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ABSTRACT
In research studying the fairness of machine learning algorithms

and models, fairness often means that a metric is the same when

computed for two different groups of people. For example, one

might define fairness to mean that the false positive rate of a clas-

sifier is the same for people of different genders, ages, or races.

However, it is usually not possible to make this metric identical for

all groups. Instead, algorithms ensure that the metric is similar—

for example, that the false positive rates are similar. Researchers

usually measure this similarity or dissimilarity using either the

difference or ratio between the metric values for different groups of

people. Although these two approaches are known to be different,

there has been little work analyzing their differences and respective

benefits. In this paper we examine this relationship analytically and

empirically, and conclude that unless there are application-specific

reasons to prefer the difference approach, the ratio approach should

be preferred.

CCS CONCEPTS
• Computing methodologies → Machine learning; • General
and reference → Metrics.

KEYWORDS
Fair Machine Learning, Bias, Fairness Metrics, Classification

ACM Reference Format:
Min-Hsuan Yeh, Blossom Metevier, Austin Hoag, and Philip S. Thomas.

2024. Analyzing the Relationship Between Difference and Ratio-Based Fair-

ness Metrics. In The 2024 ACM Conference on Fairness, Accountability, and
Transparency (FAccT ’24), June 03–06, 2024, Rio de Janeiro, Brazil. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3630106.3658922

1 INTRODUCTION
In recent years, the application of machine learning (ML) models

has become widespread across various domains, such as sentiment
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analysis [1], lie detection [24], and product recommendation [34],

assisting individuals in complex decision-making tasks. However,

the emergence of unfairness issues of ML models has raised sig-

nificant concerns and ethical considerations. Existing literature

highlights various risks associated with employing unfair ML mod-

els in real-life scenarios. For instance, Angwin et al. [3] examined

an ML model used to predict whether a person will commit a vio-

lent crime in the future. Importantly, this model’s predictions were

considered by judges in eleven states during criminal sentencing.

Their study revealed that, conditioned on individuals who did not

commit a violent crime, the model was twice as likely to incor-

rectly predict that Black individuals would commit such a crime.

To address such instances of unfairness, many ML researchers have

shifted their focus from solely pursuing high performance to also

ensuring fairness in prediction and detection.

A significant amount of research within the fair ML community

focuses on the development of fair classification models (e.g., see

the over 45 works surveyed by Mehrabi et al. [22]). These works

predominantly address group fairness, aiming for similar outcomes

across different demographic groups. This is often achieved by

adhering to the fairness criteria outlined by Dwork et al. [14]. Ac-

cording to this criteria, an ML model is fair if it yields equal values

for specific statistical metrics (e.g., accuracy, false positive rate, false

negative rate) conditioned on sensitive attributes such as gender,

race, or age. Therefore, many group fairness approaches calculate

values of a particular metric for each group, and measure the degree

of unfairness between these values.

For example, the ProPublica study [3] examined the false posi-
tive rate (FPR) across races, focusing on the probability of falsely

predicting individuals, particularly from Black and White racial

groups, to be at a high risk of criminal recidivism. In this example,

let FPR
Black

and FPR
White

represent the average false positive rates

for Black and White individuals, respectively. Ideally, these two

values should be equal, which would indicate no racial bias in the

model’s predictions, i.e., that Black and White individuals have

the same probability of being incorrectly labeled as high-risk for

recidivism. In practice, these values may be close for models that

are fair, but are almost never exactly the same. This leads to our

primary research question: When these values are different, how
should the degree of unfairness be measured?

https://doi.org/10.1145/3630106.3658922
https://creativecommons.org/licenses/by/4.0/
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There are two common ways of measuring the degree of unfair-

ness between groups. First, unfairness can be quantified by mea-

suring the absolute difference between the values for two groups

(|FPR
Black

− FPR
White

| in the above example), which is referred to

as the difference method. An alternate approach for quantifying

unfairness involves measuring the minimum ratio between the

values (min{FPR
Black

/FPR
White

, FPR
White

/FPR
Black

} in the same

example), known as the ratio approach. While it is clear that these

two approaches are distinct, there has been a lack of comprehensive

analysis in the literature regarding their differences and respective

advantages. Furthermore, although choosing between these two

methods can be application-dependent, papers proposing fair ML

models often fail to provide explicit explanations for choosing one

method over the other. In a discussion with five sets of authors of

FAccT ’21 and ’22 papers that used one of these methods in training,

we found that all of them adopted the difference method in their

research simply because it had been employed in previous works,

rather than due to its theoretical or empirical advantages.

Importantly, our study reveals that due to the fundamental dif-

ferences between the difference and ratio approaches, satisfying a

fairness constraint under one does not guarantee satisfaction under

the other. This underscores a significant and potentially severe risk

of not carefully selecting the appropriate approach to quantify fair-

ness when evaluating or developing fair ML models. To illustrate

this point, consider the Propublica study by Angwin et al. [3] dis-

cussed earlier. If a model has false positive rates of FPR
Black

= 0.02

and FPR
White

= 0.01, then under the differencemethod, the absolute

difference between FPR
Black

and FPR
White

is 0.01. In the context of

criminal recidivism prediction, this small difference (0.01) might

suggest the model is fair. However, from the ratio-based perspective,

these values are problematic, yielding a ratio of 0.5. This implies

Black individuals are twice as likely to be falsely labeled high-risk

compared to White individuals, highlighting a significant fairness

concern.

