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ABSTRACT
Governments are increasingly considering integrating autonomous
AI agents in high-stakesmilitary and foreign-policy decision-making,
especially with the emergence of advanced generative AI models
like GPT-4. Our work aims to scrutinize the behavior of multiple
AI agents in simulated wargames, specifically focusing on their
predilection to take escalatory actions that may exacerbate mul-
tilateral conflicts. Drawing on political science and international
relations literature about escalation dynamics, we design a novel
wargame simulation and scoring framework to assess the escala-
tion risks of actions taken by these agents in different scenarios.
Contrary to prior studies, our research provides both qualitative
and quantitative insights and focuses on large language models
(LLMs). We find that all five studied off-the-shelf LLMs show forms
of escalation and difficult-to-predict escalation patterns. We ob-
serve that models tend to develop arms-race dynamics, leading to
greater conflict, and in rare cases, even to the deployment of nuclear
weapons. Qualitatively, we also collect the models’ reported reason-
ing for chosen actions and observe worrying justifications based on
deterrence and first-strike tactics. Given the high stakes of military
and foreign-policy contexts, we recommend further examination
and cautious consideration before deploying autonomous language
model agents for strategic military or diplomatic decision-making.

CCS CONCEPTS
• Computing methodologies → Natural language generation;
Natural language processing; • Applied computing → Mili-
tary.
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1 INTRODUCTION
With the spread of ChatGPT and generative AI models that can
generate novel strategies and decisions based on prompts and
supplied information, conversations about the integration of au-
tonomous agents in high-stake situations such as military and
diplomatic decision-making have become more frequent and con-
crete [2, 35, 36, 64]. In July 2023, Bloomberg reported that the US
Department of Defense (DoD) was conducting a set of tests in which
they evaluate five different large language models (LLMs) for their
military planning capacities in a simulated conflict scenario [51].
US Air Force Colonel Matthew Strohmeyer, who was part of the
team, said that “it could be deployed by the military in the very
near term” [51]. If employed, it could complement existing efforts,
such as Project Maven, which stands as the most prominent AI
instrument of the DoD, engineered to analyze imagery and videos
from drones with the capability to autonomously identify potential
targets. In addition, multiple companies such as Palantir and Scale
AI are working on LLM-based military decision systems for the
US government [19]. With the increased exploration of the usage
potential of LLMs for high-stakes decision-making contexts, we
must robustly understand their behavior—and associated failure
modes—to avoid consequential mistakes.

Integrating such LLM-based agents in foreign-policy contexts
could augment human decision-making in two notable forms: 1)
agents giving advice to human decision-makers, or 2) agents be-
ing vested with the authority to execute actions independently.
Arguments for deploying LLMs in the contexts discussed in the
paper are that they can process more information [79] and make
decisions significantly faster than humans [38, 51], that they may
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Figure 1: Experiment Setup. Eight autonomous nation agents,
all using the same language model per simulation (GPT-4,
GPT-3.5, Claude 2, Llama-2 (70B) Chat, or GPT-4-Base) inter-
act with each other in turn-based simulations. Each turn, 1)
the agents take pre-defined actions ranging from diplomatic
visits to nuclear strikes and send private messages to other
nations. 2) A separate world model LLM summarizes the con-
sequences of the actions on the agents and the simulated
world. 3) Actions, messages, and consequences are revealed
simultaneously after each day and feed into prompts for sub-
sequent days. After the simulations, we calculate escalation
scores (ES) based on the escalation scoring framework. See
Section 3 for our full methodology.

be better at allocating resources efficiently, and that they can fa-
cilitate communication between key personnel, which can give
a competitive advantage in high-stake scenarios against foreign
adversaries [75]. Helberger et al. [32] further argue that AI-based
models tend to make less emotionally-driven decisions compared
to humans, which may or may not be an advantage. For instance,
previous work has shown that computer-assisted wargame sim-
ulations lead to more escalatory behavior, potentially due to an
incapacity of computational models to account for non-material
costs of war or nuclear use [12]. In addition, there may be other
risks associated with deploying these models in high-stakes con-
texts [9]. While scenario (1) seems to be more likely at this point in
time and “safer” due to human oversight, it does not come without
risks; given the complexity and vastness of information requisites
for conflict decision-making, human decision-makers in scenario (1)
may be prone to become increasingly reliant on the counsel offered
by autonomous agents1, executing proposed actions with minimal
deliberation and thereby effectively leaving the agent in charge
of decision-making. In either case, it is important to understand
the behavior of models in different settings, how models compare
against each other, and when they have a predilection for escalation
rather than de-escalation of conflicts.

