
Diversified Ensembling: An Experiment in
Crowdsourced Machine Learning

Ira Globus-Harris

University of Pennsylvania

Philadelphia, USA

Amazon Web Services Artificial

Intelligence

Pasadena, USA

Declan Harrison

University of Pennsylvania

Philadelphia, USA

Amazon Web Services Artificial

Intelligence

Pasadena, USA

Michael Kearns

University of Pennsylvania

Philadelphia, USA

Amazon Web Services Artificial

Intelligence

Pasadena, USA

Pietro Perona

California Institute of Technology

Pasadena, USA

Amazon Web Services Artificial

Intelligence

Pasadena, USA

Aaron Roth

University of Pennsylvania

Philadelphia, USA

Amazon Web Services Artificial

Intelligence

Pasadena, USA

ABSTRACT
Crowdsourced machine learning on competition platforms such

as Kaggle is a popular and often effective method for generating

accurate models. Typically, teams vie for the most accurate model,

as measured by overall error on a holdout set, and it is common

towards the end of such competitions for teams at the top of the

leaderboard to ensemble or average their models outside the plat-

form mechanism to get the final, best global model. In [12], the

authors developed an alternative crowdsourcing framework in the

context of fair machine learning, in order to integrate community

feedback into models when subgroup unfairness is present and iden-

tifiable. There, unlike in classical crowdsourced ML, participants

deliberately specialize their efforts by working on subproblems,

such as demographic subgroups in the service of fairness. Here,

we take a broader perspective on this work: we note that within

this framework, participants may both specialize in the service

of fairness and simply to cater to their particular expertise (e.g.,

focusing on identifying bird species in an image classification task).

Unlike traditional crowdsourcing, this allows for the diversification

of participants’ efforts and may provide a participation mechanism

to a larger range of individuals (e.g. a machine learning novice

who has insight into a specific fairness concern). We present the

first medium-scale experimental evaluation of this framework, with

46 participating teams attempting to generate models to predict

income from American Community Survey data. We provide an em-

pirical analysis of teams’ approaches, and discuss the novel system

architecture we developed. From here, we give concrete guidance

for how best to deploy such a framework.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0450-5/24/06

https://doi.org/10.1145/3630106.3658923

CCS CONCEPTS
• Human-centered computing → Collaborative and social
computing; •Computingmethodologies→Machine learning;
Ensemble methods.

KEYWORDS
Crowdsourcing, Ensembling Methods, Fairness

ACM Reference Format:
Ira Globus-Harris, DeclanHarrison,Michael Kearns, Pietro Perona, andAaron

Roth. 2024. Diversified Ensembling: An Experiment in Crowdsourced Ma-

chine Learning. In The 2024 ACM Conference on Fairness, Accountability, and
Transparency (FAccT ’24), June 03–06, 2024, Rio de Janeiro, Brazil. ACM, New

York, NY, USA, 17 pages. https://doi.org/10.1145/3630106.3658923

1 INTRODUCTION
Competition platforms are a popular framework for generating

accurate machine learning models through communal efforts. Kag-

gle is the most popular of these “crowdsourced" machine learning

platforms, boasting fifteen million user accounts and thousands of

competitions to date.
1
Companies and non-profits use the platform

to publicly host competitions for learning tasks, often with rewards

for the team with the highest performing model. One benefit of

crowdsourcing models is that it gives a wider community access to

the model development process: Kaggle, for instance, has been con-

sidered a mechanism for the “democratization" of data science to a

broader audience, particularly in the context of crowdsourced mod-

els for tasks with societal utility [5]. However, due to the standard

structure of these competition frameworks, they do not truly lever-

age the expertise of all the competitors, and fail to explicitly align

improvements in model fairness with competition success. Here,

we implement and provide an empirical analysis of an alternate

framework which provides such mechanisms.

In [12], the authors provide an alternative algorithmic framework

for crowdsourcing machine learning models, which we implement

here. Their framework was specifically designed for contexts where

unfairness, in the form of disparate accuracy of models across

1
https://www.kaggle.com/

https://doi.org/10.1145/3630106.3658923
https://doi.org/10.1145/3630106.3658923
https://www.kaggle.com/

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

identifiable subgroups of the distribution, is of concern, and where a

model would be considered “fair" if the model’s error on each group

is close to the Bayes optimal error on that group.
2
In this framework,

competitors compete against a global model 𝑓 . At each round, they

submit a function defining a group 𝑔 and a model ℎ which they

claim has improved error compared to 𝑓 when restricted to the

group 𝑔 (although ℎ need not improve on 𝑓 overall). If it does, as

verified on a holdout set, then this pair 𝑔 and ℎ are incorporated via

a natural ensembling technique into the model 𝑓 , and this updated 𝑓

is used in subsequent rounds of the competition. The framework has

attractive theoretical guarantees: each update decreases the overall

error of the model, and so it is guaranteed to quickly converge to a

state such that either 𝑓 is Bayes optimal, or else no competitor can

distinguish it from Bayes optimal using any (𝑔, ℎ) pair. Moreover,

the updates can be made in a way so that error is monotonically

decreasing not just overall, but simultaneously on all of the groups

𝑔 identified in the competition so far
3
. Note that this approach is

more general than the standard “Kaggle” design, which corresponds

to a competition where teams always submit (𝑔, ℎ)-pairs where
𝑔(𝑥) ≡ 1.

This approach addresses two ways in which Kaggle-style crowd-

sourcing platforms fail to optimally direct the participants’ efforts.

In standard competitions, the final model is reflective of individual

teams’ efforts rather than a communal goal: one team to unilater-

ally “wins” the competition by proposing the most accurate model.

It may well be that there are subregions of the dataset on which

the best model is not the winning model, but another competitors’.

Thus, Kaggle does not truly leveraging each competitors strengths,

nor does it provide a mechanism for competitors to specialize on

specific subtasks. This is particularly a failure from the perspective

of democratizing data science, as we wish to provide mechanisms

for individuals who have specific real-world insights or expertise

relevant to the particular machine learning task to contribute to

model development. For instance, if a learning task consisted of

data on individuals throughout the world, individuals belonging to

particular communities or who are experts on particular subareas

may be able to better design models for those particular subgroups

through data engineering. Ensembling the different competitors’

models into one final model is a natural partial solution to this short-

coming of standard crowdsourcing, as it allows for specialization in

model development. In practice, winning teams in crowdsourcing

competitions often do such model ensembling internally in an ad

hoc way in order to leverage the strengths of different models: anec-

dotally, of the last eight Kaggle competitions with monetary prizes

where models were published post-competition, five explicitly used

some form of model ensembling ([1, 3, 6, 7, 11, 13, 14, 17, 20, 25]).

The framework of [12] explicitly builds this ensembling into the

competition format, rather than relying on ad hoc ensembling out-

side of the competition framework.

2
Note that this is not a constrained optimization style notion of fairness, where, e.g.,

false positives are constrained to be equal across groups, and instead corresponds to

group minimax fairness [9, 18]. While in some cases a constraint-based approach to

fairness may be more appropriate than a minimax style approach, we note that in many

contexts, one might argue that when the Bayes optimal model is substantially different

across groups, (un)fairness is now a question of data engineering and perhaps different

features and/or more data should be collected to mitigate performance differences

across the subgroups of interest.

3
For formal statements, see Theorems 10, 12, and 14 in [12].

A second motivation is that this ensembling method provides

a mechanism to identify issues of unfairness and bias, and allows

competitors to specialize. In the Kaggle-style framework, the only

objective of interest is overall model accuracy. This reduces partici-

pants’ incentives to focus on small regions of the distribution where

the model performance is sub-optimal: efforts explicitly identifying

and correcting bias on small groups only pay out if your model wins

the competition. Companies need reporting (and reward) mech-

anisms for when individuals identify cases where their models

underperform on groups of interest. In the framework of [12], such

improvements are rewarded, and the goal of overall accuracy is

explicitly aligned with optimal performance on subgroups.

ResultsWe provide an empirical case study of the general frame-

work for crowdsourced machine learning proposed by [12]. In a

real competition between 46 teams consisting of students at a major

American university, we find that the final model outperforms all

competitors’ models individually (which is only possible because of

the explicit ensembling in the competition design), and that competi-

tors leveraged the ability to specialize. This specialization was done

through a combination of algorithmic and manual data engineering

approaches, andmost teams attempted to use contextual knowledge

of the task (measuring income) in order to make improvements

to their models. We describe the novel platform infrastructure we

implemented in order to host the competition and discuss the nu-

ances of constructing such an architecture in a scalable manner.