To address this knowledge gap, we examine the differences be-

tween the ratio and difference approaches. We derive the theoretical

relationship between the difference and ratio, then use a Monte

Carlo method to show their empirical relationship over two datasets

(LIAR and COMPAS) considering three common fairness defini-

tions: predictive equality, equal opportunity, and overall accuracy

equality. Additionally, we train models using loss functions that in-

tegrate both constraining approaches to show how the two metrics

relate for optimized models (we call this relationship an “optimized

relationship”). The results suggest that, in general, training with

the ratio approach can prevent the optimized model from giving

a misleading outcome. In addition, both methods can achieve the

same optimized fairness value when choosing appropriate mea-

sures. The results also indicate that when reporting measures of

fairness, using only the difference may be insufficient because each

difference value can nap to a large range of the corresponding ra-

tio values. However, constraining the ratio instead does induce a

meaningful constraint on the difference as well. As a result, we

encourage future research to adopt the ratio approach. Or, even

better, to show the optimized relationship between the difference

and ratio values of the proposed model.

2 NOTATION AND PROBLEM STATEMENT
In this paper, we study the relationship between two approaches

for measuring fairness of binary classification models. Consider a

dataset D = {x(𝑖 ) , 𝑦 (𝑖 ) }𝑁
𝑖=1

with 𝑁 data points, where x(𝑖 ) ∈ X ⊂
R𝐾 is an input vector and𝑦 (𝑖 ) ∈ Y = {−1, +1} is the corresponding
label for the input x(𝑖 ) . A common approach in group fairness

is to divide the dataset D based on group affiliations associated

with features. Accordingly, we separate D into two groups, D0 =

{x, 𝑦 |x𝐺 = 0} and D1 = {x, 𝑦 |x𝐺 = 1}, according to a binary

sensitive attribute𝐺 , and evaluate the fairness of a model 𝑓𝜃 : X →
Y with respect to 𝐺 .

We focus on statistical definitions of fairness, which use statisti-

cal metrics as measures of fairness [30]. The selection of the statisti-

cal metric depends on the specific fairness definition. For instance,

false positive rate (FPR) is used to ensure predictive equality [11],

while false negative rate (FNR) is used for equal opportunity [16].

For each statistical metric 𝑀 , we define 𝑀𝑖 ∈ [0, 1] to be the

metric value for people of type 𝑖 , computed from data D𝑖 . For

example, 𝑀0 could correspond to the false positive rate of model

𝑓𝜃 on data D0, the accuracy of model 𝑓𝜃 on data D0, or any other

metric of interest computed on D0. Notice that the same analysis

holds if𝑀𝑖 is the metric value for the data generating distribution

(conditioned on the sensitive attribute 𝐺), not just the empirical

metric value for data D𝑖 .

The approaches we study are the difference and the ratio ap-

proach, which are two commonly used methods for measuring

fairness. The difference approach evaluates fairness by measuring

the absolute difference between 𝑀1 and 𝑀0. The fairness value

measured by this approach is

𝜖𝑑 B |𝑀1 −𝑀0 |. (1)

The ratio approach, on the other hand, evaluates fairness by calcu-

lating the minimum ratio between𝑀1 and𝑀0. The fairness value

measured by this approach is

𝜖𝑟 B

{
0 if𝑀1 = 𝑀0 = 0,

1 −min

{
𝑀1

𝑀0

,
𝑀0

𝑀1

}
otherwise.

(2)

Notice that instead of reporting the minimum ratio, we report one
minus the minimum ratio. This ensures that fairness corresponds

to lower values of both 𝜖𝑟 and 𝜖𝑑 .

On the dataset D, the values of𝑀1 and𝑀0 vary with the model,

i.e., they vary with the parameters 𝜃 . For each 𝑀1 and 𝑀0, we

calculate the 𝜖𝑑 and 𝜖𝑟 values to form a (𝜖𝑑 , 𝜖𝑟 ) pair. By plotting

all the (𝜖𝑑 , 𝜖𝑟 ) pairs on a 2D plane, we can observe the size and

the shape of the region formed by the set of all possible (𝜖𝑑 , 𝜖𝑟 )
pairs, which represent the relationship between the outcome of the

difference and the ratio approaches. In this paper, we investigate

the implications of the size and the shape of the space of (𝜖𝑑 , 𝜖𝑟 )
pairs, by first considering the following questions:

(1) What is the size and shape of the set of all possible (𝜖𝑑 , 𝜖𝑟 )
pairs on a 2D plane?

(2) What makes the size and the shape of regions different in

different settings?

(3) Can the relationship help us to select one approach over the

other when training models and reporting results?
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3 RELATEDWORK
The majority of fair ML research addresses either the technical

aspects of ML bias, or theories concerning its regulatory, societal,

and moral implications. This work is concerned with technical

approaches, which aim to promote fairness at various stages of

the ML pipeline: pre-processing (data gathering and preparation),

in-processing (selecting and training a model), or post-processing

(adjusting model outputs).

Fairness definitions in ML can broadly be categorized into in-

dividual and group fairness. Individual fairness, first introduced
by Dwork et al. [15], centers on the principle of treating similar

individuals similarly, with the goal of ensuring fair treatment on

an individual basis. On the other hand, group (or statistical) fairness
focuses on achieving fair outcomes across different demographic

groups, defined by sensitive attributes such as race, gender, or

age [30]. It involves developing methods to detect and counter-

act biases in ML system decisions (and outcomes) to ensure more

balanced treatment for these groups.