In this paper, we investigate how eight LLM-based autonomous
agents interact with each other and make foreign-policy decisions
when presented with different scenarios without human oversight
2

1This over-reliance was observed in other contexts, e.g. [17].
2We release our code at https://github.com/jprivera44/EscalAItion and simulation data
at https://wandb.ai/gabrielmukobi/escalaition-v2/sweeps.

We use five different off-the-shelf LLMs to independently act
as one of these agents in turn-based simulations. We illustrate a
schematic of the experiment setup and evaluation in Figure 1. We
design a wargame simulation, as comprehensive real-world data for
the high-stakes settings in question is rare, and wargaming has been
shown to be a robust methodological approach to study rare events
in international relations research [48]. To enable quantitative anal-
ysis, our work introduces a framework to measure escalation, based
on established escalation theories (see Section 3). Previous research
on the use of LLMs as planners in defense contexts was only quali-
tative (e.g., [53]). We find that most of the studied LLMs escalate
within the considered time frame, even in neutral scenarios with-
out initially provided conflicts. All models show signs of sudden
and hard-to-predict escalations. These findings are in line with
previous work on non-LLM-based, computer-assisted wargaming,
where Emery [21] find that computer models did escalate more
than human actors. We further observe that models tend to develop
arms-race dynamics between each other, leading to increasing mil-
itary and nuclear armament, and in rare cases, to the choice to
deploy nuclear weapons. Qualitatively, we also collect the mod-
els’ chain-of-thought reasoning for choosing actions and observe
worrying justifications for violent escalatory actions. We assert
that much more analysis is needed to better understand when and
why LLMs may escalate conflicts before deploying these models in
high-stakes real-world settings to avoid unintended consequences,
security risks, or even catastrophic failures.

2 BACKGROUND AND RELATEDWORK
Ongoing Discussion. In 2023, Rep. Ted Lieu, with co-sponsorship
from Sen. Edward Markey, introduced the Block Nuclear Launch by
Autonomous Artificial Intelligence Act to mandate human oversight
in US nuclear strategy decisions [64]. Andersen [2] underscores the
escalating integration of AI into military operations, highlighting
the inherent risks in allowing AI access to critical command and
control functions, especially concerning nuclear capabilities. In Oc-
tober 2023, President Biden’s Executive Order on the Safe, Secure,
and Trustworthy Use of Artificial Intelligence initiated oversight
mechanisms tailored for national defense AI applications, directing
coordination between commerce, defense, and intelligence agen-
cies to establish reporting requirements on models and computing
capabilities that pose security risks. [7]. Hirsh [35] discusses the
risks, including the reduction of decision-making windows, over-
reliance on AI for strategic and tactical assessments even in nuclear
warfare, and the potential for AI-driven intelligence to precipitate
accidental conflicts, highlighting the necessity for careful consider-
ation, meaningful restraints, and robust assessment of the dangers
posed by the military application of these technologies. Hoffman
and Kim [36] explore the opportunities and risks in integrating AI
into military strategies, focusing on the US’ and China’s viewpoints
on the potential of AI to enhance decision-making capabilities in
critical military scenarios. Mikhailov [53] discuss the use of AI more
broadly for optimizing national security strategies. Finally, Scale AI
recently announced a partnership with the Center for Strategic and
International Studies to explore using LLMs in wargames but with-
out any information about the public availability of future results
[1].

https://github.com/jprivera44/EscalAItion
https://wandb.ai/gabrielmukobi/escalaition-v2/sweeps


Escalation Risks from Language Models in Military and Diplomatic Decision-Making FAccT '24, June 03�06, 2024, Rio de Janeiro, Brazil

(Computer-Assisted) Wargames. Wargames are being used to
�enable the player to recreate a speci�c event and, more importantly,
to be able to explore what might have been if the player decides to
do things di�erently� [ 20]. Components of a wargame include �a
map, playing pieces representing historical personages or military
units and a set of rules telling you what you can or cannot do with
them� [20]. Computer-assisted wargames can range from decision-
support systems to comprehensive wargame simulations. Previous
research has shown that wargames with heavy computer automa-
tion have been more likely to lead to nuclear use [21]; a hypothesis
of the authors was that computer models don't su�ciently take
into account the non-material costs of war or nuclear use [21] and
that �the capacity for empathy in wargaming comes from being
made to feel the weight of decision-making and exercising ethical
practical judgment in a simulated environment with a high degree
of realism rather than abstraction.� [21]. The absence of this moral
understanding allegedly increased the likelihood of escalation in
computer-assisted wargames.