We discuss practical challenges and lessons learned from hosting

such a system, from denial of service attacks to setting acceptance

criteria in order to properly incentivizing later engagement in the

competition, as well as usability challenges.

Related Work The original model ensembling method in [12]

was designed as a “bias bounties" competition, and was framed

specifically as a method to combat unfairness. Here, we consider

their framework more generally as a method to do crowdsourced

machine learning while leveraging the strengths of all teams’ mod-

els, rather than purely a method to combat unfairness. While the

work of [12] contained some preliminary experimental results in

a very simplified framework, they did not include any true cross-

team experiments in which a global model is built using multiple

teams’ contributions. Here, we provide the software architecture

necessary to run such a crowdsourcing competition.

The “bias bounty" idea used in [12] dates at least to a 2018 Vice

editorial [21], and versions of the idea have been put into practice.

In 2021, X (previously known as Twitter) released a bias bounties

competition on their image cropping algorithm at DEFCON [8].

This competition had a substantially different framework than what

is suggested here: a small number of competitors submitted written

proposals, which were judged by a panel. Here, we consider larger-

scale competitions where such empirical judging may be intractable

(or legally fraught). Additionally, both the algorithmic framework

of [12] and the system design discussed here tackle adversarial

behavior by competitors in crowdsourcing competitions. Other

work along these lines in more traditional crowdsourced machine

learning include work on exploiting data leakage (and prevention

mechanisms) in crowdsourcing by [19] and [15], and mechanisms

for preventing overfitting in leaderboard-based competitions by

[2], among others. Finally, the algorithmic framework proposed by

[12] itself was independently and concurrently developed by [24].

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Another similar idea to bias bounties is the “red teaming" of gen-

erative models to identify failure modes (e.g. poor performance on

subgroups, leakage of confidential information, or code injection),

which has recently been popularized: notably DEFCON 31 had a

large redteaming event [23]. The goal of this form of redteaming is

to identify model vulnerabilities, but does not aim to fix them. In

comparison, our approach offers a principled way to incorporate

fixes into a model, with formal optimality guarantees about the

resulting ameliorated model.

Limitations The primary limitation of the crowdsourcing frame-

work itself is that it gives no guidance for how to find improvements

to the model. This is expected of any crowdsourcing framework:

the competitors’ goal is to identify improvements, and as the com-

petition progresses, finding these improvements becomes more

challenging. We note that while competitors may specialize and fo-

cus on such subgroups, they could instead consider improvements

on the entire model. As such, this framework is only more general

than the standard crowdsourcing framework: when useful, com-

petitors may specialize, but otherwise can focus on model-wide

improvements.

We emphasize that our framework is a proof-of-concept and that

the recommendationswe draw for future competitions are empirical

in nature: we run a single competition, so are unable to make any

statistical conclusions. Our competitors were given a relatively

straightforward learning task on a tabular dataset where subgroups

could be easily identified; in more complex tasks such as image

identification, identifying subgroups may be more challenging.

Competitors were also students, not machine learning experts,

and sometimes made seemingly counter-intuitive choices in their

approaches, which we discuss in greater detail in Appendix D. We

hope these observations may be more generally useful: one primary

challenge of crowdsourcing as a means for democratizing data

science is in the accessibility and usability of tools to those without

computer science expertise [5]. We hope our observations may be

used in subsequent crowdsourcing competitions and platforms in

order to improve access and to avoid usability pitfalls.

2 PRELIMINARIES AND BACKGROUND

Figure 1: Model ensembling procedure for submitted models.
In gray, a repair node which is created when the (𝑔𝑡 , ℎ𝑡) up-
date increases error on group 𝑔 𝑗 . The best previous version
of model for 𝑔 𝑗 has been tracked, and the model is repaired
to point to this.

For the purposes of our empirical study, we consider a competition

for a regression problem. Formally, we consider a prediction task

over a distribution of labelled examplesZ = X ×Y, where X are

features and Y ∈ R are real-valued labels that will be predicted

by a model 𝑓 . Let D ∈ Δ𝑍 be the joint distribution over features

and labels, and let 𝐷 ∼ D𝑛
denote a finite set of 𝑛 labeled samples

drawn i.i.d. from the distribution D. We measure performance

of the model 𝑓 by its mean squared error over the distribution,

where the error for a single prediction 𝑓 (𝑥) is defined as ℓ : X ×
𝑌 → R; ℓ (𝑓 (𝑥), 𝑦)) = (𝑓 (𝑥) − 𝑦)2, and average loss is denoted

L(D, 𝑓) = E(𝑥,𝑦)∼D [ℓ (𝑓 (𝑥), 𝑦)].
In [12], the authors propose an algorithmic framework termed a

“bias bounty" for iteratively patching a predictor 𝑓 when regions

with provably suboptimal performance are identified by auditors

(See also [24] for a very similar proposed algorithm that they call

“Prepend”). Formally, auditors are tasked with constructing (𝑔, ℎ)-
pairs of functions: a group indicator function 𝑔 : X → {0, 1} and
a hypothesis predictor ℎ : X → Y. We define the group loss of a

predictor 𝑓 on 𝑔 as L(D, 𝑓 , 𝑔) = E(𝑥,𝑦)∼𝐷 [(𝑓 (𝑥) − 𝑦)2 |𝑔(𝑥) = 1].
We let 𝑤 = ED [𝑔(𝑥)] be the weight of group 𝑔 over D. If a com-

petitor is able to construct a (𝑔, ℎ)-pair such that 𝑤 (L(D, 𝑓 , 𝑔) −
L(D, ℎ, 𝑔)) > 𝛼 , then the pair is accepted and the model 𝑓 is up-
dated.

The algorithm for ensembling the model 𝑓 with the new model

ℎ constructs a type of decision list with base node 𝑓0, as shown

in Figure 1: when a (𝑔, ℎ) pair is accepted, a new decision node is

prepended to the structure with group inclusion as the test on the

prepended node. Then, the updated model 𝑓 ′ will predict ℎ(𝑥) for
all instances such that 𝑔(𝑥) = 1, and 𝑓 (𝑥) otherwise. We can iterate

this process, allowing competitors to search for new (𝑔, ℎ)-pairs to
reduce error on 𝑓 ′. Let (𝑔𝑖 , ℎ𝑖) denote the 𝑖𝑡ℎ accepted pair to the

model, and let 𝑓𝑖 denote the model after it has prepended (𝑔𝑖 , ℎ𝑖).
Since the proposed groups may not be disjoint, it is possible

than an update (𝑔𝑘 , ℎ𝑘) may improve performance on group 𝑔𝑘
while decreasing performance on an earlier group 𝑔𝑖 due to group

intersections. In order to avoid this, the model is iteratively patched

after updates: for each 𝑔𝑖 with 𝑖 ≤ 𝑗 < 𝑘 , the model 𝑓𝑗 which

performs best on 𝑔𝑖 tracked. After each update, if the model’s error

on any previously identified group has gotten worse, then themodel

is repaired by prepending a node with test for group inclusion of

𝑔𝑖 which “points" to 𝑓𝑗 if 𝑔𝑖 = 1 and to 𝑓𝑘 otherwise. In Figure 1,

the gray node is one such repair. This implies that once a (𝑔, ℎ)
pair is accepted into the overall model, the error rate on 𝑔 is non-

increasing. We denote this as the “repair" procedure, and can make

the following formal guarantee:

Theorem 2.1 ([12]). Let𝑤𝑖 = E[𝑔𝑖 (𝑥)] and letΔ𝑖 = L(D, ℎ𝑖 , 𝑔𝑖)−
L(D, 𝑓𝑖 , 𝑔𝑖). If all accepted (𝑔𝑖 , ℎ𝑖) satisfy 𝑤𝑖Δ𝑖 > 𝛼 , then at most
1/𝛼 submissions may be accepted, including repairs. Furthermore, if
a group is introduced at round 𝑖, {L(D, ℎ𝑖 , 𝑔𝑖) − L(D, 𝑓𝑗 , 𝑔𝑖); 𝑗 > 𝑖}
is monotononically decreasing.

