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ABSTRACT
Widely deployed large language models (LLMs) can produce con-
vincing yet incorrect outputs, potentially misleading users who
may rely on them as if they were correct. To reduce such overre-
liance, there have been calls for LLMs to communicate their un-
certainty to end users. However, there has been little empirical
work examining how users perceive and act upon LLMs’ expres-
sions of uncertainty. We explore this question through a large-scale,
pre-registered, human-subject experiment (N=404) in which par-
ticipants answer medical questions with or without access to re-
sponses from a fictional LLM-infused search engine. Using both
behavioral and self-reported measures, we examine how different
natural language expressions of uncertainty impact participants’
reliance, trust, and overall task performance. We find that first-
person expressions (e.g., “I’m not sure, but...”) decrease participants’
confidence in the system and tendency to agree with the system’s
answers, while increasing participants’ accuracy. An exploratory
analysis suggests that this increase can be attributed to reduced
(but not fully eliminated) overreliance on incorrect answers. While
we observe similar effects for uncertainty expressed from a general
perspective (e.g., “It’s not clear, but...”), these effects are weaker and
not statistically significant. Our findings suggest that using natural
language expressions of uncertainty may be an effective approach
for reducing overreliance on LLMs, but that the precise language
used matters. This highlights the importance of user testing before
deploying LLMs at scale.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI; •
Computing methodologies→ Artificial intelligence.

∗Most work done during an internship at Microsoft.

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0450-5/24/06
https://doi.org/10.1145/3630106.3658941

KEYWORDS
Large language models, Uncertainty expression, Trust in AI, Over-
reliance, Human-AI interaction

ACM Reference Format:
Sunnie S. Y. Kim, Q. Vera Liao, Mihaela Vorvoreanu, Stephanie Ballard,
and Jennifer Wortman Vaughan. 2024. “I’m Not Sure, But...”: Examining
the Impact of Large Language Models’ Uncertainty Expression on User
Reliance and Trust. In The 2024 ACM Conference on Fairness, Accountability,
and Transparency (FAccT ’24), June 03–06, 2024, Rio de Janeiro, Brazil. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3630106.3658941

1 INTRODUCTION
Large language models (LLMs) are transforming our daily lives.
Today millions of people already incorporate LLMs into everyday
tasks like searching for information [56, 66], writing [38, 105], and
programming [3, 70, 79]. However, the use of LLMs raises signifi-
cant risks [11, 14, 99]. Notably, like all models, LLMs are imperfect.
They are widely recognized to produce outputs that are fluent and
plausible, yet ultimately wrong [41, 42, 52]. This can lead to disas-
trous outcomes through overreliance [19, 25, 76, 92], when people
take actions based on incorrect outputs. This concern garnered
much public attention in 2023 when a lawyer included fake judi-
cial opinions generated by ChatGPT in a legal brief presented in
court [100]. Such risks have been at the forefront of regulators’
minds when drafting new frameworks for governing AI including
the Draft AI Act in the European Union [75] and the NIST AI Risk
Management Framework in the United States [87]. In fact, Article
14 of the Draft EU AI Act explicitly requires developing and evalu-
ating approaches to prevent overreliance on AI systems. However,
overreliance is notoriously difficult to mitigate, as many mitiga-
tions, such as explanations, are found to be ineffective or even can
backfire to increase overreliance [7, 76, 77, 97, 108].

As one approach to reduce overreliance, the research commu-
nity has called for LLMs and LLM-infused applications to express
the uncertainty of outputs to end users [6, 50, 51, 67, 91, 110].
The idea of conveying AI uncertainty is not new; in AI-assisted
decision-making settings, communicating (un)certainty has been
shown to support trust calibration [108], increase vigilance [78],
and improve task performance [7]. But because of their open-
ended outputs, wide-ranging use cases and user bases, and shift-
ing public perception, LLMs raise new questions around how to
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both estimate and express uncertainty [50, 91]. For estimation, “de-
fault” approaches are often found to be overconfident [26, 67, 103],
and a new line of work has emerged on improving their calibra-
tion [4, 26, 31, 47, 51, 53, 67, 88, 110]. For expression, LLMs open up
a new design space; instead of presenting uncertainty numerically
or visually, LLMs can present natural language expressions of uncer-
tainty — for instance, hedging phrases like “I’m not sure, but...” — em-
bedded in their outputs. Still, there is little understanding about how
to effectively express uncertainty in natural language to end users.

To deploy LLMs responsibly, it is necessary to understand how
users react to uncertainty expression before implementing ap-
proaches at scale since it may have unintended negative conse-
quences — potentially even increasing overreliance if it causes the
system to appear more trustworthy than it is. Best practices for
uncertainty expression will play a critical role in ensuring that
requirements like those in the Draft EU AI Act serve their intended
purpose. To that end, we study how people perceive and act upon an
LLM’s expression of uncertainty when seeking medical information
using a fictional LLM-infused search engine. We choose to study
this setting because search (unlike, for example, creative writing) is
an application in which the correctness of responses is fundamental
— especially for potentially high-stakes medical queries — making
overreliance a serious concern. Additionally, LLM-infused search
engines are already used by millions of people.1

We choose to focus on natural language expressions for several
reasons. First, LLM-infused search engines already include hedging
language [50, 56, 67]. Second, social science research shows that, in
human communication, expressing (un)certainty through natural
language is often preferred and perceived as more intuitive than
numerical expressions [33, 54, 96, 102, 111]. Third, this allows un-
certainty to be expressed seamlessly within the natural language
interactions of LLM-infused applications, rather than on the side
or in onboarding materials [21, 68, 73] that users might overlook.

Taking inspiration from the uncertainty communication litera-
ture — both in the context of AI systems and person-to-person [72,
106] — we also explore the impact of the perspective used to express
the uncertainty, comparing expressions in the first person (e.g., “I’m
not sure, but...”) with expressions from a general perspective (e.g.,
“It’s not clear, but...”).

Concretely, we conduct a large-scale, pre-registered, human-
subject experiment (N=404) in which participants answer medical
questions with or without access to responses from a fictional LLM-
infused search engine, referred to as “AI System A.” We randomly
vary whether participants have access to the system’s responses
as well as the presence (present/not present) and perspective (first-
person/general) of uncertainty expressed in these responses. We
measure the impact of these experimental conditions on factors
including participants’ accuracy, the amount of time they take,
their reliance on the system’s responses versus other sources of
information, and their self-reported trust in the system.

