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ABSTRACT
Predictive algorithms are often trained by optimizing some loss

function, to which regularization functions are added to impose a

penalty for violating constraints. As expected, the addition of such

regularization functions can change the minimizer of the objective.

It is not well-understood which regularizers change the minimizer

of the loss, and, when the minimizer does change, how it changes.

We use property elicitation to take first steps towards understanding
the joint relationship between the loss and regularization func-

tions and the optimal decision for a given problem instance. In

particular, we give a necessary and sufficient condition on loss and

regularizer pairs for when a property changes with the addition

of the regularizer, and examine some regularizers satisfying this

condition standard in the fair machine learning literature. We em-

pirically demonstrate how algorithmic decision-making changes as

a function of both data distribution changes and hardness of the

constraints.
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1 INTRODUCTION
Machine learning is increasingly being used for prediction and re-

source allocation tasks pertaining to human livelihood; algorithms

often make predictions based on patterns in historical data to make

or supplement decisions about future events. For example, algo-

rithms are commonly used to determine a whether or not a loan

applicant should receive a loan [2, 34, 35], estimate a patient’s risk
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of heart disease [15, 28, 32], and estimate need for public assis-

tance [24], among other settings. Typically, an algorithm tries to

predict something like the probability of an applicant repaying

the loan if granted one, and then uses this prediction to assign a

treatment to the applicant, such as granting or not granting a loan.

Implicit in this model is the use of an underlying distribution to as-

sign a treatment by computing some underlying summary statistic,

or property, of the distribution over outcomes. Property elicitation

studies the relationship between the choice of objective function,

treatment assignments, and various statistics. For example, mini-

mizing squared loss corresponds to predicting the expected value of
the outcome (the probability of repayment) and deciding whether

or not to give a loan based on the expected value being above a

given threshold. This contrasts with minimizing the 0-1 loss, which

corresponds to learning the mode, of whether the person is more

likely than not to repay a loan, and the assigned treatment is simply

the decision to grant a loan.

In most practical optimization and allocation tasks, however,

one faces constraints on the treatment space, especially when the

treatments impact human livelihood and when resources are scarce.

In particular, fairness constraints are often employed to enforce the

(approximately) equal algorithmic treatment of different predefined

groups. Instead of minimizing the original loss function, these al-

gorithms often instead minimize loss + weight * regularizer,
where the regularization term adds a penalty for violating certain

desiderata about community-level outcomes.

However, to date, there is little understanding of how adding

regularization functions into the optimization problem changes

the property of the data distribution learned. We give a necessary

and sufficient condition for regularizers to preserve an elicited

property: the property elicited by the fairness regularizer must be

equivalent to the property elicited by the original loss. However,

this condition is rather strong: equivalence holds regardless of the
underlying data distribution. Therefore, we further characterize for
which data distributions the optimal treatments differ or are the

same. We demonstrate our results on group fairness regularizers,

though other regularization functions can be used as well (e.g., [29]).

To this end, we introduce the notion of regularized property elic-
itation, and what it means for two properties to be equivalent. In

Theorem 1 we show that, under mild conditions on the regular-

izer, a regularized property is equivalent to the original property

if and only if the property elicited by the regularizer is equiva-

lent to the original property. We apply Theorem 1 to a handful

of popular fairness regularizers– the absolute difference of demo-

graphic parity, expected equality of opportunity, and equalized false

positive rates– and demonstrate they are not equivalent to cost-

sensitive classifications. However, it is not necessarily the case that
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a regularizer changes the elicited property: many additive regular-

izers yield regularized properties equivalent to the original, namely

(multi)calibration and bounded group loss.
1
In these cases, while

the property does not change, using the regularizer is still effective

because of practical limitations on the experessivity of the hypoth-

esis class H , among other optimization challenges. It does suggest

in some sense that these equivalent regularizers value “accuracy as

fairness,” in line with sentiment from the original works.

In § 3, we present Theorem 1, which gives the necessary and

sufficient condition for the equivalence of properties, and in § 4

demonstrate these conditions on common fairness regularizers

for binary classification. For those regularizers that do change an

elicited property, we additionally provide examples and geometric

intuition about for which data distributions the regularizers change
(or do not change) the optimal decision, enforcing the imposed

constraints. Finally, in § 5, we demonstrate our results with em-

pirical evaluation on synthetic data, a heart attack risk analysis

dataset [32], and the German lending dataset [21].

1.1 Literature review
In machine learning, a variety of pre-, in-, and post-processing tech-

niques have emerged in recent years to make algorithmic decision-

making more fair or equitable. We focus on one algorithmic aspect

of in-processing wherein one modifies the learning algorithm itself

by adding a soft constraint to the objective function, which is some

weighted metric of the fairness violation. The addition of fairness

regularizers is one common approach to try to improve algorith-

mic decision-making in practice, though their effects are generally

not well-understood (cf. [3, 4, 7, 8, 14, 18, 19, 22, 38]). In particular,

while we study exact formulations of different fairness metrics, a

handful of works in the literature have studied and used convex

relaxations of the metrics of interest [37, 39, 40]. We posit that

our work could also serve as a tool to examine how the first-order

behavior of a parity metric and its convex relaxation align. While

many proposed fairness metrics are situated in binary classification

settings, extensions beyond the binary setting have been studied

more recently [7, 9, 23, 38, 40]. Our framework is general enough

to handle a variety of prediction tasks and regularizers beyond the

fair machine learning literature.

We study the impact of regularization functions on the “right”

decision an algorithm should make as a function of the underlying

data distribution through the lens of property elicitation. Property

elicitation is well understood on an individual basis for a variety

of discrete prediction tasks [10, 25–27] and continuous estimation

problems [6, 11, 12, 33, 36] on an individual level. Recently, Jung

et al. [20] and Noarov and Roth [30] relate property elicitation

to the notion of multicalibration. These works extend the canon-

ical understanding of multicalibration to estimate values beyond

the mean, and provide (multicalibrated) algorithms to estimate

higher moments, showing a strong equivalence between calibra-

tion and property elicitation. These results align with some of the

intuition provided in Theorem 1, but our result goes beyond the

scope of calibration as a fairness concept. Regularizers considering

1
We are not assigning a value judgment to whether or not a regularizer changes a

property.

community-level outcomes and group membership requires we

extend traditional notions of property elicitation.

