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ABSTRACT
Proprietary data is a valuable asset used to develop predictive al-

gorithms that benefit a wide range of users, including customers,

business owners, and decision-makers. Consequently, there is a

growing interest in developing safe and robust techniques for shar-

ing, learning models, and distributing predictions across a wide

spectrum of potential stakeholders. However, a structured process

to assess the value of data assets, and thus enabling collaborations

among stakeholders, remains largely unexplored. This is partic-

ularly challenging when the data to be shared has a networked

structure, where increasing the shared data samples potentially

connects information observed by different data owners, providing

new knowledge that is unavailable to any data owner individually.

Here, we propose E-GraDE, a framework that assists organizations

in assessing the value of their networked data to better address

graph machine learning tasks. This framework includes a step-by-

step analysis of the requirements of different stakeholders, such as

the accuracy or fairness requisites of the models, ensuring a fair

evaluation process and stronger alignment in the development of a

data federation consortium. Additionally, we propose an approach

to estimate the value of networked data to be shared while disclos-

ing only a small fraction of the original information. We support

our approach with extensive computational experiments, analysing

each part of it through simulated use cases.
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• Computing methodologies → Machine learning; • Infor-
mation systems → Database performance evaluation; Data
exchange; Network data models.
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1 INTRODUCTION
In the modern digital age, proprietary data has emerged as a fun-

damental asset for organizations, providing the raw material for

developing powerful predictive algorithms. These algorithms can

serve a wide range of users, from end customers who benefit from

personalized offerings to business owners who gain actionable in-

sights for strategic decision-making, and policy-makers who rely

on data-driven evidence for policy development. Given the broad

spectrum of potential beneficiaries, there is an increasing interest in

creating safe, robust, and efficient methodologies for sharing data,

learning models and distributing predictions derived from them.

However, despite the wide recognition of the immense value

that these data assets hold, there remains a conspicuous gap in the

literature regarding the systematic assessment of this value. This

is particularly true when the data to be shared has a networked

structure. Networked data, under its interconnected nature, does

not merely amplify the training size but rather enhances the depth

and breadth of understanding of the problem at hand, by integrating

data points from various data owners. Evaluating the value of such

data becomes a complex task, further complicated by considerations

of data privacy and the potential risk of information leakage.

In sectors like retail and telecommunications, where businesses

possess large volumes of consumer behavior data, there are com-

pelling use cases for the sharing of networked data. In such in-

stances, sharing information could lead to better market predic-

tions and customer service innovations. Similarly, sharing clinical

data among healthcare providers, researchers, and policymakers,

provides invaluable insights into disease patterns and treatment

outcomes. In the financial sector, the large-scale effort by regulators

and law-enforcement agencies to combat money laundering [32–

34] is also a compelling use case. Institutions often access only

a portion of the transaction network [2], limiting their ability to

detect and prevent financial crimes. Therefore, alongside privacy-

aware methodologies and regulatory frameworks, establishing a

common standard for evaluating the importance of data assets

could be crucial in unlocking the potential of novel public-private

partnerships.

In response to these challenges, we introduce E-GraDE (Equitable
Graph Data Evaluation), a new, practical framework, grounded in

game theory to help organizations comprehensively assess the value

of their proprietary graph data. Designed as a step-by-step guide

to assist organizations navigate through the complex landscape of

diverse stakeholder requirements, E-GraDE simplifies the task of
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understanding and accommodating various stakeholder needs. It

also promotes fairness in data valuation and strengthens coordi-

nation in a data sharing consortium. This approach represents a

significant advancement in data value assessment, especially in the

realm of collaborative data sharing.

In addition to the E-GraDE framework, we propose a pragmatic

approach for estimating the value of networked data intended for

sharing, while enhancing data privacy by revealing only a small

portion of the original dataset. To demonstrate the feasibility and

effectiveness of our approach, we corroborate it with extensive ex-

periments. Our results highlight the capability of our methodology

to address the critical need for data value assessment in today’s

data-rich world, paving the way for more equitable and efficient

data sharing practices.

Notation. Let’s consider a graph structured dataset as a simple,

unweighted, undirected, attributed graph G = (V, E,X) with a set

of nodes V , a set of edges E ⊆ V × V , and its associated node

attribute matrix X ∈ R |V |×𝐹
. That is, for each 𝑖 ∈ V , there is

an attribute vector 𝑥𝑖 associated with 𝑖 . Here we consider a node

classification task, where each node 𝑖 ∈ V is associated to a class

𝑦𝑖 ∈ Y. Let A ↦→ Y be a learned model, which takes as input a

training graph dataset 𝑆 ⊆ G and assigns to each node a class. The

predictive performance of A is evaluated on a transductive test

set of nodes 𝑇 ⊂ V , which implies that the features and the edges

associated to the test nodes are available during training, but their

labels are not.

We assume that the graph G and its associated features X have

been formed as the union of different subgraphs, i.e. G =
⋃𝑛

𝑖=1 G𝑖 .

Each subgraph corresponds to data belonging to a different data

owner. They may potentially overlap, but they mostly possess dif-

ferent information regarding the same data (e.g. one may have

information regarding certain neighbours of a node, while another

may have access to its label). Throughout the experiments that

we run in this paper, stakeholders are artificially sampled from

different common graph datasets.

