose
models that we tested (11 billion), yet it has lower emissions (11.48g
on average) compared to the smaller BLOOMz-7B. Comparing the
models on a per-task basis in Figure 5, we can see the same pattern
for zero-shot models as for task-specific ones, with text classifica-
tion a less carbon-intensive task compared to question answering,
and summarization the most intensive one of the three. The spread
between the tasks is smaller for sequence-to-sequence models (in-
dicated with dots in Figure 5), whereas for decoder-only models
(indicated with crosses), the difference between the different tasks
is more significant.

We can analyse the relationship between sequence-to-sequence
and decoder-only models noted in Table 3: whereas for tasks such
as summarization, decoder models do generate more emissions
than sequence-to-sequence models of a similar size, for question
answering and text classification, the two architectures have sim-
ilar emissions. This can again be explained by the differences in

seq2seq models decoder-only models

model
name

number of
parameters

emissions
(g 𝐶𝑂2𝑒𝑞)

energy
(kWh)

model
name

number of
parameters

emissions
(g 𝐶𝑂2𝑒𝑞)

energy
(kWh)

Flan-T5-base 222M 3.67 0.026 BLOOMz-560M 559M 7.5 0.054
Flan-T5-large 750M 7.68 0.055 BLOOMz-1B 1.7B 8.66 0.062
Flan-T5-xl 2.8B 8.08 0.058 BLOOMz-3B 3B 10.17 0.073
Flan-T5-xxl 11B 11.48 0.083 BLOOMz-7B 7B 14.46 0.104

Table 3: Zero-shot models in our analysis with their architecture type, model size (in number of parameters), average quantity
of emissions (in g of 𝐶𝑂2𝑒𝑞) and average energy usage (in kWh) for 1,000 inferences.
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Figure 6: A plot of the output length (X axis) and carbon emissions (Y axis) for the summarization task. The symbol refers
to the type of architecture (BLOOMz vs Flan-T5), symbol size references the relative model size (in terms of the number of
parameters), and color the input length.

the model structures, specifically the attention mechanism: while
sequence-to-sequence models only attend to the last layer of the
input when producing their answers, decoder-only architectures
attend to all layers for the full sequence – leading to a stronger
dependency on the output length for the number of operations,
resulting in more emissions for tasks with longer outputs.

We further verify this intuition in Table 4 and Figure 6: while
there is some variation between models and datasets in Table 4,
the distribution of output lengths is consistent with our expecta-
tions for the different task categories: tasks with longer outputs
result in more emissions, especially for decoder-only models. Fig-
ure 6 delves further into the relationship between average output
length, carbon emissions, and model structures for the different
summarization datasets. It shows a clear correlation between out-
put length and measured emissions, with a higher slope for the
decoder-only architectures (the BLOOMz family of models) than
for the sequence-to-sequence architectures (the Flan-T5 family).

As we have observed in the current section, there is no ‘one-
size-fits-all’ pattern for multi-purpose models either – they too
exhibit variation in terms of their emissions and energy usage,

which can be attributed to different factors, includingmodel size and
output length. This would indicate that more careful consideration
is needed when making choices to deploy these models for different
tasks and applying them in different scenarios. We further discuss
our results and further avenues of research in the next and final
section.

4.3 Comparing model training and inference
costs

An important trade-off for many AI practitioners and policy-makers
is determining when exactly model inference costs reach parity
with model training (and fine-tuning) - i.e. when does the deploy-
ment of models use as much energy as their initial training? This
comparison is often hard to make because it requires the total en-
ergy cost of all steps of the ML model life cycle, which is very rarely
available. Of the models that we examined in our study, neither
the BLOOMz nor the Flan-T5 families of models reported the to-
tal energy used nor carbon emitted during their training in the
papers describing the models. However, given that the BLOOMz
models are fine-tuned versions of the original BLOOM family of