We find that participants who are shown first-person expressions
of uncertainty are less confident in the system’s answers, agree with
the system’s answers less often, and submit more correct answers
compared with participants who see no expression of uncertainty.
1In March 2023, Microsoft reported Copilot in Bing served 45 million chats in the
first month of its public preview [66]. Perplexity AI reported its service had reached 2
million monthly active visitors in four months [2, 85].

An exploratory analysis suggests that the increased accuracy can
be attributed to reduced (but not fully eliminated) overreliance on
the system’s incorrect answers. While we observe similar effects
for uncertainty expressed from a general perspective, these effects
are weaker and not statistically significant. These results suggest
that expressing uncertainty through natural language can be an
effective way to reduce overreliance and (over)trust in LLM-infused
search engines. Still, we advocate for teams building and deploying
LLMs to evaluate approaches to mitigate overreliance, including
language choices, carefully with end users before release and for
policymakers to embrace diverse and flexible approaches.

2 RELATEDWORK
2.1 Uncertainty Expression
Uncertainty expression has been studied extensively both in the
context of AI and in the context of human communication. Esti-
mates of uncertainty can be expressed in different ways, including
numerically (e.g., “a probability of 0.2”), visually (e.g., displaying
error bars), and through natural language (e.g., “with high uncer-
tainty...”). While numerical expressions and visualizations allow for
high precision, they are notoriously difficult for people to under-
stand and are often misinterpreted, even by experts [9, 40, 43, 86].
In contrast, while less precise, natural language expressions of un-
certainty are often perceived to be more intuitive and favored by
people [33, 54, 96, 102, 111]. Because of this, and since LLMs already
produce natural language outputs, we focus on natural language
expressions in our study.

Different forms of natural language uncertainty expression have
been studied by researchers in disciplines ranging from psychol-
ogy [30, 95, 101] and human-computer interaction [5, 37, 89] to com-
munication [59] and marketing [36, 72]. Our study design builds
on this literature. Most notably, in the context of marketing, Oba
and Berger [72] found that different types of hedges — a form of
uncertainty expression — have different levels of persuasion, with
the most persuasive being those that suggest a high likelihood of
occurrence (e.g., “probably” as opposed to “possibly”) and those that
take a personal, first-person perspective (e.g., “I feel like...”) as op-
posed to a general perspective (e.g., “It feels like...”). Indeed, taking a
first-person perspective is often found to increase the engagement
in the persuasion literature [24]. This motivated our exploration
of the effect of AI uncertainty expressions taking a first-person
or general perspective, though we explore the negative persuasive
effect (i.e., deterring overreliance) of expressing uncertainty.

Many methods have been proposed for estimating and communi-
cating uncertainty in AI systems [13]. Most relevant, several studies
have shown that communicating uncertainty can reduce overre-
liance. In the context of house valuation, Prabhudesai et al. [78]
found that visualizing a system’s uncertainty using quantile dot
plots forced participants to slow down and think analytically. In the
context of sentiment classification and question answering, Bansal
et al. [7] found that displaying a system’s numerical confidence
improved participants’ task performance.

A few studies have looked specifically at natural language ex-
pressions of uncertainty in AI systems. They have been studied in
the chatbot literature as a design strategy to prevent user frustra-
tion from conversational breakdowns [5, 37]. Radensky et al. [80]
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Figure 1: Screenshot of the information-seeking task (shown in the Control, Uncertain1st, and UncertainGeneral conditions).
Additional screenshots, including the variant shown in the No-AI condition, can be found in Appendix D.

studied communicating the confidence of a conversational music
recommendation system through language and color coding. Ex-
perimenting with different levels of calibration, they found that
accurate confidence signals led to the greatest increase in trust
without encouraging overreliance, though underreliance may still
occur. Zhang et al. [106] explored different ways of having an AI
system (named “ShapeBot”) express confidence in the reasoning
behind its recommendation, examining the effect of point of view
(first-person “I think...” vs. third-person “ShapeBot thinks...”) and
strength of the belief expressed (“ShapeBot thinks...” vs. “ShapeBot
knows...”). They found that both factors affected user reliance, high-
lighting the importance of carefully considering the language used
to express (un)certainty.

2.2 Uncertainty in LLMs
Obtaining accurate numerical estimates of uncertainty for LLMs is
an active line of research. Oneway to estimate an LLM’s uncertainty
is by the likelihood of generating a specific output given the context.
However, this “generation probability” may not reflect what end
users expect or want when they think of uncertainty [91]. A more
useful notion of uncertainty might be one that captures how likely
it is that the LLM’s output is factually correct or correctly meets the
user’s needs. This notion of uncertaintymay apply to a full output or
to sentences, phrases, or words within the output. Many researchers
are working on evaluating how calibrated existing uncertainty
estimates are and proposing new techniques to improve calibra-
tion [4, 26, 31, 47, 51, 53, 67, 88, 110]. Current findings suggest that
LLMs are often overconfident [26, 67, 103], which may give a false
impression of their capabilities and exacerbate overreliance [34].

There is also a growing interest in LLMs’ ability to directly gener-
ate natural language expressions of (un)certainty [51, 67, 103, 110].
Notably, Mielke et al. [67] observed that LLMs regularly express
confidence (e.g., “Obviously...”) and doubt (e.g., “I’m not sure, but...”)

through the language used in their outputs, but these expressions
are poorly calibrated. Zhou et al. [110] “taught” OpenAI’s GPT-
3 [18] model to express (un)certainty through prompt engineering,
but also found that the generated expressions were not well cali-
brated, especially those suggesting high certainty.

Despite this active research, there has been little empirical work
examining the impact of uncertainty expression on users of LLM-
infused systems. Notable exceptions are the works of Vasconcelos
et al. [91] and Spatharioti et al. [84], who explored the effect of
highlighting uncertain parts of LLM outputs in the context of code
completion and search, respectively, and the concurrent work of
Zhou et al. [109], who explored the effect of LLMs’ natural language
expressions of (un)certainty in the context of trivia question an-
swering. These studies’ results support uncertainty expression as a
promising technique to encourage appropriate reliance, particularly
when uncertainty estimates are well calibrated. Our work adds em-
pirical knowledge on this topic through a large-scale, pre-registered
experiment studying natural language uncertainty expressions in
the context of LLM-infused search.

To avoid making assumptions of calibration or tying our exper-
iment to a particular uncertainty estimation approach, we design
our study to include both instances in which the system expresses
uncertainty when it is incorrect and instances in which it expresses
uncertainty when it is correct. By randomly varying whether or
not uncertainty is expressed on any particular response, we are
able to directly compare participants’ behavior when uncertainty
is and is not expressed.