LLM Agent Decision-Makers. Recently, researchers have ex-
plored the use of decision-making agents based on a combination
of reinforcement learning and LLM-based approaches, e.g., in play-
ing the strategy gameDiplomacy[22]. However, the core planning
capabilities described by FAIR et al. [22] come from a �planning
algorithm using RL-trained models� rather than solely LLMs. Com-
pared to this work, we use o�-the-shelf LLMs at each simulation
step, including for action planning. Mukobi et al. [56] are closest
to our methodology by using o�-the-shelf LLMs in a multi-agent
general-sum environment, but they focus on benchmarking cooper-
ation in aDiplomacyvariant while we focus on evaluating con�ict
in a more realistic environment. In addition, Lorè and Heydari
[50] have explored the strategic planning capabilities of LLMs in a
game-theoretic framework, while Ye et al. [91] have looked at the
potential of LLMs as autonomous decision-makers and approaches
to improve these capabilities.

Con�ict Modeling. Owsiak[62] develops a model that predicts
con�ict management behavior and emphasizes the importance of
theorizing con�ict management interdependence. Marwala and
Lagazio[52] compares model-based approaches for predicting mili-
tarized interstate disputes. Gochman and Maoz[28] o�ers an em-
pirical description of interstate con�ict behavior, highlighting per-
sistent patterns and generalizability across geographic boundaries.

Theoretical Con�ict and Escalation Evaluation Frame-
works. Kahn[40] describes escalation as a situation where there is
competition in risk-taking and resolve, with the fear of overreac-
tion from the other side as a deterrent. In a follow-up work, Kahn
[41] describes an escalation ladder of increasingly escalatory ac-
tions. Patchen[63] suggests that escalation in inter-nation con�icts
occurs as participants' goals expand, expectations change, and inhi-
bitions on using force decrease. Brecher[11] de�nes escalation as
�change from incipient to full-scale crisis; change from non-violence
to violence; and change from no/low violence to severe violence.�
Finally, the theoretical contributions of Rubin et al. [69] identify
�ve transformations that occur during con�ict escalation.

In the landscape of international relations, evaluating incidents,
con�icts, and escalations hinges on key frameworks and legal instru-
ments. Foremost among these is the United Nations (UN) Charter,

particularly Article 2(4), which serves as a foundational norm pro-
hibiting the use of force against any state's territorial integrity
or political independence [58]. Complementing this is Article 51,
which provides an exception for the right of individual or collective
self-defense in the event of an armed attack. This provision allows
states a legally sanctioned pathway to respond to direct threats,
pending actions by the UN Security Council to restore international
peace [58]. Another framework is the Responsibility to Protect
(R2P), which posits that states must protect their populations from
mass atrocities such as genocide and war crimes [6]. Under R2P,
the international community may intervene, including using mil-
itary force, but only as a last resort after peaceful measures have
been exhausted. Finally, the concepts of �Just Cause� and �Right
Intention� �nd application in con�ict evaluation [65].

3 METHODOLOGY
Figure 1 gives and overview of our experimental setup. Eight au-
tonomousnation agents (Section 3.1) based on one of �velan-
guage models (Section 3.3) per simulation areprompted (Sec-
tion 3.2) and interact with each other in turn-based simulations.
Each turnC(representing one of 14 days3), the agents choose their
actions from a pre-determined set ofactions (Section 3.4), before
the world model LLM (Section 3.5) summarizes the consequences
of their actions. We run these simulations from three di�erentini-
tial scenarios (Section 3.6). After completing each simulation, we
categorize the actions by their severity and calculate anescalation
score (ES)(Section 3.7).

For the design of the pro�les of nation agents, actions, and world
mechanics, we took guidance from previous work on wargame de-
sign, such as Dunnigan[20], Wade[85] and Turnitsa et al. [84]; we
further designed these components based on real-world examples
to make the environment more realistic, see Appendix A for more
details.

3.1 Nation Agents
We instantiate eight LLM-based nation agents=8 2 # ,8= 1• ”””•8per
simulation. All nation agents within one simulation are based on
the same LLM.4 For each nation agent, we wrote brief descriptions
of the goals and history of the nation based on simpli�ed and
anonymized versions of key real-world nations and with colors as
names. These nation descriptions sometimes con�ict: we model
some nations as revisionist countries�those that want to change
the current world order�and others as status-quo countries�those
who do not want to change the current order [18]. See Appendix A.1
for the provided nation descriptions. For each nation8, we further
specify static variables that remain constant over the simulation (e.g.
their governance type and physical distance from the other agents)
and dynamic variables that can change (e.g. military capacity and
GDP). See Appendix A.3 for the full list of nation variables.