In practice, we cannot verify improvements or track the group

losses necessary for repairs over distributional loss. Instead, a sam-

ple of validation data, not accessible by competitors, is used to

calculate all losses, and the above Theorem 2.1 is generalized for

in-sample use.
4
.

4
See for example Theorems 12 and 14 in [12]

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

3 EMPIRICAL STUDY
We describe an empirical study conducted in an elective computer

science course with a focus on algorithmic fairness at a prominent

American research university during the spring semester of 2023.

The study was deemed IRB exempt, and all students whose work

is included in the subsequent analysis signed the consent form in

Appendix F. The assignment instructions are given in Appendix

G. Students were not monetarily rewarded, and the assignments

were graded without knowledge of who had agreed to have their

work included in the study. Identifying markers for participants

have been removed.

3.1 Data Set and Prediction Task
Competitors worked on a regression task predicting annual in-

come for individuals in Southern US states earning between $0 and

$100,000, based on ACS PUMS data derived from the Python Folk-

tables [10] package. The dataset contains 485,906 instances with

twenty-one features, including sensitive attributes such as sex, race,

age, and disability status. The full list of features included, along

with their ACS encoding, are listed in Appendix C. Training, vali-

dation, and test splits were created with 70%, 15%, and 15% weights

respectively. Training data was distributed to students, validation

data was used to determine acceptance for model updates, and test

data was used for post hoc model evaluation. Teams had access to

the training data, the current global models’ training errors, and

the current global models’ training predictions. They did not have

access to these quantities for the validation data that was used to

accept predictions or for the holdout data. While the raw dataset is

publicly available online, teams were instructed to not access it, and

reverse-engineering our exact learning task would have required

effort. Additionally, this form of cheating would be easily detectable

as we had access to all of the submitted code.

3.2 Competition Framework
The study contained a total of one hundred thirty-nine graduate and

undergraduate students from various STEM disciplines, predomi-

nantly computer science and data science. Participants were split

into forty-five teams of three to four students for the project, which

students had slightly over a month to complete. The competition

was structured to have teams compete in two ways.

The first way teams competed exactly mirrors the crowdsourc-

ing framework described above: teams all worked to update a cen-

tral, constantly up-to-date model, which we will call the global
model. This model initially began as a relatively low-error gradient-

boosting regressor trained by the course staff. Teams were given

the initial training predictions from the global model, and tasked

with constructing (𝑔, ℎ)-pairs to improve (subgroup) accuracy. If a

team’s (𝑔, ℎ)-pair was accepted, they were rewarded with points

proportional to the reduction in the model’s overall validation er-

ror. The model was updated to incorporate the (𝑔, ℎ)-pair, and a

notification was sent to all participants containing the reduction in

error as well as the global models’ updated training predictions.

Every time a team submitted a (𝑔, ℎ) pair to this global com-

petition, that pair was also submitted to a local version of the

competition specific to that particular group, which built an ensem-

bled model using only that single teams’ submissions. The initial

local model for each team was a depth one decision tree fit on the

training data, essentially predicting the mean label for all instances.

Teams’ local models were evaluated based on the validation error

rate, and a leaderboard was displayed throughout the competition

for teams to view the relative performance of their local model

against others.

Of the 6914 (𝑔, ℎ)-pairs that the forty-five teams submitted, 3137

of them were submitted by Team 7, who automated a brute force

approach. We discuss their approach briefly in 4.2, but omit their

submissions in our analysis in order to give a clearer picture of the

other teams’ efforts.

3.3 Analysis of the Competition

0 5 10 15 20 25 30 35
Update Round

17000

18000

19000

20000

21000

22000

Lo
ss

Team Test Loss over Course of Updates (Top 10)
Global Model
Team 21
Team 14
Team 3
Team 31
Team 10
Team 39
Team 24
Team 43
Team 0
Team 2

Figure 2: Tracking test error of the top ten teams’ localmodels
per accepted update vs. globalmodel. In the legend, the teams
are ordered by the performance of their local model top-to-
bottom; see Table 1 for final rankings of teams’ models.

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
Gl

ob
al

Team

ST

AGEP

CIT

COW

DDRS

DEAR

DEYE

DOUT

DRAT

DREM

ENG

FER

JWTRNS

LANX

MAR

MIL

SCHL

SEX

WKHP

OCCP

RAC1P

Fe
at

ur
e

Group Feature Usage by Team

0.0

0.2

0.4

0.6

0.8

Figure 3: Frequency of feature usage in group submissions
by team. The features listed on the 𝑦-axis are explained in
more depth in Appendix C. This plot is an analysis of all
(𝑔, ℎ)-pairs submitted, not only those which were accepted.

We provide empirical observations about the approaches employed

by students in the competition. Based on these observations, we

conclude with a concrete set of suggestions for how to create com-

petition designs which are maximally usable for competitors.

The global model outperformed all local models: Ensem-

bling the crowdsourced models produced a better model than in-

dividual teams’ efforts. Eleven teams (including Team 7) managed

to submit a total of twenty accepted updates to the global model,

which outperformed all teams’ local models at the completion of

the study. Specifically, the best team had an overall squared error

of 17012.32 on the holdout test data, while the global model had

squared error of 17010.49–a slight improvement but an improve-

ment nonetheless. This is possible only because the global model is

explicitly ensembling contributions from multiple teams. We dis-

cuss performance of the global model on its accepted groups and

its overall performance, and include more detailed comparisons to

the best teams’ local models in Appendix 8.

Specializingmodels to subgroups helped:Teams could choose

to compete using only traditional Kaggle-style updates where the

submitted 𝑔 represents the entire dataset. One team (team 10) did

so: each of their six successful updates fully replaced their previous

models.
5
Their final model performed well, 5th out of all groups,

as shown in Figure 2. Thus, treating the competition as purely a

Kaggle-style exercise was a relatively competitive strategy, but was

5
They did also initially try smaller subgroups, so this is not seen in Figure 4 which

shows group weights of all groups including those not accepted. They then changed

their approach to only focus on improvements to the whole model.

not the most competitive strategy among our participants. This

is further demonstrated in Figure 8 in Appendix B; which shows

that accepted updates usually somewhat specialized. Furthermore,

while the global model did accept some later updates over the entire

dataset, they each triggered the repairs described in Section 2. In

other words, there were models submitted earlier in the competition

that performed better on their associated subgroup than later up-

dates, and thus replacing the entire model with a later one naively

would have caused an increase in error on those groups — even

as it led to decreased overall error. The automated repair method

corrects for this, which involves re-ensembling the submitted model

with previous submissions, even when the most recently accepted

submission corresponds to a trivial “group” corresponding to the

entire dataset. Thus even when competitors who choose to ignore the
ability to target subgoups 𝑔 and instead submit Kaggle-style updates
have their updates accepted, the resulting model is still an ensemble,
which is accuracy-improving.

Figure 4: Distribution of weights (ED [𝑔(𝑥)]) of all groups
submitted by teams (including rejected submissions), with
teams sorted by average group weight. Each vertical line cor-
responds to a single team, and the blue dots are the weights of
the groups they submitted. The orange dots are the average
weight of groups submitted by the teams.

Most teams specialized, and did so differently: Over the
course of the competition, a total of 896 updates were made across

the 46 teams, ranging from 5 to 42 updates per team. As seen in

Figure 4, the sizes of groups submitted on average differed signif-

icantly between teams, indicating that teams broke the problem

up differently. More explicitly, in Figure 3, we see the distribu-

tion over submissions of which features teams used to define their

groups 𝑔, measured by frequency. A complete mapping of the fea-

ture acronyms to their meanings is provided in Appendix C; in the

figure while features such as race (RAC1P), binary sex (SEX), and

age (AGEP) were commonly targeted by a majority of teams, we see

subsets of teams focusing on other features such as education level

(SCHL) and disability status (primarily DDRS, DEAR and DEYE).

We discuss this specialization in greater detail in Appendix B.

Most teams employed a combination of manual, auto-
mated, and learned approaches: Teams had multiple approaches

for identifying groups of datapoints to make improvements on.

They could manually identify regions where the model performed

poorly, e.g. by conditioning on different features to find regions the

model might be specified to perform poorly on. Or, they could use

an algorithmic approach, e.g. specifying some class G of possible

groups and then trying to learn the group 𝑔 in G where the current

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

model performed worst. Teams were given a file with potential

algorithmic approaches they could attempt and were encouraged to

explore their own methods.
6
Purely algorithmic approaches such

as learning clusters of datapoints where performance was subopti-

mal were largely less successful: only three of the 19 (𝑔, ℎ)-pairs
accepted to the global model were automated, and in general auto-

mated updates had an acceptance rate of 13.6 percent, as opposed

to the 25.8 percent acceptance rate for manual updates. Automated

approaches were also less popular in terms of overall number of

submissions: only 21.8 percent of the submitted updates were auto-

mated approaches from 37 unique teams.