2 BACKGROUND
We are primarily concerned with evaluating the optimal treatment

for various prediction tasks. Consider an agent 𝑖 ∈ {1, 2, . . . ,𝑚} =
[𝑚] who will achieve some outcome 𝑦 (𝑖 ) ∈ Y with probability

𝑝 (𝑖 ) ∈ ΔY , where ΔY is the simplex over a finite set of outcomes

Y. A central decision-maker (often a principal or algorithm) as-

signs a treatment 𝑡 (𝑖 ) ∈ T to the agent, and their error is scored

according to a loss function 𝐿 : T × Y → R+. As shorthand, de-
note 𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) ) := E𝑌∼𝑝 (𝑖 ) 𝐿(𝑡 (𝑖 ) , 𝑌 ) as the expected loss over 𝑝 (𝑖 ) .
Moreover, we assume each agent 𝑖 is a member of a group 𝑠 (𝑖 ) ∈ S,
and want to ensure agents of different groups are treated fairly by

the centralized decision-maker. Let 𝑛𝑔 := |{𝑖 ∈ [𝑚] : 𝑠 (𝑖 ) = 𝑔}|
be the number of agents belonging to group 𝑔, which we assume

is positive for each 𝑔 ∈ S. Often, we are concerned with possibly

set-valued functions, Γ : ΔY → 2
T \ {∅}; for shorthand, we denote

this Γ : ΔY ⇒ T .

In supervisedmachine learning, predictions aremade by learning

a hypothesis function ℎ : X → T mapping features 𝑥 ∈ X to

treatments 𝑡 ∈ T . We assume T is a finite set unless otherwise

stated. If the class of hypotheses H is sufficiently expressive, then

𝑡 encapsulates how the optimal hypothesis should assign treatment,
given an input 𝑥 . Equivalently, we are concerned with optimal

decisions under 𝑝 (𝑖 ) = Pr[𝑌 | 𝑋 = 𝑥 (𝑖 ) ]. For simplicity, we abstract

away X and proceed with 𝑝 (𝑖 ) ∈ ΔY and 𝑡 (𝑖 ) ∈ T in the sequel.

2.1 Regularization functions
Often, “fair” algorithms constrain optimization to ensure certain

desiderata are satisfied. However, some standard optimization al-

gorithms such as stochastic gradient descent often soften these

constraints, adding an additional penalty to the loss function for

violating the constraints. We study how the addition of regulariza-

tion functions R : T𝑚 ×S𝑚 ×Δ𝑚Y → R+ (henceforth: regularizers)

change the optimal treatment assigned by minimizing the expected

loss.

For example, imposing group fairness constraints, one might aim

to ensure treatments are independent of the sensitive statistic (as in

demographic parity) or treatments are calibrated to line up with the

true probabilities of positive classification (as in multicalibration).

In this setting, given a collection of individuals {(𝑠 (𝑖 ) , 𝑝 (𝑖 ) )}, we
aim to optimize

min

t∈T𝑚
𝐿R,𝜆 (t; s; p) := (1 − 𝜆)

[
1

𝑚

𝑚∑︁
𝑖=1

𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) )
]

︸                     ︷︷                     ︸
expected loss over𝑚 agents

+𝜆R(t; s; p) .

(1)

Because the regularizer might not be additive in t, the treatment

of an individual is not necessarily independent of the treatment

of others. This necessitates the optimization of t ∈ T𝑚
rather

than considering each data point individually, as is standard in

unregularized property elicitation.
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2.2 Property elicitation
When making predictions, a decision-maker often aims to learn

a property Γ : ΔY ⇒ T , which is simply a function mapping

probability distributions to treatments. Examples of commonly

sought properties include the expected value 𝐸𝑉 (𝑝) = {E𝑌∼𝑝 [𝑌 ]},
the mode mode(𝑝) = arg max𝑦 𝑝𝑦 , 𝛼-quantiles, and rankings.

Definition 1 (Property, elicits). A property is a function Γ :

ΔY ⇒ T mapping probability distributions to reports. If |T | is
finite, we call Γ a finite property. Moreover, a minimizable2 loss
𝐿 : T × Y → R+ elicits a property Γ if, for all 𝑝 ∈ ΔY ,

Γ(𝑝) = arg min

𝑡 ∈T
𝐿(𝑡 ;𝑝) .

Conversely, we denote the level set of a property Γ𝑡 = {𝑝 ∈ ΔY | 𝑡 ∈
Γ(𝑝)} as the set of distributions yielding the same optimal treatment.

Throughout, we assume that properties are nonredundant, mean-

ing that the level set Γ𝑡 is full-dimensional
3
for all t ∈ T and for

each 𝑝 ∈ relint(Γ̂t), we have |Γ̂(p) | = 1. This precludes the consid-

eration of treatments that are rarely optimal, or only optimal if and

only if another treatment is optimal as well.

Every minimizable loss elicits some property; we denote prop[𝐿]
as the (unique) property elicited by the loss 𝐿. For example, the

squared loss elicits the expected value [6, 33], and the level set

Γ0 = {𝑝 ∈ ΔY : E𝑝 [𝑌 ] = {0}} of the expected value is the set

of distributions with zero mean. We will later study the geometry

of the level sets of various properties to characterize the how the

minimizers of unregularized losses differ from those of their regu-

larized counterparts. In order to do so, we consider the property

Γ evaluated on a population. Given p ∈ Δ𝑚Y , we consider the ex-

tension Γ̂(p) := [Γ(𝑝 (𝑖 ) )]𝑖 with level sets Γ̂t :=
⋂

𝑖 {p ∈ Δ𝑚Y | 𝑡 (𝑖 ) ∈
Γ(𝑝 (𝑖 ) )}.

We now extend Definition 1 to include population-level reports

for loss functions to encapsulate the case where the regularizer is

not additive in t and/or is dependent on s.

Definition 2 (Regularized property elicitation). A regular-

ized property is a function ΘR,𝜆
: S𝑚 ×Δ𝑚Y ⇒ T𝑚 mapping beliefs

over outcomes to population-level treatments. Similarly, an objective
function 𝐿 regularized by R (weighted by 𝜆), denoted 𝐿R,𝜆 , elicits a
regularized property if, for all s ∈ S𝑚 and p ∈ Δ𝑚Y ,

ΘR,𝜆 (s; p) = arg min

t∈T𝑚
𝐿R,𝜆 (t; s; p).

We let prop[𝐿R,𝜆] denote the regularized property elicited by 𝐿R,𝜆 .

Denoting the level set of a regularized property requires some

nuance because we are concerned with the change in optimal treat-

ments as a function outcome distributions p, but the regularized
property is a function of s as well as p. Therefore, we denote the
level set ΘR,𝜆

t;s = {p ∈ Δ𝑚Y | t ∈ ΘR,𝜆 (s; p)} denote the level set
of the regularized property ΘR,𝜆

. If s is clear from context, we

sometimes omit it and write ΘR,𝜆
t . We now define a trivial, con-

stant regularizer R as non-enforcing, since it never enforces any

constraints.