As stated previously, we consider statistical definitions of group

fairness, which have been widely used to ensure fairness of classifi-

cation models [30]. Our theoretical results apply to any methods

that consider statistical definitions of fairness as defined in 2, in-

cluding methods that mitigate bias at the stage of pre-, in-, and post-

processing, and methods that go beyond these three categories, e.g.,
intra-processing learning [25] and neural architecture search [13].

Our empirical evaluation focuses on in-processing methods, where

a model is trained on prepared data, and its performance is opti-

mized by directly modifying the learning process to produce fair

outcomes. This is often achieved by integrating fairness definitions

via constraints during optimization, e.g., [2, 27, 31].

To ensure such statistical definitions of group fairness, while

a few works propose constrained optimization methods that di-

rectly treat a fairness definition as an equality constraint (to our

knowledge, only the work of Baumann et al. [7]), most studies con-

sider a relaxation of a fairness definition, i.e., introducing a positive

amount of slack, 𝜏 > 0, and forming an inequality constraint [4].

For example, Donini et al. [12] formulated equal opportunity [10]

as the difference condition

|FNR𝑎 − FNR𝑏 | ≤ 𝜏, (3)

where FNR means the false negative rate; and Zafar et al. [33]

formulated demographic parity [9] as the ratio condition

min{PR𝑎/PR𝑏 , PR𝑏/PR𝑎} ≥ 1 − 𝜏, (4)

where PR stands for positive rate. This ratio condition is called

the disparate impact [5]. Beyond works that adhere to specific pre-

defined fairness definitions, there more general algorithms that

can satisfy multiple or arbitrary fairness definitions have also been

proposed. For example, Thomas et al. [29] propose Seldonian al-

gorithms, a class of algorithms that can constrain a model using

a wide range of fairness metrics, including both the ratio or dif-

ference approach. While these algorithms offer the flexibility to

choose from various fairness measures, there is little work studying

the distinct advantages of each approach.

Studies introducing fair ML algorithms typically focus their eval-

uation on performance metrics, like accuracy, and the specific fair-

ness approach used during the algorithm’s training (difference or

ratio) [2]. However, as we show in Section 4, a model that has a

small difference (or ratio) value only means it can be considered

fair under the difference (or ratio) condition. It can remain unfair if

we measure the fairness in the opposite form (e.g., when two metric

values are 0.01 and 0.02). Although there are studies focused on

making the assessment of fairness more reliable, most of them tar-

geted the issue of uncertainty and variation [6, 20, 21], or discussed

the outcome from the aspect of social sciences [17, 19]. In this paper,

we investigate the relationship between the difference and ratio-

based relaxation in both the training stage and the assessment to

improve the reliability of the fairness result.

Lastly, our work reaffirms the difference and ratio approach as

two unique measurement scales of model fairness. As categorized

by the work of Stevens [28], data measurement scales include nom-

inal, ordinal, interval, and ratio types, each with its own analytical

implications. Unlike ordinal scales, which only prioritize the order

of values, the exact numerical differences and ratios of fairness met-

rics are crucial. Again, consider the example in Section 1, where the

difference method resulted in a small numerical difference in the

FPR rates between racial groups, and the ratio approach revealed

a significant bias. This example highlights the need to carefully

select the appropriate measurement scale (difference or ratio) in

fairness evaluations, a point more explicitly addressed in the rest

of this work.

4 𝜖𝑑–𝜖𝑟 RELATIONSHIP
In order to analyze the disparities between the two training ap-

proaches, we begin by examining the relationship between the

fairness measurements, 𝜖𝑑 and 𝜖𝑟 . Initially, we establish the theo-

retical relationship by deducing it from the formulae that define

𝜖𝑑 and 𝜖𝑟 . Additionally, we ascertain the empirical relationship by

sampling various (𝜖𝑑 , 𝜖𝑟 ) pairs given a specific dataset and fairness

definition. Moreover, we propose the optimized relationship, which

we define as the relationship between 𝜖𝑑 and 𝜖𝑟 for models that

were trained to optimize a trade-off between accuracy and one or

both of the fairness measures (this differs from the values of 𝜖𝑑 and

𝜖𝑟 that occur for arbitrary models that are not designed to ensure

fairness or accuracy). We demonstrate the optimized relationship by

training models with two distinct loss functions, each incorporating

the 𝜖𝑑 and 𝜖𝑟 terms, respectively.

4.1 Theoretical Relationship
Recall that 𝜖𝑑 is the difference in metric values and 𝜖𝑟 is the ratio

of metric values for a model, and𝑀1 and𝑀0 are the metric values

for two groups where𝑀1 and𝑀0 ∈ [0, 1].

Theorem 1 (𝜖𝑑–𝜖𝑟 relationship with unknown𝑀1 and𝑀0).

If there are two sensitive groups and the metric values of both groups
are in [0, 1], then it is always the case that

𝜖𝑟 ∈ [𝜖𝑑 , 1] . (5)

Proof. Since𝑀1 and𝑀0 ∈ [0, 1], and 𝜖𝑑 = |𝑀1 −𝑀0 |, we know

𝜖𝑑 ≤ max{𝑀1, 𝑀0} ≤ 1 ⇒ 1 ≥ 𝜖𝑑

max{𝑀1, 𝑀0}
≥ 𝜖𝑑 . (6)

Then by Lemma 1, we have 1 ≥ 𝜖𝑟 ≥ 𝜖𝑑 and 𝜖𝑟 ∈ [𝜖𝑑 , 1]. □
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Figure 1: Theoretical region of the (𝜖𝑑 , 𝜖𝑟 ) pairs. The (𝜖𝑑 , 𝜖𝑟 )
pairs can only fall in the shaded region.