BLOOMz
560M

BLOOMz
1B

BLOOMz
3B

BLOOMz
7B

Flan-T5
base

Flan-T5
large

Flan-T5
xl

Flan-T5
xxl

dataset input output output output output output output output output
IMDB 58.73 1.64 2.61 1.72 1.53 1.00 1.00 1.00 1.00
Rotten

Tomatoes 30.08 1.00 0.99 1.03 1.00 1.00 1.00 1.00 1.00

SST 2 28.35 0.98 0.99 1.01 1.02 1.00 1.00 1.00 1.00
SciQ 113.12 1.28 1.25 1.10 1.10 2.03 5.41 3.12 2.42

SQuAD 134.00 1.93 1.96 2.02 1.95 2.01 2.15 2.16 2.13
SQuAD 2 115.85 2.33 2.54 2.58 2.41 2.28 2.74 2.71 2.58
CNN 54.00 12.05 11.91 11.73 10.34 8.52 11.34 11.34 10.68

SamSUM 47.82 9.54 9.41 9.75 9.85 10.56 11.05 10.18 10.57
XSum 53.85 11.53 12.22 11.94 11.92 12.95 13.62 13.49 13.09

Table 4: Average input and output length (in number of tokens) for the 8 zero-shot models and 9 tasks examined as part of our
study. The darker the cell, the more carbon was output by the model for the task.
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BLOOMz-7B BLOOMz-3B BLOOMz-1B BLOOMz-560M

Training energy (kWh) 51,686 25,634 17,052 10,505
Finetuning energy (kWh) 7,571 3,242 1,081 543
Inference energy (kWh) 1.0 × 10−4 7.3 × 10−5 6.2 × 10−5 5.4 × 10−5
Cost parity (# inferences) 592,570,000 395,602,740 292,467,741 204,592,592

Table 5: The BLOOMz models from our study with their training energy cost (from [31]), finetuning energy cost (from [34]),
inference cost (from the present study), and cost parity, as the number of inferences required to sum to the training cost.

models [56], we can base ourselves on the logs provided by the
authors of the BLOOM carbon footprint estimation paper [31]. We
can add to these numbers the energy cost of fine-tuning each model,
which we were able to estimate based on the training logs provided
by the authors of the BLOOMz paper [34], although we were lack-
ing the necessary information to infer the carbon footprint 5. We
present these numbers, alongside the average energy consumption
per inference, in Table 5. We can see that the amount of energy
required per inference varies from 5.4 × 10−5 for the smallest model,
BLOOMz-560M to 1.0 × 10−4 kWh for the biggest one, BLOOMz-
7B. This is coherent to the numbers reported by Luccioni et al. for
BLOOM-176B, which required, on average, 0.004 kWh of energy
per query, or 40 times more than BLOOMz-7B, being roughly 25
times bigger [31] - although this included API deployment of the
model, which is not the case for the models in our study.

If we compare the amount of energy used per inference for each
of the models with the total amount of energy used for both training
and fine-tuning them, we can estimate how many inferences would
be needed to be carried out with a given model in order for the
cost of inference to reach the cost of training. As can be seen in
Table 5, this varies depending on model size: from around 200
million inferences for the smallest model, BLOOMz-560M, to over
590 million inferences for the biggest model, BLOOMz-7B. This
may seem like a lot if a single instance of a model is deployed,
but can add up quickly if there are multiple instances of models
deployed in parallel. For instance, it has been estimated that, at its
peak, ChatGPT had upward of 10 million users per day [36]; the
most recent statistics indicate that the ChatGPT login page received
1.7B visits in October 2023 6. Even assuming a single query per
user, which is rarely the case, the energy costs of deploying it
would surpass its training costs after a few weeks or months of
deployment.