Problem statement. Our most general problem can be stated

as follows: given a finite set of data owners 𝑛 and the union of their

datasets G =
⋃𝑛

𝑖=1 G𝑖 , each data owner with information regarding

a subset of G, we want to assign to each subset G𝑖 a value 𝜙𝑖 . This

value quantifies the contribution of the single subset G𝑖 to the

performance of the learned model A concerning the test set 𝑇 .

The problem is strongly context-dependent by its nature. De-

pending on the learning algorithm used to train the model and

the metrics used to measure performance, the value attributed to

a certain data owner may change (i.e. the overall contribution it

brings to improving the performance of the model with respect to

the test set 𝑇 ).

Contributions. We introduce the E-GraDE framework for eval-

uating context-specific graph data importance. It starts with the

definition of the problem and the requirements specified by the prob-

lem owner. A key aspect of E-GraDE is its use of a game-theoretical

approach, using Shapley values to assess the contribution of each

participant. Additionally, E-GraDE aims to minimize data sharing

within the consortium in the early evaluation phase. Moreover, it

strives to conserve computational resources by limiting the amount

of data on which the models are trained. This is achieved by (1)

extracting Random Spanning Trees (RSTs) from the dataset and (2)

calculating Shapley values considering the unshared portions of

the datasets. In scenarios where RSTs may reveal excessive infor-

mation, we propose to further limit the data sharing based on the

concept of effective resistance. After ensuring that the model meets

the specified requirements, E-GraDE provides each data owner

with an evaluation of their dataset’s contribution to the model’s

performance. This assessment is not meant to price dataset but

to offer an insight into its contribution to the performance of the

model, which could potentially be associated with an economic

value. While Shapley values have been previously proposed to

assess data importance [11], this work seeks to expand their ap-

plication by evaluating datasets where data points are inherently

interconnected, such as those in graph datasets.

E-GraDE structure and processes are justified by a series of ex-

periments performed by evaluating randomly extracted coalitions.

First, we tested that the Shapley values are not trivially correlated

to any of the graph metrics we measured over the datasets in iso-

lation (see Appendix). This supports the use of Shapley values

and a training phase as necessary to assess the correct contribu-

tion of the dataset. Then we show how the Shapley values are

assigned depending on the particular context of the problem, i.e.

the learning algorithm, the testing procedure and the evaluation

metrics. Finally, we show that by using RSTs and approximation

heuristics it is possible to obtain a reasonable approximation of

the Shapley values without performing the training over the full

datasets. The code to reproduce these experiments is available at

https://github.com/FrappaN/graph-eqev.

2 PRELIMINARIES AND RELATEDWORK
In the evolving landscape of data marketplaces, understanding the

dynamics of data pricing and trading is becoming increasingly cru-

cial [3, 13, 25]. In [45], the authors propose a formalization of exist-

ing technological solutions that might inform existing approaches

to data governance in data collaborative initiatives. Rasouli and

Jordan [27] provides an in-depth analysis of data markets for dis-

tributed machine learning, considering the unique aspects of data

and presenting models for bilateral and unilateral exchanges.

Data pricing models aim to assign a fair and reasonable value to

data assets, taking into account various factors such as data quality,

granularity, and attribute relevance. Yang et al. [36] introduce a

pricing model that assesses the quality of data using dimensional

indicators. On the other hand, Shen et al. [28] propose a pricing

model for personal data centred on tuple granularity. The model

applies positive rating and reverse pricing methods by considering

value-influencing data attributes like information entropy, weight

value, data reference index, and cost. Agarwal et al. [1] introduce a

marketplace model for the efficient exchange of training data for

machine learning tasks.

Addressing the need to limit information sharing during data

asset valuation, Xu et al. [35] propose a data appraisal stage that

eliminates the need for full data sharing between data owners and

buyers in data markets. Azcoitia et al. [4] propose a "Try Before

You Buy" (TBYB) method. The TBYB method provides data buyers

https://github.com/FrappaN/graph-eqev
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in Data Marketplaces with a measure of machine learning per-

formance on individual datasets, enabling them to make almost

optimal purchase decisions without full information on all possible

dataset subsets.

When it comes to sharing graph-structured data for graph ma-

chine learning tasks, most research focuses on federated learning

methodologies to limit information exchange between partners.

Existing studies, such as those summarized in [10], fall into various

categories. Our work specifically addresses the category marked

by cross-client missing information, a common situation in struc-

tured data. In these cases, each data owner owns a subgraph of

the overall graph, and some nodes may have neighbours owned

by other data owners. Examples of these methodologies include

FedGraph [7], FedNI [26], PPSGCN [38], and FedSage [39], which

primarily focus on healthcare scenarios. These scenarios range from

using distributed healthcare data (e.g., patient interactions like co-

staying in a hospital room or co-diagnosis of a disease) to building

a powerful, generalizable model across multiple distributed sub-

graphs. As privacy regulations are increasing worldwide [29], these

methodologies address more properly privacy risks. The survey of

Zhang et al. [41] analyses in detail how different approaches can

guarantee privacy, security, and robustness. The effectiveness of

these approaches is often tested using popular benchmark datasets,

such as Cora, Citeseer and PubMed.