Lemma 1 (𝜖𝑑–𝜖𝑟 relationship given 𝑀1 and 𝑀0). Given 𝑀1

and𝑀0,
𝜖𝑟 =

𝜖𝑑

max{𝑀1, 𝑀0}
. (7)

Proof. Rewrite the equation for 𝜖𝑟 in terms of 𝜖𝑑 as

𝜖𝑟 = 1 −min

{
𝑀1

𝑀0

,
𝑀0

𝑀1

}
=

max{𝑀1, 𝑀0} −min{𝑀1, 𝑀0}
max{𝑀1, 𝑀0}

=
|𝑀1, 𝑀0 |

max{𝑀1, 𝑀0}
=

𝜖𝑑

max{𝑀1, 𝑀0}
. (8)

□

According to Theorem 1, the (𝜖𝑑 , 𝜖𝑟 ) pairs of a model 𝑓𝜃 must

fall within the gray region shown in Figure 1. This region symmet-

rically demonstrates that for a certain 𝜖𝑟 , the possible range of the

corresponding 𝜖𝑑 is [0, 𝜖𝑟 ], i.e., the ratio approach upper-bounds

the difference approach. This suggests that a classifier that is fair

w.r.t. a tolerance 𝑇 under the difference approach can be unfair

w.r.t. any tolerance 𝑇 ′
under the ratio approach. However, a classi-

fier that is fair w.r.t. a tolerance 𝑇 under the ratio approach will be

fair w.r.t. any 𝑇 ′ ≤ 𝑇 under the difference approach. Additionally,

Lemma 1 shows that the ratio approach can be viewed as a normal-

ized difference approach, and the normalized term is max{𝑀1, 𝑀0}.
This suggest that when considering fairness metrics that their value

will decrease during optimization process (such as FPR or FNR),

optimizing on the 𝜖𝑟 value would force the corresponding 𝜖𝑑 value

to be smaller than directly optimizing on the 𝜖𝑑 value.

4.2 Empirical Relationship
The theoretical 𝜖𝑑–𝜖𝑟 relationship assumes 𝑀0 and 𝑀1 to be in

[0, 1]. However, what if, in reality,𝑀0 and𝑀1 are only in a subset

of [0, 1]? Howwill the feasible region of (𝜖𝑑 , 𝜖𝑟 ) pairs change?What

factors affect the size (or shape) of the feasible region? Will the size

or shape of the feasible region affect the decision to choose ratio or

difference as the constraining approach? To answer these questions

and understand more attributes of the 𝜖𝑑–𝜖𝑟 relationship, we apply

a Monte Carlo method to sample logistic regression models from

a parameter space, measure their 𝜖𝑑 and 𝜖𝑟 values under certain

datasets and fairness definitions, and visualize the empirical 𝜖𝑑–𝜖𝑟
relationship for each setting in Figure 2.

4.2.1 Experiment Setting. We demonstrate the empirical relation-

ship on two datasets:

(1) COMPAS [3]: COMPAS is a risk prediction dataset, which

was widely used in many previous work (e.g., Mishler et al.

[23], Sikdar et al. [26], Wang et al. [31]). Each datum of COM-

PAS describes a person, including their personal information,

their criminal record, and a label indicating whether they

committed crimes or violent crimes after 2 years. We take

the race as the sensitive attribute and group data into two

groups (African-American or Caucasian).

(2) LIAR [32]: LIAR is a text-based lie detection dataset. Each

datum consists of a statement, information about the speaker,

and a label indicating whether the statement was a lie. We

take the U.S. political party affiliation as the sensitive at-

tribute and group data into two groups (Democrat and Re-

publican). We encode the statement as textual features, serv-

ing as an example to demonstrate the relationship between

difference- and ratio-based approaches on natural language

processing models.

We choose three commonly used fairness definitions to examine

the relationship between 𝜖𝑑 and 𝜖𝑟 :

(1) Predictive equality [11]: Requires that the FPR of a model is

equal for each group.

(2) Equal opportunity [16]: Requires that the FNR of a model is

equal for each group.

(3) Overall accuracy equality [8]: Requires that the accuracy of

a model is equal for each group.

In addition, we design two kinds of input: 1) with and 2) without

sensitive attributes, indicating whether the input feature includes

the sensitive attributes (party affiliation for LIAR dataset and race

for COMPAS dataset). For the setting of without sensitive attributes,

we also remove the proxy features during data pre-processing.

We apply a Monte Carlo method for each setting. We randomly

draw parameters of a logistic regressionmodel fromUniform(−10, 10)
1,500,000 times. We then measure their metric values conditioned

on the sensitive attribute and plot the (𝜖𝑑 , 𝜖𝑟 ) pairs over the theoret-
ical region. We shade the empirical area with different color values

according to its accuracy. A region with higher (lower) accuracy is

shaded with a darker (lighter) green.

