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ABSTRACT
Data practices shape research and practice on fairness in machine
learning (fair ML). Critical data studies offer important reflections
and critiques for the responsible advancement of the field by high-
lighting shortcomings and proposing recommendations for im-
provement. In this work, we present a comprehensive analysis of
fair ML datasets, demonstrating how unreflective yet common prac-
tices hinder the reach and reliability of algorithmic fairness findings.
We systematically study protected information encoded in tabular
datasets and their usage in 280 experiments across 142 publications.

Our analyses identify three main areas of concern: (1) a lack of
representation for certain protected attributes in both data and
evaluations; (2) the widespread exclusion of minorities during
data preprocessing; and (3) opaque data processing threatening
the generalization of fairness research. By conducting exemplary
analyses on the utilization of prominent datasets, we demonstrate
how unreflective data decisions disproportionately affect minority
groups, fairness metrics, and resultant model comparisons. Addi-
tionally, we identify supplementary factors such as limitations in
publicly available data, privacy considerations, and a general lack
of awareness, which exacerbate these challenges. To address these
issues, we propose a set of recommendations for data usage in
fairness research centered on transparency and responsible inclu-
sion. This study underscores the need for a critical reevaluation of
data practices in fair ML and offers directions to improve both the
sourcing and usage of datasets.
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• Social and professional topics→User characteristics; •Com-
puting methodologies→Machine learning.
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1 INTRODUCTION
The identification and mitigation of harms against vulnerable in-
dividuals and groups embedded in data-driven algorithms lies at
the core of fairness in machine learning (fair ML) research. Dis-
criminatory practices take on various forms, affect a multitude of
social groups in different contexts, and are often targeted against
(intersecting) minority populations. Investigating discrimination in
sociotechnical systems requires adequate and nuanced data sources
as well as careful operationalizations of vulnerable groups. Data
is highly influential in fair ML research. On the one hand, novel
fairness methodology is typically developed and “benchmarked” in
empirical applications, and thus the underlying data can be used
to support the argument in favor of a specific technique. On the
other hand, the information that is encoded and readily accessible
in fairness data defines the scope of what can be tested empirically,
priming fairness research to e.g. focus on those protected attributes
that are most easily accessible. Practices concerning which data is
used in published research, and how it is used, further set a standard
for both practitioners and future research.

In this work, we study data practices in fairness research and
identify common shortcuts that undermine its reach and reliability.
Particularly, we study which protected groups are represented in
datasets commonly used in fair ML and how the available data is
utilized in the literature, identifying blindspots such as neglected
identities and omitted subpopulations in data usage. We argue that
through their wide range of applications, fairness datasets and
their uses play a pivotal role in fairness research as they can be
both drivers and barriers for sound methodological and empirical
research.

More specifically, we study the content of fairness datasets in
interaction with their uses in empirical research. This dual view is
motivated by the concern that limitations inherent to the datasets
themselves can be exacerbated by unreflective choices made in the
processing and handling of these data. Both factors can jointly ac-
cumulate to the risk of neglecting “uncommon” protected attributes
or specific subpopulations and contribute to normalize this prac-
tice, leading to a vicious cycle of canonical fairness research which
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focuses on a limited set of social groups and the same standard
datasets [42].
Related work. Critical studies have challenged research practices
in fair ML on various grounds. Concerns have been raised regarding
its narrow and too granular focus, tendencies of insularity [65],
inconsistent notions of race [1], and a predominance of shallow
discussions of specific negative impacts that neglect structural and
social factors [14]. Critical data studies [16, 59] view these questions
from a data-centric lens. Selected challenges have been tied to the
empirical foundation of fair ML research, such as its overreliance on
WEIRD (Western, Educated, Industrialized, Rich, and Democratic)
samples [86] and a large share of fairness publications drawing on
the same datasets, namely Adult, COMPAS and German Credit [42].
As these data come with considerable limitations [10, 34], there is
a risk of self-perpetuating practices that steer empirical fairness
research away from the social realities and diversity its data is
supposed to represent.
Contributions. Against this background, we focus on both the
scope of fairness datasets and their uses in empirical research to
understand the interaction between limitations in datasets and the
choices that are made in the handling of these data. We study 280
experiments across 142 fair ML publications and identify gaps in
collective data practices hindering the reach and reliability of the
field. Our study makes the following contributions:

• We present an inclusive list of attributes protected by anti-
discrimination legislation across multiple continents and
study their (under)representation in fairness datasets, as well
as discrepancies between protected attribute availability and
usage in fair ML research.

• We outline exclusionary patterns in empirical studies and
demonstrate how a lack of transparency and unreflective
processing choices normalize the omission of minorities and
lead to ambiguous results in fairness research.

• We provide actionable recommendations to remedy existing
limitations and pave a path forward towardsmore thoughtful
and nuanced data practices in fair ML.

We start by outlining our selection and annotation process of
fairness datasets and publications in Section 2. In Section 3, we
contrast the availability and usage of protected attributes in fairness
data with the salience of protected attributes in legislation across
the globe. In Section 4, we demonstrate exclusionary data practices
against minorities with a case study on COMPAS data. In Section 5,
we focus on transparency and generalization, showing opaque
design decisions affecting fairness evaluations with a second case
study on the Bank dataset. We summarize our findings in Section 6,
providing a list of recommendations towards better data practices
in Section 7, and concluding remarks in Section 8.

2 METHODOLOGY
For this work, we collected and annotated tabular dataset usage for
fair classification tasks. To create this corpus, we built on top of a
comprehensive survey of fairness datasets [42], leveraging the same
inclusion criteria for publications. We focus on tabular datasets and
fair classification for their prominent role in the fairness literature
[42, 43, 68]. We study the use of tabular datasets (𝑁 = 36) across
142 articles. Since many datasets appear in multiple publications

and most publications use multiple datasets, the total number of
dataset and publication combinations annotated was 𝑁 = 280.