2
One that attains the infimum in its first argument for all 𝑦 ∈ Y

3
The affine dimension of the set equals the affine dimension of the simplex

Definition 3. A regularizer R is nonenforcing if prop[R]t =
Δ𝑚Y for all t ∈ T , and enforcing otherwise.

3 EQUIVALENCE OF (REGULARIZED)
PROPERTIES

With an understanding of regularized property elicitation, we are

now equipped to ask when a property “changes” with the addition

of a regularizer to a loss; this requires us to consider what it means

for properties to be unchanged, or equivalent.

Definition 4 (Eqivalence of properties). A property Γ :

ΔY ⇒ T is equivalent to a regularized property Θ : S𝑚 × Δ𝑚Y ⇒

T𝑚 on s (denoted Γ ≡s Θ or Γ̂ ≡s Θ) if, for all p ∈ Δ𝑚Y , we have
t ∈ Γ(p) ⇐⇒ t ∈ Θ(s; p).

In general, but particularly for large sets of agents, equivalence

of a regularized property to its unregularized counterpart is a rather

strong condition: when there is a “universally fair” report, equiv-

alence holds if (and only if) the regularizer elicits essentially the

same property as the original loss.

The proof relies on the relationship between subgradients of

the Bayes risk and property values [13, Theorem 4.5]: if 𝐿 elicits

Γ, then there is a choice of subgradients 𝐷 of the Bayes risk of 𝐿,

𝐿(p) := inf t∈T𝑚 𝐿(t; p) such that there is a bijection from property

values to 𝐷 . Therefore, points of nondifferentiability of 𝐿 form the

intersection of level sets.

Theorem 1. Fix 𝜆 ∈ (0, 1) and s ∈ S𝑚 . Let loss 𝐿 elicit Γ, 𝐿R,𝜆

elicit Θ, and R elicit 𝐻 . Then (1) Γ̂ ≡s 𝐻 =⇒ Γ̂ ≡s Θ. (2) If 𝐻 is
nonredundant, then additionally assume 𝐻𝑡 ∩ Γ̂𝑡 ∩ Θ𝑡 ≠ ∅ for all
𝑡 ∈ T . If Γ̂ ≡s Θ, then R is nonenforcing or Γ̂ ≡s 𝐻 .

Proof. (1) The first statement is immediate as 𝐻 ≡s Γ̂ implies

t ∈ arg min

t′
R(t′; s; p) ⇐⇒ t ∈ arg min

t′
𝐿(t′; p)

⇐⇒ t ∈ arg min

t′
𝜆R(t′; s; p) ⇐⇒ t ∈ arg min

t′
(1 − 𝜆)𝐿(t′; p)

=⇒ t ∈ arg min

t′
𝜆R(t′; s; p) + (1 − 𝜆)𝐿(t′; p)

Now t ∈ Γ̂(p) =⇒ t ∈ Θ(p). If t ∈ Θ(p), then consider two cases:

if t ∈ 𝐻 (p), we are done by assumption. If t ∉ 𝐻 (p), then t ∉ Γ̂(p).
However, the two are equivalent, so there is some t′ ∈ 𝐻 (p) ∩ Γ̂(p),
so we contradict t ∈ Θ(p).

(2) Observe that since T is finite, so is T𝑚
, and the function

𝐿 : p ↦→ inf t∈T𝑚 𝐿(t; p) is piecewise linear and concave, as it

is the pointwise infimum of a finite set of affine functions (since

expectation is linear). Moreover, the function 𝜂𝐿𝑡 : p ↦→ 𝐿(t; p)
is affine and supports 𝐿 on Γ̂𝑡 for every t ∈ T𝑚

. Observe that if

Θ ≡s Γ̂, then 𝜂𝐿𝑡 and 𝜂𝐿
R,𝜆

𝑡 support 𝐿 and 𝐿R,𝜆 respectively on the

same sets for all t ∈ T𝑚
.

Considernondiff (𝑓 : Δ𝑚Y → R+) := {p ∈ Δ𝑚Y | 𝑓 is not differentiable at p}.
Since 𝜆 ∈ (0, 1), then nondiff (𝐿R ) = nondiff (𝐿) ∪ nondiff (R) 4

.

The assumption Γ ≡s Θ implies that nondiff (𝐿) = nondiff (𝐿R ),
which in turn implies nondiff (R) ⊆ nondiff (𝐿). If R is enforcing

and nondiff (R) ⊊ nondiff (𝐿), there must be some t′ ∈ T𝑚
such

that 𝐻t′ = ∅, and therefore, 𝐻 is redundant.

4
This is true regardless of 𝜆 ∈ (0, 1) ; see [10, Lemma 5]
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Consider p′ ∈ nondiff (𝐿)\nondiff (R). Observe that p′ ∈ Γ̂t∩ Γ̂t′
for some t ≠ t′. There exists a p ∈ 𝐵(p′, 𝜖) for small ∥𝜖 ∥ > 0 such

that 𝜂𝐿
R,𝜆

𝑡 supports 𝐿R,𝜆 on conv({𝑝, 𝑝′}).

p ∈ Γ̂t′ \ Γ̂t ⇐⇒ p ∈ Θt′ \ Θt

=⇒ (1 − 𝜆)𝐿(t′; p) + 𝜆R(t′; p) < (1 − 𝜆)𝐿(t; p) + 𝜆R(t; p)

⇐⇒ (1 − 𝜆) (𝐿(t′; p′) + 𝑐𝑇 𝜖) + 𝜆R(t′; p) < (1 − 𝜆) (𝐿(t; p′) + 𝑑𝑇 𝜖) + 𝜆R(t; p) 𝐿 affine on conv({𝑝, 𝑝′})
=⇒ 𝜆R(t′; p) ≤ 𝜆R(t; p) 𝜖 → 0 ,

which implies p ∈ 𝐻𝑡 ′ , and therefore, 𝐻𝑡 ′ ≠ ∅, yielding a contradic-

tion.

Therefore, we must either have R nonenforcing or nondiff (R) =
nondiff (𝐿), the latter of which implies that 𝐻 is nonredundant. We

avoid permutations of level sets by the assumption that𝐻𝑡 ∩Γ𝑡 ∩Θ𝑡

is nonempty, and must have equivalence of the properties.

□

Intuitively, Theorem 1 says that the property elicited by a regu-

larized loss function is the same as the unregularized loss if and only

if the regularizer elicits the same property as the loss itself. Since

loss functions are measurements of accuracy, then equivalence of

properties implies an algorithm values accuracy as fairness.

4 (NON)EQUIVALENCE OF COMMON
FAIRNESS METRICS FOR BINARY
CLASSIFICATION

We now evaluate a handful of common fairness regularizers, and

apply Theorem 1 to show nonequivalence between binary classifi-

cation tasks and their regularized counterparts. For each regularizer,

we give restrictions on Δ𝑚Y such that the regularized property is

equivalent to the original under these restrictions.