2.1 Shapley values
Shapley values are a general solution concept to the problem of

allocating gains in the context of cooperative games. We define a

cooperative game by the tuple (S,𝑉 ), where S = {𝑖, 𝑖 = 1, ...𝑁 } is
a (finite) set of 𝑁 players and 𝑉 : 2

𝑁 −→ R is a coalition function:

it assigns to each possible subset of the 𝑁 players a real value. This

value corresponds to the performance of a given subset of players

when they are the only ones to play. The problem is to find an

allocation {𝜙𝑖 }𝑖=1,...,𝑛 of the gains of the whole coalition, depending

on the contribution of each player. Shapley values are considered

to be an "equitable" allocation as it can be proven that they satisfy

a set of desirable properties [19]. This problem is distinct from the

problem of computing Shapley values for graph-restricted games

(see, e.g., [30]), as coordination between players is not defined by a

graph; instead, the players themselves are defined by graph datasets.

The Shapley value of player 𝑖 can be written as: 𝜙𝑖 (S,𝑉 ) =
1

𝑁

∑
D⊆S\𝑖

𝑉 (D∪{𝑖 })−𝑉 (D)
(𝑛−1|D| )

where the sum is over all subsets D
of players not containing player 𝑖 . It is interpreted as a weighted

sum over all possible "marginal contributions" of player 𝑖 , with

weights corresponding to the number of subsets of size |D| not
containing 𝑖 . Each player obtains a "fair payment" for their work,

which sums up with the others to the total win of the team, by

checking the contribution the player gives to any possible sub-

coalition. It can also be easily generalized to give value not only to

single players but also to any sub-coalition of them ([12]).

The use of Shapley values is gaining traction as a novel approach

to quantify the value of individual data points in a data economy

[24]. Ghorbani and Zou [11] propose using data Shapley values in

supervised machine learning to provide an equitable valuation for

individual data points, even in contexts involving large datasets

and complex learning algorithms. Both studies highlight the di-

verse utility of Shapley values in ensuring fair data valuation and

underscore the complexity of achieving this in various contexts.

Moreover, computation of Shapley values in a federated learning

scenario has also been proposed [20, 31, 42], in order to preserve

users’ privacy during data sharing.

2.2 Value of Data
Here, we tackle the problem of equitable data valuation [11, 17, 24]

with the Shapley values paradigm,where each player corresponds to

a dataset, and the coalition function𝑉 corresponds to an evaluation

of a model after being trained over a subset of datasets. When

considering datasets, each player 𝑖 includes also the test set 𝑇𝑖 . The

coalition function 𝑉 will depend on the trained model A, and on

the metric𝑚 used to evaluate the performance of the model. We

can formally define the game as:

Game 1 (Data Evaluation).

Players: the set of datasets S (including their test sets)
Coalition function: 𝑉𝑚,A , depending on the metric𝑚 and on the
training of a ML model A over the merged dataset of the coalition.

Existing literature shows how Shapley values assignment per-

forms well in satisfying what we would expect from “valuable” data

[5, 11], especially with respect to other metrics such as the size of

a dataset or simpler solutions as the leave-one-out score. It can be

easily applied both to single data points and to datasets.

Thanks to the flexibility of the definition of𝑉𝑚,A , different Shap-

ley values can be assigned in different contexts to the same datasets.

It must be always remembered that they carry meaning only in-

side a specific game, and changing the game (e.g. by considering

a different set of players or a different scoring function) will also

change the Shapley values.

Throughout the work, we will sometimes drop the subscript in

𝑉𝑚,A , taking for granted the dependence of the coalition function

on the chosen metric and trained model.

3 E-GRADE: A FRAMEWORK FOR EQUITABLE
EVALUATION FOR NETWORKED DATA

The E-GraDE framework is defined to evaluate data within the

context of a consortium or collaboration, focusing on three distinct

types of users, each with unique interests in data evaluation:

(1) Problem owner : the user who has a given problem to solve.

She believes that learning a model on a larger dataset could

improve the performance of the corresponding algorithmic

decision support system. She might have a set of constraints

over the solutions (e.g. fairness or model transparency con-

cerns) which must be evaluated.

(2) Consortium/Partnership: the collaboration itself which is

formed to share individual datasets to train machine learning

models. Its main concerns are related to the minimization of

data sharing in the preliminary operations, the possibility of

including a third party to perform independently the data

evaluation, and satisfying the fairness and transparency re-

quirements from the problem owner or a regulator for the

final model.
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(3) Data owner : the actual owner of the dataset. Her objective
when evaluating the dataset is to maximize the value as-

signed to her data asset and minimize as much as possible

the shared data.

These stakeholders, as identified, have objectives that may over-

lap, adjoin, or even conflict. E-GraDE provides a structured, step-

by-step procedure to clearly identify and define the data evaluation

process upfront.

As a first step (see Figure 1) the problem owner defines the re-

quirements that the final model trained on the consortium data

needs to comply with. There are three main requirements that we

show can impact directly the Shapley values (as shown from exper-

iments in section 5.1): the model transparency, its generalizability

and the evaluation metric, which can reflect fairness requirements.