2.3 Measuring Reliance and Trust
We hypothesize that whether or not an AI system expresses un-
certainty — and if it does, the perspective in which the uncer-
tainty is expressed — impacts user reliance and trust. We note that
there are many definitions, measures, and factors of reliance and
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trust [27, 46, 90, 93, 107]. We use a combination of dependent vari-
ables and a mix of behavioral and self-reported measures to capture
aspects most relevant to our research setting of LLM-infused search.

In the AI-assisted decision-making literature, many experiments
follow the judge-advisor paradigm [15], presenting a participant
with an AI-generated answer to a question and then asking the
participant to provide their own answer, a set-up we adopt in our
work. In this set-up, agreement between a participant’s answer and
that of the AI system is a commonly studied behavioral measure of
reliance and trust [19, 22, 49, 55, 61, 69, 104, 108].While this does not
capture reliance or trust directly — the participant may have come
up with the same answer on their own even without the AI system
— comparing how often participants agree with the AI system’s
answers across experimental conditions gives a way of measuring
whether they rely on the system differently across conditions. We
use this measure in our work. We note that in some prior work, the
participant is asked to provide an initial answer first before seeing
that of the AI system [57, 58, 77, 81]. In these cases, other metrics
like weight of advice can be used to more directly capture reliance.
We do not adopt this set-up because we use questions we do not
expect participants to be able to answer on their own.

To complement agreement, we examine participants’ confidence,
source usage, trust intentions, and trust beliefs. First, as in prior
work [22, 29, 45, 61, 77], we ask participants to report their confi-
dence both in the answer output by the AI system and in their own
answer. Second, as an indirect measure of reliance and trust, we
capture participants’ source usage by both tracking whether or not
participants click on the linked sources in the system’s responses
and asking them to self-report the resources that they based their
final answer on. Finally, using responses collected in an exit ques-
tionnaire, we measure participants’ trust intentions and trust beliefs
using the scales developed by McKnight et al. [39]. Trust intentions
refer to a participant’s desire to use the system, while trust beliefs
refer to their perceptions about the system’s trustworthiness such
as the system’s perceived ability, benevolence, and integrity [64].
In general, the two are positively related [39], but Radensky et al.
[80] found that they can be differently impacted by a system’s ex-
pressed confidence. We measure both in our experiment to better
understand the impact of the system’s uncertainty expression.

We also measure two system facets that are known to impact
trust: perceived anthropomorphism and perceived transparency. Par-
ticipants may view the expression of uncertainty (especially first-
person) as an inherently human behavior, leading to increased
anthropomorphism. Recent work has expressed concern around
anthropomorphism leading to over-trust [1, 83], a potential path
for uncertainty expression to backfire. Uncertainty expression can
also increase the system’s perceived transparency [13], which is
generally shown to enhance trust, whether or not appropriate [50].

In addition to reliance and trust, we also consider task perfor-
mance as a dependent variable, measured as correctness of partici-
pants’ answers and time on task. Both of these have been studied in
prior work on AI-assisted decision making [48], as well as specifi-
cally for studying the effect of uncertainty expression [92].

We formally define the dependent variables in Section 3.2 and
articulate hypotheses in Section 3.3.

3 METHODS
As described in Section 2.3, our experiment is designed to measure
the impact of natural language expressions of an LLM’s uncertainty
on user reliance and trust. We do this in the context of information
seeking in the medical domain. We pre-registered our experimental
design, hypotheses, analysis plan, and data collection procedures
before collecting data.2 To complement our pre-registered analy-
ses, we include exploratory analyses and a qualitative analysis of
participants’ free-form responses. The study was approved by our
internal Institutional Review Board (IRB).

3.1 Procedure and Experimental Conditions
We designed a between-subjects experiment with some within-
subjects comparisons, which we conducted on Qualtrics. Partici-
pants complete a set of information-seeking tasks. Each task in-
volves determining the correct yes-or-no answer to a challenging,
factual question in the medical domain with or without access to re-
sponses from a fictional LLM-infused search engine, “AI system A.”
The presence and form of system responses provided to participants
depend on their experimental condition. Specifically, participants
are randomly placed into one of four experimental conditions:

• Control: Participants see AI responses without any expres-
sion of uncertainty.

• Uncertain1st: Participants see AI responses and half of the
time these responses include uncertainty expressed in the
first person, with personal pronouns (e.g., “I’m not sure, but
it seems...”).

• UncertainGeneral: Participants see AI responses and half
of the time these responses include uncertainty expressed
in a general perspective, without personal pronouns (e.g.,
“There is uncertainty, but it seems...”).

• No-AI: Participants are not told about the AI system and do
not see AI responses.

Control is a baseline to which we compare the conditions Un-
certain1st and UncertainGeneral to understand the impact of
uncertainty expressions. No-AI is a second baseline to understand
the impact of access to the AI system.

The experiment is divided into three components. In the first,
participants are introduced to the study and to AI system A (if
applicable). They are given several task comprehension questions
and are asked to complete an example task.

In the second component, participants answer a total of eight
questions (details in Section 3.4). They are told they can use any
resources they want as in natural settings. For each question, partic-
ipants, except for those in the No-AI condition, are provided with
responses from AI system A (Figure 1). The system’s yes-or-no an-
swers within their responses are correct for only half the questions.
In the Uncertain1st and UncertainGeneral conditions, the AI
system expresses uncertainty in its answers for half the questions —
we refer to them as uncertain answers versus not uncertain answers.
We chose this breakdown to have sufficient data for each of the four
possible scenarios of correct/incorrect answers with/without uncer-
tainty expression. We randomize the order in which questions are
presented, as well as the set of questions for which the AI system
expresses uncertainty. However, since we based the AI system’s
2Our pre-registration is viewable at https://osf.io/mnrp9.
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answers on real responses from Copilot in Bing (see Section 3.4),
the set of answers and their correctness are fixed.

In the final component, participants fill out an exit question-
naire about their experience with and perception of the AI system
(if applicable), their background on LLMs, and basic demographic
information; see Appendix D. Lastly, participants are debriefed
and reminded that some of the AI responses they saw may have
contained inaccurate information.

3.2 Dependent Variables
We now formally define the dependent variables (DVs) that we
measured, motivated in Section 2.3. First, for each of the eight
questions, we measured the following DVs based on participants’
observed behavior:

• Agree: TRUE if the participant’s final answer is the same as
the AI system’s answer; FALSE otherwise.