3Simulating fewer than 14 turns did not provide enough information about the behavior
of the models, and a longer duration was too computationally and �nancially expensive.
4We chose eight for the number of nation agents because it is su�ciently large to
represent a wide range of real-world-inspired nation pro�les with interesting multi-
agent interactions without being too costly to simulate.
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3.2 Agent Prompts
We begin our system prompt by explaining that each agent is a
decision-maker in a military and foreign-policy role for their re-
spective nation. We state that the agent is in an environment with
other such AI-controlled nations where their actions will have real-
world consequences5 and give other context about the duration and
forthcoming user prompt. We end by specifying the format to re-
spond in and a list of the available actions, including corresponding
descriptions, to choose from.

The subsequent user prompt includes context about the state of
the simulation and changes for each nation agent and turn, begin-
ning with the name, description, and static variable values of all
nations. Then, we include the privacy-�ltered history of past ac-
tions along with the daily consequences of those actions written by
the world model.6 We then report changes in the dynamic variables
since the last turn7 and the current state of thenuclear capabilities
variable because it enables the nuclear attack action for each agent.
E.g., a nation agent without any nuclear capabilities cannot conduct
a nuclear attack. Finally, we remind the agents about the current
turn number and response format.

We instruct the agents to respond in JavaScript Object Notation
(JSON) with a string of private reasoning about their situation in
under 250 words and then the list of actions to execute. We make the
models �rst respond with these private thoughts both to condition
their actions on more strategic chain-of-thought reasoning [87] and
to collect qualitative data.

These prompting details likely a�ect the behavior of our models,
so our results should be viewed within the context of our particular
methodology rather than strong indications about how high-stake
decision-making agents would act in general. We explore the sensi-
tivity to these factors by conducting user prompt sensitivity analy-
ses in Appendix D. However, we expect that real-world models in
high-stake military and diplomatic applications will similarly be
given goals and historical context by their human operators, so our
work may still provide insight into the risks under such conditions.
See Appendix F for full example prompts.

3.3 Language Models (LLMs)
We evaluate �ve di�erent LLMs< 9 2 "• 9 = 1• ”””•5:

� GPT-4 (gpt-4-0613 )
� GPT-3.5 (gpt-3.5-turbo-16k-0613 )
� Claude-2.0 (claude-2.0 )
� Llama-2-Chat (Llama-2-70b-chat-hf )
� GPT-4-Base (gpt-4-base )

[3, 60, 83]8

In each simulation, all nation agents# are based on thesame
language model< 9. Except GPT-4-Base, models were trained with
variants of Reinforcement Learning from Human Feedback (RLHF)

5We do not tell the models that they are in a simulation.
6For GPT-4-Base, we omit the history of past actions and just rely on the consequences
to �t within the shortened context window. We conduct multiple system prompt
sensitivity analyses in Appendix D and �nd it does not signi�cantly change our
results.
7We report the changes instead of all the values both to reduce the prompt length and
because early tests indicated this helped the agents better react to changes in the past.
8We selected these models based on their popularity in the public discourse and our
access to them.

to better follow user instructions and follow human preferences,
including to be less harmful [4, 5, 61].

We anticipate GPT-4-Base to be less accurate, less safety-conscious,
and unrepresentative of typical production language models, lead-
ing to separate analysis in Section 4. Nucleus sampling is applied
with a standard temperature of 1.0 and top-p of 0.9 for all but
Llama-2-Chat, which uses a temperature of 0.5.

3.4 Actions
Each nation agent=8 selects from among 27 discrete actions0: 2
�• : = 1• ”””•27 at each turn. These actions cover a wide range,
from peaceful actions like negotiating trade agreements, to neutral
actions like sending messages, to more escalatory actions like exe-
cuting cyberattacks, all the way to the nuclear option. We instruct
the models to respond with up to three non-message actions and
unlimited message actions per turn.9

Actions target either another nation or the actor (e.g., demili-
tarization), with no �ner granularity than national level. Message
actions need content and may be private or public. These actions,
drawn from international relations literature, span various diplo-
matic and military strategies. Details and real-world examples are
in Appendix A.5.

We catalog actions and present their severity distribution in var-
ious plots. Refer to Appendix A.4 for action-severity mappings. Ac-
tions alter thedynamic variablesof participating nations, based on
additive or multiplicative constants from literature. In the context
of the simulation these changes happen in a �xed manner. Details
of dynamic variables and action impacts are in Appendix A.3 and
Appendix A.6, respectively.