While the BLOOMz models are not deployed in real-time in the
same manner as ChatGPT, they have been downloaded hundreds
of thousands of times from the Hugging Face Hub, which would
indicate that they have been extensively used by the open-source
community: at the time of writing this article (November 2023),
BLOOMz-7B has been downloaded 606,096 times, BLOOMz-3B has
been downloaded 357,368 times, BLOOMz-1B has been downloaded
61,757 times and BLOOMz-560m has been downloaded 498,601
times. They have also been finetuned for a number of downstream

5The energy consumption can be based on the Thermal Design Power (TDP) of the
GPUs used – while it assumes 100% GPU utilization, it is the most accurate estimate
possible without energy usage tracking during training.
6According to SimilarWeb: https://www.similarweb.com/website/chat.openai.com/.

tasks, such as chat, and deployed in HuggingFace Spaces, interac-
tive interfaces for model interaction. While this analysis represents
a relatively small sample of models, analyses such as this are vital
for estimating the relative energy consumption (and ensuing emis-
sions) of different stages of the ML training and deployment cycle,
understanding trade-offs between training and inference emissions
patterns, and characterizing the lifetime emissions of ML models,
and we hope that others will be possible in the future, which would
require more transparency from model creators regarding both
the up front (i.e. training) and downstream (i.e. inference) costs of
ML models. We discuss the importance of transparency and other
important actions that members of the community can take in the
next, and final, section.

5 DISCUSSION
There have been limited studies regarding the energy consumption
and carbon emissions of LLM inference, largely due to its distributed
nature — compared to the relatively time- and location-constrained
nature of training — making it difficult to make meaningful com-
parisons between different models and tasks. In this work, we have
endeavored to keep as many parameters stable as possible, includ-
ing the code, hardware, datasets, batch size and Python library. We
provide all of the code that we used for our analysis as well as an
interactive tool to allow users to more deeply explore the results
we present here. We also highlight the main high-level takeaways
of our study below:

Generative tasks are more energy- and carbon-intensive compared
to discriminative tasks. As shown in Figure 1, the most energy- and
carbon-intensive tasks are those that generate new content: text
generation, summarization, image captioning, and image genera-
tion.

Tasks involving images are more energy- and carbon-intensive
compared to those involving text alone. More specifically, tasks in-
volving predicting categories (text-to-category, image-to-category)
are less energy-intensive than those involving generating images
(e.g. text-to-image), with those involving text between the two (see
Figure 2).

Decoder-only models are slightly more energy- and carbon- inten-
sive than sequence-to-sequence models for models of a similar size
and applied to the same tasks. The findings we present in Table 3,
Figure 3, and Figure 6 would indicate that more computation (i.e.
energy) is required for decoder-only tasks, and that this phenom-
enon is particularly marked for tasks with longer outputs. This

https://github.com/bigscience-workshop/carbon-footprint/
https://www.similarweb.com/website/chat.openai.com/
https://github.com/sashavor/co2_inference/
https://huggingface.co/spaces/sasha/CO2_inference
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observation is worth verifying for other architectures from both
categories, and well as other tasks and datasets.

Training remains orders of magnitude more energy- and carbon-
intensive than inference. We have provided initial numbers for com-
paring the relative energy costs of model training, finetuning and
inference for different sizes of models from the BLOOMz family,
and found that the parity between training/finetuning and infer-
ence grows with model size. While the ratio is hundreds of millions
of inferences for a single training, given the ubiquity of ML model
deployment, this parity can be reached quickly for many popular
models.

Using multi-purpose models for discriminative tasks is more
energy-intensive compared to task-specific models for these same
tasks. This is especially the case for text classification (on IMDB,
SST 2 and Rotten Tomatoes) and question answering (on SciQ,
SQuAD v1 and v2), where the gap between task-specific and zero-
shot models is particularly large, and less so for summarization (for
CNN-Daily Mail, SamSUM and XSum). As can be seen in Table 4,
the difference between multi-purpose models and task-specific
models is amplified as the length of output gets longer.