Groups were often chosen using contextual knowledge:
One approach many (roughly 85 percent) of the teams had was to

condition across the feature space using their knowledge of the

context of the prediction task. For instance, many teams chose to

examine subgroups related to gender or race. In particular, of the 821

submissions that used race as a predicate for the group, 327 (39%)

subsetted over African Americans, and when binarized sex was a

predicate, it was overwhelmingly (96% of the time) used to subset for

female-identified individuals. In their write-ups, students stated that

they believed that these subgroups might, due to systemic bias or

discrimination, have disparate pay, and hence these features might

be leveraged to improve the model. The efficacy of this approach is

arguable, as discussed in greater detail in Appendix D: specialization

to narrow subgroups did help teams find updates, but often this

required careful examination of the data.

Finding Later Updates and Identifying Promising Sub-
groups is Hard As in any competition, we expected teams to

struggle to find improvements to the model as the competition

wore on. This prediction was correct: at the end of the month only

eleven of forty-five teams managed to have updates accepted on the

global model. One primary challenge that students wrote about was

how to balance specialization with generalization: if the subgroups

of interest are too small, then restricting training to that subgroup

will likely overfit. Specialization only helps if you have reason to

believe that this subgroup has some generalizable structure that the

larger model has yet to find, and knowing when this might occur

is challenging.

Final Models Perform Similarly While Making Different
PredictionsWhile the model desired from a large scale competi-

tion would be crowdsourced from all competitors, we constructed

local models to reflect efforts from individual teams for purposes of

grading. However, these local models produced an interesting phe-

nomena; the leaderboard for the most accurate local models shows

a narrow margin compared to the crowdsourced global model yet

these models make substantially different predictions. In Figure 9,

we plot the absolute difference in predictions between the global

model and the top five local models to see a non-trivial density of

instances for which the models disagree.

4 PLATFORM DESIGN
In this section, we introduce a platform for hosting the competi-

tions. The traditional method for authenticated user interaction

with a server is to develop a full stack solution; a comprehensive

system covering web development, database management, back end

6
Algorithmic methods file is listed in code repository listed in Appendix.

software, and more. Naturally, these systems require expertise to

build and have serious implications when incorrectly constructed.

Context management services, such as Wordpress, reduce these

requirements but have monthly fees and frequently contain vulner-

abilities.
7
Instead, our platform leverages GitHub to host competi-

tions, gaining the security and web interface inherent to GitHub.

The open-source package and detailed installation instruction are

available for download at https://github.com/Declancharrison/Bias-

Bounties-Template.

4.1 Platform Design
In our construction, competitions are hosted on private GitHub

repository cloned by the organizer from our package template.

During the package installation, the organizer connects a backend

computation source, e.g. an AWS EC2 instance or personal Linux

machine, to the repository using a continuous integration and de-

ployment tool, GitHub Actions. By utilizing Actions, we “solve" two
major components of a secure web-server stack: data base manage-

ment and a front-end interface.

Since competitions are run inside private repositories, an orga-

nizer may easily add and remove participants through the GitHub

GUI, avoiding the expertise needed to manage an SQL database.

Additionally, the competition platform gains GitHub’s user authen-

tication protocols; accessing a competition implies repository read

permissions and there are currently no known vulnerabilities for

reading private repositories without appropriate permissions.

Due to the expected background of participants in ML competi-

tions, we assume basic familiarity and likely comfort with GitHub.

One challenge of a competition is the global model needs to be

accessible to competitors, be constantly updated, and be able to

accept competitors (𝑔, ℎ)-pair submissions. GitHub trivially solves

these problems through push and pull requests to a repository. Our

platform stores necessary competition information such as the cur-

rent global model’s training predictions and the leaderboard in

such a repo, and participants interact with the repository to submit

(𝑔, ℎ) pairs through pull requests. The detailed format of these pull

requests is described in Appendix E, but, at its core, participants up-

load models to a cloud provider (like Google Drive or AWS S3) and

provide links to each models in their request. Feedback is provided

to participants via comments on pull requests and any successful

update forces a push to the repository with updated model infor-

mation. The submission-feedback loop with backend protocol is

shown in Figure 5.

As an added bonus factor, GitHub allows users to create websites

from HTML and Markdown code in their repository, which allows

us to easily integrate a public leaderboard and general competition

information in a digestible format for users.

4.2 Security Protections & Vulnerability
Concerns

In order to evaluate whether or not a submitted (𝑔, ℎ)-pair ought
to be integrated into the model, a competitors’ code has to be run

on the server on the validation data. As a result, there is a risk of

an adversarial competitor’s malicious code being run on the host

machine. While this risk cannot be entirely mitigated, we describe

7
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=wordpress

https://github.com/Declancharrison/Bias-Bounties-Template
https://github.com/Declancharrison/Bias-Bounties-Template
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=wordpress

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

5. Safe?

7. Yes/No

Server

Docker

Security Container

Cloud Storage

4. Request Models

8. Run Update

3. Request

9. Response

User

1. Upload Models

4. Download Models

2.
 P

ul
l R

eq
ue

st

Repository ContainerGitHub

6. Security Checks

Figure 5: Protocol for (𝑔, ℎ) pair submissions from partici-
pants to a competition repository.

baseline security measure implementations and describe future

methods for securing systems.

First, GitHub is used to authenticate all teams. Thus, the pri-

mary layer of security is that the competitors are verified. Within

a classroom context this worked well: if a student had submitted

malicious code, we would have been able to trace it back to the

student and their grade would have been impacted, which was a

suitable disincentive. In deployment outside this setting, we suggest

hosts require users to sign a legal agreement prior to participation

as is standard practice in ML competitions.

Secondly, the competition is run within a user-mode Docker

container with limited kernel privileges. When a (g,h) pair is sub-

mitted from a participant, the files are downloaded into the Docker

container. The models are passed to a second Docker container

with no internet access to the run the security checks from the

following paragraph to determine if malicious code is identified.

This protection ensures the host machine is not affected from code

run in the competition but does not protect the repository files.

Lastly, models are checked on load for malicious behavior to

include loading or importing unnecessary packages e.g. sys or os.
Since models are saved and loaded as serialized byte streams, eval-

uating model intentions is a difficult task as it is done at the opcode

level via a disassembler. We intend to increase the breadth of checks

done in this section through updates to our package.

In practice, the primary security issue we had was an inadvertent

denial of service attack by the team who automated submissions.

This led to a long queue for other teams’ pairs to be verified. In the

future, we would implement submission limits per team (per day

and overall), to avoid this.

5 LESSONS LEARNED
We provide a general overview of lessons learned from the frame-

work’s deployment, both from a systems perspective and for opti-

mizing competitors’ engagement with the platform.

Distribute Environment Files. A major factor in this compe-

tition is being able to pass ML models between participants and

the server. Distribution of a makefile that constructs a virtual envi-

ronment or a Docker container for participants to work helps this

process run smoothly. While this is a relatively standard practice

for running code across platforms, we emphasize its’ importance:

using different versions of packages (or Python) caused major frus-

trations for participants as it often resulted in denial of submissions

for “security” errors.

Limit daily submissions. As discussed in greater detail in

Section 4.2, Team 7 took an automated, brute-force approach that

caused a Denial of Service. In order to prevent this, as well as to

incentivize competitors to only send in submissions that they truly

believe are competitive, it would be wise to limit the number of daily

submissions. Additionally, this reduces overfitting to the validation

set, as it prevents hillclimbing.

Prime competitors to think critically about group identifi-
cation. Since competitors were students in a class which focused

largely on fairness in machine learning, they were primed to think

about the effect of societal factors. As discussed in Section 3.3,

this led students to, e.g., almost exclusively condition on binarized

sex being female when considering sex as a predicate. While com-

petitors should be encouraged to use their general knowledge to

identify regions of disparate performance, doing so effectively may

require careful data engineering, and looking for general perfor-

mance improvements is also useful.