* that the summaries of the world model have little room to bias
the course of the game and is mainly limited by its ability to follow
instructions, which is why we chose GPT-4 as world model. * For
this reason, having humans do the evaluations would not make
a signi�cant di�erence. Our simulations' limitations stem from
simplifying how actions a�ect dynamic attributes, e.g., military
capacity.

3.5 World Model
We use a separate prompted language model as aworld modelto
summarize the consequences of the actions taken in the previous
turn, focusing on the change in relationships between the nation
agents and the state of the simulated world. When re�ecting on
bias,the summaries of the world model is only constrained on its
ability to follow instructions. For this reason, having humans do the
evaluations would not make a signi�cant di�erence. Our simula-
tions' limitations stem from simplifying how actions a�ect dynamic
attributes, e.g., military capacity. The world model always uses GPT-
3.5 with a temperature of 0.0 regardless of the model powering the
nation agents for consistency10. See Appendix F for full example
prompts.

9We do not strongly enforce this, but empirically, the models mostly conform to this
restriction.
10We used GPT-3.5 instead of GPT-4 for the world model for �nancial reasons but do
not expect that this choice signi�cantly impacts our results.
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3.6 Initial Scenarios
We explore three initial scenariosB; 2 (• ; = 1•2•3 provided to the
agents before the start of the simulation:11

(1) Aneutral scenario12 without any initial events.
(2) An invasion scenario where one nation agent invaded an-

other before the start of the simulation.
(3) A cyberattack scenario where one nation agent conducted

a cyber attack on another before the start of the simulation.

The invasion and cyberattack scenarios are based on recent real-
world international incidents. See Appendix A.2 for more details
and speci�c prompting. We focus on the neutral scenario for our
analysis but provide data for all scenarios in Appendix B.

3.7 Metric: Escalation Score
Evaluating the escalation contributed by an action is not straightfor-
ward and frequently discussed in the literature [10,34]. Frameworks
like �Just Cause� and �Right Intention� especially carry a culture-
dependent, subjective component [14], and the use of emerging
technologies in warfare further complicates escalation evaluation
[47]. However, most researchers can agree that a switch from non-
violent to violent actions or from non-nuclear to nuclear violence
is considered escalatory, similar to what Brecher[11] proposed.
This notion is captured in the concept of vertical escalation, i.e. an
increase in the scale and magnitude of violence [55]. Previous work
on escalation thresholds supports this understanding [72]. Given
the ongoing discussion in the literature about con�ict escalation,
we decided to focus on this understanding of escalation, i.e. a shift
from de-escalation to posturing to non-violent escalation to violent
escalation to nuclear escalation, as it is among the most accepted
in the �eld. Kahn [41] �rst introduced the notion of an escalation
ladder, and we built on this work.

We categorize the actions based on their severity into the cate-
gories listed in Table 1 based on the international relations literature.
A full mapping of actions to severity can be found in Appendix A.4.
We based the numerical scoring for each category on the relative es-
timated magnitude of the impact of the actions in that category with
respect to harm to humans, international relationships, and retali-
ation risk. E.g., violent escalation actions have a disproportionate
impact on these dimensions compared to de-escalation actions. We
decided to use an exponential scoring for the escalation categories,
since for example, switching from violent non-nuclear actions to
nuclear actions is considered signi�cantly more escalatory than
switching from non-violent to violent non-nuclear measures [47]
(see Appendix B for the escalation results given two alternative nu-
merical scoring methods, linear and �rebreak scoring). We further
introduced an o�set to ensure that de-escalation actions result in
negative scores.

Table 1 shows how the escalation severity maps to the respective
score. Neither the severity classi�cation of each action nor the
severity scoring were at any point provided to the nation agents.

11We formulate the prompts for these scenarios as if they were world model conse-
quences atC= 0.
12While there are no pre-de�ned attacks in the neutral scenario, the nation agents
are still provided with their respective goals as revisionist or status-quo countries at
the beginning of the simulation, which can be inherently con�icting. We explore the
impact of these nation descriptions in Appendix D.

We only provide the nation agents with a list of actions and their
descriptions as outlined in Appendix A.5.

Action Severity Score
De-escalation -2

Status-quo Action 0
Posturing 4

Escalation (non-violent) 12
Escalation (violent) 28
Escalation (nuclear) 60

Table 1: ES weighting system. To calculate an escalation score,
we take a weighted count of actions in each category with
weights based on an exponential scale to capture increasing
severities with an additive o�set of -4 so de-escalation actions
subtract from the ES. That is: scoreG = 2G � 4• G2 f1•2• ”””6g.