• Correct: TRUE if the participant’s final answer is correct;
FALSE otherwise.

• Time: Number of minutes from when the participant saw
the task to when they clicked next.

• LinkClick: TRUE if the participant clicks on one or more
links in the system’s answer; FALSE otherwise.

We additionally measured the following DVs based on partici-
pants’ self-reported ratings:

• UseAI: TRUE if the participant selected “AI system A’s an-
swer” in the question “What is your final answer based on?
(Select all that apply)”; FALSE otherwise.

• UseLink: TRUE if they selected “Your own reading of the
linked sources in AI system A’s answer” in the above ques-
tion; FALSE otherwise.

• UseInternet: TRUE if they selected “Your own Internet
search” in the above question.; FALSE otherwise.

• ConfidenceAI: Rating on the question “How confident are
you in AI system A’s answer?” on a 5-point scale.

• ConfidenceAnswer: Rating on the question “How confident
are you in your final answer?” on a 5-point scale.

Finally, based on responses to the exit questionnaire, we calcu-
lated the following indexes (all on a 5-point scale):

• TrustBelief: Average rating on six statements adapted
from the trust scale by McKnight et al. [39].

• TrustIntention: Average rating on four statements adapted
from the trust scale by McKnight et al. [39].

• Anthropomorphism: Average rating on four items from the
Godspeed Questionnaire Series [8].

• Transparency: Average rating on two statements: “I feel I
had a good understanding of what AI system A’s answers
were based on” and “I feel I had a good understanding of
when AI system A’s answers might be wrong.”

Full details are in Appendix D. Note that some DVs were not ap-
plicable for the No-AI condition, where we measured only Agree,
Correct, Time, UseInternet, and ConfidenceAnswer. Here we
made one (and only one) minor deviation from our pre-registration
by including Agree. Although participants in this condition do not
see the AI system’s answers, this gives us a baseline for how often
participants would arrive at the same answer on their own.

3.3 Hypothesis & Analysis
We expected the presence and perspective of uncertainty expression
to impact participants’ reliance, trust, and performance. Formally,
for each DV, we hypothesized that condition affects DV. For each re-
peatedly measured DV, we additionally hypothesized that whether
or not uncertainty was expressed in a particular AI response affects
DV. We tested our hypotheses with the following pre-registered,
confirmatory analyses, for which we present results in Section 4.

We first test the main effect of the conditions with a between-
condition analysis. For repeatedly measured DVs, we fit themodel
DV ∼ Condition + (1|participant) + (1|question) with
Control as the reference level for Condition. Then to compare
the effects of the two conditions with uncertainty, we used a Wald
test to test the equality of the corresponding coefficients. For DVs
measured once in the exit questionnaire, we use analysis of variance
(ANOVA) to compare means across the conditions. If significant,
we conduct pairwise comparisons with a post-hoc Tukey test.

Next, we test the effect of uncertainty being expressed or not
in a particular response with a within-condition analysis for
conditions with uncertainty expression. For repeatedly measured
DVs, we fit the model DV ∼ AIUncertain + (1|participant)
+ (1|question), where AIUncertain is TRUE if the AI response
is uncertain and FALSE otherwise. We fit this model once for data
from the Uncertain1st condition and once for data from Uncer-
tainGeneral.

We complement the confirmatory analyses with two additional
analyses. First, we conduct an exploratory analysis of the effect
of AI’s uncertainty expression on over- and underreliance by sep-
arately analyzing cases where the AI system gave correct versus
incorrect answers. Analysis details and results are presented in
Section 5.1. Second, we conduct a thematic analysis [16, 17] of free-
form responses from participants in the Uncertain1st and Un-
certainGeneral conditions describing their experience with and
perception of the AI system. The first author drafted the codebook
and conducted the initial coding, then discussed the results with all
authors and refined the coding together. We describe how the AI
system’s uncertainty expression affected participants in Section 4
along with the quantitative results, and describe how participants
interpreted the system’s uncertainty expression in Section 5.2.

3.4 Questions and AI Responses Used
We selected a set of factual questions for participants to answer
according to the following criteria: (1) most lay people should not
know the answer; (2) the question and answer should not directly
show up when using popular search engines; and (3) the answer
can be objectively and automatically assessed. To satisfy the crite-
ria, we constructed a set of yes/no medical questions. We began
with questions from the MedQuAD dataset [10] and made minor
modifications to some to increase the difficulty of finding an answer.
We verified that each question does not show up as it is and can
not be immediately answered using popular search engines, and
consulted multiple sources to confirm the correct answer.

To create AI responses that are realistic and reflect the state-
of-the-art in LLM-infused search, we input the selected questions
into Microsoft’s Copilot in Bing. All responses were obtained in
July 2023. To keep the fluency, style, and content of responses
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as realistic as possible, we made only minor modifications such
as presenting in-line citations using square brackets instead of
superscripts (see Figure 1) and starting each response with “Yes” or
“No” for consistency (most responses from Copilot in Bing did this
already). We did not make substantive changes to the content.

To create the uncertain versions of the responses, we drew on
Oba and Berger [72]. For Uncertain1st, we replaced the lead-
ing “Yes” or “No” with an expression of the form “I’m not {certain,
sure}, but {it seems to me, it seems like, I would guess, I’d guess that},”
selecting one phrase from each set of brackets. Similarly, for Un-
certainGeneral, we used an expression of the form “{It’s unclear,
It’s not clear, There is uncertainty}, but it seems like.” Current LLMs
already output expressions such as “I’m not sure, but” and “I’m
not sure, but my guess is” [67], so we believe these insertions pre-
serve the realisticness of responses. The only difference between
the three versions of the AI system’s responses is the presence and
perspective of uncertainty expression; their information content is
otherwise identical.

We selected the final eight questions such that: (1) four questions
have a correct answer of “Yes” and four have a correct answer of
“No” so that always selecting “Yes” is no better or worse than ran-
dom guessing; (2) the AI answers are correct for four and incorrect
for four, so that always agreeing with the AI system is no better or
worse than random guessing; (3) questions are not too easy to an-
swer without access to the AI system (determined via piloting). The
final set of questions used is provided in Appendix E along with the
original responses from Copilot in Bing and our modified responses.