Information regarding the usage of different datasets was col-
lected for each combination of dataset and publication. This in-
formation includes which variant of a dataset was used, which
attributes were considered protected and whether sufficient in-
formation was available to reconstruct this, as well as the target
variable and features used for prediction. To collect this information,
the publications, their supplementary materials, and appendices
were consulted for information regarding each dataset usage. More-
over, each publication was searched for mentions of source code;
if unsuccessful, we searched on the internet for code repositories
mentioning the publication’s title. Detailed information on the an-
notation process and corpus selection is available in Appendix A.

The collected data on dataset usage as well as the code for all
analyses presented in this work are publicly available at https:
//github.com/reliable-ai/lazy-data-practices. Analyses were con-
ducted and visualizations created using Python version 3.9 [104], R
version 4.2.2 [81] and RawGraphs version 2.0 [67].

3 NEGLECTED IDENTITIES
Acknowledging the diversity of vulnerability in fair ML is critical
as the social impacts of prediction algorithms and the effectiveness
of bias mitigation strategies can vary greatly between different pro-
tected groups. Vulnerable identities will not benefit from fairness
research unless explicitly considered by it. This section studies the
availability and usage of protected attributes in fair ML, which we
introduce in the following subsections and summarize in Figure 1.

3.1 Protected Attributes Globally
To define protected attributes, we draw from domain-specific leg-
islation and human rights law. We define as protected all socially
salient attributes explicitly mentioned as prohibited drivers of dis-
crimination and inequality. For example, Article 2 of the Universal
Declaration of Human Rights states “Everyone is entitled to all
the rights and freedoms set forth in this Declaration, without dis-
tinction of any kind, such as race, colour, sex, language, religion,
political or other opinion, national or social origin, property, birth
or other status” [95].

On the one hand, we try to mitigate the Global North bias in
AI ethics research [76, 83, 86] by covering international human
rights instruments from around the globe, including the Universal
Declaration of Human Rights [95], the African Charter on Human
and Peoples’ Rights [77], the Arab Charter on Human Rights [29],
the ASEAN Declaration of Human Rights [9], the American Dec-
laration of the Rights and Duties of Man [78], and the Charter of
Fundamental Rights of the European Union [38]. On the other hand,
we align with this bias, including a regional perspective on anti-
discrimination in hiring and lending based on US and EU legislation
[25, 40], covering, for example, the Fair Housing Act [96], the Equal
Credit Opportunity Act [97], the Racial Equality Directive [27], and
the Employment Equality Directive [28]. There are two mutually
reinforcing reasons for this, namely the convenient availability of
summary articles on the topic and the influence of these regions
on anti-discrimination and fairness research.

https://github.com/reliable-ai/lazy-data-practices
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Lazy Data Practices Harm Fairness Research FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Table 1: Protected attributes in global anti-discrimination law. Protected attributes are found in international human rights
instruments and domain-specific anti-discrimination law. We report a tick (✓) when the literal phrasing (in the original law or
in official clarifications) matches the row header. We report the literal phrasing otherwise.

UN
Charter
[95]

African
Charter
[77]

Arab
Charter
[29]

ASEAN
Declara-
tion [9]

American
Declara-
tion [78]

EU
Charter
[38]

US Fair
Lending
[25]

EU Fair
Hiring
[40]

Gender and Sexual Identity
Sex ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sexual orientation ✓ ✓ ✓
Gender ✓ Gender

identity
Gender;
gender reas-
signment

Racial and Ethnic Origin
Race ✓ ✓ ✓ ✓ ✓ ✓ ✓ Racial

origin
Color ✓ ✓ ✓ ✓ ✓
Ethnic origin Territory to

which per-
son belongs

Ethnic
group

✓ ✓

National origin ✓ ✓ ✓ ✓ Nationality ✓
Language ✓ ✓ ✓ ✓ ✓ ✓
National minority ✓

Socioeconomic Status
Social origin ✓ ✓ ✓ ✓ ✓
Property ✓ Fortune Wealth Economic

status
✓

Recipient of public
assistance

✓

Religion, Belief and Opinion
Religion ✓ ✓ Religious

belief
✓ Creed Religion or

belief
✓ Religion or

belief
Political opinion ✓ ✓ ✓ ✓
Other opinion ✓ ✓ Opinion;

thought
✓ ✓

Family
Birth Birth status Birth status ✓ ✓ ✓
Familial status ✓
Marital status ✓

Disability and Health Conditions
Disability ✓ ✓ ✓ ✓ ✓
Genetic features ✓

Age
Age ✓ ✓ ✓ ✓

Drawing from this literature, we provide a shallow categorization
of protected attributes, reported in Table 1. We identify seven main
categories for protected attributes: (1) gender and sexual identity, (2)
racial and ethnic origin, (3) socioeconomic status, (4) religion, belief
and opinion, (5) family, (6) disability and health conditions, and (7)
age. Most protected attributes fall into at least one of these cate-
gories. We categorize attributes potentially relevant to more than
one category, such as “genetic features”, based on specialized litera-
ture [31]. It is worth noting this is not a complete categorization
of all protected attributes around the globe and across sectors.1 This
categorization aims to guide an inclusive discussion of algorithmic
fairness research through the lens of protected attributes.

3.2 Who is Missing
Incentives against the collection and use of protected data are well
documented in the literature [5], motivating the line of work on
fairness under unawareness [25, 41], which aims to measure and
improve fairness with no access to protected attributes. In this

1For example, veteran status does not appear in Table 1, despite being protected
in certain countries and industry sectors. Moreover, we neglected the right to non-
discrimination for exercising CCPA rights under the California Consumer Privacy Act
[25] since it applies in a single country.

section, we demonstrate that this effect is not uniform across all
protected attributes. The left bar chart in Figure 1 depicts protected
attributes available in popular fairness datasets. Attributes about
religion, belief and opinion are entirely missing. Variables describing
disability and health conditions are very infrequent (𝑛 = 3) and
never used in the surveyed literature (right bar chart in Figure 1).
Socioeconomic status descriptors are more commonly available yet
frequently neglected.2

Some protected attributes are particularly sensitive and safe-
guarded by data protection law. The GDPR (General Data Protec-
tion Regulation [39]) bans the use of special categories of personal
data, including religion and health data, making it more difficult
to collect and use these data to audit or train algorithmic systems
[102]. The Americans with Disabilities Act [100] imposes strict reg-
ulations to disability-related questions that employers can ask [99].
Data protection, however, does not fully explain the availability and
usage of protected attributes in fairness research. In the following,
we detail the causes and effects of neglecting protected identities.