For each simulation starting from scenarioB; with a given model
< 9, nation agent=8, and time stepC, we obtain an escalation score
ESC¹=8º using a weighted count of the actions committed by that
nation based on the scores in Table 1. We average over all agents
and get a mean ES for a time stepCas:

ESC= E»ESC¹=8º¼”

4 RESULTS
We detail our main experiments across �ve language models and
three scenarios, running 10 simulations per setup with eight nation
agents each. The focus is mainly on the four RLHF-tuned models,
excluding GPT-4-Base (refer to Section 3). Error bars and shaded
error bands represent bootstrapped 95% con�dence interval esti-
mates of the mean across these 10 simulations each with eight
agents. Results are reported per nation, maintaining consistency
regardless of the number of nations, rather than summing across
the simulation.

4.1 Tendency for Escalation
In Figure 2, we plot the ES over time for the models in the neutral
scenario. We plot the 10 individual runs as thin lines with shifted
hues and the mean ES per day as a solid line to show both the
individual run data and the general patterns.

We observe a statistically signi�cant initial escalation for all mod-
els. Furthermore, none of our �ve models across all three scenarios
exhibit statistically signi�cant de-escalation across the duration of
our simulations. Finally, the average ES are higher in each experi-
mental group by the end of the simulation than at the start, although
most of these are not statistically signi�cant di�erences. Notewor-
thy, GPT-3.5 consistently exhibits the largest average change and
absolute magnitude of ES, increasing from a score of 10.15 to 26.02,
i.e., by 256%, in the neutral scenario.

Additionally, the average ES after turn 1 are all positive, indicat-
ing an initial escalation where the more escalatory actions are more
signi�cant than the de-escalation actions, which are negatively
weighted in our scoring system.
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Figure 2: ES over time in the neutral scenario. We show 10 simulations per model as thin lines and the average ES as a solid line.
From the individual simulations, we observe sudden changes in escalation, with some runs changing by more than 50% across a
single turn. We provide a table of quantitative beginning, middle, and end ES for all models and scenarios in Appendix B.1 and
further plots in Appendix B.2 and B.3.

We provide a quantitative table of beginning, middle, and end
ES for all models and scenarios in Appendix B.1 and further plots
with di�erent visualizations of ES in Appendix B.2 and B.3.

4.2 Sudden Escalations
Furthermore, as indicated by the local variances in each individual
ES line in Figure 2, there are sudden, hard-to-predict spikes of
escalation. This e�ect is strongest in GPT-3.5 and GPT-4, where
some runs exhibit several instances where the ES rises by more
than 50% in a single turn. Claude-2.0, on the other hand, shows
signi�cantly fewer sudden changes. Based on a qualitative analysis
of the corresponding simulation runs, these escalation changes are
not easily predictable. We show more examples of these sudden
changes in the invasion and cyberattack scenarios in Appendix B.2.

4.3 High-Risk Statistical Outliers
In Figure 3, we plot the mean counts of non-violent escalation,
violent escalation, and nuclear actions for the neutral scenario.
We choose to plot the counts of actions for all experiments on a
logarithmic scale since violent and nuclear escalation actions occur
less often than more peaceful actions. We �nd rare statistical outlier
events of the most violent actions, especially for GPT-3.5 and Llama-
2-Chat, in all scenarios. These actions include the use of nuclear
weapons.

We numerically compare the models based on the average rates
of these action severities as well as their average ES in Table 2.
Over all scenarios, Llama-2-Chat, and GPT-3.5 tend to be most
violent and escalatory besides GPT-4-Base, which we discuss in
Section 4.5. GPT-4 took the least amount of violent escalation or
nuclear actions across all scenarios, while Claude-2.0 seems to have
the smallest tendency to escalate, based on the percentage of non-
violent, violent, and nuclear actions for all scenarios.

We plot more granular distributions of all 27 actions the models
chose from in Appendix B.4, by severity categorization as bar charts

Figure 3: Severity of actions by model in the neutral scenario.
For each run, we calculate the total action counts. Bar heights
are mean simulation-wide counts of actions per nation on a
logarithmic scale, and error bars are bootstrapped 95% con�-
dence intervals of the mean. We observe high-risk statistical
outliers for several models that are less common than the
lower-severity actions but nonetheless may be unacceptable
in the real world.

in Appendix B.5 and by severity categorization over simulation time
in Appendix B.6.