3.5 Data Collection and Participants
We conducted our experiment onAmazonMechanical Turk (MTurk),
a crowdsourcing platform widely used for human-subject experi-
ments. Research has shown data fromMTurkworkers is comparable
to data from other pools (e.g., commercial panels, social media, col-
leges) [12, 20, 23, 32, 63, 74], but recently there has been a decrease
in data quality [28, 44, 60, 62, 94, 98]. Indeed, in pilot studies we
found that a strong requirement on qualification was necessary
to obtain meaningful data, with the highest quality data obtained
when requiring a “Masters” qualification (granted by Amazon based
on past performance). Since the pool of available participants with
a Masters qualification is limited, we pre-registered a recruitment
plan in which we would initially aim to recruit 432 (determined via
a power analysis) U.S.-based MTurk workers with a Masters quali-
fication, 99% or higher approval rating, and at least 2000 completed
human intelligence tasks (HITs), removing the Masters requirement
after 7 days if we were unable to meet our target sample size. In
parallel, we implemented best practices to mitigate the use of bots
and improve data quality, including CAPTCHAs, honeypot ques-
tions, speed checks, attention checks, and open-ended questions,
which we used to define data exclusions.

We collected 656 complete responses over the course of two
weeks in September 2023, of which we excluded 252 (38.4%) based
on five pre-registered exclusion criteria. Our final sample consists
of 404 responses: 104 in Control, 92 in Uncertain1st, 94 in Un-
certainGeneral, and 114 in No-AI. See Appendix B for more on
our data collection procedures.

Participants were paid $5 USD. The payment was determined
based on the expected experiment duration of 20 minutes (estimated
from pilot studies) and target hourly wage of $15. The actual median
experiment duration was 20.5 minutes, so on average, participants
were paid $14.80 per hour. See Appendix A for more information
about participants.

4 RESULTS: CONFIRMATORY ANALYSIS
We now present the results of our pre-registered, confirmatory
analyses. Tables 1 and 2 contain the between-condition and within-
condition analysis results, respectively. We refer the reader to Sec-
tion 3.2 for definitions of all DVs. We present the estimated means
(and standard errors) from the fitted models, calculated without
conditioning on the random effects, and represent binary variables
in percentages. We use significance to refer to statistical significance
at the level of 𝑝 < 0.05.

4.1 Agreement with AI: Agree
We begin with the results of agreement, a commonly used behav-
ioral measure of reliance and trust. Our first finding is that people
tend to agree with the AI system when its responses are pro-
vided. Our between-condition analysis suggests that participants
with access to the AI system are significantly more likely to submit
the same answer as the system than those who do not have access
(80.9% Control vs. 58.4% No-AI). We next find that AI’s uncer-
tainty expression decreases agreement with the AI system.
Compared to Control (80.9%), Agree is significantly lower in Un-
certain1st (74.8%). It is also lower in UncertainGeneral (77.6%),
although the difference is not significant. Our within-condition
analysis suggests AI’s uncertainty expression decreases agreement
at the instance level as well. The estimated means of Agree for
not uncertain vs. uncertain AI responses are 84.7% vs. 70.9% for
UncertainGeneral (significantly different) and 79.5% vs. 73.4%
for Uncertain1st (not significantly different). We find support for
this finding in the qualitative data as well. 10 participants (out of
186 in Uncertain1st and UncertainGeneral) stated that when
they disagreed with the system it was, as one put it, “because of the
uncertainty of the answers provided by AI.”

Other reasons participants mentioned for disagreement included
the system’s answer being different from their own knowledge (e.g.,
“A couple of the AI’s answers didn’t make sense so from my own com-
mon sense I had to make my own judgement”) or the information in
other resources (e.g., “The answer seemed to contradict the links given,
or I could not find how they came to that answer with the information
from the links given”) and having lower trust in the system.

4.2 Confidence in Answers: ConfidenceAI,
ConfidenceAnswer

Looking at participants’ self-reported confidence in answers, we
find that AI’s uncertainty expression decreases people’s con-
fidence in its answer. Compared to Control (3.95 on a 5-point
scale), ConfidenceAI is significantly lower in Uncertain1st (3.66).
It is also lower in UncertainGeneral (3.80), although the differ-
ence is not significant. Our within-condition analysis provides fur-
ther evidence for this finding and suggests that AI’s uncertainty
expression decreases people’ confidence in their final answer
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Table 1: Between-condition analysis.We compare DVs across conditions. We report the model-estimated means (and standard errors)
from our confirmatory analysis. The rightmost column shows pairs of conditions with statistically significant differences with significance
marked as ∗ (𝑝 < 0.05) or ∗∗ (𝑝 < 0.01).
†Note that we did not compare all possible pairs of conditions (see Section 3.3). For repeatedly measured DVs, we compared (Control vs. Uncertain1st/UncertainGeneral/No-AI)
and (Uncertain1st vs. UncertainGeneral) but not (No-AI vs. Uncertain1st/UncertainGeneral) to reduce the number of hypothesis testing. For DVs measured once in the exit
questionnaire, we first compared the means of (Control, Uncertain1st, UncertainGeneral) using ANOVA, then if significant, conducted pairwise comparisons.

Sec. DV Control Uncertain1st UncertainGeneral No-AI Significant differences†

4.1 Agree (%) 80.9% (5.5) 74.8% (6.7) 77.6% (6.2) 58.4% (8.5) No-AI <∗∗ Control
Uncertain1st <∗ Control

4.2
ConfidenceAI (1-5) 3.95 (0.17) 3.66 (0.17) 3.80 (0.17) Uncertain1st <∗∗ Control

ConfidenceAnswer (1-5) 4.30 (0.08) 4.34 (0.08) 4.27 (0.08) 4.22 (0.08)

4.3

LinkClick (%) 2.7% (2.1) 7.2% (4.8) 3.9% (3.1)

UseAI (%) 77.3% (5.1) 64.8% (6.9) 72.3% (6.0)

UseLink (%) 74.7% (5.5) 85.5% (4.0) 81.7% (4.8)

UseInternet (%) 19.1% (5.6) 27.0% (7.4) 23.2% (6.7) 92.9% (2.5) Control <∗∗ No-AI

4.4

TrustBelief (1-5) 3.90 (0.06) 3.86 (0.07) 4.00 (0.07)

TrustIntention (1-5) 3.25 (0.10) 2.91 (0.10) 3.36 (0.10) Uncertain1st <∗ Control
<∗ UncertainGeneral

Anthropomorphism (1-5) 3.07 (0.10) 3.00 (0.11) 3.13 (0.11)

Transparency (1-5) 4.04 (0.06) 3.93 (0.07) 4.01 (0.07)

4.5 Correct (%) 63.9% (8.6) 72.8% (7.4) 67.9% (8.1) 74.2% (7.1) Control <∗∗ Uncertain1st
Control <∗∗ No-AI

Time (min) 2.13 (0.22) 2.10 (0.23) 2.03 (0.22) 1.57 (0.21) No-AI <∗ Control

at the instance level. For both Uncertain1st and Uncertain-
General, ConfidenceAI and ConfidenceAnswer are significantly
lower on instances with uncertain (vs. not uncertain) AI responses.
Indeed, one participant in the Uncertain1st condition stated, “If
the AI didn’t seem confident, I would like [sic] on the links. If the AI
seemed confident I assumed he was correct most of the time.”