4.2.2 Result. Figure 2 shows two factors that largely affect the

shape and size of the feasible region of (𝜖𝑑 , 𝜖𝑟 ) pairs. The first one
is the choice of fairness definitions. The empirical region of over-

all accuracy equality is approaching a straight line in all settings,

while the regions of predictive equality and equal opportunity cover

a large area of the theoretical region. This suggests that the sta-

tistics metric within the fairness definitions affects the empirical

relationship between 𝜖𝑑 and 𝜖𝑟 . By analyzing the distribution of

the metric value in the setting where the input features did not in-

clude sensitive attributes (see Figure 3), we found that the accuracy

values of models in both datasets are in a range between 0.3 and
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(a) With sensitive attribute

(b) Without sensitive attribute

Figure 2: The empirical region of the (𝜖𝑑 , 𝜖𝑟 ) pairs. We plot the (𝜖𝑑 , 𝜖𝑟 ) pairs of models with 1,500,000 distinct sample parameters.
Each grid is assigned a green color if it contains (𝜖𝑑 , 𝜖𝑟 ) pairs. Grids with high-accuracy (low-accuracy) models are shaded with
a darker (lighter) green. Figure 2a shows the result of models with the sensitive attribute included as a feature, and Figure 2b
shows the result for models do not include the sensitive attribute. We present the outcomes of models on the COMPAS and
LIAR datasets, considering three fairness definitions: overall accuracy equality, equal opportunity, and predictive equality.
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Figure 3: The distribution of metric value in different settings. We plot the distribution of metric values derived from 1,500,000
logistic regression models, each with unique sample parameters. The x-axis indicates the metric value and the y-axis represents
the percentage of models for each metric value. Noted that the sensitive attributes were exclude from the input.

0.7. However, false negative and false positive rates range in [0, 1].
This phenomenon suggests that the feasible region of (𝜖𝑑 , 𝜖𝑟 ) pairs
depends on the empirical range of metric value. In order to further

study the 𝜖𝑑–𝜖𝑟 relationship of the settings where the metric values

are bounded in a small range, we proposed Theorem 2.

Theorem 2 (𝜖𝑑–𝜖𝑟 relationship with bounded𝑀1 and𝑀0).

If there are two sensitive groups and the metric values of both groups
are in [𝑎, 𝑏] where 0 ≤ 𝑎 ≤ 𝑏 ≤ 1, then it is always the case that

𝜖𝑟 ∈
[
𝜖𝑑

𝑏
,

𝜖𝑑

𝑎 + 𝜖𝑑

]
. (9)

Proof. Let both 𝑀1 ∈ [𝑎, 𝑏] and 𝑀0 ∈ [𝑎, 𝑏], 0 ≤ 𝑎 ≤ 𝑏 ≤ 1. In

this case, the value of 𝜖𝑑 is confined in [0, 𝑏 − 𝑎]. Without loss of

generality, we assume𝑀1 ≤ 𝑀0, then the smallest pair of (𝑀1, 𝑀0)
is (𝑎, 𝑎 + 𝜖𝑑 ), and the largest pair is (𝑏 − 𝜖𝑑 , 𝑏). Thus, the value of
𝜖𝑟 corresponding to each 𝜖𝑑 would be

𝜖𝑟 ∈
[
1 − 𝑏 − 𝜖𝑑

𝑏
, 1 − 𝑎

𝑎 + 𝜖𝑑

]
⇒ 𝜖𝑟 ∈

[
𝜖𝑑

𝑏
,

𝜖𝑑

𝑎 + 𝜖𝑑

]
. (10)

□

According to Theorem 2, once the range of the metric value is

small, and the lower bound of the range is far from 0, the range

of 𝜖𝑟 will be small for all 𝜖𝑑 . Figure 4 illustrates different 𝜖𝑑–𝜖𝑟
regions conditioned on the range of the metric values. The result

0.0 0.1 0.2 0.3 0.4 0.5
εd

0.0

0.2

0.4

0.6

0.8

1.0

ε r

values ranged
in [0.01, 0.41]
values ranged
in [0.01, 0.1]

values ranged
in [0.55, 0.95]
values ranged
in [0.85, 0.94]

values ranged
in [0.4, 0.7]
values ranged
in [0.2, 0.35]

Figure 4: The 𝜖𝑑 −𝜖𝑟 region conditioned on different ranges of
the metric value. The theoretical region is shaded with gray
(here, we clip the region on 𝜖𝑑 = 0.5), and the 𝜖𝑑 − 𝜖𝑟 regions
corresponding to different ranges of values are shaded with
different colors.
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shows that if the lower bound of the range is close to 0, e.g., 0.01,

the range of 𝜖𝑟 corresponding to each 𝜖𝑑 will be large (see the blue

and orange regions). On the other hand, if the lower bound of the

metric value is far from 0, the range of 𝜖𝑟 corresponding to each 𝜖𝑑
will be largely decreased even if the range is large (see the green

region). Moreover, once the range of metric becomes small, the

range of 𝜖𝑟 will be close to 0 (see the red region), i.e., the 𝜖𝑑–𝜖𝑟
relationship is near linear. In this case, we proposed Theorem 3 to

estimate the linear relationship between 𝜖𝑑 and 𝜖𝑟 .

Theorem 3. Given 𝜖𝑑 and an error tolerance value 𝜏 > 0, if there
are two sensitive groups and the metric values of both groups are in
[𝑎, 𝑏] where 1 − 𝑎

𝑏
≤ 2𝜏 , we can estimate 𝜖𝑟 as

𝜖𝑟 B
𝜖𝑑 (𝑏 + 𝑎 + 𝜖𝑑 )
2𝑏 (𝑎 + 𝜖𝑑 )

(11)

with a maximum error |𝜖𝑟 − 𝜖𝑟 ∗ | ≤ 𝜏 where 𝜖𝑟 ∗ is the true value 𝜖𝑟 .