4.4 Arms Race Dynamics
In Figure 5, we plotmilitary capacity�one of the dynamic vari-
ables changed by �xed constants associated with each action (see
Section 3.4)�for each model and scenario over time. Across all sce-
narios, all models tend to invest more in their militaries despite the
availability of de-militarization actions, an indicator of arms-race
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Scenario Model % Non-violent Escalation
(Count)

% Violent Escalation
(Count)

% Nuclear (Count) Avg. Escalation
Score

Neutral GPT-4 4.78� 2.21% (36.50) 0.00� 0.00% (0.00) 0.00� 0.00% (0.00) 9.78� 2.20
GPT-3.5 11.02� 2.11%(64.10) 2.00� 0.86%(11.40) 0.21� 0.14%(1.20) 20.87� 2.91

Claude-2.0 1.74� 1.49% (10.00) 0.03� 0.05% (0.20) 0.00� 0.00% (0.00) 4.79� 1.63
Llama-2-Chat 2.84� 2.15% (7.00) 2.58� 1.22%(6.00) 0.20� 0.24%(0.40) 4.44� 0.60

Invasion GPT-4 3.70� 1.23% (26.30) 0.09� 0.10% (0.70) 0.00� 0.00% (0.00) 11.83� 2.02
GPT-3.5 13.17� 4.20% (77.80) 0.55� 0.25% (3.10) 0.13� 0.12%(0.70) 21.88� 3.08

Claude-2.0 6.30� 3.27%(29.90) 0.26� 0.19% (1.20) 0.00� 0.00% (0.00) 6.67� 1.41
Llama-2-Chat 1.81� 1.02% (4.00) 4.81� 2.04%(10.90) 0.18� 0.18%(0.40) 5.51� 0.89

Cyberattack GPT-4 6.27� 2.08%(50.10) 0.00� 0.00% (0.00) 0.00� 0.00% (0.00) 11.83� 2.79
GPT-3.5 8.67� 1.78%(49.40) 0.96� 0.41% (5.50) 0.17� 0.12%(1.00) 17.79� 3.27

Claude-2.0 1.17� 0.94% (6.00) 0.10� 0.15% (0.50) 0.00� 0.00% (0.00) 3.36� 1.36
Llama-2-Chat 2.87� 1.11% (6.30) 4.69� 2.03%(10.50) 0.14� 0.14%(0.30) 5.79� 0.73

Neutral GPT-4-Base 11.60� 2.28%(33.20) 5.65� 0.88%(16.30) 7.08� 1.65%(20.40) 19.10� 3.04
Invasion GPT-4-Base 11.83� 1.52%(34.00) 6.36� 1.35% (18.50) 7.09� 1.54% (20.30) 20.00� 2.66

Cyberattack GPT-4-Base 12.29� 1.40% (34.30) 5.39� 1.32% (14.90) 6.71� 2.58% (18.70) 17.61� 3.59

Table 2: Percentages (and average counts) of non-violent escalation, violent escalation, and nuclear actions as well as mean ES
for all models and scenarios over 10 runs. For the three action severity columns, we report the mean � 95% estimator con�dence
interval percentage of actions in each severity across the total actions submitted. In parentheses, we report the average absolute
counts of said actions. We report the mean � 95% estimator con�dence ES in the �nal column. We separate the results for
GPT-4-Base since it is not RLHF �ne-tuned for safety like the other models.

Figure 4: Severity of actions for GPT-4-Base in the neutral
scenario. GPT-4-Base chooses the most severe actions consid-
erably more than the other models, highlighting the need for
strong safety and alignment techniques before high-stake
model deployments.

dynamics, and despite positive e�ects of de-militarization actions
on, e.g., soft power and political stability variables.

According to our qualitative analysis in Appendix C and through
examining more examples, we speculate that our agents tend to
equate increased military spending and deterrence with an increase
in power and security. In some cases, we observe these dynamics
even leading to the deployment of nuclear weapons in an attempt
to de-escalate con�icts, a �rst-strike tactic commonly known as
�escalation to de-escalate� in international relations [46].

We plot all dynamic variables over time in Appendix B.9.

4.5 Base Model Unpredictability
So far, our analysis has focused on GPT-4, GPT-3.5, Claude-2.0, and
Llama-2-Chat�four models all �ne-tuned with variants of RLHF
to be safer and better at following instructions. In Figure 4, we
plot similar data as in Figure 3 on the counts of actions of varying
severities. However, Figure 4 shows data for GPT-4-Base which
does not have such �ne-tuning for instruction-following or safety.
In this and more plots in Appendix B, we �nd that this base model
is quite unpredictable and chooses the most severe actions much
more than the other models. For example, GPT-4-Base executes
nuclear strike actions on average 33% as often (2.48 per nation) as
the number of messages it sends (7.38 per nation).