To build intuition, we examine simple cases of how regulariz-

ers change elicited properties with populations of𝑚 = 2 agents

belonging to different groups s = (𝑎, 𝑏).
Figure 1 provides some additional intuition for the proof of

Theorem 1. Each subfigure gives the level sets of the property

elicited by the mode regularized by the demographic parity vi-

olation (DP), where each point in [0, 1]2 represents p ∈ Δ2

Y by

(Pr𝑝 (1) [𝑌 = 1], Pr𝑝 (2) [𝑌 = 1]). Each colored cell depicts a different

level set of a regularized property Θ𝐷𝑃,𝜆
. This regularized property

is overlaid on the (unregularized) mode, so that, upon visual inspec-

tion, one observes the regions where the two properties differ. As

𝜆 → 0, the regularized property becomes increasingly similar to the

unregularized, and as 𝜆 → 1, the regularized property increasingly

resembles the property elicited by R.

4.1 Demographic parity
In the context of binary classification, one might be interested

in regularizing their loss with the demographic parity violation,

measured by the absolute difference of the rates at which agents

are assigned the positive treatment from each of two groups. Any

treatment that assigns the positive treatment at the same rate opti-

mizes the demographic parity regularizer, which is not equivalent

to the mode. That is, 𝐻 (s; p) ⊇ {0, ⊮} for all p ∈ Δ𝑚Y and s ∈ S𝑚
.

Thus, if S = {𝑎, 𝑏}5, we can apply Theorem 1 to conclude the

DP-regularized mode is not equivalent to the unregularized mode.

𝐿𝐷𝑃,𝜆 (t; s; p) = 1 − 𝜆

𝑚

𝑚∑︁
𝑖=1

𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) ) + 𝜆

������ 1𝑛𝑎 ∑︁
𝑖:𝑠 (𝑖 )=𝑎

𝑡 (𝑖 ) − 1

𝑛𝑏

∑︁
𝑖:𝑠 (𝑖 )=𝑏

𝑡 (𝑖 )

������
(DP)

Now, with T = {0, 1}, if 𝐿 is the 0-1 loss
6
, we can evaluate 𝐿𝐷𝑃,𝜆

for each treatment in T 2 = {(1, 1), (0, 1), (1, 0), (0, 0)}.

𝐿𝐷𝑃,𝜆 ((1, 1); (𝑝 (1) , 𝑝 (2) )) = 1 − 𝜆

2

[
(1 − 𝑝 (1) ) + (1 − 𝑝 (2) )

]
𝐿𝐷𝑃,𝜆 ((0, 1); (𝑝 (1) , 𝑝 (2) )) = 1 − 𝜆

2

[
𝑝 (1) + (1 − 𝑝 (2) )

]
+ 𝜆

𝐿𝐷𝑃,𝜆 ((1, 0); (𝑝 (1) , 𝑝 (2) )) = 1 − 𝜆

2

[
(1 − 𝑝 (1) ) + 𝑝 (2)

]
+ 𝜆

𝐿𝐷𝑃,𝜆 ((0, 0); (𝑝 (1) , 𝑝 (2) )) = 1 − 𝜆

2

[
𝑝 (1) + 𝑝 (2)

]
.

These expected losses now enable us to study the level setsΘ𝐷𝑃,𝜆
t;s =

{p ∈ Δ𝑚Y | t ∈ Θ𝐷𝑃,𝜆 (s; p)}.
We have have (0, 0) ∈ arg mint∈T2 if

1 − 𝜆

2

[
(1 − 𝑝 (1) ) + (1 − 𝑝 (2) )

]
≤ 1 − 𝜆

2

[
𝑝 (1) + (1 − 𝑝 (2) )

]
+ 𝜆

⇐⇒ 1 − 3𝜆

2(1 − 𝜆) ≤ 𝑝 (1)

1 − 𝜆

2

[
(1 − 𝑝 (1) ) + (1 − 𝑝 (2) )

]
≤ 1 − 𝜆

2

[
𝑝 (2) + (1 − 𝑝 (1) )

]
+ 𝜆

⇐⇒ 1 − 3𝜆

2(1 − 𝜆) ≤ 𝑝 (2)

1 − 𝜆

2

[
(1 − 𝑝 (1) ) + (1 − 𝑝 (2) )

]
≤ 1 − 𝜆

2

[
𝑝 (1) + 𝑝 (2)

]
⇐⇒ 𝑝 (1) + 𝑝 (2) ≤ 1 .

Therefore, the level set Θ𝐷𝑃,𝜆

(0,0) can be described by the polyhedron

Θ𝐷𝑃,𝜆

(0,0) =

𝑝 ∈ [0, 1]2 |

0 −1 1−3𝜆

2(1−𝜆)
−1 0

1−3𝜆
2(1−𝜆)

1 −1 1



𝑝 (1)

𝑝 (2)

1

 ≥ 0

 .

Observe that the final constraint is actually one on the marginal

𝑃 [𝑌 ]: the expected outcome over the whole population should be

less likely to be 1 than 0. We can evaluate the rest of the level sets

in a similar manner.

Now let us gain some geometric intuition for how these level

sets change by referencing Figure 1. For two agents belonging to

different groups, each point in the figure represents a pair p :=

(𝑝 (1) , 𝑝 (2) ) of true probabilities for the two agents. The pair p ∈
[0, 1]2, and the region [0, 1]2 can be divided into up to |T𝑚 | regions
for which each t ∈ T𝑚

is contained in Θ𝐷𝑃,𝜆 (p). The sequence
of figures in Figure 1 denotes the level sets of Θ𝐷𝑃,𝜆

as one varies

𝜆 ∈ [0, 1]. For intuition, one can observe that the regions where

the players receive the same treatment (blue and red) grows as 𝜆

5
This is simply for ease of exposition, and can be relaxed.

6
These derivations also hold if 𝐿 is squared loss, hinge loss, and many other losses for

binary classification.
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increases, starting with 1/2 of the [0, 1]2 space, and increasing to

all of [0, 1]2 as 𝜆 → 1.

We now turn our attention towards the regions of Δ𝑚Y where

the regularized and unregularized properties are equivalent with a

demographic parity regularizer. First, we observe that if uniform

treatment of a population is optimal on the unregularized property,

it is also optimal on the regularized property.

Proposition 1. Fix 𝜆 ∈ (0, 1). Let 𝐿 elicit Γ, 𝐿R,𝜆 elicit Θ, and R
elicit 𝐻 . For all t ∈ T𝑚 and s ∈ S𝑚 , Γ̂t ∩ 𝐻t;s ⊆ Θt.