Proof. Let both 𝑀1 ∈ [𝑎, 𝑏] and 𝑀0 ∈ [𝑎, 𝑏], 0 ≤ 𝑎 ≤ 𝑏 ≤ 1.

According to Theorem 2, given a 𝜖𝑑 , 𝜖𝑟 is ranged in

[
𝜖𝑑
𝑏
,
𝜖𝑑
𝑎+𝜖𝑑

]
.

When estimating 𝜖𝑟 by the midpoint of
𝜖𝑑
𝑏

and
𝜖𝑑
𝑎+𝜖𝑑 , i.e.,

𝜖𝑟 B

(
𝜖𝑑

𝑎 + 𝜖𝑑
+ 𝜖𝑑

𝑏

)
/2 = 𝜖𝑑 (𝑏 + 𝑎 + 𝜖𝑑 )

2𝑏 (𝑎 + 𝜖𝑑 )
, (12)

the estimated error would be |𝜖𝑟 ∗ − 𝜖𝑑 (𝑏+𝑎+𝜖𝑑 )
2𝑏 (𝑎+𝜖𝑑 ) |. In this case, the

maximum error occurs when 𝜖𝑟 ∗ ∈
{
𝜖𝑑
𝑏
,
𝜖𝑑
𝑎+𝜖𝑑

}
and

𝑑
𝑑𝜖𝑑

|𝜖𝑟 ∗ −
𝜖𝑑 (𝑏+𝑎+𝜖𝑑 )
2𝑏 (𝑎+𝜖𝑑 ) | = 0.

Without loss of generality, assuming 𝜖𝑟 ∗ =
𝜖𝑑
𝑎+𝜖𝑑 . Then, when

the maximum error occurred, we have

𝑑

𝑑𝜖𝑑

(
𝜖𝑑

𝑎 + 𝜖𝑑
− 𝜖𝑑 (𝑏 + 𝑎 + 𝜖𝑑 )

2𝑏 (𝑎 + 𝜖𝑑 )

)
= 0 (13)

⇒ 𝑑

𝑑𝜖𝑑

𝜖𝑑 (𝑏 − 𝑎 − 𝜖𝑑 )
2𝑏 (𝑎 + 𝜖𝑑 )

= 0 (14)

⇒𝑎𝑏 − (𝜖𝑑 + 𝑎)2
2𝑏 (𝜖𝑑 + 𝑎)2

= 0 (15)

⇒𝜖𝑑 = −𝑎 ±
√
𝑎𝑏 (16)

⇒𝜖𝑑 = −𝑎 +
√
𝑎𝑏. ( − 𝑎 −

√
𝑎𝑏 is invalid since 𝜖𝑑 ≥ 0) (17)

Substituting (17) into (14), the maximum error between 𝜖𝑟 and 𝜖𝑟 ∗
would be

(−𝑎 +
√
𝑎𝑏) (𝑏 − 𝑎 − (−𝑎 +

√
𝑎𝑏))

2𝑏 (𝑎 + (−𝑎 +
√
𝑎𝑏))

=
𝑏
√
𝑎𝑏 − 𝑎

√
𝑎𝑏

2𝑏
√
𝑎𝑏

=

(
1 − 𝑎

𝑏

)
/2.

(18)

Therefore, when 𝑀1 ∈ [𝑎, 𝑏], 𝑀0 ∈ [𝑎, 𝑏], and 1 − 𝑎
𝑏
≤ 2𝜏 , the

maximum error of estimating 𝜖𝑟 is(
1 − 𝑎

𝑏

)
/2 ≤ 2𝜏

2

= 𝜏 . (19)

□

According to Theorem 3, once the range of the metric value

[𝑎, 𝑏] is small enough (i.e., 1 − 𝑎
𝑏
≤ 2𝜏 with a small 𝜏), we can find

an approximate transformation function 𝑔 to map between 𝜖𝑑 and

𝜖𝑟 where

𝜖𝑟 ≈ 𝑔(𝜖𝑑 ) B
𝜖𝑑 (𝑏 + 𝑎 + 𝜖𝑑 )
2𝑏 (𝑎 + 𝜖𝑑 )

. (20)

In this case, there is no need to worry about the difference between

using the difference or ratio approach, and we can choose the one

that makes more sense in the applied scenario.

The second factor that affects the shape and size of the feasi-

ble region of (𝜖𝑑 , 𝜖𝑟 ) pairs is the input features. Figure 2 shows

that excluding the sensitive attributes from the input features can

largely restrict the region of the (𝜖𝑑 , 𝜖𝑟 ) pairs when fairness is

defined as equal opportunity and predictive equality. However, it

only ensures a small 𝜖𝑑 , and the possible value of 𝜖𝑟 still ranges

from 0 to 1. To examine the reason for this phenomenon, we plot

the (𝑀1, 𝑀0) pairs of models in different settings (see Figure 5).

For clear demonstration, we pair 𝑀1 and 𝑀0 in ascending order,

i.e., the x-axis indicates the value of min{𝑀1, 𝑀0} and the y-axis

indicates the value of max{𝑀1, 𝑀0}. The result shows that when
fairness is defined as equal opportunity and predictive equality,

the (𝑀1, 𝑀0) pairs of models that took sensitive attributes as input

cover the whole upper triangle, while the (𝑀1, 𝑀0) pairs of models

that excluded sensitive attributes cover only a small portion of that

triangle.