2For completeness, we also encountered a small number of protected attributes used in
the literature but not referenced in legislation, including employment status, alcohol
consumption, neighborhood, body-mass index, and profession.
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Figure 1: There is a large discrepancy between the list of attributes considered protected under international legislation and
their availability or usage in datasets. Bar chart displaying the availability (left) and usage (right) of protected attributes in the
literature for all categories of protected attributes in Table 1. Availability based on a total of 𝑁 = 36 datasets; usage based on
a total of 𝑁 = 233 experiments with enough information available to reconstruct (or at least make an educated guess about)
protected attribute usage (see Section 5 regarding a lack of available information).

Disability is a highly diverse, nuanced, and dynamic construct
[93]. Technological ableism is pervasive [87]; algorithmic fairness
is insufficient to counter it as it tends to oversimplify and flatten
disability. Indeed, there have been multiple calls to move beyond
simplistic notions of fairness and towards disability justice [11, 92].
However, this fundamental recognition of nuance may act as a
double-edged sword. Even in specific contexts where disability can
be treated more narrowly, such as speech recognition for people
with speech disorders, data is sparsely available [79]. Research
highlighting biases across speech impairments [51, 58] has not
gained traction in algorithmic fairness venues [20, 94]. Overall, it
seems plausible that other protected attributes have been prioritized,
to the detriment of disabled identities, due to difficulties in handling

a diverse spectrum of conditions, complex data ethics, and concerns
of oversimplification. Acknowledging its limitations, we believe
that fair ML research can benefit people with disabilities, especially
for bias detection and analyses of its root causes.
Religion and creed are protected by all surveyed legislations. They
are a strong driver of identity, bias, and prejudice; in the extreme,
they can lead to violence [4, 26]. Religion is highly salient in spe-
cific contexts, for example materializing as anti-Muslim discrim-
ination in Western societies [2, 3, 45]. Data collection, however,
remains contingent on political will [49, 85]. It is often unavailable
in census data [54, 101] and laws mandating data collection for anti-
discrimination, such as the HMDA (Home Mortgage Disclosure Act
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[98]), do not include religion [6]. Indeed the effectiveness of West-
ern anti-discrimination law in protecting religious minorities such
as Muslim identities has been called into question [15]. Negative
stereotypes of Muslims have been documented in different regions
of the world [17, 88, 103]. While fairness research has been able to
study Muslim bias in language models [2, 32, 72], so far it has ne-
glected allocative harms against Muslim people. It could be argued
that a lack of focus on religion is compensated by research on racial
and ethnic discrimination, since religions have strong ethnic foun-
dations, and congregations tend to be racially homogenous [24, 62].
However, religious and ethnic discrimination can compound rather
than simply overlap [33]. Moreover, racial classifications are in-
sufficient for Middle Eastern and North African people, who are
classified as white by the US government [66]. Overall, fairness
research has neglected this important axis of discrimination and its
intersections with other vulnerable identities [45, 73, 85].
Property. High-tech tools can disempower poor people [37, 63].
Stakeholders of child protection systems are concerned about mod-
els automating biases against the poor [91]. Overall, poverty shows
mutually reinforcing negative effects on health, education, and
justice [47, 64, 80, 82]. Despite this fact, property and other so-
cioeconomic variables are seldom used as protected attributes in
algorithmic fairness research. This is partly due to data availabil-
ity: poverty data from household surveys is coarse and sometimes
unavailable, especially in the developing world [74]. In addition,
and perhaps to a greater extent, it is due to data usage. Wealth
is often the target variable of models, such as algorithmic social
policies [55, 74], or one of their (unprotected) input features, as
in creditworthiness estimators [30]. This seems especially true in
fairness research, where the most popular task is income prediction
with the Adult dataset [42]. Among formally protected attributes,
property is uniquely associated with a perception of mutability and
merit: people tend to associate wealth and poverty with individual
merit rather than structural constraints [18, 57]. This perception
fuels the discourse on deservingness, seeking to distinguish be-
tween deserving and undeserving poor people, which determines
the boundaries of admissible redistribution policies [8, 106]. In turn,
this impacts algorithmic fairness research, not only discouraging
bias mitigation based on wealth, but also constraining measurement
along this protected axis.

This section highlights blindspots in fairness research, neglect-
ing vulnerable and globally salient identities. It is worth noting that
this trend extends to fairness research more broadly, including qual-
itative studies, and to more protected attributes, including sexual
orientation. As a prevalent practice in the field, it has a tendency
to self-reinforcement, further incentivizing future research to con-
form. Indeed recent articles published at fairness conferences, such
as FAccT (the ACM Conference on Fairness, Accountability, and
Transparency) and AIES (the AAAI/ACM Conference on Artificial
Intelligence, Ethics and Society), mention race and gender more
frequently (by one order of magnitude) than religion, disability,
socioeconomic status, and sexual orientation [14]. Taking stock of a
complex social, legal, and technical landscape, we argue for a move
towards an ambitious research roadmap to tackle this complexity
(as advocated, for example, in Guo et al. [53]); avoiding it will only
prevent us from noticing and remedying existing harms.

4 OMITTED POPULATIONS
A lack of accurate and proper representation is at the heart of many
issues the fairness community tries to address. Oftentimes minority
groups are neglected in data, leading to discriminatory behavior
of systems leveraging this data [68]. Neglect is nuanced and takes
many forms. It can materialize as a lack of consideration for specific
protected attributes, as discussed in the previous section. It can also
derive from the underrepresentation of certain groups in the popu-
lation during data collection, who are not easy to reach. As we will
demonstrate in this section, the issue of underrepresentation gets
exacerbated due to the common practice of excluding information
about smaller groups during data processing. This is often done out
of convenience, to turn a multi-group problem into a binary one, or
in some cases, for privacy reasons. In tabular data, this exclusion
can either take the form of outright removal of minority groups
from the data or aggregation of multiple minority groups into one
big “other” group.