These aspects define different coalition functions, by directly affect-

ing the training and testing procedures. It is possible to consider

the different alternatives as different games, where the same player

can provide varying degrees of contribution. In this step, it is also

possible to give full voice to the problem owner (and regulators)

restraints over the model and its expected performance. It is there-

fore crucial for all parties to properly define the procedure in order

to give value to the correct characteristic.

While the problem owner sets the requirements, data owners can

share their data with the consortium, or at least a limited fraction of

them. There are many sampling methodologies defined over graphs

in the literature of network science and computer science. In the

proposed framework we show that sampling edges and nodes using

the properties of random spanning trees produce the best results,

as shown experimentally in section 5.2.

Ideally, the samples should be independent of the chosen model

and evaluation metrics to ensure they accurately represent the orig-

inal dataset, including its flaws and strengths. Data sharing could

either involve a trusted third party to perform data evaluation or

be executed by the data owners in a distributed fashion. They will

then assess each Shapley value on their own, providing a pooled

estimate to the consortium. As outlined in 2 section, data sharing

and the computation of Shapley values can also be performed in

a secure and privacy-preserving setting within federated learning

environments. Since E-GraDE does not make any assumption on

the techniques adopted to compute the values or the learning frame-

work, but rather focuses on training models with representative

samples, it could be adopted and complement existing privacy-

preserving methods.

If the data sharing involves a third party, estimates of the Shapley

value can only rely on the shared samples. On the contrary, if

each data owner trusts the other or the sharing procedure, it is

possible to obtain better estimates, as illustrated in section 3.2 and

in the experiment in section 5.2. Such estimations evaluate the

contribution of Shapley values of full samples together with the

sub-samples of the others. In this way, each data owner can obtain a

more faithful estimation of the Shapley value of their own dataset.

After the estimation, the problem owner and data owner can raise

legitimate concerns regarding both the model requirements and the

data sharing. If the model does not satisfy the target requirements

in terms of fairness, transparency or accuracy, the problem owner

can propose to redefine the requirements or to ask to share more

data to obtain better performances. Similarly, the data owners could

object that the chosen requirements are disadvantaging their dataset

evaluation, or that by sharing more data they could obtain a better

estimate as well. Hence, the three steps are re-iterated until all the

stakeholders reach an agreement, or the collaboration is dismissed

entirely.

If all the stakeholders reach an agreement, they can then proceed

to full data sharing and a last fine-tuning of the model. It is then

possible to evaluate fully and exactly the Shapley value of the whole

dataset. Especially after changing the model, the final value may

differ from the original estimates.

3.1 Graph sampling strategies for partial data
sharing

To accommodate data owners who want an initial estimate of their

data’s value before fully committing to a collaboration, E-GraDE
includes an effective sampling strategy. Here, we assume a fair and

collaborative relationship between the data owners with no adver-

sarial behaviour. We show experimentally how to select a smaller

subgraph from the data to obtain the best possible estimate. We

propose an enhanced approach that goes beyond standard methods

of graph sampling, which often rely on random walks or uniformly

sampling the edge list. This approach leverages the properties of

uniform random spanning trees for more accurate and effective

results.

Uniform random spanning trees have some useful theoretical

properties which justify their use in this context, especially their

connection with commute time distance and the effective resistance

𝑅(𝑒) of an edge. In an unweighted graph, 𝑅(𝑒) is equal to the proba-
bility of an edge being sampled in a uniform random spanning tree.

We provide a brief overview of these concepts in the Appendix. For

detailed mathematical explanations and proofs, please refer to [21].

Random spanning trees maintain the graph’s full node set while

revealing the minimum amount of information about its structure.

However, when there is a need to control the amount of disclosed

information, we suggest selecting edges and nodes based on the ef-

fective resistance. Specifically, we prioritize edges with the highest

effective resistance, as they are more likely to appear in a random

spanning tree. Our experiments, detailed in Section 5.3, demon-

strate that both sampling random spanning trees or selecting the

edges with the highest effective resistance are effective methods for

choosing subgraphs. This finding supports the use of this sampling

method in the E-GraDE framework.

Choosing nodes and edges based on other metrics (such as a

centrality measure) may also be effective. However, we found that

Random Spanning Trees generally yield better results when com-

pared to other sampling techniques we tested. If our assumption

of homophily does not apply in the graph, alternative sampling

strategies may be necessary.

3.2 Estimating Shapley values with partial data
As discussed in the previous section, sharing the entire data asset all

at once to measure its value might be a barrier for data owners who

are starting to collaborate. Therefore, we focus on the partial shar-

ing of the dataset, where the aim is to obtain the best approximation

of the Shapley values for the whole dataset. In what follows, we
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Figure 1: General E-GraDE framework flowchart. Different stakeholders (highlighted in different colours) are engaged in
defining different aspects of the data-sharing process that subsequently impacts the estimate of the Shapley values.

show how our proposed framework handles this task, maximizing

the use of information depending on the sharing choices. In the

following considerations, we assume that the partners have agreed

on a modelling strategy, specifically on the type of machine learn-

ing model to be trained. We keep it fixed, along with the testing

procedures (hence we omit the subscript for the coalition function

𝑉𝑚,A except in the game definitions).

Let’s consider the case where each data owner 𝑖 owns a dataset

G𝑖 , but they share only a fraction G′
𝑖
of their whole datasets. We re-

fer to the data shared by each data owner 𝑖 as S′ = {G′
𝑖
, 𝑖 = 1, ..., 𝑛}.