Proof. p ∈ Γ̂t ∩ 𝐻t;s =⇒ 𝐿(t; p) ≤ 𝐿(t′; p) and R(t; s; p) ≤
R(t′; s; p) for all t′ ∈ T𝑚

, which in turn implies 𝐿(t; p)+R(t; s; p) ≤
𝐿(t′; p) + R(t′; s; p) =⇒ (1 − 𝜆)𝐿(t; p) + 𝜆R(t; s; p) ≤ (1 −
𝜆)𝐿(t′; p) + 𝜆R(t′; s; p) for all 𝑡 ′ ∈ T𝑚

. □

We apply this result to the “universally fair” reports via demo-

graphic parity 0 and ⊮.

Corollary 1. Fix s ∈ S𝑚 and 𝜆 ∈ [0, 1]. Let 𝐿 elicit Γ and L𝐷𝑃,𝜆

elicit Θ. Γ̂0 ⊆ Θ0;s. Moreover, Γ̂⊮ ⊆ Θs;⊮.

Proof. Let 𝐻 := prop[𝐿𝐷𝑃,𝜆]. For all p ∈ Δ𝑚Y , we have {0, 1} ⊆
𝐻 (p). Therefore, Γ̂0∩𝐻0 = Γ̂0 (and similarlywith Γ̂⊮∩𝐻⊮). Therefore,
Γ̂0 = Γ̂0 ∩ 𝐻0 ⊆ Θ0 and Γ̂⊮ = Γ̂⊮ ∩ 𝐻⊮ ⊆ Θ⊮. □

We now turn our attention to the opposite case: if, while regu-

larized, treating different groups differently (and uniformly within

the groups) is optimal, then it is also optimal in the unregularized

setting. In particular, this holds for treatments maximizing R.

Proposition 2. Fix s ∈ {𝑎, 𝑏}𝑚 and 𝜆 ∈ [0, 1]. Fix t = ⊮𝑎 (or ⊮𝑏
without loss of generality). Let 𝐿 elicit Γ over outcomes Y = {0, 1}.
Θ𝐷𝑃,𝜆
t;s ⊆ Γ̂t.

Proof. With s fixed, 𝑡 ∈ arg maxt′ 𝐷𝑃 (t′; p) for all p ∈ Δ𝑚Y .

Therefore,

(1 − 𝜆)𝐿(t; p) + 𝜆𝐷𝑃 (t; p) ≤ (1 − 𝜆)𝐿(t′; p) + 𝜆𝐷𝑃 (t′; p)∀t′

=⇒ (1 − 𝜆)𝐿(t; p) ≤ (1 − 𝜆)𝐿(t′; p) ∀t′ ,

which implies the result. □

With that, we partially characterize the relationship between

the unregularized and DP-regularized level sets for standard binary

classification. In the simple case with𝑚 = 2 agents, this charac-

terization is complete: if the optimal treatment is uniform, it stays

uniform. Moreover, if the most “unfair” treatment wherein all the

members of one group receive the treatment, and none of the second

group is optimal in the regularized setting, it is also optimal in the

unregularized setting. In any other setting, the optimal treatment

changes with the addition of a DP regularizer.

4.2 Equalized FPR
Following a similar process to § 4.1, we now consider the regularizer

that measures the absolute difference of false positive rates across

groups, where the false positive rate is given by 𝐹𝑃𝑅𝑔 (t; s; p) =

Pr[𝑌 (𝑖 ) = 0 | 𝑡 (𝑖 ) = 1, 𝑠 (𝑖 ) = 𝑔] = 1

| {𝑖:𝑡 (𝑖 )=1,𝑠 (𝑖 )=𝑔} |
∑
𝑖:𝑠 (𝑖 )=𝑔,𝑡 (𝑖 )=1 (1−

𝑝 (𝑖 ) ). The optimization problem then becomes

𝐿𝐹𝑃𝑅,𝜆 (t; s; p) = 1 − 𝜆

𝑚

∑︁
𝑖

𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) ) + 𝜆 |𝐹𝑃𝑅𝑎 (t; s; p) − 𝐹𝑃𝑅𝑏 (t; s; p) |

(FPR)

The FPR regularizer computes the difference of false positive

rates between groups, so one can observe that the false positive

rate of a group is is reduced by assigning more negative treatments

𝑡 (𝑖 ) = 0. We can see in Figure 2 that the FPR regularizer then makes

it worse for an algorithm to assign the positive treatment to an

agent 𝑖 even if 𝑝 (𝑖 ) is slightly greater than 1/2, as marked by the ★

in Figure 2(R).

As in § 4.1, we can apply Proposition 1 to show that if assigning

everyone the negative treatment is optimal in the unregularized

setting, it is also the optimal treatment with the FPR regularizer.

Corollary 2. Fix s ∈ S𝑚 . Let 𝐿 elicit Γ and 𝐿𝐹𝑃𝑅,𝜆 elicit Θ𝐹𝑃𝑅,𝜆 .
Γ̂0 ⊆ Θ𝐹𝑃𝑅,𝜆

0;s .

Proof. For all p ∈ Δ𝑚Y , we have 0 ∈ 𝐻 (𝑝). Therefore Γ̂0 =

Γ̂0 ∩ 𝐻0;s ⊆ Θ0 by Proposition 1. □

4.3 Expected equality of opportunity
While standard equality of opportunity (cf. [16]) requires access

to observed labels, we are interested in equality of opportunity in

expectation, and consider a variant that does not require access to

labels proposed by Blandin and Kash [5]. Consider the treatment

space T = {0, 1}𝑚 and regularizer R(t; s; p) = |𝐸𝐸𝑂𝑎 (t; s; p) −
𝐸𝐸𝑂𝑏 (t; s; p) |, where

𝐸𝐸𝑂𝑔 (t; s; p;𝑔) = Pr

𝑖∼[𝑚]
[𝑡 (𝑖 ) = 1 | 𝑦 (𝑖 ) = 1, 𝑠 (𝑖 ) = 𝑔] (EEO)

=
Pr[𝑌 (𝑖 ) = 1 | 𝑡 (𝑖 ) = 1, 𝑠 (𝑖 ) = 𝑔] Pr[𝑡 (𝑖 ) = 1]

Pr[𝑌 (𝑖 ) = 1]

=

(
1

| {𝑖:𝑠 (𝑖 )=𝑔,𝑡 (𝑖 )=1} |
∑
𝑖:𝑡 (𝑖 )=1,𝑠 (𝑖 )=𝑔 (𝑝 (𝑖 ) )

)
(∑𝑖 𝑡

(𝑖 ) )∑
𝑖 𝑝

(𝑖 ) .

We can apply Proposition 1 to show that uniform treatment

being optimal in the unregularized case implies it is also optimal

with the EEO regularizer as well.