Setting the 𝛼 threshold for acceptance is a tricky, data-
dependent task. The competition designers set a threshold 𝛼

which determines how much of an improvement an update must

incur in order to be accepted. While we do not have the coun-

terfactual of setting different values for our 𝛼 , re-simulating the

competition with higher or lower values led to lower performance

and overfitting respectively. Before beginning a competition, hosts

should try various threshold values for their given task and loss

function with trusted users to observe what value gives the best

generalization/performance balance.

Alter reward system to scale over time. Competitors received

points based on the amount of validation error decreased by an

accepted update on the global model. Intuitively, teams that par-

ticipated earlier in the study were able to make more updates to

the global model: notably, Team 12 made the first seven updates to

global model. However, as the competition progressed, the problem

became more difficult and teams weren’t as able to decrease the

error of the model. In order to bolster effort throughout the dura-

tion of the competition, rewards could scale by both the amount of

error reduced as well as the number of previous updates made or

time since start of the competition.

6 DATASET
In the process of running the competition, we generated a database

of nearly seven thousand (𝑔, ℎ)-pairs which competitors submitted,

which may be of independent interest. The dataset consists of 6914

(𝑔, ℎ)-pairs of models which make predictions over the income

task described in Section 3, where the 𝑔’s describe subsets of the

distribution and the ℎ’s are a variety of different models trained

over those subsets.

In general, large datasets of machine learning models may be of

academic interest. Kaggle itself has a Meta Kaggle
8
dataset, which

is a public dataset of competitions and submissions on the platform

8
https://www.kaggle.com/datasets/kaggle/meta-kaggle

https://www.kaggle.com/datasets/kaggle/meta-kaggle

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

and which has been widely used, e.g. in [16] and [22]. We believe

that, in a similar spirit, our dataset is also of use. In particular, the

fact that it provides a large collection of subgroups in addition to

models offers multiple use cases.

First, the fairness literature often assumes fairness guarantees

are desired with respect to some rich class of groups G. In practice,

these papers usually either contain no experimental results at all,

or results with respect to extremely minimal and usually disjoint

groups: e.g. race, binarized sex, or the two-way marginals of race

and binarized sex. Here, we have a much richer collection of many

thousands of groups which span many features, and suggest that

these may be used for benchmarking fairness approaches.

Secondly, we note that the ensembling framework proposed in

[12] was independently developed by [24] in the context of multi-

group learning. There, they provide an additional algorithm that

frames multi-group learning as a form of sleeping experts, where

each (𝑔, ℎ)-pair corresponds to an expert, and each expert is “awake"
when 𝑔(𝑥) = 1. This formulation is beneficial, as the reduction of

sleeping experts to the offline setting gives an algorithm leads to

improved sample complexity compared to the decision-list style

updates proposed in [12]. However, this work is theoretical in na-

ture, and does not provide experimental guarantees: in particular, it

assumes that |G| is finite and that ℓ ◦H has bounded pseudodimen-

sion, and requires computations over a large number of (𝑔, ℎ)-pairs.
It is not clear how much improvement this methodology would

give in practical settings. Our dataset offers one way of measuring

this.

Thus, the dataset of model-pairs and its associated training and

test data, may be used as both a form of fairness benchmark and as

a mechanism to evaluate ensembling methods and expert learning

more generally.

7 ETHICAL CONSIDERATIONS STATEMENT
As discussed in Section 3 in greater detail, this work is consid-

ered IRB exempt. Participants were not monetarily compensated,

and grades were given without knowledge of which students had

agreed to have their work included. From a pedagogical perspec-

tive, we deemed this project to be a good use of student time:

crowdsourcing-style projects provide a mechanism to get hands-on

machine learning experience in a context that is more open-ended

than a standard implementation assignment, and it gave students

an opportunity to grapple with the nuances of bias and disparate

performance of machine learning models. Throughout the semes-

ter, students also completed assignments related to other notions

of fairness in machine learning. All identifying characteristics of

student submissions have been omitted in the analysis.

8 ADVERSE IMPACT STATEMENT
Crowdsourcing is an abstract framework for model development,

which might be used in a variety of different contexts, and it is up

to the hosts of competitions to decide whether or not a particular

model ought to be built or not. As a mechanism for achieving

fairness with respect to subgroups, our framework assumes that

these groups are identifiable from the feature space and are present

in the dataset. It should not be assumed to be a universal fix for

a model’s disparate accuracy on any (potentially unidentifiable)

subgroup, and in some use-cases, alternate fairness notions that

are not targeted by our framework may be more appropriate.

ACKNOWLEDGMENTS
We give warm thanks to Peter Hallinan for many helpful conversa-

tions.

REFERENCES
[1] Benji Andrews, Hema Natarajan, Maggie, Ron Ellis, and Ryan Holbrook. 2023.

Benetech - Making Graphs Accessible. https://kaggle.com/competitions/

benetech-making-graphs-accessible

[2] Avrim Blum and Moritz Hardt. 2015. The Ladder: A Reliable Leaderboard

for Machine Learning Competitions. In Proceedings of the 32nd International
Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 37), Francis Bach and David Blei (Eds.). PMLR, Lille, France, 1006–1014.

https://proceedings.mlr.press/v37/blum15.html

[3] Aaron Carman, Alexander Heifler, Ashley Chow, and Ryan Holbrook. 2023. ICR

- Identifying Age-Related Conditions. https://kaggle.com/competitions/icr-

identify-age-related-conditions

[4] US Census. October 20, 2022. 2021 ACS PUMS Data Dictionary. Data Dictionary.
US Census. https://www2.census.gov/programs-surveys/acs/tech_docs/pums/

data_dict/PUMS_Data_Dictionary_2021.pdf

[5] Sophie Chou, William Li, and Ramesh Sridharan. 2014. Democratizing data

science. In Proceedings of the KDD 2014 20th ACMSIGKDD International Conference
on Knowledge Discovery and Data Mining, New York, NY, USA. 24–27.

[6] Ashley Chow, Glenn Cameron, Manfred Georg, Mark Sherwood, Phil Culliton,

Sam Sepah, Sohier Dane, and Thad Starner. 2023. Google - American Sign

Language Fingerspelling Recognition. https://kaggle.com/competitions/asl-

fingerspelling

[7] Ashley Chow, Eduard Trulls, Jevster, Kwang Moo Yi, Sohier Dane, Tanji Gou,

and Weiwei Sun. 2023. Image Matching Challenge 2023. https://kaggle.com/

competitions/image-matching-challenge-2023

[8] Rumman Chowdhury and Jutta Williams. 2021. Introducing Twitter’s First

Algorithmic Bias Bounty Challenge. https://blog.twitter.com/engineering/en_

us/topics/insights/2021/algorithmic-bias-bounty-challenge

[9] Emily Diana, Wesley Gill, Michael Kearns, Krishnaram Kenthapadi, and Aaron

Roth. 2021. Minimax group fairness: Algorithms and experiments. In Proceedings
of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. 66–76.

[10] Frances Ding, Moritz Hardt, John Miller, and Ludwig Schmidt. 2021. Retiring

Adult: New Datasets for Fair Machine Learning. Advances in Neural Information
Processing Systems 34 (2021).

https://kaggle.com/competitions/benetech-making-graphs-accessible
https://kaggle.com/competitions/benetech-making-graphs-accessible
https://proceedings.mlr.press/v37/blum15.html
https://kaggle.com/competitions/icr-identify-age-related-conditions
https://kaggle.com/competitions/icr-identify-age-related-conditions
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2021.pdf
https://www2.census.gov/programs-surveys/acs/tech_docs/pums/data_dict/PUMS_Data_Dictionary_2021.pdf
https://kaggle.com/competitions/asl-fingerspelling
https://kaggle.com/competitions/asl-fingerspelling
https://kaggle.com/competitions/image-matching-challenge-2023
https://kaggle.com/competitions/image-matching-challenge-2023
https://blog.twitter.com/engineering/en_us/topics/insights/2021/algorithmic-bias-bounty-challenge
https://blog.twitter.com/engineering/en_us/topics/insights/2021/algorithmic-bias-bounty-challenge

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

[11] Alex Franklin, David Gagnon, Maggie, Meg Benner, Natalie Rambis, Perpetual

Baffour, Phil Culliton, Scott Crossley, and Ulrich Boser. 2023. Predict Student

Performance from Game Play. https://kaggle.com/competitions/predict-student-

performance-from-game-play

[12] Ira Globus-Harris, Michael Kearns, and Aaron Roth. 2022. An algorithmic frame-

work for bias bounties. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency. 1106–1124.