Each shared graph G′
𝑖
= (V′

𝑖
, E′

𝑖
,X′

𝑖
) contains the shared nodes

V′
𝑖
⊆ V𝑖 , the shared edges E′

𝑖
⊆ E𝑖 , and all the attributes corre-

sponding to the shared nodes. The shared graphs are obtained by

first sampling a subset of nodes and edges, using one of the different

techniques we considered, and then by adding a corresponding test

set to the graph, such that it contains all the nodes of the test set

(𝑇𝑖 ⊂ V′
𝑖
) and the edges connecting them to the rest of the shared

nodes (i.e. the set of edges {𝑒 = (𝑣1, 𝑣2) | 𝑣1 ∈ 𝑇𝑖 ∧ 𝑣2 ∈ V′
𝑖
\𝑇𝑖 } ⊆

E′
𝑖
).

We proceed by training the model using only the shared data.

By doing so, we can estimate the Shapley values of the data shared

within the collaboration, in a game similar to Game 1 but with a

different set of players:

Game 2 (Centralised Estimation of 𝜙𝑖 ).

Players: the set of shared datasets S′ (including their test sets).
Coalition function: 𝑉𝑚,A as defined for the Data Evaluation game
(Game 1).

The Shapley values of the players inside this game will then be:

𝜙 ′𝑖 (𝑉 ) = 1

𝑛

∑︁
D′⊆S′\G′

𝑖

𝑉 (D′ ∪ {G′
𝑖
}) −𝑉 (D′)(𝑛−1

|D′ |
) . (1)

In this approach, we assign Shapley values 𝜙 ′
𝑖
taking into ac-

count only the data that has been shared. We use these values as

an approximation of the complete dataset’s Shapley values 𝜙𝑖 , as-

suming that 𝜙 ′
𝑖
is proportional to 𝜙𝑖 . This assumption is based on

the fact that the coalition function 𝑉 remains the same, and there

is a direct match between each player in the Data Evaluation game

(involving the whole dataset) and each player in the Centralised

Estimation game (involving a shared fraction of the dataset). We

refer to this as a centralised estimation because the dataset samples

can be shared with a third party, who then calculates the estimated

Shapley values. Alternatively, we explore a decentralized scenario

in which data owners share their dataset samples directly with each

other. In this setting, each owner can train on their full dataset as

well as on the shared portions from others. This allows any owner,

say data owner 𝑖 , to calculate the Shapley value of their complete

dataset within a game that includes shared samples from the other

data owners:

Game 3 (Decentralised Estimation of 𝜙𝑖 ).

Players: the full dataset G𝑖 and the set of shared datasets S′ =

{G′
𝑖
, 𝑖 = 1, . . . , 𝑖 − 1, 𝑖 + 1, . . . , 𝑛} (including their test sets).

Coalition function: 𝑉𝑚,A as defined for the Data Evaluation game
(Game 1).

The Shapley value of player 𝑖 in this game,
ˆ𝜙𝑖 , is then:

ˆ𝜙𝑖 (𝑉 ) = 1

𝑛

∑︁
D′⊆S′\G′

𝑖

𝑉 (D′ ∪ {G𝑖 }) −𝑉 (D′)(𝑛−1
|D′ |

) . (2)

We assume that each marginal contribution of player 𝑖 to the

subcoalition D can be approximated as the marginal contribution

it can give to the corresponding subcoalition of shared datasets

D′ = {G′
𝑗
| G𝑗 ∈ D}, i.e.:

𝑉 (D ∪ {G𝑖 }) −𝑉 (D) ≃ 𝑉 (D′ ∪ {G𝑖 }) −𝑉 (D′) .
Thus, we can use the Shapley value of player 𝑖 , ˆ𝜙𝑖 , in their cor-

responding Decentralised Estimation game as an estimate for its

Shapley value 𝜙𝑖 in Game 1.

However, even if we use the full dataset G𝑖 , we are evaluating its

contributions in a game without the full datasets of the other data

owners. Moreover, we are defining a different game for each dataset,

and comparing the Shapley values between different games. It is

reasonable that the values will be comparable since the coalition

function is always the same and the set of players mostly overlaps
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between these games (the only difference being the one player

we are interested in computing the Shapley value of, i.e. the full

dataset). However, we still lose some of the properties given by

the Shapley values when performing their estimation through this

strategy.

Therefore, we define a third strategy for estimating the Shapley

values through a new game with a different coalition function𝑊 .

We start by defining 𝑊 as a function of a coalition D and the

corresponding shared coalition D′
, such that:

𝑊 (D,D′) = 1

|D′ |
∑︁

G′∈D′
𝑉 (

(
D′ \ {G′}

)
∪ {G}) . (3)

Consider a coalition of shared datasets D′
(and the corresponding

coalition of full datasets D). The function𝑊 takes the values given

by 𝑉 when substituting each dataset G′ ∈ D′
with its full version

G ∈ D, one at a time. Finally, it performs a mean between these

values of 𝑉 . In practice, it can be calculated if all data owners first

calculate the coalition function𝑉 of their own Game 3, where their

own shared dataset is already substituted with their full dataset,

and then share this function with the other data owners to compute

the values of𝑊 . Using this coalition function, we can then define

the following game:

Game 4 (Mean Decentralised Estimation of 𝜙𝑖 ).