Corollary 3. Fix s ∈ S𝑚 , and let 𝐿 elicit Γ over outcomes Y =

{0, 1} and 𝐿𝐸𝐸𝑂,𝜆 elicit Θ𝐸𝐸𝑂,𝜆 . Γ̂0 ⊆ Θ𝐸𝐸𝑂,𝜆
0 .

4.4 Equivalent regularizers
In the previous section, we use Theorem 1 to show the nonequiva-

lence of reguliarized properties, and examine a few common reg-

ularizers to show some restrictions that recover equivalence un-

der certain distributional assumptions on the outcomes. We ex-

amine two regularizers that elicit the mode, and thus the regu-

larized property is equivalent to the unregularized on all of Δ𝑚Y :

(multi)calibration [17, 20, 30, 31] and bounded group loss [1]. In

some sense, this suggests that these regularizers value accuracy

as fairness. If models are as accurate as they could possibly be,

the most “fair” treatments to assign are also the most accurate. In
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Figure 1: Visualizing the level sets of the 𝐷𝑃-regularized property Θ𝐷𝑃,𝜆 for different values of 𝜆 ∈ [0, 1], where𝑚 = 2 and
s = (𝑎, 𝑏). Each point (𝑝 (1) , 𝑝 (2) ) in a square represents (Pr𝑝 (1) [𝑌 = 1], Pr𝑝 (2) [𝑌 = 1]), and each colored cell represents sets of
(𝑝 (1) , 𝑝 (2) ) pairs such that the optimal treatment is the same for all points in the cell. For example, the magenta cell (lower
right) is the set of distributions where the decision-maker prefers to attribute the positive treatment (𝑡 (𝑖 ) = 1) to the first agent,
and the negative treatment (𝑡 (𝑖 ) = 0) to the second agent.

Figure 2: Visualizing the level sets of the 𝐹𝑃𝑅-regularized property Θ𝐹𝑃𝑅,𝜆 for different values of 𝜆 ∈ [0, 1], where𝑚 = 2 and
𝑠 = (𝑎, 𝑏). Each point (𝑝 (1) , 𝑝 (2) ) in a square represents (Pr𝑝 (1) [𝑌 = 1], Pr𝑝 (2) [𝑌 = 1]), and each colored cell represents sets of
(𝑝 (1) , 𝑝 (2) ) pairs such that the optimal treatment is the same for all points in the cell. For example, the magenta cell (lower
right) is the set of distributions where the decision-maker prefers to attribute the positive treatment (𝑡 (1) = 1) to the first, and
the negative treatment (𝑡 (2) = 0) to the second agent.

practice, the regularizers mitigate unfairness arising from limited

expressivity of the model: if the model was perfectly expressive

and could predict the mode perfectly, it would assign the same

treatments even with heavy penalties for “unfairness.”

4.4.1 Calibration. Calibration constraints ensure that the predicted
value 𝑡 (𝑖 ) most closely lines up with the true probability 𝑝 (𝑖 ) , regu-
larizing the loss by the sums of the absolute differences |𝑡 (𝑖 ) −𝑝 (𝑖 ) |.
The absolute difference elicits the 1/2-quantile, which is also the

mode onY = {0, 1}, so the regularizerR(t; s; p) = ∑
𝑔

1

𝑛𝑔

∑
𝑖:𝑠 (𝑖 )=𝑔 |𝑡 (𝑖 )−

𝑝 (𝑖 ) | elicits the mode in binary classification problems.

Formally, consider the objective

𝐿𝐶𝑎𝑙,𝜆 (t; s; p) = 1 − 𝜆

𝑚

∑︁
𝑖

𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) ) + 𝜆
∑︁
𝑔

1

𝑛𝑔

∑︁
𝑖:𝑠 (𝑖 )=𝑔

|𝑡 (𝑖 ) − 𝑝 (𝑖 ) |

(Cal)

This constraint does not include any comparisons across group

averages, so the optimal report is obtained by giving individual

predictions. In binary classification, the 1/2-quantile is the same as

the mode, so the property is given Θ𝐶𝑎𝑙,𝜆 (s; p) = mode(p).
This observation holds evenwith differentweightings for specific

subgroups, as in multicalibration a lá Hebert-Johnson et al. [17].

4.4.2 Bounded group loss. We now consider the constraint on

bounded group loss: E𝑌 |𝑆=𝑠𝐿(𝑟, 𝑌 ) < 𝜖 for all 𝑠 ∈ S, introduced
by Agarwal et al. [1]. To model bounded group loss as a soft con-

straint, we simply weigh the expected loss conditioned on the

group size as a regularizer, so accuracy is more incentivized on

small groups.

𝐿𝐵𝐺𝐿,𝜆 (t; s; p) = 1 − 𝜆

𝑚

∑︁
𝑖

𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) ) +
∑︁
𝑔

𝜆

𝑛𝑔

∑︁
𝑖:𝑠 (𝑖 )=𝑔

𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) )

Adding this constraint as a fairness regularizer does not change

the property elicited (e.g., Θ𝐵𝐺𝐿,𝜆 (s; p) = Γ̂(p) for all 𝑝 ∈ Δ𝑚Y ). In

part this is because it still encourages the model to learn what is

best for each individual in the population, where other constraints

add a regularizer that compares the deviation between two groups.
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Corollary 4. Let 𝐿 elicit Γ. Γ̂ ≡s Θ𝐵𝐺𝐿,𝜆 for all s ∈ S𝑚 and
𝜆 ∈ [0, 1].

Proof. The regularizer R(t; s; p) := ∑
𝑔

1

𝑛𝑔

∑
𝑖:𝑠 (𝑖 )=𝑔 𝐿(𝑡 (𝑖 ) ;𝑝 (𝑖 ) )

is additive in t, and elicits the same property as 𝐿 since it is simply

a reweighing of 𝐿. □

5 EXPERIMENTS
While property elicitation allows us to reason about what a treat-

ment an algorithm should assign, we examine whether or not these

decisions are consistent with the treatments assigned by algorithms

in practice with simple models. We first generate a set of syn-

thetic datasets to understand how a classifier’s decisions change as

one navigates the space of data distributions. Moving through this

space demonstrates the relationship between loss and regularizer

in the synthetic setting as the data distribution over changes in

Δ𝑚Y . We then evaluate the effect of the regularizer weight 𝜆 on

treatment assignment in cardiovascular disease risk prediction [32]

and lending [21] datasets, where the data distribution is fixed. In

both settings, we train a linear classifier over 30 trials with binary

cross entropy loss with (a) no regularizer, (b) demographic parity

difference (c) false positive rate difference (d) false negative rate

difference, (e) equality of opportunity difference, and compute the

fairness violations of the classifier trained on each of the four losses,

where elicited property values are shown in Figure 7.