These exclusionary data practices are surprisingly common in
the examined literature and even more concerning is that they of-
ten apply to protected attributes. As protected attributes are, by
definition, linked to vulnerability, this amounts to discarding data
for disadvantaged minorities. Normalizing these practices sets a
dangerous example and incentive for the adoption of such prac-
tices also outside of research within real-world systems, with great
potential for harm, especially to the most vulnerable populations.

Case Study: Omitted Identities in COMPAS
To demonstrate this practice, we study the different processing
strategies in publications using the COMPAS dataset [7], one of the
most popular datasets in the fairness literature [42]. The Correc-
tional Offender Management Profiling for Alternative Sanctions
(COMPAS) system is a risk assessment tool used in the US judicial
system. The dataset, distributed under the same acronym, was con-
structed by ProPublica as part of a publication describing racial
biases in the profiling system. It contains risk scores from the system
for individuals in Broward County, Florida, US, generated during
2013–14. A datasheet [48] for the COMPAS dataset is available in
the Appendix of Fabris et al. [42]. The attribute typically considered
protected is race with a total of 6 categories: “African-American”,
“Asian“, “Caucasian”, “Hispanic”, “Native American” and “Other”.

Overall, we annotate 𝑁 = 69 publications using the COMPAS
dataset, with 85.5% (59) providing enough information to recon-
struct whether and how the race attribute was processed. Although
some publications considered additional attributes to be protected,
we did not systematically annotate processing of other protected
attributes. We identify a total of 8 different processing strategies
with the frequency of their occurrence shown in Figure 2A. We sort
processing strategies into three categories: (1) none if all data was
retained as-is, (2) aggregating if all observations were retained, but
subgroups were recoded and aggregated e.g. collapsing data into
“African-American” and “Other”, and (3) filtering if observations
were discarded rather than recoded or aggregated, e.g. keeping
only the groups “African-American” and “Caucasian” (the most
common form of processing). We do not observe a combination of
aggregating and filtering, although such a strategy could easily be
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Figure 2: Data from smaller populations is almost always either discarded or aggregated within the annotated literature. (A)
Prevalence of processing strategies for the COMPAS dataset within the annotated literature and (B) resulting base rates of
the protected attribute from these different processing strategies. Due to the small sample sizes, the populations of Asians
and Native Americans are difficult / impossible to see in the figure. Neither group is included as a category in any of the
processing strategies except when using the Full Data (𝑛 = 1). Processing strategies binarising protected attributes (i.e. leaving a
binary variable with only two groups) are highlighted with a black outline in A. The inner circle corresponds to the combined
prevalence of processing strategies using a specific approach (e.g. filtering or aggregation).

conceived. Examining Figure 2A, we see that only a single publi-
cation examined the full data as-is. The overwhelming majority of
publications either filter/discard (38) or aggregate (20) populations.
The most extreme processing strategies, leaving only two groups,
are the most common (53).

To highlight how processing strategies affect data, we apply each
processing strategy on the COMPAS dataset and show the distribu-
tion of the resulting race attribute in Figure 2B. While we compare
all processing strategies on the same version of the COMPAS dataset
(compas-scores-two-years.csv), we observe different publications
using different versions of the dataset. Figure 2 demonstrates how
different strategies for data processing alter the composition and dis-
tribution of protected attributes. Many of the strategies leave only
two groups, either discarding or aggregating minority groups; none
of the actual processing strategies retain Asian or Native American
populations as distinct groups. In general, few papers describe, and
even fewer justify their choices when handling protected attributes
[1].

This fact shows a tendency to simplification and binarization
in fair ML empirical research, which seems at odds with the im-
portance of diversity and socio-technical context broadly acknowl-
edged in this field. We speculate that this is partly driven bymethod-
ological advances which are more practical under binary protected
attributes, and partly by a tendency to algorithmic benchmarking,
which is more straightforward in the binary setting. Binarization
as an implicit norm in the literature sets a dangerous precedent
for research and practice in the field. As a consequence, we see a
risk of omission disproportionately affecting vulnerable minorities.
Besides the dangerous precedent of normalizing the exclusion of

vulnerable subgroups from the data, this also threatens the trans-
parency and reproducibility of fairness research; Figure 2A demon-
strates a large share of publications without enough information
to reconstruct processing decisions. It is worth noting that, while
different publications use different versions of the dataset, this sec-
tion focuses on a single dataset for comparability and simplicity.
Our results, therefore, give a lower bound on data processing varia-
tion. As the next section shows, these opaque and diverse choices
can lead to very different outcomes during model evaluation and
comparison.

5 OPAQUE PREPROCESSING
The previous section describes disparate practices for protected
attribute processing that are often overlooked. This section dis-
cusses a broader lack of documentation on dataset usage and its
consequences. This is a significant risk to the reproducibility and
generalization of fairness research for a combination of two rea-
sons: (1) many publications do not document their usage of a dataset
sufficiently, assuming that merely the name of a dataset clearly iden-
tifies its usage and (2) publications that do document data usage
or offer reproducible code vary greatly in their usage, disproving
the idea that merely identifying a dataset by its name is sufficient
information. These variations in usage, or preprocessing, are likely
to affect fairness [70, 89]. Beyond the variation in the mere usage
and processing of a dataset, we also observe many publications
using different variants or versions of datasets, sometimes from the
same official source and sometimes from undocumented sources.
These variants often lack information regarding the processing that
happened to create them.
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For each dataset-publication combination experimenting with a
prediction task (𝑁 = 262),3 we annotated the level of documenta-
tion, including whether a publication included enough information
to reconstruct dataset usage. In particular, we annotated the level
of information regarding (1) the target variable that was being
predicted 𝑦, (2) the features used for classification 𝑋 , and (3) the
protected attributes 𝑆 . We graded each publication for each aspect
into one of three levels: Yes, if there was sufficient information,
Guessable if someone familiar with the dataset could reasonably
make an educated guess, and No if there was insufficient informa-
tion or none at all provided. For each publication, we looked for
information in the main publication, the supplementary materials,
and the source code. We annotated the availability of source code
for every dataset-publication pair (𝑁 = 280). As source code was
often not directly referenced in publications, we also searched for
it explicitly for every annotated experiment. If source code was
available with a certain publication but did not match the publi-
cation’s analyses, we discarded it as Not Available. An example of
this are articles presenting new methodologies and experiments,
which provide an implementation of the new method but no code
reproducing their experiments.