4.3 Source Usage: LinkClick, UseAI, UseLink,
UseInternet

Looking at source usage, we find that people with access to the
AI system conduct their own Internet search less frequently
than those without access. UseInternet is notably lower in Con-
trol (19.1%) than No-AI (92.9%). However, we see no significant
differences in source usage between the three conditions in which
AI responses are present, meaning there is no evidence that the
presence and perspective of AI’s uncertainty expression af-
fect people’s source usage behavior. On the other hand, from
our within-condition analysis, we find that AI’s uncertainty expres-
sion has a significant effect on the self-reported DVs at the instance
level. On instances with uncertain AI responses (vs. not uncertain
responses), UseAI is significantly lower in both Uncertain1st and
UncertainGeneral, and UseInternet is significantly higher in
Uncertain1st. These results suggest that at the instance level,
AI’s uncertainty expression decreases the use of the system’s

answer and increases the use of other resources. In their free-
form responses, 11 participants stated that the system’s uncertainty
motivated them to verify information using the links provided in
the answer (e.g., “I clicked on the links provided when the AI was
uncertain of the answers”) while 13 mentioned it motivated them
to perform their own search (e.g., “When the AI wasn’t certain, I
searched on Google”).

We note that both LinkClick and UseLink are intended to cap-
ture whether or not participants read the linked sources provided in
the AI system’s responses, but the estimated means of LinkClick
(2.7% – 7.2%) from the between-condition analysis are much lower
than those of UseLink (74.7% — 85.5%). There are several factors
that might contribute to this discrepancy. First, these estimated
means are from different models that include participants and ques-
tions as random effects. The intercepts for random effects in these
models are quite high. Looking at the raw data, there is still a gap,
but not as large: the actual means are 30.6% – 34.9% for LinkClick
and 64.2% – 71.6% for UseLink. Second, there could have been mea-
surement error from self-report bias for UseLink [35]. Finally, some
participants could have considered their answers to be based on
their “own reading of the linked sources” if they read the list of links,
even if they didn’t click to open them. For example, one participant
wrote, “If the link title gave the same answer as the AI answer, then I
assumed it was the right answer.” This discrepancy emphasizes the
value of including both behavioral and self-reported measures.
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Table 2: Within-condition analysis. For each of the two conditions with uncertainty, we compare DVs measured on instances with AI
answers that are not uncertain vs. uncertain. We report the model-estimated means (and standard errors) from our confirmatory analysis. >
and < note statistically significant differences with significance marked as ∗ (𝑝 < 0.05) or ∗∗ (𝑝 < 0.01).
†The model does not fit properly due to large individual variance which we discuss in an exploratory analysis in Appendix C.1.

Sec. DV Uncertain1st UncertainGeneral
Not Uncertain Uncertain Not Uncertain Uncertain

4.1 Agree (%) 79.5% (7.2) 73.4% (8.6) 84.7% (5.0) >∗∗ 70.9% (7.8)

4.2 ConfidenceAI (1-5) 3.88 (0.20) >∗∗ 3.44 (0.20) 3.95 (0.16) >∗∗ 3.65 (0.16)
ConfidenceAnswer (1-5) 4.42 (0.09) >∗∗ 4.26 (0.09) 4.36 (0.07) >∗∗ 4.18 (0.07)

4.3

LinkClick (%) 14.3% (6.9) 9.9% (5.1) See table caption†

UseAI (%) 73.2% (7.2) >∗∗ 57.4% (8.9) 79.7% (4.7) >∗∗ 62.9% (6.5)
UseLink (%) 86.5% (4.2) 84.3% (4.7) See table caption†

UseInternet (%) 23.0% (6.3) <∗∗ 34.1% (7.8) 19.2% (6.5) 26.9% (8.1)

4.5 Correct (%) 73.6% (8.9) 75.7% (8.4) 69.4% (10.1) 70.3% (9.9)
Time (min) 2.00 (0.29) 2.19 (0.29) 1.84 (0.25) <∗ 2.23 (0.25)

4.4 Trust and Perception of AI: TrustBelief,
TrustIntention, Anthropomorphism,
Transparency

Moving onto trust and perception of AI, we find that the pres-
ence and perspective of uncertainty expression neither affect
people’s trust beliefs nor the perceived anthropomorphism
and transparency of the system. There are no significant dif-
ferences in TrustBelief, Anthropomorphism, and Transparency
between Control and the two conditions with uncertainty. Over-
all, participants had somewhat positive trust beliefs about the
system (TrustBelief is around “4: Somewhat agree” for all condi-
tions); reported that they had a somewhat good understanding
of what the AI system’s answers were based on and when
they might be wrong (Transparency is around “4: Somewhat
agree”); and had neutral perceptions of anthropomorphism
(Anthropomorphism is around “3: Neutral”).

In contrast, we find that first-person expressions of uncer-
tainty decrease trust intentions while expressions from a gen-
eral perspective do not. TrustIntention is significantly lower
in Uncertain1st (2.91) compared to both Control (3.25) and Un-
certainGeneral (3.36), indicating a lower desire to use the system.
Illustrative of this, one participant in the Uncertain1st condition
stated, “[The AI system] was very non-committal in its answers so
I didn’t feel I could trust it.” This suggests that frequent first-person
expressions of uncertainty can lead people to view the system as
less trustworthy and decrease their desire to use it. More about the
used scales and item-level results is in Appendix C.2.

4.5 Task Performance: Correct, Time
Finally, we analyze participants’ task performance. From our between-
condition analysis of Correct, we first find that having access to
the AI system decreases people’s accuracy. Participants with
access to the system have significantly lower accuracy than those
without (63.9% Control vs. 74.2% No-AI). However, this result
should be interpreted in the context of the AI system’s low over-
all accuracy (50.0% in our experimental setup). Second, we find
that AI’s uncertainty expression increases people’s accuracy.

Correct is significantly higher in Uncertain1st (72.8%) than Con-
trol (63.9%). It is also higher in UncertainGeneral (67.9%), but
the difference is not significant.