An intuitive reason for this discrepancy is that when sensitive

attributes are included in the input, a model can exhibit complete

unfairness by making decisions based solely on these attributes,

making the FPR or FNR be one for a group and zero for another.

For other cases where the model input does not include sensitive

attributes, the above situation is harder to achieve. This suggests

that for many cases, the value of the absolute difference between

𝑀1 and𝑀0 is naturally constrained. This phenomenon points out

a concern about using the difference approach as a fairness con-

straint because a constraint requiring 𝜖𝑑 to be small may be satisfied

naturally in some settings, especially if the sensitive attributes do

not exist in the input features. However, those models’ 𝜖𝑟 value

may be high because typical models (not trained to be fair with

respect to the ratio) almost never satisfy a reasonable constraint

on 𝜖𝑟 . In such cases, constraining on 𝜖𝑑 will be less meaningful or

even misleading.

Furthermore, this result highlights an issue in reporting fairness.

Studies usually reported fairness in the same form as the training

constraint [2]. For example, if a model is constrained with the dif-

ference approach, reporting fairness means showing the 𝜖𝑑 value

of the testing set. However, the result in Figure 2b shows that in

some settings (e.g., defining fairness as equal opportunity), report-

ing only the 𝜖𝑑 value may over-simplify the result because each 𝜖𝑑
value can map to a large range of 𝜖𝑟 values. Instead, when using

the difference method, we recommend reporting both the 𝜖𝑑 and

𝜖𝑟 values to provide a more holistic view of the (un-)fairness of the

model.

4.3 Optimized Relationship
When visualizing the empirical relationship, we consider the entire

parameter space instead of the optimal one. If we only consider

models that trade-off accuracy and fairness, we obtain a further

subset of the possible region. Here we are going to visualize this

region of optimal logistic regression models for lie detection and

risk prediction.

We consider two strategies for training a fair model. First, we

consider approximately Pareto optimal models, i.e., we train the
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Figure 5: The (𝑀1, 𝑀0) pairs of each setting.We pair𝑀1 and𝑀0 in an ascending order, i.e., x-axis indicates the value ofmin{𝑀1, 𝑀0}
and y-axis indicates the value of max{𝑀1, 𝑀0}. The performance of model with sensitive attributes in the input are presented by
blue dots, while the performance of model without sensitive attributes in the input are denoted by orange dots.

models with two different loss functions,L𝜖𝑑 (𝜃 ) andL𝜖𝑟 (𝜃 ), where

L𝜖𝑑 (𝜃 ) = (1 − 𝜆)LBCE (𝜃 ) + 𝜆 |𝑃𝑀 (𝑓𝜃 ,D0) − 𝑃𝑀 (𝑓𝜃 ,D1) |, (21)

and

L𝜖𝑟 (𝜃 ) = (1 − 𝜆)LBCE (𝜃 ) + 𝜆

(
1 −min

{
𝑃𝑀 (𝑓𝜃 ,D0)
𝑃𝑀 (𝑓𝜃 ,D1)

,
𝑃𝑀 (𝑓𝜃 ,D1)
𝑃𝑀 (𝑓𝜃 ,D0)

})
.

(22)

Here LBCE (𝜃 ) stands for the loss function of standard binary cross

entropy, and 𝑃𝑀 is a function for computing𝑀𝑖 given the model 𝑓𝜃
and dataD𝑖 . We train 100 models with varying regularization terms

𝜆 ∈ {0.01, 0.02, ..., 1}. For each 𝜆, we train 100 models initialized

with different random seeds to reduce the effect of randomness.

For the second strategy, we train the logistic regression model

with the Seldonian Toolkit [18], which allows us to constrain a

model on arbitrary fairness metrics. The toolkit uses a Seldonian

algorithm to provide high-confidence guarantees that the optimized

model will not violate the fairness constraint. For this strategy, we

propose two fairness constraints:

|𝑃𝑀 (𝑓𝜃 ,D0) − 𝑃𝑀 (𝑓𝜃 ,D1) | ≤ 𝜖𝑑 , (23)

and

min

{
𝑃𝑀 (𝑓𝜃 ,D0)
𝑃𝑀 (𝑓𝜃 ,D1)

,
𝑃𝑀 (𝑓𝜃 ,D1)
𝑃𝑀 (𝑓𝜃 ,D0)

}
≥ 1 − 𝜖𝑟 , (24)

where the 𝜖𝑑 and 𝜖𝑟 are the hyperparameters of the Seldonian

algorithm. We consider six different 𝜖𝑑 and 𝜖𝑟 : 0.2, 0.15, 0.1, 0.075,

0.05, and 0.025. For each setting, we run the Seldonian algorithm

1,000 times with different random initialized parameters.