5.1 Effect of the data distribution
Recall that we applied Theorem 1 and its intuition in Figures 1 and

2 to conclude the mode is not equivalent to ΘR,𝜆
for various reg-

ularizers including (DP), (FPR), False Negative Rates (in § A), and

Expected Equality of Opportunity (EEO). However, the equivalence

of regularized properties and their unregularized counterparts is

a rather strong condition, as pointwise equivalence must hold for

every set of data distributions. In practice, the true data distribu-

tion may be somewhere in the space of distributions where the

property value does not change for the chosen value of 𝜆. With

the knowledge that equivalent distributions have no endogeneous

differences in hand, we generate a set of synthetic distributions to

understand tradeoffs to regularizers as we move though the space

of data distributions.

We generate generate synthetic datasets for binary classification

as follows: there are two groups, S = {𝑎, 𝑏} with Pr[𝑎] = Pr[𝑏] =
1/2, a member of each group has Pr[𝑌 = 1 | 𝑆 = 𝑔] = 𝑝𝑔 ∈ [0, 1].
Each set of agents is represented by 𝑥 = {𝑝𝑎, 𝑝𝑏 , 𝑟1, . . . , 𝑟𝑘 }, where
𝑟1, . . . , 𝑟𝑘 are uniformly random values in [−1, 1]. We then train

a logistic regressor via stochastic gradient descent (30 trials with

learning rate = 0.001, 1500 epochs, 10000 (𝑝𝑎, 𝑝𝑏 ) pairs, 𝑘 = 3), that

minimizes the binary cross entropy loss regularized by either demo-

graphic parity, false positive rate, false negative rate, or difference

in equality of opportunity with 𝜆 = 0.15. The simplicity of features

is intentional: the “perfect” decision should be fully realizable in

the unregularized setting, so the benchmark accuracy should be rel-

atively high. Fixing the probability for a positive outcome 𝑝𝑎 = 0.3

for a member of group 𝑎, we vary the probability of a positive out-

come 𝑝𝑏 for a member of group 𝑏 to observe how fairness violations

change as the underlying data distribution changes. For intuition,

by design of the datasets, we reason about the “average member”

of the population and reference the level sets drawn in Figure 4.

Fixing 𝑝𝑎 and varying 𝑝𝑏 can be thought of as understanding what

happens in decision making as one moves vertically up the line

{(0.3, 𝑝𝑏 ) | 𝑝𝑏 ∈ [0, 1]}, denoted by the black dashed lines in Fig-

ure 4. In Figure 3 (L), we observe a a significant difference in DP

violation rate only when 𝑝𝑏 ≥ 1/2. Similarly, the false positive rate

violation gap “opens up” for 𝑝𝑏 ∈ [0.5, 0.65] in Figure 3 (ML), in

line with Figure 4, and no significant different in FNR violations

is observed as decision-making on this axis does not change in

Figure 4. Finally, for EEO, this gap opens for 𝑝𝑏 ≥ 1/2, then closes

again later.

5.2 The effect of choice of 𝜆
Conversely to the interpretation of the experiments in § 5.1, to gain

intuition for why decisions might change as a function of 𝜆, we

now consider each dataset representing a (𝑝𝑎, 𝑝𝑏 ) point in one of

Figures 1–2, and consider how the level set it belongs to changes

as one changes 𝜆. We examine two datasets, German lending [21]

and heart disease risk prediction [32]. For both datasets, we train

30 linear models with 15000 epochs, learning rate of 0.001.

German lending. In the German lending dataset, we treat age as

the sensitive attribute, using an indicator thresholded at 25 years

old. On the entire dataset, we have Pr[𝑌 = 1 | 𝑆 ≥ 25] = 0.728 and

Pr[𝑌 = 1 | 𝑆 < 25] = 0.578, and an unbalanced group representa-

tion with Pr[𝑆 < 25] = 0.191.

Perhaps surprisingly, we observe little impact of the choice of 𝜆;

moreover, in Figure 5, we observe no significant difference in the

performance across fairness metrics from regularized and unregu-

larized losses. Upon closer inspection, this can be explained partly

by the observation that the “average” group members (𝑝𝑎, 𝑝𝑏 ) =
(0.728, 0.578): a distribution that warrants treating the average

member of each subpopulation the same, which aligns with most

fairness regularizers. This is demonstrated in Figure 7, where the

(𝑝𝑎, 𝑝𝑏 ) coordinate is denoted by a g, for German. For every subfig-

ure in Figure 7, the g coordinate is in the blue cell, implying that the

“average member” of each group receives the same treatment with a

fairness-regularized loss as with an unregularized loss, suggesting

that for the probability distribution underlying this dataset, data

subjects are already treated approximately fairly by the unregular-

ized loss.

Heart disease risk. In the heart disease risk prediction dataset, we

treat sex as the sensitive attribute, and observe Pr[𝑌 = 1 | 𝑆 = 0] =
0.75 and Pr[𝑌 = 1 | 𝑆 = 1] = 0.449 yields a 𝑝𝑎, 𝑝𝑏 pair warranting

different treatments for the “average” member of each group, and

Pr[𝑆 = 1] = 0.63 for a more sensitive-attribute-balanced dataset.

The relationship between the optimal treatment of the “average”

member of both groups as 𝜆 changes can be seen in Figure 7.

Figure 8 shows the tradeoffs incurred by large weights on fair-

ness violations, as accuracy of regularized losses tends to drop for

𝜆 > 0.3, which aligns with some of the improvements in fairness

violations– namely for demographic parity and false positive rates.

There is no significant difference in the FNR violation, regardless of

𝜆, and an increase in the EEO violation; we conjecture this is due to

numerical stability as the baseline EEO violation is very small. In
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Figure 3: Regularizer values with synthetic data generated via Pr[𝑌 = 1 | 𝑔 = 𝑎] = 0.3 and Pr[𝑌 = 1 | 𝑔 = 𝑏] on the horizontal axis.
95% confidence intervals over 30 randomizations included.

Figure 4: Fixing 𝑝𝑎 = 0.3, examining how the property
value changes as a function of 𝑝𝑏 for different regularizers.
Demographic parity results in different decisions only if
𝑝𝑏 ∈ [1/2, 3/4], FPR if 𝑝𝑏 ∈ [1/2, 2/3], FNR has essentially
the same property values on the line 𝑝𝑎 = 0.3, and EEO
leads to a small region where optimal decisions change for
𝑝𝑏 ∈ [1/2, 2/3].

Figure 9 (R), this is supported by a higher range of EEO violations

in the regularized models.