Players: the set of datasetsS (including their test sets and their shared
datasets S′) .
Coalition function: the function𝑊 as defined in equation 3.

In this game, each player is defined by a triplet of elements:

player 𝑖 will be given by (G𝑖 ,G′
𝑖
,𝑇𝑖 ), where G𝑖 is the whole graph

dataset, G′
𝑖
⊆ G𝑖 is the shared counterpart of the graph, and 𝑇𝑖 is

the test set of nodes.

The Shapley values of player 𝑖 in this game will then be given

by:

𝜙𝑖 (𝑊 ) = 1

𝑁

∑︁
D⊆S\𝑖

𝑊 (D ∪ {𝑖}) −𝑊 (D)(𝑛−1
|D |

) . (4)

When estimating the Shapley values of the game 1 through the val-

ues given by the Mean Decentralised Estimation game, we assume

that, given a subcoalition of datasets D and the corresponding

shared subcoalition D′
,𝑊 (D,D′) ≃ 𝑉 (D).

In all three estimation approaches, the estimate converges to

the exact Shapley value when increasing the shared fraction of the

datasets to 100%. Each approach accounts for more information in

their estimate than the precedent but works on different assump-

tions. A step-by-step description of the estimation approaches is

provided in the Appendix.

To test these different methods and compare them more quanti-

tatively in a controlled environment, we applied them to a simple

and transparent yet quite rich toy model game.

Toy model. Our toy model game is defined by the following

coalition function: given a coalition of three players x = (𝑥1, 𝑥2, 𝑥3),
with each 𝑥𝑖 corresponding to the contribution given by player 𝑖 (0

if it is absent from the coalition, 1 if it is contributing completely),

we define the coalition function as:

𝑉 (x) = 𝜎 [𝑤𝐴𝑥1 +𝑤𝐴𝑥2 + (𝑤𝐴 +𝑤𝐵) 𝑥3 +𝑤𝐶𝑥1𝑥2 +𝑤𝐶𝑥1𝑥3] ,

Table 1: Agreement between the rankings assigned by the
different estimation strategies on the toy model game as
percentages over all the games shown in Figure 4, obtained
by varying𝑤𝐵 and𝑤𝐶 .

CEN-DEC DEC-MEAN MEAN-CEN

𝑝 10% 50% 10% 50% 10% 50%

Both correct 0.9056 0.9658 0.9056 0.9725 0.9070 0.9753

First right 0.0014 0.0108 0.0000 0.0019 0.0065 0.0082

Second right 0.0000 0.0086 0.0079 0.0110 0.0000 0.0012

Both wrong 0.0930 0.0148 0.0865 0.0146 0.0865 0.0153

where the function 𝜎 (·) is a sigmoid function. This was selected

as a nonlinear function that maps the coalition score to a range

between 0 and 1, as wemight expect in a classification task.We have

three parameters which define a family of games with three players,

where𝑤𝐴 corresponds to the maximum contribution that players

1 and 2 can obtain by themselves;𝑤𝐵 influences the contribution

that player 3 can obtain alone with respect to the other two players

and𝑤𝐶 modulates the cooperation between player 1 and the other

two players, which do not interact between themselves.

By keeping𝑤𝐴 fixed andmodifying the other two parameters, we

can model a variety of scenarios. In particular, the most important

player can switch between player 1 (high 𝑤𝐶 and low 𝑤𝐵 ) and

player 3 (low𝑤𝐶 and high𝑤𝐵 ), while player 2 is always the least

contributing to the game. Varying these values allows to apply the

approximation in different regimes, where the cooperation can be

more or less important than the stand-alone value of each player.

In this toy model, we represent the partial sharing of the dataset

by setting the player’s contribution as 𝑥𝑖 = 𝑝 , 0 < 𝑝 < 1, instead of

𝑥𝑖 = 1. We set the three players’ contributions to the same fraction

𝑝 , we fix 𝑤𝐴 = 0.4 and vary the value of 𝑤𝐵 and 𝑤𝐶 . We analyze

if the two different estimates produce differences in the ranking

of players in Table 1. In the toy example, rankings generally agree

with one another, while the estimate with the lowest RMSE changes

depending on the parameters of the game and the shared fraction 𝑝

(see Appendix). The mean decentralised estimation was shown to

be slightly more accurate in predicting the correct rank, although it

is not always the strategy with the lowest error. The best strategy

depends on the parameters of the game: however, all three strategies

can correctly identify the ranking of values in more than 90% of

the cases even at low 𝑝 .

4 EXPERIMENTAL SETTINGS
In our work, we emphasize the importance of using Shapley values

for accurate graph dataset evaluation, which is a critical final step

in the E-GraDE framework. This is based on the understanding

that dataset size isn’t always a reliable indicator of its value, as

highlighted in [5]. Similarly, since cooperative game theory pro-

vides a principled way to quantify contributions, we advise against

relying on estimations based on other graph metrics. We provide

experimental validation of this in the Appendix.