The resulting annotations are summarized in Figure 3, showing
that the provided information was insufficient to reconstruct the
target variable for 16% (41 out of 262) of annotated experiments
and 9% (23) of experiments were lacking information regarding
protected attributes. Regarding features, the situation is even worse,
with half of the annotated experiments (132) containing either not
enough information (98) or forcing one to guess (34) to reconstruct
feature usage. As publications themselves seldom provide sufficient
information to reconstruct dataset usage, this issue is also largely
due to a lack of available source code, with just 39% (108 out of
280) of publications providing source code for their analyses. This
lack of documentation is problematic for both the reproducibility
of research and the generalization of findings in the field, as we
will demonstrate in the following.

It is worth noting that proper documentation of preprocessing
choices is not sufficient on its own. For example, 10 out of 22 publi-
cations using the “German Credit” dataset report extracting 𝑔𝑒𝑛𝑑𝑒𝑟
or 𝑠𝑒𝑥 information from the data. This is based on the widespread
misbelief that this information can be extracted from a column in
the dataset, when in fact the necessary information is not available
[52]. Nonetheless, having this information explicitly available in the
respective publications allows readers to evaluate essential aspects
of their correctness and quality.

Case Study: Opaque Preprocessing of Bank
We demonstrate the extent and impact of the variation in dataset
usage using the “Bank Marketing” dataset [69] (from here onwards:
Bank). This dataset is quite relevant in fairness research (fifth most
popular [42]) yet understudied in the literature. Bank describes
telemarketing of long-term deposits at a Portuguese bank in the late
2010s. Instances represent telemarketing phone calls and include
client-specific features (e.g. job and age), call-specific features (e.g.

318 publications do not fit the typical paradigm of using features to predict a target
variable and are therefore omitted. Experiments on synthetically generated datasets
are coded as Not Applicable.

duration), and environmental features (e.g. euribor). The associated
task is to predict whether clients subscribed to a term deposit after
the call.

Disparate Preprocessing Choices. We compiled a short list of struc-
tured preprocessing choices for Bank across 9 scholarly articles in
our corpus focusing on dataset version and protected attributes.
First, we note which version of the dataset was used, as there are
a total of four different versions available in the original source,
two of which have been used in our corpus: bank-full and bank-
additional-full, with the version marked as additional containing
additional variables, but having slightly fewer observations than
the other version. Second, we examine which attributes were con-
sidered protected, and third, how they were processed.

We find age, job, and marital to be considered protected, with
one publication considering both age and job protected. While most
examined publications consider age protected, they show variability
in its preprocessing. We identify 3 different strategies to turn age
into a binary column.4 Overall, the 9 publications produce 7 distinct
combinations of these three choices. An overview of these scenarios,
alongside a visualization regarding the prevalence of each choice,
is presented in Figure 4. Notice we are not considering additional
choices in dataset processing, such as selection of non-protected
features (𝑋 ), thereby providing a lower bound on the variation in
the usage of Bank.

Impact of Disparate Preprocessing. As shown in Figure 4, disparate
data processing choices translate into variations in the base rates of
the protected attributes, shown beside the identifying letter of each
scenario. To quantify the impact of this variation on algorithmic
fairness, we consider a fair classification task with the different
scenarios in Figure 4. For each scenario, we fit and examine multi-
ple models using the state-of-the-art automated machine learning
library autogluon version 1.0 [35, 36, 50]. A total of 𝑁 = 13 models
are considered; 12 correspond to the default model/hyperparameter
configurations in autogluon plus a logistic regression model, in-
cluded for its popularity in the literature and its common use in
practice.We use the variable y as a target, consider all non-protected
columns as features, and evaluate fairness using the protected at-
tributes as processed under each scenario. We evaluate the perfor-
mance (F1 score) and fairness (equalized odds difference [56]) of
each model, averaging across 10 train-test splits. The fairness and
performance measures used in this work are defined in Appendix C.
The within-scenario variations of both measures are sizeable with
an average spread (𝛿 = 𝑚𝑒𝑎𝑛(𝑚𝑎𝑥 (𝑥) −𝑚𝑖𝑛(𝑥))) of 𝛿𝐸𝑂𝐷 = 0.10
for equalized odds difference and 𝛿𝐹1 = 0.20 for F1 score across all
scenarios and splits.

Within each scenario, we rank models based on their perfor-
mance as well as their fairness scores, mimicking a model compari-
son and selection process based on accuracy and fairness evaluation.
We compare model rankings across scenarios to estimate the impact

4Strictly speaking there are 4 different strategies, as we observe a single publication
processing age as “age < 25 or age > 60” as opposed to “age >= 25 and age < 60”
which was observed in two other publications. As these two strategies are equivalent
to each other except in how they encode individuals who are exactly of age 60, we
combine them under the more popular choice. Moreover, one publication does not
mention processing the protected attribute, in which case we also use the most popular
processing strategy, as keeping age unprocessed would have been unrealistic.
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Figure 3: A large section of the annotated literature lacks sufficient information to reproduce analyses. Bar diagrams showing
whether publications in the annotated literature contain (A) sufficient information to reconstruct usage of the predicted target
variables 𝑦, the protected features 𝑆 and the features used for prediction 𝑋 and (B) source code to reproduce analyses. Only
publications containing a prediction task are included in the figure.
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Figure 4: The “same” dataset is used in many different ways within the literature. Sankey diagram illustrating the usage of
the Bank dataset within the annotated literature. Each split corresponds to a choice where differences were observed in the
literature. Each unique combination of choices or scenario is identified by a unique letter, with the base rates of the protected
attribute(s) displayed on the right. We constructed this figure to provide a conservative, lower-bound estimate regarding the
variation in dataset usage.
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Figure 5: While a practitioner would choose roughly similar models based on performance across the different scenarios,
they would choose very different ones based on fairness. Spearman’s 𝜌 correlations of model ranks on a measure of fairness
(Equalized Odds Difference) and performance (F1 score) between different scenarios. Letters correspond to scenarios described
in Figure 4.

of data processing choices. We compute Spearman rank correla-
tions (𝜌) on these rankings, reporting the full correlation matrices
in Figure 5.