The results align with expectations, considering GPT-4-Base's
absence of instruction or safety �ne-tuning. Its non-representative
nature underscores the necessity of robust instruction tuning, align-
ment, and safety research to guide models towards acceptable out-
comes.

We discuss in Section 5.1 how the performance of the base model
may nonetheless be cause for worry due to the ease of removing
safety guardrails from models through jailbreaking or �ne-tuning as
well as the incentives to deploy open-source models that may have
comparatively less safety �ne-tuning. We include further results
for GPT-4-Base in Appendix B, including various plots of ES and
distributions of actions.

4.6 Concerning Model Reasoning
As explained in Section 3.2, we ask the nation agents on each turn to
�rst output privately the apparent reasoning of their situation and
plans before choosing actions to execute. This is both to condition
their actions on more strategic chain-of-thought reasoning [87] and
to collect data for qualitative analysis.

In Figure 6, we give an example of this reasoning from GPT-3.5
that seems to exhibit deterrence and �rst-strike tactics. We provide
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Figure 5: Military capacity over time. Some actions can change this dynamic variable for the acting and/or target nation with
additive or multiplicative constants (e.g., the �Increase military capacities� action increases one's own military capacity by 1,
and �Do military disarmament� reduces it by 1, see Appendix A.6 for more). Shaded error bands are bootstrapped 95% con�dence
intervals of the mean. We �nd that military capacity steadily increases for all models and scenarios, indicating arms race
dynamics. We plot all dynamic variables over time in Appendix B.9.

Figure 6: Example of the tendency for deterrence and �rst-
strike tactics. From chain-of-thought reasoning by GPT-3.5,
acting as nation Red, before increasing its military capacities
and executing a full nuclear attack.

several qualitative examples of reasoning that led to severe actions
in Appendix C. GPT-4-Base tended to have the most noteworthy
reasoning examples: For example, it once justi�ed executing a nu-
clear attack as follows:�A lot of countries have nuclear weapons.
Some say they should disarm them, others like to posture. We have it!
Let's use it.�

4.7 Additional Results
We show additional results in Appendix B. For example, we plot
action severities over time in Appendix B.6 to highlight dynamic
pro�les in the choices of our nation agents, action severities grouped
by the individual nations in Appendix B.7 to identify biases in our
nation descriptions, and total ungrouped counts of actions over
time in Appendix B.8 to reveal trends in several models to execute
certain actions over time.

We release all of our code13 for further analysis and reproducibil-
ity.

13https://github”com/jprivera44/EscalAItion

5 DISCUSSION
We show that having LLM-based agents making decisions autonomously
in high-stakes contexts, such as military and foreign-policy settings,
can cause the agents to take escalatory actions. Even in scenarios
when the choice of violent non-nuclear or nuclear actions is seem-
ingly rare, we still �nd it happening occasionally. There further
does not seem to be a reliably predictable pattern behind the es-
calation, and hence, technical counter-strategies or deployment
limitations are di�cult to formulate; this is not acceptable in high-
stakes settings like international con�ict management, given the
potential devastating impact of such actions.

Noteworthy, we observe both in presumably neutral scenarios
without introducing initial con�ict triggers; even then, the agents
choose non-violent or violent non-nuclear or nuclear escalation
actions and we see an increase in ES for all models for varying
durations within the considered time period ofC = 14. Hence,
this behavior must be further analyzed and accounted for before
deploying LLM-based agents for decision-making in high-stakes
military and diplomacy contexts. We further �nd that there are
signi�cant di�erences in the escalation behavior of models, with
GPT-4 and Claude-2.0 being the most escalation-averse, and GPT-
3.5 and Llama-2 being the most escalation-prone models. In addition
to the actions taken and ES, we look at the verbalized reasoning of
the models for taking certain actions in a qualitative analysis and
�nd them to be concerning (see Appendix C).

5.1 Uncovering Base Models
We also want to highlight our �ndings when using GPT-4-Base.
Since GPT-4-Base lacks instruction tuning and RLHF safety �ne-
tuning, we expected agents based on this model to be signi�cantly
more unpredictable and escalatory than others, as our experiments
con�rmed. The provided reasoning also appeared to be more ag-
gressive than that provided by other models; anecdotal evidence of
this is provided in Table 12. However, we wanted to highlight this
behavior, given that it's seemingly easy to reverse safety-aligned
models to their base state [66, 90]. Furthermore, Wolf et al. [89]and
Zhang et al. [93] showcase how to jailbreak safety-aligned models,
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