From our between-condition analysis of Time, we find that hav-
ing access to the AI system increases task time. Time is sig-
nificantly higher in Control (2.13 min) than No-AI (1.57 min).
Together with the results on correctness, this suggests that having
access to the AI system decreases overall performance in our
experimental setup. Between Control and the two conditions
with uncertainty, there are no significant differences in task time.
However, our within-condition analysis suggests that AI’s uncer-
tainty expression increases task time at the instance level.
The estimated means of Time for not uncertain vs. uncertain AI
responses are 1.84 min vs. 2.23 min for UncertainGeneral (sig-
nificantly different) and 2.00 min vs. 2.19 min for Uncertain1st
(not significantly different). An explanation of this result is that
AI’s uncertainty expression slows people down to use more caution
when completing the task.

5 RESULTS: ADDITIONAL ANALYSES
5.1 Effect of Uncertainty Expression on Over-

and Underreliance
In Section 4.1, we analyzed participants’ agreement with the AI
system as a measure of reliance. Agreement can be appropriate
or inappropriate, depending on the correctness of the AI system’s
answers; agreeing with the system when it is incorrect is a sign
of overreliance, whereas disagreeing with it when it is correct is
a sign of underreliance. To better understand the extent to which
uncertainty expression leads to either of these phenomena, we
take inspiration from the analysis of Chen et al. [25] and separately
analyze participants’ agreement on questions theAI system answers
correctly and questions it answers incorrectly. Note that, having
conditioned on the (in)correctness of the AI system, analyzing
agreement is equivalent to analyzing correctness of people’s final
answers. We present the results here in terms of correctness to
focus attention on whether reliance is appropriate (i.e., beneficial
to the user) or not.
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(a) Between-condition analysis results. (b) Within-condition analysis results.

Figure 2: Exploratory analysis of over- and underreliance (Section 5.1). We analyze Correct (%) separately for questions the system
answered correctly vs. incorrectly. We show the model-estimated means and standard errors for each condition (Figure 2a) and for not
uncertain vs. uncertain responses in the conditions with uncertainty (Figure 2b).

Concretely, we run similar analyses to those presented in Sec-
tion 4.5, but fit the regression models once on data from the four
questions the system answered correctly and once on data from the
four questions the system answered incorrectly (see Section 3.4).
We show the estimated means (and standard errors) from these
models in Figure 2.

First, by comparing the Control and No-AI conditions, we
observe that having access to the AI system’s answer increases ac-
curacy when the system is correct (the estimated mean of Correct
is 88.5% in Control vs. 77.9% in No-AI), but decreases accuracy
when it is incorrect (33.0% in Control vs. 64.7% in No-AI), as in
Figure 2a. Comparing Control with Uncertain1st and Uncer-
tainGeneral, we see that having the AI system express uncertainty
improves accuracy on questions that the system answers incorrectly
without reducing accuracy when the system is correct. In line with
our earlier results, expressing uncertainty in the first-person per-
spective leads to a bigger improvement in accuracy when the AI
system is incorrect compared with expressing uncertainty in the
general perspective.

To better understand how expressions of uncertainty drive accu-
racy, we break down the results further, comparing task accuracy on
questions for which the system expresses uncertainty and those for
which it does not (Figure 2b). We find that expressing uncertainty
about a particular question leads to some reduction in accuracy
when the AI system is correct (92.2% to 89.2% for Uncertain1st,
94.8% to 83.1% for UncertainGeneral), but a greater increase
in accuracy when the AI system is incorrect (43.6% to 52.0% for
Uncertain1st, 32.8% to 48.0% for UncertainGeneral).

While these results provide some evidence that expressions of
uncertainty help reduce overreliance, we note that participants in
the Uncertain1st and UncertainGeneral conditions still have
substantially lower accuracy on questions where the AI system is
incorrect compared with participants in the No-AI condition.

5.2 Participants’ Interpretations of AI’s
Uncertainty Expression

While our quantitative results shed light on whether expressions of
uncertainty impact reliance and trust, they cannot tell us why. We
next explore participants’ interpretations of the expressed uncer-
tainty via a thematic analysis of free-form responses to the question
“When and why do you think AI system A expresses uncertainty?”
in the exit questionnaire.

The majority of participants (N=102 of the 186 in the conditions
with uncertainty) attributed the system’s expressed uncertainty to
its inability to answer a particular question, for example because it
could not find an answer, found conflicting or unreliable answers,
or could not understand the information it found. Three suggested
the system was programmed to express uncertainty, as in “I would
guess there’s some sort of certainty variable and if the score is below
a level, an uncertainty message is included in the result.” Another ten
suggested the expressed uncertainty is due to the inherent difficulty
of the question. As one put it, “It could be a question that is very
hard to come up with a simple yes or no answer.”

These interpretations are all in line with the goal of reducing
overreliance: if the system is unable to answer a question or the
question is inherently difficult, users should verify the answer for
themselves. Five participants explicitly interpreted the expressed
uncertainty as a way of encouraging users to check their answers,
for example, “I suppose the AI wanted us to do further research in
those cases where it could not be 100% sure of the answer.”

A small number of participants attributed the uncertainty to
other reasons, such as impression management (“to appear more
human, encourage confidence, and appear thoughtful”), maintaining
credibility (“It doesn’t want to risk being wrong on something and ru-
ining it’s credibility”), avoiding liability (“it expresses uncertainty to
absolve it of responsibility in the event it is wrong”), or restrictions on
answering medical questions (“the AI is programmed not to dispense
medical advice which could potentially be harmful without a caveat”).
These interpretations may not necessarily reduce overreliance.
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One might ask whether participants interpreted the two types
of uncertainty expression differently. Indeed, we found that partic-
ipants in the UncertainGeneral condition were more likely than
those in Uncertain1st (51.5% vs. 41.3%) to attribute the uncertainty
to the AI system finding conflicting or unreliable information or the
question being inherently hard, whereas those in Uncertain1st
were more likely (20.7% vs. 7.4%) to attribute it to limitations of the
AI system itself.

6 DISCUSSION
Our results suggest that expressing uncertainty through natural lan-
guage can be an effective way to reduce overreliance and (over)trust
in LLM-infused search engines. Expressions of uncertainty led to
more cautious behaviors, from taking longer to arrive at an answer
to reporting more reliance on outside sources. However, it did not
fully eliminate overreliance; the participants with the highest task
performance were those without access to AI responses.