Correlations are high for performance measures (F1 score), with
a mean of 𝜌

𝐹 1 = 0.747. This means that model comparison and
selection based on performance is stable and generalizes across
different scenarios. When examining correlations based on fairness,
we observe significantly lower and much more variable (sometimes
even negative) correlations, with a mean 𝜌

𝐸𝑂𝐷
= 0.04. This find-

ing suggests that model comparisons based on equalized odds are
strongly dependent on different data processing scenarios. The
plots on the right in Figure 5 exemplify this fact, depicting model
comparisons for a single run of the analysis under scenarios c and
d based on F1 score (bottom) and equalized odds difference (top). A
rank correlation close to zero for fairness-based rankings entails
that the fairest model in scenario c may be among the least fair in
scenario d. For example, the second-best model for equalized odds
under scenario c (highlighted in red) is the second-worst performer
under scenario d. Comparing model fairness under different data
processing scenarios yields completely different results. Additional
results of this analysis can be found in Appendix C, including cor-
relation matrices using balanced accuracy and demographic parity
[21] (Figure 8).

Additionally, we extend our analysis to algorithms designed
specifically for fair ML by training and evaluating the methods
in Friedler et al. [46] on the Bank data from each scenario. We
used the exact same list of algorithms as the original work [22, 44,
46, 60, 107]. This experiment, reported in Appendix C (Figure 9),
confirms the instability of fairness-based model comparisons under
these preprocessing choices. Overall, the results demonstrate how
variability in dataset usage translates into variability of fairness
scores; fairness-aware experiments would choose very different
models based on the different scenarios, despite working with the
“same” Bank dataset.

6 DISCUSSION
In the present article, we demonstrate how common choices in
algorithmic fairness datasets harm the quality and curb the im-
pact of fair ML research. We identify multiple worrying aspects
regarding prevalent data practices in the literature. First, we notice
that several protected attributes are neglected (Section 3). This
problem is partly due to privacy concerns and is exacerbated by
how datasets are used in practice, with many publications focusing
on a small fraction of protected attributes while relying on an even
smaller number of datasets.
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Moreover, we find that smaller subpopulations are often
excluded from analyses (Section 4), either by aggregating all
subpopulations into a single “Other” group or by just outright
dropping their data. Therefore, rare identities, such as religious
minorities or people with uncommon disabilities, have a double
risk of being neglected: important protected attributes are often
unavailable, and when they are, small minorities can be filtered out
or aggregated for convenience. This is an exclusionary practice that
fair ML work should not normalize, but rather counter. Ultimately,
misrepresentation of minorities and careless processing choices
have been identified as sources of biases in the first place [84], and
thus represent practices that should not be reproduced by fairness
research itself. We further note that neglecting minorities limits
research on intersectionality as the identification of intersectional
subgroups depends on the presence of (all) interacting attributes
and their sufficient representation in data.

Last, we observe a large amount of variation in the practical
usage of datasets which leads to very different model compar-
isons based on fairness properties. Paired with the lack of proper
documentation, this poses a threat to the reproducibility and
generalization of experimental results (Section 5), potentially
misleading practitioners during model evaluation and selection.
Limitations. There are certain limitations to our results. First, work
reflecting on the practices of the algorithmic fairness community
should also study the industry perspective. This article focuses
on fairness research since we were unable to conduct practitioner
interviews or otherwise evaluate common practices in the industry.
Although research differs significantly from industrial contexts, it
certainly influences the prevalent methodologies and best practices
in the field. Second, this work studies tabular datasets used for fair
classification. We expect minor differences in the usage and avail-
ability of protected attributes in other data modalities and tasks,
including e.g. the availability of skin type annotations in vision
datasets [19]. Moreover, this work focuses on the corpus of publica-
tions studied in Fabris et al. [42], containing articles published up
to and including 2021. While rather unlikely, data practices in the
field may have significantly changed. We examine the robustness
of our findings in Appendix B by considering manuscripts covering
different fair ML tasks and data modalities published in 2023. Our
results indicate that the analyzed data practices largely remain the
same, with the exception of the recently introduced and rapidly
adopted Folktables datasets [34].

7 RECOMMENDATIONS
The present results remain relevant and warrant addressing; we
propose the following recommendations.
Careful inclusion of missing protected attributes in the data.
Attributes such as religion and disability are uncommon in fairness
research and, more broadly, in machine learning datasets. Strong
incentives against their collection include concerns about privacy
and consent. We call for dedicated initiatives, including data do-
nation campaigns and citizen science initiatives, capable of filling
this gap and responsibly handling the collected data [13]. Targeted
data collection initiatives are certainly difficult to undertake, as
they require ethical reviews, advertisement through trusted parties,
meaningful consent elicitation, and proper data infrastructures with