[13] Addison Howard, Archit Agarwal, Ashley Chow, Rantig, Kellen J Gracey,

Robert JC Brown, and Sohier Dane. 2022. GoDaddy - Microbusiness Density

Forecasting. https://kaggle.com/competitions/godaddy-microbusiness-density-

forecasting

[14] Addison Howard, Jevster, Katherine Gustilo, Katy Borner, Ryan Holbrook, and

Yashvardhan Jain. 2023. HuBMAP - Hacking the Human Vasculature. https:

//kaggle.com/competitions/hubmap-hacking-the-human-vasculature

[15] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.

Leakage in data mining: Formulation, detection, and avoidance. ACMTransactions
on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 1–21.

[16] Dominik Kowald, Matthias Traub, Dieter Theiler, Heimo Gursch, Emanuel Lacic,

Stefanie Lindstaedt, Roman Kern, and Elisabeth Lex. 2019. Using the Open Meta

Kaggle Dataset to Evaluate Tripartite Recommendations in Data Markets. arXiv
preprint arXiv:1908.04017 (2019).

[17] Alex Lourenco, Brent Seales, Christy Chapman, Daniel Havir, Ian Janicki Janicki,

JP Posma, Nat Friedman, Ryan Holbrook, Seth P., Stephen Parsons, and Will

Cukierski. 2023. Vesuvius Challenge - Ink Detection. https://kaggle.com/

competitions/vesuvius-challenge-ink-detection

[18] Natalia Martinez, Martin Bertran, and Guillermo Sapiro. 2020. Minimax pareto

fairness: A multi objective perspective. In International Conference on Machine
Learning. PMLR, 6755–6764.

[19] Arvind Narayanan, Elaine Shi, and Benjamin I. P. Rubinstein. 2011. Link pre-

diction by de-anonymization: How We Won the Kaggle Social Network Chal-

lenge. In The 2011 International Joint Conference on Neural Networks. 1825–1834.
https://doi.org/10.1109/IJCNN.2011.6033446

[20] Joe Ng, Carl Elkin, Aaron Sarna, Walter Reade, and Maggie Demkin. 2023. Google

Research - Identify Contrails to Reduce Global Warming. https://kaggle.com/

competitions/google-research-identify-contrails-reduce-global-warming

[21] Amit Elazari Bar On. 2018. We Need Bug Bounties for Bad Algorithms. https:

//www.vice.com/en/article/8xkyj3/we-need-bug-bounties-for-bad-algorithms

[22] Rebecca Roelofs, Vaishaal Shankar, Benjamin Recht, Sara Fridovich-Keil, Moritz

Hardt, John Miller, and Ludwig Schmidt. 2019. A meta-analysis of overfitting in

machine learning. Advances in Neural Information Processing Systems 32 (2019).
[23] Austin Carson Sven Cattell, Rumman Chowdhury. 2023. https://aivillage.org/

generative%20red%20team/generative-red-team/

[24] Christopher J Tosh and Daniel Hsu. 2022. Simple and near-optimal algorithms

for hidden stratification and multi-group learning. In International Conference on
Machine Learning. PMLR, 21633–21657.

[25] Bojan Tunguz, Dieter, Karnika Kapoor, Parul Pandey, Paul Mooney, Phil Culliton,

Rob Mulla, Sanyam Bhutani, and Will Cukierski. 2023. 2023 Kaggle AI Report.

https://kaggle.com/competitions/2023-kaggle-ai-report

https://kaggle.com/competitions/predict-student-performance-from-game-play
https://kaggle.com/competitions/predict-student-performance-from-game-play
https://kaggle.com/competitions/godaddy-microbusiness-density-forecasting
https://kaggle.com/competitions/godaddy-microbusiness-density-forecasting
https://kaggle.com/competitions/hubmap-hacking-the-human-vasculature
https://kaggle.com/competitions/hubmap-hacking-the-human-vasculature
https://kaggle.com/competitions/vesuvius-challenge-ink-detection
https://kaggle.com/competitions/vesuvius-challenge-ink-detection
https://doi.org/10.1109/IJCNN.2011.6033446
https://kaggle.com/competitions/google-research-identify-contrails-reduce-global-warming
https://kaggle.com/competitions/google-research-identify-contrails-reduce-global-warming
https://www.vice.com/en/article/8xkyj3/we-need-bug-bounties-for-bad-algorithms
https://www.vice.com/en/article/8xkyj3/we-need-bug-bounties-for-bad-algorithms
https://aivillage.org/generative%20red%20team/generative-red-team/
https://aivillage.org/generative%20red%20team/generative-red-team/
https://kaggle.com/competitions/2023-kaggle-ai-report

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

A REPRODUCIBILITY
Code to reproduce primary results and figures may be located at https://github.com/Declancharrison/Diversified-Ensembling-Reproducibility.

B ADDITIONAL ANALYSIS OF MODEL PERFORMANCE
We provide additional plots and discussion for the empirical analysis. As discussed in Section 3.3, the final global model outperformed all

other teams’ models when mean squared error was evaluated on the holdout test dataset. This, as well as a more detailed comparison of

the global models’ overall error versus those of the top 10 local teams is shown in Table 1. Here we see that the global model does indeed

outperform the others on the holdout test loss. Additionally, we can inspect how much overall error is improved over rounds of updates, for

both the global model and for the different teams’ models. This is shown in Figure 6.

As this ensembling procedure is a mechanism for specialization and could be done in an effort at achieving good performance for

subgroups of interest, it’s also useful to inspect the performance of the global model on all of the subgroups which were accepted. In Figure

7, we show this. On the left, group loss is plotted with respect to the validation dataset. Because the validation data is used to determine the

threshold for accepting groups and due to the repair procedure described in section 2 and formalized in Theorem 2.1, the group loss of a

group after it has been introduced into the ensembled model is guaranteed to monotonically decrease. This is shown in Figure 7: once the

lines turn solid, which corresponds to the group being introduced into the model ensemble, then the lines become non-increasing. On the

right of Figure 7 is the group error on an entirely held-out test dataset, and we see that with the exception of group 20 and a slight change

for group 1, monotonicity of group error improvement is largely preserved. The fact that it is not for group 1 and 20 is not overly surprising,

as both of these groups made up less than 1 and 0.1 percent of the dataset respectively, and hence our generalization guarantees are weaker.

These figures also show the submitted groups overlap, as otherwise group errors wouldn’t be impacted by later updates, and that despite

the overall error improvements being quite small, some subgroups are quite impacted by the model changes. This supports the idea that

allowing specialization in your crowdsourced framework can make meaningful impacts to performance on subgroups.

In Figures 8 and 9, we examine teams’ specialization further. In Figure 8, the weights of groups who were accepted is plotted for both

teams’ local models (in blue) and the global model (in orange). Here, we see that some successful updates are over the entire dataset or over

substantial portions of it, while others are much smaller, only using 1 to 20 percent of the dataset. In Figure 9, we visualize how the global

model differs from the top 5 best local models. We see that despite the fact that the test loss on each of the 5 models is quite close, they do in

fact make substantially different predictions for many points.