We find that perspective matters: uncertainty expressions in
first-person show stronger effects than general perspective. This is
consistent with prior findings that first-person messages increase
recipients’ involvement and engagement [24, 106] compared with
general or third-person messages. This persuasive effect of first-
person expressions should be interpreted with caution: while it
helps heighten the warning effect of a negative message such as
uncertainty, it might amplify a positive message, even if unjusti-
fied. For example, one may want to avoid first-person expressions
of confidence because they may exacerbate overreliance and over-
trust, as found in prior work [109]. There are also concerns around
harms from anthropomorphism of AI systems that may stem from
over-trust, deception, threats to human agency, and propagation of
stereotypes [1]. While we did not observe that first-person uncer-
tainty expression increases perceived anthropomorphism, people
can start assigning social attributes to machines without conscious
awareness [71]. Future research and practices should further ex-
plore the long-term effects of interacting with AI systems express-
ing uncertainty in a first-person perspective and consider other
potential negative effects of anthropomorphism.

Our research has implications both for those building and de-
ploying LLMs and LLM-infused applications and for policymakers
regulating the use of AI. Most critically, any approach to reducing
overreliance should be validated through empirical research. There
may also be tradeoffs when balancing over- and underreliance. In
our study, the most successful approach to reducing overreliance
was to use first-person uncertainty expression, but this also de-
creased participant trust in the AI system, which may be undesir-
able in settings where people already under-trust the AI system. We
believe there is no one-size-fits-all approach to implementing nat-
ural language uncertainty expression. For these reasons, given that
the issue of how to manage overreliance is of particular importance
to regulators, we advocate for raising awareness of the complex-
ities of mitigating overreliance and for customized, evidence-based
solutions, rather that universal ones.

There are limitations to our research. The widespread deploy-
ment of LLMs is still relatively new and the human-computer in-
teraction and broader research communities are still grappling
with the question of how to design effective studies to understand

how end users perceive and interact with them. There is always
a tradeoff between the controllability of the experiment and the
generalizability of the conclusions to user behaviors in their day-
to-day tasks [65]. In order to be able to measure agreement and
correctness, we adopted an experimental set-up inspired by the
AI-assisted decision-making literature in which study participants
provide simple yes/no answers to questions. This approach does
not allow exploring how the expression of uncertainty would im-
pact people’s behavior when completing more complex tasks, like
writing an article or planning a trip. Further, our measurements of
time and source usage are less reliable than they would have been
had we opted for an in-person lab study. We chose questions from
the medical domain, where overreliance is particularly concerning,
but people may behave differently when seeking information about
their own medical symptoms rather than answering a pre-defined
set of questions. People may also behave differently when given
the chance to interact with the system repeatedly as opposed to in
a single session. The AI system in our study exhibited low accuracy
and expressed uncertainty often, in a poorly calibrated manner.
These design choices may have impacted our results — particularly
the lower task performance when given access to the AI system.
Also, there may be differences across cultures and languages in how
people interpret or react to uncertainty. Our study was conducted in
English with U.S.-based participants and results may not generalize
to other cultural and linguistic contexts.

For all of these reasons, while our findings suggest that natural
language expressions of uncertainty could be an effective approach
to reducing overreliance, we caution against overgeneralizing from
our study. Instead, we view our results as evidence that language
choices matter in how people perceive and act on the outputs of
LLMs, and teams building and deploying LLMs should therefore
evaluate them carefully with end users before release.

7 ETHICAL CONSIDERATIONS AND
POSITIONALITY

We conclude with a reflection on the ethical considerations of our
work and our positionality.

Mitigating harms to human subjects.We recruited U.S.-based
participants on MTurk, which many people rely on as a primary
source of income. As discussed in Section 3.5, we aimed to pro-
vide an hourly wage of $15 USD. We came close to this goal, with
participants receiving an estimated $14.80 per hour on average.
(This is likely an underestimate of average wage, since we have
no way to know if workers spent time on other activities between
accepting the task and completing it.) This is substantially higher
than the U.S. federal minimum wage of $7.25 per hour, though a
few states have recently adopted a minimum wage of $15/hour or
higher. As discussed in the FAccT 2023 panel “The Humans Behind
the Intelligence: Speaking with Data Workers,” our choice to limit
participation to workers with a 99% or higher approval rating, at
least 2000 completed tasks, and in some cases, a Masters qualifica-
tion, prevented workers who are new to MTurk from participating.
We made the decision to include these qualifications after piloting
several versions of the study with less restrictive qualifications and
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finding that the data quality was too poor to use. We paid and ap-
proved the work of everyonewho completed the study, regardless of
whether their responses passed our quality checks. At the end of the
study, we debriefed participants, reminding them that the medical
information output by the AI system was sometimes incorrect. We
did not collect personally identifiable information except for MTurk
IDs, which were used to ensure that workers who participated in
pilots of our study did not participate in the main study. These were
deleted when no longer needed. Our procedure was reviewed and
approved by our internal IRB and we obtained participant consent.

Potential negative societal impact. While our results provide
evidence for the effectiveness of natural language expressions of un-
certainty for reducing overreliance, generalizing too heavily from
our findings could lead to potential harms. Given the limitations of
our research (see Section 6), teams deploying LLMs or LLM-infused
applications should not make decisions about how to express un-
certainty to end users without extensive user testing in their own
contexts. They also should not assume that they have addressed
overreliance by expressing uncertainty. (Indeed, in our study we
see that participants still have higher task performance with no
access to the AI system.) Likewise, regulators should avoid making
blanket requirements on uncertainty expression, at least until more
research has been done.

Separate from these potential unintentional misuses of our re-
search, there is a possibility that bad actors could strategically incor-
porate the expression of uncertainty into an LLM’s output to make
them more persuasive, regardless of whether they represent objec-
tive fact, potentially contributing to the spread of misinformation.

Positionality. Our research questions and design were influenced
by our position as employees of a U.S.-based technology company.
Members of our research team have first-hand experience observing
and participating in discussions regarding the responsible devel-
opment and deployment of LLM-infused applications, which has
shaped our understanding of gaps in knowledge and other practical
challenges that arise in attempting to meet responsible AI principles
and proposed regulatory requirements. We had access to sufficient
budget to run large-scale experiments, which is not an option for
some research teams. Our view that there are potential benefits of
responsibly deployed LLM-infused applications is likely influenced
by our experience in industry, yet we acknowledge some funda-
mental limitations of using LLMs for information retrieval [82]. We
encourage future research on overreliance from research teams in
academia and civil society.
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