permission systems. By making this gap more visible, we hope to
incentivize new work in this direction, including methods to build
semi-synthetic datasets that can be used for fairness research with-
out compromising sensitive information of data subjects [12, 90].
Handling multiple small subgroups. Discarding or aggregat-
ing data from protected subpopulations is a practice with a high
potential for harm that should be countered, rather than normal-
ized, especially by the fair ML community. If real-world data is
complex, featuring multiple protected groups with skewed distri-
butions, such complexity should be acknowledged and addressed
directly. Pretending that these challenges do not exist by artificially
making problems binary, harms the omitted populations immedi-
ately, as they are neglected in the present analysis, and in the long
term by legitimizing exclusionary practices. First, we call for more
explicit discussion about the practicality of proposed approaches
beyond binary settings, as with works on intersectionality and rich
subgroup fairness [61, 105]. Authors should be explicit (and re-
viewers demanding) about the applicability of techniques allegedly
presented under a binary framing for “notational convenience”.
Second, the fact that omitted groups are always smaller points to
an (often implicit) concern about the significance and stability of
groupwise differences. Disaggregated analyses can be unstable for
small groups; there is no easy way around this. We advocate the
development of nuanced fairness evaluations for disaggregated
analyses over small groups; such measures should convey informa-
tion on uncertainty akin to confidence intervals and describe the
statistical significance of differences.
Transparent data usage. Silent subgroup omission is an example
of a broader issue of opaque data processing. We call for reflec-
tion and transparency in the usage of datasets. Researchers should
clearly document how and why specific datasets are chosen and,
even more importantly, how they are used. Publications should
document which version of a dataset is used (if there are several)
and how exactly the data was processed. If the setting is a pre-
diction task, they should mention which variables were predicted,
which features were used for prediction, and which attributes were
considered protected. Authors can use appendices and supplemen-
tary materials when brevity is important. Ideally, they should also
provide the source code of analyses, following best practices re-
garding reproducibility and open research [71, 75]. In this regard,
we recommend including all the code used to preprocess data, even
when preprocessed data is cached and made available, as it can be
hard to reconstruct the origin of the data.

8 CONCLUSION
In this work, we demonstrated common data practices in algo-
rithmic fairness research, including the unavailability of certain
protected attributes, the frequent omission of minority groups, and
the lack of documentation about preprocessing choices that influ-
ence fairness evaluations despite being overlooked. These practices
harm fairness research by neglecting vulnerable identities, leading
to undetected harms, and by threatening the reproducibility and
generalization of findings. They are currently normalized in the
literature, where they set a dangerous precedent unless countered
with thoughtful data choices. Data is at the core of this field; we
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hope the issues raised here will lead to better usage of existing
datasets and inspire the careful curation of new resources.
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that negative citations are unlikely to have a sizable effect on the
popularity of an article [23] and the livelihood of its authors. Despite
these facts, we decided that criticism of individual manuscripts
would not add much utility to our work, while potentially leading
to (limited) negative consequences for their authors. Therefore, we
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out individual manuscripts.
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A ANNOTATIONS
A.1 Corpus selection
The selection criteria for the corpus are the same as in Fabris et al.
[42]. The overall scope of considered literature consists of all articles
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that were published in either (1) the proceedings of fairness-related
conferences such as the ACM Conference on Fairness, Account-
ability, and Transparency (FAccT ) and the AAAI/ACM Conference
on Artificial Intelligence, Ethics and Society (AIES), (2) the pro-
ceedings of major machine learning conferences, including the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), the Conference on Neural Information Processing Sys-
tems (NeurIPS), the International Conference on Machine Learning
(ICML), the International Conference on Learning Representations
(ICLR), the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), or (3) the proceedings of any
of the “Past Network Events“ or “Older Workshops” as listed on
the FAccT Network. Works from 2014 up to and including June
2021 were considered (including FAccT, ICLR, AIES and CVPR in
2021). This list of literature was narrowed down to fairness-related
articles by a manual review, after first filtering for articles which
included one of the following substrings in their titles (with * denot-
ing wildcards): *fair*, *bias*, discriminat*, *equal*, *equit*, disparate,
*parit*.

A.2 Annotation Process
Annotations were performed by the first author and two research
assistants over the course of multiple months. Research assistants
were fairly compensated for their work, following university guide-
lines at 12.00 EUR per hour without an academic degree and 14.00
EUR per hour with a Bachelor’s degree. The annotation scheme
and process were developed by the authors and research assistants
received interactive training on the annotation process.

Annotations were made using Google Sheets using two tables:
Datasets and Datasets-x-Papers, with each annotated column having
an explanatory note regarding its annotation scheme. Datasets were
randomly assigned to annotators, based on their internal unique
identifiers. Dataset-x-Paper combinations were assigned based on
assigned datasets, with a subset of them being reassigned based on
annotator availability towards the end of the annotation process.

Throughout the annotation process there were weekly meetings
to address any difficulties or ambiguities with annotations and the
additional option for asynchronous discussion via chat software.
Difficult annotations could be marked as requiring additional input.
Additionally, annotation quality was checked on face validity by
the first author for a subset of annotations.

A.3 Annotation Instructions
Besides in-person training on the annotation process, the following
written instructions were made available to annotators:
Tables

• Datasets, which contains data on individual datasets, incl.
any varieties

• Datasets-x-Papers, which contains an entry for every dataset
and paper that makes use of said dataset.

Annotation process. Start by annotating the data for a dataset,
then annotate the papers that use it. Update the entry of the dataset
if changes become necessary. For every column, you can find infor-
mation on how to annotate it by hovering over its title. Annotate
each row from left to right. When you want to put multiple val-
ues in a single cell (e.g. multiple column names), separate them

with semicolons. When any questions emerge or something is un-
clear, post in the slack channel. Please always use filter views when
performing annotations, to only see the annotations assigned to
you.
Standardized Process for Searching relevant sections. When
annotating entries in Datasets-x-Papers, it’s important we do our
due diligence in searching for information about how a dataset was
used. This is especially important in regards to a paper’s code (as
code is typically an external ressource, so easier to miss). Please
always try at least the following 5 steps when searching information
about how a dataset is used. You’re also free to try additional ways
of finding information about the dataset, but we want to make sure,
that at least these steps have been performed for every paper.
Searching for Code

(1) Search for "github" and "gitlab" in the paper.
(2) Search for the paper’s name on google. Sometimes there’s

an external repository with code that uses the paper’s name,
but is not referenced in the paper.

(3) Check in the official location of the paper whether it has
supplementary material e.g. an appendix or zip files. These
can contain code or a detailed description of datasets.

Finding relevant sections
(1) Search for the common names of the dataset itself to find

information about it (if it has a common name)
(2) Search for "dataset" or "data" to find the relevant sections

describing how data is used.