Team Training Loss Validation Loss Test Loss Number of Updates

Global Model 15424.70 16900.12 17010.49 20

Team 21 16052.41 16948.26 17012.32 18

Team 14 15757.40 16977.12 17028.13 11

Team 3 15667.19 16957.37 17030.65 19

Team 31 15752.59 16959.99 17037.82 10

Team 10 15706.57 16997.82 17038.68 6

Team 39 15971.36 16968.34 17039.29 35

Team 24 15907.08 16971.54 17043.18 10

Team 43 16245.32 16972.86 17044.38 25

Team 0 15987.90 16982.91 17049.55 8

Team 2 16210.24 16979.03 17058.09 20

Table 1: Final leaderboard of top ten participating teams sorted by increasing test error with number of updates made to each
model.

https://github.com/Declancharrison/Diversified-Ensembling-Reproducibility

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

0 10 20 30 40 50 60
Update Round

8000

10000

12000

14000

16000

18000

20000

22000

Lo
ss

Team Training Loss over Course of Updates
Team 0
Team 1
Team 2
Team 3
Team 4
Team 5
Team 6
Team 7
Team 8
Team 9
Team 10
Team 11
Team 12
Team 13
Team 14
Team 15
Team 16
Team 17
Team 18
Team 19
Team 20
Team 21
Team 22
Team 23
Team 24
Team 25
Team 26
Team 27
Team 28
Team 29
Team 30
Team 31
Team 32
Team 33
Team 34
Team 35
Team 36
Team 37
Team 38
Team 39
Team 40
Team 41
Team 42
Team 43
Team 44
Team 45
Global Model

0 10 20 30 40 50 60
Update Round

17000

18000

19000

20000

21000

22000

Lo
ss

Team Validation Loss over Course of Updates
Team 0
Team 1
Team 2
Team 3
Team 4
Team 5
Team 6
Team 7
Team 8
Team 9
Team 10
Team 11
Team 12
Team 13
Team 14
Team 15
Team 16
Team 17
Team 18
Team 19
Team 20
Team 21
Team 22
Team 23
Team 24
Team 25
Team 26
Team 27
Team 28
Team 29
Team 30
Team 31
Team 32
Team 33
Team 34
Team 35
Team 36
Team 37
Team 38
Team 39
Team 40
Team 41
Team 42
Team 43
Team 44
Team 45
Global Model

0 10 20 30 40 50 60
Update Round

17000

18000

19000

20000

21000

22000

Lo
ss

Team Test Loss over Course of Updates
Team 0
Team 1
Team 2
Team 3
Team 4
Team 5
Team 6
Team 7
Team 8
Team 9
Team 10
Team 11
Team 12
Team 13
Team 14
Team 15
Team 16
Team 17
Team 18
Team 19
Team 20
Team 21
Team 22
Team 23
Team 24
Team 25
Team 26
Team 27
Team 28
Team 29
Team 30
Team 31
Team 32
Team 33
Team 34
Team 35
Team 36
Team 37
Team 38
Team 39
Team 40
Team 41
Team 42
Team 43
Team 44
Team 45
Global Model

(a) train (b) validation (c) test

0 5 10 15 20 25 30 35
Update Round

14000

16000

18000

20000

22000

Lo
ss

Team Training Loss over Course of Updates (Top 10)
Global Model
Team 21
Team 14
Team 3
Team 31
Team 10
Team 39
Team 24
Team 43
Team 0
Team 2

0 5 10 15 20 25 30 35
Update Round

17000

18000

19000

20000

21000

22000

Lo
ss

Team Validation Loss over Course of Updates (Top 10)
Global Model
Team 21
Team 14
Team 3
Team 31
Team 10
Team 39
Team 24
Team 43
Team 0
Team 2

0 5 10 15 20 25 30 35
Update Round

17000

18000

19000

20000

21000

22000

Lo
ss

Team Test Loss over Course of Updates (Top 10)
Global Model
Team 21
Team 14
Team 3
Team 31
Team 10
Team 39
Team 24
Team 43
Team 0
Team 2

(a) train (top ten) (b) validation (top ten) (c) test (top ten)

Figure 6: Error of global and teams’ models measured at each accepted updated. Top row of subfigures consists of all teams
while the bottom row displays the top ten teams and the global model. The 𝑦-axis is squared error, the 𝑥-axis is the round of
accepted submission.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Update Round

8000

10000

12000

14000

16000

18000

20000
Lo

ss

Group Loss on Global Model Across Updates (Validation Data)
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15
Group 16
Group 17
Group 18
Group 19
Group 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Update Round

8000

10000

12000

14000

16000

18000

20000

Lo
ss

Group Loss on Global Model Across Updates (Test Data)
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15
Group 16
Group 17
Group 18
Group 19
Group 20

Figure 7: Loss of the global model on introduced groups across rounds of updates, on the validation data used to determine
acceptance of proposed models and on holdout test data. For each group introduced, the loss on that group is dotted until the
round at which it was introduced, at which point the line becomes solid. Groups are ordered in the order in which they were
introduced, e.g., Group 12 is the group that was specified in the 12th accepted update to the global model.

Figure 8: Distribution of group weights for successful submissions. On the 𝑦-axis, weight of the group submitted, on the 𝑥-axis,
individual submissions, as ordered by weight. The blue dots correspond to successful updates to either the global model or the
team model, while orange dots correspond to submissions to the global model only.

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

0 10000 20000 30000 40000 50000 60000 70000
Instances

10 1

100

101

102

103

104

Pr
ed

ict
io

n
Di

ffe
re

nc
e

(L
og

 S
ca

le
)

Test Prediction Differences of Global Model with Top 5 Teams
Global - Team 33
Global - Team 21
Global - Team 3
Global - Team 31
Global - Team 39

Figure 9: Test prediction disagreement between the global model and top five local models. On the 𝑥-axis are individual
datapoints, and on the 𝑦 axis the (absolute) difference in prediction of 𝑦 by the global model and an individual teams’ model as
measured on this point. The 𝑦-axis is log-scaled, and the disagreement is plotted for each of the top 5 teams. The datapoints are
sorted on the 𝑥-axis so that the difference in prediction is monotonic. We see that while the top 5 teams had test loss that was
relatively close to the global models’ (see Table 1), they make substantially different predictions for many points.

C DATA FEATURES
In the following Table 2, the full list of features used in the income prediction task students were competing over are listed. The exact

categories within each feature and the formal descriptions of categories listed here are from the PUMS data dictionary ([4]).

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

Feature Feature Description

ST State and territory codes

AGEP Age

CIT Citizen status

COW Class of worker

DDRS Self care difficulty

DEAR Hearing difficulty

DEYE Vision difficulty

DOUT Independent living difficulty

DRAT Veteran service connected disability rating

DREM Cognitive difficulty

ENG Ability to speak English

FER Gave birth to child within the past 12 months

JWTRNS Means of transportation to work

LANX Language other than English spoken at home

MAR Marital status

MIL Military service

SCHL Educational attainment

SEX Binary sex

WKHP Usual hours worked per week past 12 months

OCCP Occupation code

RAC1P Race code

Table 2: Features from ACS PUMS survey used for the competitions’ income prediction task.

D ADDITIONAL OBSERVATIONS
As our competitors were students and not machine learning experts, some of the choices they made are perhaps counter-intuitive. We list

some of these choices here.

Most teams never attempted to make global improvements to the model: Students were primarily graded in terms of their

improvements to their team model, as opposed to the global model, as we anticipated that updates to the global model would become rapidly

difficult to find for many students. Since their team models were initially trained as decision tree stumps with marginally more predictive

power than predicting the mean label, a valid strategy would have been to simply improve this model over the entire dataset. However, only

15 of the 45 teams attempted updates over the whole dataset.

Teams may not have carefully examined their group functions: For instance, out of the 222 updates which assigned 𝑔 to the entire

dataset, 42 were complex logical combinations of many features, which also happened to include a disjunction of, e.g., binarized sex labels,

and hence the entire dataset. This could have been due to mistakes manually conditioning over group membership (e.g. missing parentheses

in the logical operations or a swap of an OR and an AND). Or it might be due to automated processes that teams used to identify groups,

leading to a complex-looking group that can be much simplified. In either case, it might indicate that teams were not carefully engaging with

what they were submitting.

Similarly, of the 95 submissions which considered the binary feature for presence of a hearing disability (which were submitted by 22

distinct teams), all of them specified groups considered exclusively the hearing loss feature marginalized on not having hearing loss. The
presence of a disability might have predictive power that conceivably could be ignored by a larger model, since they make up a minority

population (about 2.3 percent for hearing loss). However, predicating on not having hearing loss amounts to considering the majority of

the dataset, and one might postulate that this is not a meaningful form of specialization. Students did not discuss this choice in their write

up. However, the way ACS PUMS categorizes disability is a bit unusual: they are categorical variables with value 1 being presence of the

disability, and value 2 being absence, rather than a binary encoding. Thus without carefully checking the categorization of values, students

might have misunderstood the meaning of values, though we have no way of verifying this.

We expect that capping submissions per day would somewhat mitigate this, as it incentivizes teams to be relatively confident in their

submission and hence inspect it closely.

Teams conflated societal inequity with disparate model performance As discussed in Section 3.3, teams often chose to specialize

on groups who face systemic income inequity. While the performance of machine learning models may very well be disparate across such

groups, it is not necessarily always the case. For instance, if there is a strong signal in the training data that income inequity between

two sufficiently large groups exists, a model trained on the entire dataset will likely use this signal. The bigger issue here is often in the

prediction task itself, the selection of features used for the task, or under-representation in the dataset. Finding disadvantaged groups where

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

the existing training data can be leveraged to improve performance in a way that a model trained over the entire dataset wouldn’t capture is

potentially nontrivial, especially without access to external data sources.