In this section, we present the experimental settings we adopted

to test and examine the properties of the E-GraDE framework. We

introduce the data, the machine learning models and the testing

procedures we adopted.
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Table 2: Datasets used in the work; a value with an asterisk
refers to the largest connected component of the graph.

Dataset #Nodes #Edges #Features #Classes

Cora[37] 2485* 5069* 1433 7

PubMed[37] 19717 44324 500 3

Pokec-z[8] 67435* 617765* 276 2

4.1 Graph sources and artificial coalitions
In order to conduct computational experiments on a simulated envi-

ronment where different data owners share their (networked) data,

we extract independently and randomly different graph datasets

from larger graphs. We refer to these sets of datasets as “artificial

coalitions”. Each artificial coalition is always extracted together

from the same larger graph and the machine learning models are al-

ways trained for the task of node classification. We do not consider

artificial coalitions with datasets extracted from different graphs.

We use three graph datasets as larger graphs from which to extract

artificial coalitions (see Table 2).

We aim at creating datasets inside the artificial coalitions as

different as possible, while also extracting them randomly. Each

dataset inside a coalition is extracted independently from one an-

other. The size (in terms of the number of edges) and the number

of known labels of each dataset are uniformly distributed across all

coalitions. The extraction technique for a dataset is chosen between

four equiprobable methods: uniform edge sampling (in which we

conserved only the nodes having at least one edge) and three dif-

ferent biased random walks sampling. The biased random walks

which we use are the same as those of Node2Vec paper [14]. In

particular, we modified the parameter 𝑞 of the walk in order to

obtain a "Breadth-First Search-like" walk (𝑞 = 0.001), a "Depth-

First Search-like" walk (𝑞 = 1000) and an unbiased random walk

(𝑞 = 1). The artificial coalitions are formed by four datasets in all

our experiments.

4.2 Models
In our analysis, we use two different models. The first is a Label

Propagation model, as described in [44]. This model predicts labels

for all unlabeled nodes, including those in the test set, using only

the edges and labels from a training set. Its key advantage is that

it doesn’t require any training, making it faster to apply across all

potential coalitions of stakeholders compared to supervised training

algorithms. Moreover, it ensures transparency and interpretability

by relying solely on the graph structure and some initial labels for

predictions. The secondmodel is a multi-layer Graph Convolutional

Network [18]. We tuned the hyperparameters by training over the

complete graphs, excluding a validation set for each, and used them

only for experiments on datasets extracted from the corresponding

source graph.

4.3 Testing strategy
Although there are many metrics to choose from, in this work we

consider only two different coalition scores for simplicity: accuracy

and statistical parity ([9, 40]). Both are measured over the test sets.

We explore two distinct strategies for defining these test sets and

evaluate the models. In both cases, we work within a transductive

setup.

The first strategy, referred as “shared test set”, involves a common

test set of nodes shared among all datasets in the coalition. This test

set is extracted before the sampling of the artificial coalition and

then added to each of the graphs. This approach has the advantage

of testing on a sample from the general, overarching distribution;

however, themodels may face a training set whose label distribution

differs from that of the general source population.

The second strategy, called “individual test set”, allows each

stakeholder to have its own test set of nodes, which becomes part

of its contribution when forming a coalition. These test sets are

selected after the artificial coalitions are extracted, ensuring that

training and test sets are formed from the same population. Each

model trained on a set is tested on its corresponding test set; a

coalition of stakeholders is tested after merging the corresponding

test sets (if a node in a test set belongs to the training of another, it

is always removed from training when the datasets are merged).

5 E-GRADE APPLICATION IN SIMULATED USE
CASES

Wefinally analyze the application of the framework in our simulated

scenarios. By considering the different users of the framework we

identified earlier, we examine how different steps impact and satisfy

their objectives.

5.1 Problem owners’ perspective: how model
requirements impact the value of data

The first step of E-GraDE asks the problem owner to set the require-

ments that the ML model should satisfy. This in turn allows for

a definition of a specific cooperative game, as required from the

Shapley values definition. Different setting requirements can then

lead to different value attributions. We identified three criteria for

the game definition which are closely related to the requirements

of the final model. The first is the type of Machine Learning model

used that could translate into more transparent or opaque decision

systems (e.g. a simple deterministic Label propagation model or

a GNN model); the second is the definition of the test set which

impacts the generalizability of the final model and is tightly related

to the context in which it will be deployed (see Section 4.3); lastly,

the metric over which the model is evaluated, i.e. assessing the

value of data on the accuracy gain or on fairness gain (such as the

statistical parity).

We analyze how different requirements translate to different

evaluations in our simulated environment by conducting multi-

ple independent repetitions of artificial coalition extraction and

evaluation. Generally, we observe that the ranking based on the

Shapley value of the dataset within a coalition varies significantly

depending on the different modelling choices, as summarized in

Table 3. This table includes data from 200 artificial coalitions of 4

players each extracted from Pokec. Three scenarios are reported:

changing the black box model for the evaluation (LP-GNN); evalu-

ating the model through the (test) accuracy or the (test) statistical

parity (ACC-SP); training the models on either a shared test set or

on individual test sets (SHA-IND). In all three cases, the reference is

to the ranking obtained by evaluating the accuracy of a GNN model
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Table 3: Percentage of changes in ranking when modifying
criteria of the Shapley values evaluation on datasets extracted
from Pokec.