6 DISCUSSION AND CONCLUSION
In this work, we extend the notion of property elicitation to con-

sider regularized loss functions, and give a necessary and sufficient

condition on a regularizer to be equivalent to the original prop-

erty. We apply this condition to demonstrate the (non-)equivalence

of properties with a handful of regularizers common in the fair

machine learning literature. Finally, we show how the choice and

weight of regularization function can change decision-making on

synthetic data as well as the German lending and heart disease risk

datasets.

Limitations and considerations. The main intent of this work

is to provide conceptual insight about how fairness regularizers

change algorithmic decision-making and predictions. The insights

provided rely on the hypothesis class being sufficiently expressive,

and should not be solely used to justify the use of a regularizer. The

addition of a regularizer and insights given are agnostic to the data

itself and therefore agnostic to pre-processing and post-processing

of data. Additional pre- or post-processing of the data may change

the elicited property, though we leave this to future work.

Future work. There are many directions for future work. This

work serves as a proof of concept for the extension of property

elicitation to accommodate regularization functions, demonstrated

on a handful of regularizers, but applying the necessary and suf-

ficient condition on the equivalence of properties under different

regularizers and more general prediction tasks remains an open

direction of work. Moreover, it is important to understand how

model complexity as well as pre- and post-processing of data can

affect results.
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Figure 5: Effect of 𝜆 on regularizer values on the German lending dataset [21]. Because the (𝑝𝑎, 𝑝𝑏 ) point summarizing group
differences in the dataset are at a point where regularized decisions are the same as unregluarized decisions, it is unsurprising
that regularizers do not significantly reduce unfairness, regardless of 𝜆.

Figure 6: Distributions of accuracy and fairness violations in
lending data. In general, it seems the models are tending to
make similar predictions, which often nearly equal medians.

Figure 7: The level sets of different regularized properties as
𝜆 changes. (Top to bottom: DP, FPR, FNR, EEO). The 𝑔 repre-
sents the “average” members of each group in the German
lending dataset, and ℎ the heart disease risk dataset.

7 ETHICAL CONSIDERATIONS,
POSITIONALITY, AND ADVERSE IMPACT

Ethical considerations. While this paper is theoretical in nature,

we hope it provides some helpful first steps in evaluating the dif-

ferent decisions recommended by algorithms subject to different

fairness criterion. Being largely theoretical, the choice of datasets

in the experimental section were based largely on three criterion:

(1) public access, for reproducibility, (2) relevant domains where

the FAccT community has implemented fairness-constrained al-

gorithms, and (3) the underlying data distributions do eventually

lead to some change in decision for some regularizers. To this third

point, there is some merit to verifying that decisions do not change
when they are not supposed to, but we view the main point of

the experimental section as giving a proof of concept that fairness

increases roughly in line with the regularized properties, even in

imperfect circumstances.

Moreover, we view this work as an initial step towards under-

standing how fairness considerations in algorithm development

change decision-making, and are interested to further see if lessons

from this work can be shared with human-in-the-loop decision-

makers to help them make the most informed decisions possible. In

its current form, the theoretical nature of this work is limited in un-

derstanding how human decision-makers will use this information.

Positionality statement. The authors are white women based at

universities in North America. As such, we occupy identities that

are often seen as both the “advantaged” and “disadvantaged” groups

in group fairness codifications. As algorithms might “fairness ger-

rymander,” we are some of the most likely beneficiaries of more

favorable decision-making, depending on the choice of sensitive

attributes. Academically, the authors’ backgrounds lie historically

in property elicitation and in the algorithmic consequences of ob-

jective function choice.

Adverse impacts. While we hope this is not the use case, this work

provides a framework for understanding when different fairness

regularizers change decision-making, disagree with each other, and

conversely, agree with each other. One adverse impact of this might

mislead practitioners to conclude that when regularizers agree

often, the choice of regularizer is inconsequential.

Additionally, since this work focuses on one in-processing tech-

nique, practitioners might be inclined or encouraged to solely use

this in-processing technique instead of additionally using pre- and

post-processing to make algorithms more fair. We highly encour-

age this framework to be used in conjuction with pre- and post-

processing techniques.
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Figure 8: Effect of 𝜆 on regularizer values on the heart disease risk dataset [32].

Figure 9: Distributions of accuracy and fairness violations in
heart disease data. In general, it seems the models are tend-
ing to make similar predictions, which often nearly equal
medians.
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Figure 10: Visualizing the level sets of the 𝐹𝑁𝑅-regularized property Θ𝐹𝑁𝑅,𝜆 for different values of 𝜆 ∈ [0, 1], where𝑚 = 2 and
𝑠 = (𝑎, 𝑏). Each point (𝑝 (1) , 𝑝 (2) ) in a square represents (Pr𝑝 (1) [𝑌 = 1], Pr𝑝 (2) [𝑌 = 1]), and each colored cell represents sets of
(𝑝 (1) , 𝑝 (2) ) pairs such that the optimal treatment is the same for all points in the cell. For example, the magenta cell is the set of
distributions where the decision-maker prefers to attribute the positive treatment (𝑡 (𝑖 ) = 1) to the agent in group 𝑎, and the
negative treatment (𝑡 (𝑖 ) = 0) to the agent in group 𝑏.

A ADDITIONAL EXAMPLE OF NON-EQUIVALENT PROPERTIES
A.1 Equalized FNR
Similarly, we consider false negative rates. Our objective is

𝐿𝐹𝑁𝑅,𝜆 (t; s; p) = 1

𝑚

∑︁
𝑖

𝐿(𝑡 (𝑖 ) , 𝑝 (𝑖 ) ) + 𝜆

������ 1𝑛𝑎 ∑︁
𝑖:𝑠 (𝑖 )=𝑎,𝑡 (𝑖 )=0

𝑝 (𝑖 ) − 1

𝑛𝑏

∑︁
𝑖:𝑠 (𝑖 )=𝑏,𝑡 (𝑖 )=0

𝑝 (𝑖 )

������
Like the FPR regularizer, since the FNR regularizer computes the difference of false negative rates between groups, one can observe that

a way to reduce the false negative rate of a group is to assign more positive treatments 𝑡 (𝑖 ) = 1. Again, we see in figure 10 that the FNR

regularizer then makes it worse for an algorithm to assign the negative treatment to an agent 𝑖 even if 𝑝 (𝑖 ) slightly less than 1/2.

Corollary 5. Let 𝐿 : [0, 1] × {0, 1} → [0, 1] and𝜓 : 𝑟 ↦→ 1{𝑟 ≥ 1/2} indirectly elicit the mode overY = {0, 1} such that 𝐿(𝑦,𝑦) = 0, and let
Θ𝐹𝑃𝑅,𝜆

:= 𝜓 ◦ prop[𝐿𝐹𝑃𝑅,𝜆]. Then Θ𝐹𝑃𝑅,𝜆 is not equivalent to the mode for 𝜆 > 0.
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