E PLATFORM DEEP DIVE
In this section, we expand on deeper technical details of the platform introduced in Section 4. The end goal of this section is to provide the

reader an explanation for all steps listed in Figure 10 in an end-to-end platform loop from submitting (𝑔, ℎ)-pairs to receiving feedback.

E.0.1 Submitting and testing (𝑔, ℎ) pairs. As previously mentioned in Section 4, the method for submitting a (𝑔, ℎ)-pair for update is through
a pull request on the competition’s repository. Once a participant has trained a (𝑔, ℎ)-pair of models, they upload them to a cloud storage

space such as Google Drive or AWS S3 with unauthenticated accessibility. To submit their pair, participants create a pull request on the

repository hosting the competition by inserting the links to their models in the file /competitors/request.yaml next to the variables g_url and
h_url. The platform infrastructure will download and test this pair and provide feedback to the participant through a comment on their pull

request.

E.1 Repository permissions and GitHub Actions integration
Repository permissions are set such that all members with access are able to instantiate a pull request but only workspace administrators

may push to the repository, following GitHub’s standard structure for making updates to an open-source repository. In order to automatically

test updates from participants in a competition, the platform utilizes GitHub Actions to spawn a workflow script anytime a user creates a

pull request. Our specific workflow first checks for any file changes made outside of the /competitors/request.yaml file used for submissions,

and runs the backend procedure for testing (𝑔, ℎ)-pair updates on models.

E.1.1 Docker Integration. An important implementation detail not discussed in Section 4 is the usage of Docker in our platform. In order to

protect the host machine and standardize the operating environment, the server back-end computations are run inside docker containers.

The repository container maintains the file system for teams models, interacts with GitHub Actions when participants submit requests, and

pushes information changes to GitHub when updates are made. The security container’s sole purpose is to run forward passes of submitted

models to indicate to the repository container if the model is safe or potentially unsafe. The security container runs a primitive security

check on models, scanning for malicious keywords and opcodes. The security container is not connected to the internet in order to reduce

potential risks to the host machine and competition results.

E.1.2 End-to-End Submission Workflow. Using Figure 10 as reference, we expand on the steps in the platform feedback loop for submitting

pairs to a competition repository.

(1) User saves and uploads trained g,h models to cloud storage with publicly accessible URLs.

(2) User submits pull request to GitHub repository editing competitors/request.yaml file to include g,h model URLS.

(3) GitHub Actions notifies Repository Container of pull request from user.

(4) Repository Container downloads changed files and downloads models from URLs.

(5) Repository Container notifies Security Container of new models and requests forward pass.

(6) Security Container runs primitive security checks on models and ensures outputs are correctly formatted.

(7) Security Container informs Repository Container of safe/unsafe models

(8) If models are safe, Repository Container loads team and global models into memory and attempts updates. If unsafe, skip step.

(9) Repository Container closes/makes comments on Pull Request and deletes branch. If updates are accepted, changes are pushed to

GitHub.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Ira Globus-Harris, Declan Harrison, Michael Kearns, Pietro Perona, and Aaron Roth

5. Safe?

7. Yes/No

Server

Docker

Security Container

Cloud Storage

4. Request Models

8. Run Update

3. Request

9. Response

User

1. Upload Models

4. Download Models

2.
 P

ul
l R

eq
ue

st

Repository ContainerGitHub

6. Security Checks

Figure 10: Protocol for (g,h) pair submissions from participants to a competition repository.

F CONSENT FORM AND IRB EXEMPTION
This study was deemed IRB Exempt under category 1;

Below is the consent form that students signed for the purposes of this study.

Project Title: Bias Bounties Analysis

F.1 Summary and Purpose of the study
This research is being conducted by (omitted for anonymization) at (omitted for anonymization). The purpose of this research is to understand

the heuristic approaches and methodologies used to isolate regions where machine learning models perform poorly. Your participation

will not require any work additional to your work in the course and will have no risks or benefits to you directly, but may lead to better

understanding of how to improve machine learning models in the future. Your participation is voluntary and will not affect your grade in the

course. Your work will be de-identified, and as there is no personal information present in your machine learning models, re-identification is

unlikely. The data will be stored, and could be used for future research.

F.2 Procedures
We will analyze your machine learning models submitted as part of the final course project for (omitted for anonymization). We may also

look at your (de-identified) source code and final project write-ups to make qualitative conclusions about your approaches.

F.3 Confidentiality
While personally identifiable information in this context is extremely minimal, your names will not be associated with your models in the

context of the research study, and no information about individuals will be accessible from the published work.

F.4 Benefit and Risks to Participants
There are no specific benefits or risks to you in particular if you join this study. Whether or not you do participate will not affect your grade

in this class.

Diversified Ensembling FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

F.5 Right to Withdraw
Your participation in this research is completely voluntary. You may refuse to participate or withdraw at any time before the end of the

semester.

F.6 Contact information for questions
(Omitted for anonymization)

G PROJECT DESCRIPTION
Here we include the project description that students received at the outset of the assignment.

Bias Bounties Project Due date: April 21st, 2023

TASK
In this project, your team will act as “Bias Bounty Hunters" for a regression model trained with sole intent of minimizing empirical loss

(root mean squared error). The model accepts US Census data from the Folktables package with predefined features and predicts the annual

income of an individual. Your team is tasked with finding certificates of suboptimality in order to reduce the correctable bias in the model.

These certificates take the form (𝑔, ℎ), where 𝑔 is a group indicator function, ℎ is a regression model, and ℎ performs strictly better on 𝑔 than

the current model.

CLASS SEMANTICS + NOTATION
Since we expect the communal model to quickly converge to approximate Bayes-Optimal, each team will also have a team model. We will

refer to the communal predictive model as the global model and each team’s model as their private model. Both of these models are Pointer

Decision Lists which follow the update procedure we discussed in class. Each time a team submits a potential update to the global model, the

update will also be attempted on the team’s private model. This is to incentivize all teams to continue searching for updates since you will be

graded on your private model’s accuracy (and given extra credit based your teams change to the global model’s accuracy).

SUBMITTING CERTIFICATES OF SUBOPTIMALITY
In order to submit potential (𝑔, ℎ) pair updates, you will create a pull request on the GitHub repository with the file /competitors/request.yaml

altered to reflect the URLs of your models. If any other file is altered, the pull request will immediately be denied. For explicit, detailed

instructions, please refer to the GitHub README file.

DELIVERABLES
Each team will deliver one report with the information in the template populated. The template contains formatting for your report as well

as descriptions on how to fill out each section. Any amount of information which goes over the section’s word limit will not be used when

grading. While a Bias Bounty Competition is generally focused around individual teams’ updates to the global model’s accuracy, this course

is not expecting to produce expert ML practicioners. Your private model’s accuracy will be included in the overall grading scheme but we are

much more interested in how your team attempted to find updates. Furthermore, while we want your team to find working methods, we
also care about what methods you tried that did not work since this is a heavily understudied field. You should document your

methods as you work on the project!

CHEATING POLICY
The (university ommitted) Code of Academic Integrity is in effect and attempted malicious actions will not be taken lightly. If you or a

member of your team are caught cheating or acting maliciously, your team will be removed from the project and will receive a score of 0.

	Abstract
	1 Introduction
	2 Preliminaries and Background
	3 Empirical Study
	3.1 Data Set and Prediction Task
	3.2 Competition Framework
	3.3 Analysis of the Competition

	4 Platform Design
	4.1 Platform Design
	4.2 Security Protections & Vulnerability Concerns

	5 Lessons Learned
	6 Dataset
	7 Ethical Considerations Statement
	8 Adverse Impact Statement
	Acknowledgments
	References
	A Reproducibility
	B Additional Analysis of Model Performance
	C Data Features
	D Additional Observations
	E Platform Deep Dive
	E.1 Repository permissions and GitHub Actions integration

	F Consent Form and IRB Exemption
	F.1 Summary and Purpose of the study
	F.2 Procedures
	F.3 Confidentiality
	F.4 Benefit and Risks to Participants
	F.5 Right to Withdraw
	F.6 Contact information for questions

	G Project Description