We find this last point to be the most compelling takeaway of our
study, given the current paradigm shift away from smaller models
finetuned for a specific task towards models that are meant to carry
out a multitude of tasks at once, deployed to respond to a barrage of
user queries in real time. This transition has been happening both
in ML research since the advent of GPT-3 [5], which illustrated the
potential for few- and zero-shot learning with language models, as
well as in consumer settings, with LLMs such as GPT-4 and PaLM
being deployed in user-facing products such as web search [4, 18],
email, and navigation [17], where smaller, task-specific versions of
models such as BERT were previously used [3, 16]. While it is hard
to quantify the environmental impacts of this transition given the
lack of transparency of technology companies regarding both the
number of parameters, architecture and carbon emissions of their
products, we can make a comparison based on the experiments
carried out in the present study. For instance, the average emissions
of a BERT-basedmodel fine-tuned for extractive question answering
(bert-large-uncased-whole-word-masking-finetuned-squad),
a task akin to extractive web search, is 0.70g 𝐶𝑂2𝑒𝑞 per 1,000
queries, which is less than 3 times that of the multi-purpose models
(2.36g for Flan-T5 base and 2.34g for BLOOMz-560M). The differ-
ence is much more drastic if comparing BERT-based models for
tasks such as text classification with the larger multi-purpose mod-
els: for instance bert-base-multilingual-uncased-sentiment
emits just 0.32g of 𝐶𝑂2𝑒𝑞 per 1,000 queries, compared to 2.66g
for Flan-T5-XL and 4.67g for BLOOMz-7B. For comparison, the
first PaLM model, released in 2022, has 540 billion parameters [7],
whereas GPT-3 has 175 billion parameters [5] 7. While we see the
benefit of deploying generative zero-shot models given their ability
to carry out multiple tasks, we do not see convincing evidence
for the necessity of their deployment in contexts where tasks are
well-defined, for instance web search and navigation, given these
models’ energy requirements.

7The exact number of parameters of GPT-4 and PaLM 2 have not been publicly shared.

Finally, the intent of our study is to set the stage for better un-
derstanding of the energy requirements and carbon emissions of
the final, often overlooked, step in the ML model life cycle: model
deployment. The comparison between training, finetuning and in-
ference energy requirements carried out in Section 4.3 is, to our
knowledge, the first comparison of its kind, and paves the way to a
better understanding of how the different stages of an ML model’s
lifecycle add up in terms of energy use. These are important data
points that can help inform both our fellow AI researchers and
practitioners, as well as policy-makers who are working towards
estimating and regulating the environmental impacts of AI models
and ICT in general. We recognize that our study is not representa-
tive of all deployment contexts and constraints – our intent is to
establish a set of initial data points and to set the stage for testing
and comparing other models. In fact, our study highlights many
potential avenues for future research aimed towards a better un-
derstanding of the myriad factors that influence the efficiency of
inference, including the choice of architecture, the usage of tech-
niques such as distillation, the number of parameters, the choice of
hardware and the numerical (i.e. floating point) precision of model
parameters. While we encourage continued work analysing open-
source models, we note that the growing lack of transparency in
model architecture and training details makes this line of work,
alongside many branches relating to fairness and accountability in
machine learning, increasingly difficult to carry out. Given our find-
ings and the increased deployment of generative, multi-purpose
AI models, we hope that both ML researchers and practitioners
will practice transparency regarding the nature and impacts of
their models, to enable better understanding of their environmental
impacts.

ETHICAL CONSIDERATIONS STATEMENT
The main ethical concerns that we faced in our experimentation is
the sheer amount of energy needed and carbon emissions generated
by our study, given that we ran each of the 88 models on 3 datasets
10 times to ensure statistical significance of our measurements. In
total, for all of model experimentation and evaluation, we used
a total of 754.66 kWh of energy and emitted 178.97 kg of 𝐶𝑂2𝑒𝑞.
In order to reduce our impacts as much as possible, we did all up-
front experimentations on smaller portions of the dataset (to reduce
wasted resources).