Subsequently, we visualize the (𝜖𝑑 , 𝜖𝑟 ) pairs obtained from all

trained models, as presented in Figure 6. The outcomes of models

trained with the difference approach are represented by blue dots,

while the results of models trained with the ratio approach are

denoted by orange dots. The result shows that when training with

approximately Pareto optimization, although L𝜖𝑑 (𝜃 ) and L𝜖𝑟 (𝜃 )
represent distinct loss functions, the blue dots and orange dots are

nearly aligned along the same line. However, when training with

a Seldonian algorithm, the region of (𝜖𝑑 , 𝜖𝑟 ) pairs looks different,
especially in the setting of [COMPAS, Equal Opportunity] and

[COMPAS, Predictive Equality]. For the setting of [COMPAS,
Equal Opportunity], the orange dots remain in a straight line

while the blue dots cover a wide range of y-axis. For the setting of
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(a) Approximately Pareto optimization

(b) Seldonian algorithm

Figure 6: The optimized region of the (𝜖𝑑 , 𝜖𝑟 ) pairs. We plot the optimized region over the theoretical and empirical region
(Figure 2b) to show their relationship. The theoretical and empirical regions are cropped in order to clearly show the optimized
region. The outcomes of models trained with the difference approach are represented by blue dots, while the results of models
trained with the ratio approach are denoted by orange dots.
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[COMPAS, Predictive Equality], the blue dots are nearly aligned
along a line, while the orange dots vary in two lines underneath

the blue dots. This result further confirms that optimizing with 𝜖𝑟
forces 𝜖𝑑 to be smaller.

Furthermore, this result suggests that with certain types of opti-

mization strategies, constraining the model with difference or ratio

are similar because of the 𝜖𝑑–𝜖𝑟 relationship shown in Lemma 1.

For example, in the case of approximately Pareto optimization, we

can rewrite the L𝜖𝑟 (𝜃 ) as

L𝜖𝑟 (𝜃 ) = (1 − 𝜆)LBCE (𝜃 ) + 𝜆
|𝑃𝑀 (𝑓𝜃 ,D0) − 𝑃𝑀 (𝑓𝜃 ,D1) |

max{𝑃𝑀 (𝑓𝜃 ,D0), 𝑃𝑀 (𝑓𝜃 ,D1)}
.

(25)

As a result, L𝜖𝑟 (𝜃 ) can be viewed as L𝜖𝑑 (𝜃 ) but with a different

weight on the fairness term. However, this does not hold in the

Seldonian algorithm, as it required to compute

E

[
1 −min

{
𝑃𝑀 (𝑓𝜃 ,D0)
𝑃𝑀 (𝑓𝜃 ,D1)

,
𝑃𝑀 (𝑓𝜃 ,D1)
𝑃𝑀 (𝑓𝜃 ,D0)

}]
, (26)

which is not equivalent to

E[|𝑃𝑀 (𝑓𝜃 ,D0) − 𝑃𝑀 (𝑓𝜃 ,D1) |]
E[max{𝑃𝑀 (𝑓𝜃 ,D0), 𝑃𝑀 (𝑓𝜃 ,D1)}]

. (27)

Furthermore, the result suggests that when the relationship be-

tween the difference and ratio approaches in the training strategies

is not clear, or the ratio approach can not be simplified as a normal-

ized difference approach, it is better to consider the ratio approach.

As in these cases, there is no guarantee that constraining with the

difference approach and with the ratio approach will have the same

outcome. Instead, there may be a case that constraining with the

difference approach will result in models that have a small 𝜖𝑑 value

but a large 𝜖𝑟 value.

5 CONCLUSION
In this study, we examine the relationship between 𝜖𝑑 and 𝜖𝑟 . We

derive their theoretical relationship, showing that, theoretically,

constraining models on the ratio is more restrictive than on the

difference. Our empirical results suggests that when the optimized

metric value is close to 0, it is better to constrain models with the

ratio approach and to report the fairness with the 𝜖𝑟 value. This is

because a classifier that is fair w.r.t. a tolerance 𝑇 under the differ-

ence approach can be unfair w.r.t. any tolerance 𝑇 ′
under the ratio

approach. However, a classifier that is fair w.r.t. a tolerance𝑇 under

the ratio approach will be fair w.r.t. any𝑇 ′ ≤ 𝑇 under the difference

approach Furthermore, the result of the optimized relationship in-

dicates that under certain conditions, both the difference and ratio

approaches can achieve the same optimized fairness value, and the

relationship between 𝜖𝑑 and 𝜖𝑟 is linear. In such cases, we can use

a transformation function to map between the difference and the

ratio constraints. As no theoretical proof currently exists for why

this special case arises, we assert that the ratio approach may be

the safer option. When researchers are uncertain whether to adopt

the difference or ratio approach, we expect this research to serve

as a guide for researchers selecting the constraint and reporting

fairness results.

There are still numerous unexplored questions in the relationship

between these two approaches. For example, whether constraining

models using one approach requires less data to achieve a fair result

than the other, or which one is less sensitive to noise in the training

data. Future work could address these questions, further clarifying

the relationship between the difference and ratio approaches.

6 LIMITATIONS
Our study focuses on scenarios that only have two sensitive groups.

However, for other scenarios that have three or more sensitive

groups, there will be 𝜖𝑑 and 𝜖𝑟 values for each group combination.

Therefore, the theoretical relationship we derived can only apply to

each group combination independently. Another way for measuring

𝜖𝑑 and 𝜖𝑟 for all groups is to measure them with meta-metrics, such

as max-min difference and max-min ratio, respectively [21]. In this

case, the theoretical relationship should be further studied.

Another limitation is that our study focuses on which approach

(ratio or difference) is more appropriate for arbitrary problems.

However, there might be other problem-specific reasons for a study

to select one approach over the other, e.g., legislation requiring

fairness with respect to the difference, or convexity of the resulting

fairness constraints.
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