B ROBUSTNESS
In this appendix, we investigate the robustness of Section 3 findings
across time, fairness tasks, and beyond tabular datasets. Addition-
ally, we ensure that the tabular datasets we focused on remained
central in the literature. Considering the most recent proceedings
(2023) of two well-known machine learning and fairness confer-
ences such as ICML and FAccT, we select all articles whose titles
contain the string fair. We manually select articles that focus on
quantitative analyses of group fairness, without any restriction
based on task or data specification. For each of these manuscripts,
we annotate dataset and protected attribute usage. Our findings are
presented below.
Popular datasets remained popular. Our analysis in Section 3
is based on publications up to 2021, building on top of Fabris et al.
[42]. We find that 8 out of 10 most popular datasets remain the
same, with the key exception of the recently-introduced Folktables
datasets [34] (10 usages), complementing but not retiring Adult (13
usages). All such datasets are tabular, confirming the centrality of
this data modality in fair ML research.
Neglected identities remain neglected. Figure 6 compares pro-
tected attributes in fair ML experiments up to 2021 and in 2023.
Although we find isolated experiments on sexual orientation, prop-
erty, and disability, it is clear that these attributes, as well as religion
(𝑛 = 0), remain understudied, especially in comparison with sex,
gender, and race. It is worth noting that we follow the naming of
manuscript authors and dataset creators for sex and gender; the
drop of the former in favor of the latter is a consequence of this
fact and may not reflect an actual focus shift.
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Table 2: The usage of datasets remained highly similar in 2023. Usage of datasets in fairness-related articles published at FAccT
and ICML 2023 compared to usage within the annotated literature. Only datasets which are used at least twice in 2023 are
shown. Datasets are ordered by their usage in 2023.

2023 Up to 2021
Dataset Name Rank Fraction N Rank Fraction N
Adult 1 20.3% 13 1 30.0% 84
Folktables (new dataset) 2 15.6% 10 - - -
COMPAS 3 12.5% 8 2 24.6% 69
Communities; Communities and Crime 4 7.8% 5 4 4.3% 12
German; German Credit; Credit 5 6.2% 4 3 9.3% 26
Law_School 5 6.2% 4 4 4.3% 12
Bank; Bank Marketing; Marketing 7 4.7% 3 6 3.2% 9
default of credit card clients 8 3.1% 2 11 1.4% 4
Student; Student Performance 8 3.1% 2 21 0.4% 1

C ADDENDUM: OPAQUE PREPROCESSING OF
BANK

Here we present supplementary figures and information for the
analyses in Section 5. The performance metrics used in this work
are accuracy (Eq 1), balanced accuracy (Eq 2), and F1 score (Eq 3).

Precision = Pr(𝑦 = 1|𝑦 = 1)
Recall = Pr(𝑦 = 1|𝑦 = 1)

Specificity = Pr(𝑦 = 0|𝑦 = 0)
Acc = Pr(𝑦 = 𝑦) (1)

bACC =
Specificity + Recall

2
(2)

F1 Score =
2

Precision−1 + Recall−1 (3)

The fairness metrics used in this work are equalized odds dif-
ference (Eq 4), demographic parity difference (Eq 5), and disparate
impact (Eq 6).

EOD = max
𝑔

Pr(𝑦 = 1|𝑦 = 1, 𝑆 = 𝑔) − min
𝑔

Pr(𝑦 = 1|𝑦 = 1, 𝑆 = 𝑔)

(4)
DPD = max

𝑔
Pr(𝑦 = 1|𝑆 = 𝑔) − min

𝑔
Pr(𝑦 = 1|𝑆 = 𝑔) (5)

DI =
max𝑔 Pr(𝑦 = 1|𝑆 = 𝑔)
min𝑔 Pr(𝑦 = 1|𝑆 = 𝑔) (6)

The overall variation of different metrics for the first experiment
in Section 5 is illustrated in Figure 7. As can be seen, there exists am-
ple variation across the different metrics and variation is especially
pronounced on metrics of algorithmic fairness.

Figure 8 depicts correlation matrices for the first experiment
in Section 5, with different performance and fairness measures,
namely balanced accuracy and demographic parity difference. Al-
though we still note instability in fairness-based model comparison,
comparisons based on demographic parity are more stable than for
equalized odds difference. We interpret this as a consequence of a
classifier’s (groupwise) acceptance rate Pr(𝑦 = 1) being more stable
than its (groupwise) true positive rate Pr(𝑦 = 1|𝑦 = 1) since the

former is computed over all points in the test set, while the latter
only on the positives (𝑦 = 1).

For the second experiment in the section, we aimed to repeat
our analysis replicating a highly popular setting. We therefore used
the same selection of (mainly) fairness-aware algorithms used in
Friedler et al. [46] and applied their methodology on the differently
processed versions of the Bank dataset in Figure 4. Specifically,
we used the numeric variant of their analysis, as it works with a
sufficiently large selection of algorithms and does not require the
protected attribute to be binary. The correlation matrices for accu-
racy and disparate impact across scenarios are depicted in Figure 9.
Both metrics were chosen following Friedler et al. [46]. Disparate
impact is calculated using a binary version of the protected attribute,
split into privileged and unprivileged groups. Using the non-binary,
averaged version of disparate impact also discussed in the original
paper, lead to similar and even more diverse results.
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Figure 6: The usage of protected attributes remained similar in 2023. Relative usage of protected attributes in the annotated
literature up to 2021 and within the subset of literature we examined in 2023. Usage within the annotated literature corresponds
to the right half of Figure 1.
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Figure 7: There is a large degree of overall variation, especially on fairness metrics. Histograms displaying the overall variation
on different metrics within and across different scenarios and repetitions of the analysis.
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Figure 8: Spearman’s 𝜌 correlations of model ranks on (A) Balanced Accuracy and (B) Demographic Parity Difference between
different scenarios. Letters correspond to the scenarios described in Figure 4.
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Figure 9: Spearman’s 𝜌 correlations of model ranks on (A) Raw Accuracy and (B) Disparate Impact (binary) between different
scenarios when reproducing our analysis from Section 5 using an existing selection of fairness-aware algorithms and method-
ology [46]. Letters correspond to the scenarios described in Figure 4.
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