RESEARCHER POSITIONALITY STATEMENT
The authors of this paper have backgrounds in theoretical and ap-
plied machine learning and work in institutions based in North
America. We therefore recognize that our way of planning and run-
ning experiments is not necessarily reflective of other institutions
from other regions, or the constraints faced by researchers from
institutions with more limited access to compute.

ADVERSE IMPACTS STATEMENT
We recognize that our work can be perceived as a critique of ML
deployment in general, given the analysis that we provide of its
environmental impacts. This could be used as an argument to stop
pursuing ML research and development, or as a way of targeting
specific companies or organizations. Our intention, however, is to
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shed additional light on the environmental impacts of ML, in order
to help model developers and researchers make more informed
choices as a function of their environmental footprint or energy
usage.
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A FULL LIST OF TASK-SPECIFIC MODELS TESTED

Task Models Task Models

image
classification

microsoft/resnet-50
microsoft/beit-base-patch16-224
google/vit-base-patch16-384
facebook/convnextv2-tiny-22k-384
microsoft/resnet-18
google/mobilenet_v1_0.75_192
facebook/convnextv2-tiny-1k-224
google/vit-base-patch16-224

question
answering

distilbert-base-uncased-distilled-squad
distilbert-base-cased-distilled-squad
deepset/roberta-base-squad2
bert-large-uncased-whole-word-masking-finetuned-squad
timpal0l/mdeberta-v3-base-squad2
deepset/tinyroberta-squad2
deepset/electra-base-squad2
deepset/bert-large-uncased-whole-word-masking-squad2

image
captioning

nlpconnect/vit-gpt2-image-captioning
Salesforce/blip-image-captioning-large
Salesforce/blip-image-captioning-base
microsoft/git-large-coco
Salesforce/blip2-flan-t5-xl
Salesforce/blip2-opt-2.7b
ydshieh/vit-gpt2-coco-en
microsoft/git-base

summarization

sshleifer/distilbart-xsum-12-6
sshleifer/distilbart-cnn-12-6
pszemraj/led-large-book-summary
google/pegasus-xsum
google/pegasus-large
google/pegasus-multi_news
facebook/bart-large-cnn
ainize/bart-base-cnn

image
generation

runwayml/stable-diffusion-v1-5
stabilityai/stable-diffusion-2-1
stabilityai/stable-diffusion-xl-base-1.0
CompVis/stable-diffusion-v1-4
prompthero/openjourney
dreamlike-art/dreamlike-photoreal-2.0
nota-ai/bk-sdm-tiny
segmind/tiny-sd

text
classification

distilbert-base-uncased-finetuned-sst-2-english
nlptown/bert-base-multilingual-uncased-sentiment
twitter-roberta-base-sentiment-latest
cardiffnlp/twitter-xlm-roberta-base-sentiment
lvwerra/distilbert-imdb
siebert/sentiment-roberta-large-english
finiteautomata/bertweet-base-sentiment-analysis
sbcBI/sentiment_analysis_mode

masked
language
modeling

bert-base-uncased
xlm-roberta-base
distilbert-base-uncased
roberta-base
albert-base-v2
bert-base-cased
microsoft/deberta-base
bert-base-multilingual-cased

text
generation

gpt2
bigscience/bloom-560m
distilgpt2
facebook/opt-6.7b
EleutherAI/gpt-neo-125m
gpt2-medium
facebook/opt-1.3b
gpt2-xl

object
detection

facebook/detr-resnet-50
hustvl/yolos-tiny
jozhang97/deta-swin-large
facebook/detr-resnet-101
hustvl/yolos-small
SenseTime/deformable-detr
polejowska/detr-r50-cd45rb-8ah-6l
polejowska/detr-r50-cd45rb-1ah-6l

token
classification

QCRI/bert-base-multilingual-cased-pos-english
dslim/bert-base-NER
dslim/bert-large-NER
Jean-Baptiste/roberta-large-ner-english
oliverguhr/fullstop-punctuation-multilang-large
Babelscape/wikineural-multilingual-ner
ml6team/keyphrase-extraction-distilbert-inspec
obi/deid_roberta_i2b2

Table 6: The full list of the 80 finetuned models that were tested for the ten tasks we analyzed.



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Luccioni et al

B MODEL EVALUATION

model SST 2
(acc)

IMDB
(acc)

Rotten
Tomatoes
(acc)

SciQ
(acc)

SQuAD
(F1)

SQuAD v2
(F1, has
answer)

SamSUM
(ROUGE)

XSum
(ROUGE)

CNN
(ROUGE)

bloomz-560m 0.92 0.94 0.85 0.92 0.43 0.21 0.23 0.15 0.10
bloomz-1b7 0.94 0.97 0.93 0.96 0.50 0.25 0.26 0.16 0.18
bloomz-3b 0.95 0.98 0.95 0.97 0.53 0.26 0.28 0.17 0.21
bloomz-7b1 0.94 0.98 0.95 0.97 0.54 0.27 0.32 0.21 0.09
flan-t5-xxl 0.96 0.97 0.92 0.72 0.98 0.49 0.30 0.37 0.23
flan-t5-xl 0.96 0.97 0.93 0.66 0.97 0.49 0.49 0.38 0.24
flan-t5-large 0.94 0.96 0.92 0.53 0.97 0.50 0.45 0.30 0.24
flan-t5-base 0.93 0.95 0.88 0.61 0.95 0.48 0.46 0.32 0.23
distilbert-base-uncased
-distilled-squad 0.44 0.87 0.86

distilbert-base-cased-
distilled-squad 0.46 0.87 0.87

deepset/roberta-base-squad2 0.48 0.93 0.83
bert-large-uncased-whole-
word-masking-finetuned-squad 0.48 0.93 0.84

timpal0l/mdeberta-v3-
base-squad2 0.46 0.91 0.90

deepset/tinyroberta-squad2 0.45 0.98 0.91
deepset/electra-base-squad2 0.48 0.89 0.82
deepset/bert-large-uncased-
whole-word-masking-squad2 0.46 0.92 0.92

sshleifer/distilbart-xsum-12-6 0.20 0.45 0.23
sshleifer/distilbart-cnn-12-6 0.29 0.21 0.44
pszemraj/led-large-
book-summary 0.33 0.16 0.33

pegasus-xsum 0.22 0.22 0.22
pegasus-large 0.27 0.17 0.34
pegasus-multi_news 0.12 0.16 0.29
facebook/bart-large-cnn 0.32 0.21 0.44
ainize/bart-base-cnn 0.27 0.16 0.26
distilbert-base-uncased-
finetuned-sst-2-english 0.99 0.88 0.90

nlptown/bert-base-
multilingual-uncased-sentiment 0.75 0.85 0.73

twitter-roberta-base-
sentiment-latest 0.82 0.80 0.77

cardiffnlp/twitter-xlm-roberta-
base-sentiment 0.79 0.71 0.74

lvwerra/distilbert-imdb 0.88 0.93 0.82
siebert/sentiment-roberta-
large-english 0.92 0.92 0.92

finiteautomata/bertweet-
base-sentiment-analysis 0.82 0.72 0.77

sbcBI/sentiment_analysis_model 0.81 0.75 0.76
Table 7: Full performance metrics for the 32 models (24 finetuned, 8 multi-purpose) that we evaluated as part of our study.
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Figure 7: A plot of model size, measured in number of parameters (x axis, in logarithmic scale) and summarization accuracy (y
axis), with dot size indicating the quantity of emissions.

Figure 8: A plot of model size, measured in number of parameters (x axis, in logarithmic scale) and question answering accuracy
(y axis), with dot size indicating the quantity of emissions.
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