LP-GNN

Same ranking 47.5%

One position swap 33.5%

More than one position swap(s) 19%

ACC-SP

Same ranking 1.5%

One position swap 5.5%

More than one position swap(s) 93%

SHA-IND

Same ranking 16%

One position swap 26%

More than one position swap(s) 58%

Table 4: RMSE of the different estimation techniques, when
sharing subgraphs sampled through uniform (edge) random
sampling. The lowest value for each fraction is in bold.

Fraction (%)

Dataset Method 5 25 50 75 100

Cora

Centralised 0.077 0.024 0.013 0.011 0.0

Decentralised 0.020 0.009 0.006 0.005 0.0

Mean decentralised 0.016 0.005 0.004 0.003 0.0

PubMed

Centralised 0.031 0.011 0.006 0.005 0.0

Decentralised 0.012 0.005 0.003 0.002 0.0

Mean decentralised 0.004 0.002 0.002 0.002 0.0

Pokec

Centralised 0.022 0.010 0.010 0.007 0.0

Decentralised 0.011 0.006 0.005 0.004 0.0

Mean decentralised 0.004 0.003 0.003 0.003 0.0

on a shared test set. Rather than identifying an objective value of a

dataset, Shapley values allow to give value to a dataset depending

exactly on what it is considered important in the context given by

the problem owner.

Even in our simplified scenario, the assigned values can still have

some substantial change, and there is no guarantee a priori that the

value will remain similar when changing the evaluation criteria.

Thus, as the data does not have an intrinsic universal value and

their importance strongly depends on the modelling choices shaped

by the context and downstream application of the final model, the

framework is useful to unpack step-by-step the modelling choices

that impact the final data value. We show some of the cases where

the changes were the most significant for the three conditions

which we analyzed (see Figure 2).

5.2 Data owners’ perspective: how to
sub-sample data to share

In E-GraDE, we address data owners’ hesitation to fully share their

data without knowing the value they could gain. We recommend

strategies for sharing only portions of their data and evaluate dif-

ferent sampling techniques to support this approach. As baseline

approaches, we consider uniform edge sampling, where each edge

has the same probability of being selected and nodes are included if
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Figure 2: Examples of how the Shapley values assigned to
coalitions extracted from Pokec-z may change by changing
the evaluating criteria. The Shapley values of each coalition
were normalized such that their sum corresponded to 1.

any of their edges are chosen, and unbiased random walks, which

sample the subgraph traversed by a random walker. However, our

analysis shows that the best sampling strategy is based on the

graph’s effective resistance. Here, we sample the top 𝑥% of edges

ranked by effective resistance and their corresponding nodes. We

estimate the effective resistance of each edge by assessing how fre-

quently each appears when extracting random spanning trees from

the graph. Lastly, we also compute the Shapley values of samples

obtained by extracting one random spanning tree from the dataset,

or one for each connected component in the case of a disconnected

graph.

In these experiments, we sample 30 different artificial coalitions

of four datasets each. We compute their exact Shapley value. Then

we proceed to sample increasing fractions of each dataset through

different sampling techniques and to compute the Shapley value of

each sample. For each dataset and method, we perform one sam-

pling per edge fraction (except for random spanning trees, which

have a fixed percentage of edges). The Shapley values are computed

by evaluating the accuracy of a GNN model on a shared test set. To

compare the results across coalitions, we normalize each Shapley

value, exact or approximate, such that the sum of the values of

the corresponding coalition equals 1. We then compute the root

mean square error (RMSE) of the estimation at each fixed fraction,

which is overall the average estimation error over 120 different

dataset-sample pairs at fixed sampling technique and edge fraction.

We show the result of adopting different samplings, for coalitions

extracted from PubMed, in Figure 3a. In the case of the last sam-

pling technique, since each dataset has a random spanning tree of
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Figure 3: Application of different sampling and estimating
strategies for artificial coalitions extracted from PubMed.

different size, we show a kernel density plot of the absolute errors

of estimating the Shapley values against the sizes of the trees used

(relative to the total number of edges of the corresponding datasets).

The Shapley values are estimated through the mean decentralised

approach.

As shown in Figure 3a, sampling random spanning trees (and

thus sharing the totality of the nodes in the graph) generally allows

us to obtain lower errors in estimating the Shapley value of the

whole dataset. If we consider only a limited portion of the nodes of

the graph, sampling the edges with the highest resistance shows

the best result against the two naive sampling techniques.

5.3 Consortium’s perspective: how to estimate
the value of data

The estimation of Shapley values is the central and last technical

step of E-GraDE. This process assumes that the fraction of data

each owner shares is a representative sample of their whole dataset.

Despite this and other assumptions, we can approximate the values

in different ways, each requiring different levels of collaboration

among consortium members. We test the methods proposed in the

framework by comparing the quality of each approximation.

We consider the three different methods to compute the estima-

tion of the Shapley value as described in Section 3.2. The first is

called centralised estimation and requires that each stakeholder

shares a sample of their dataset to a third party, which computes

independently the Shapley values of these samples. The second

method is called decentralised estimation as each stakeholder re-

ceives a sample of the other datasets and can estimate the Shapley

value of their own dataset by themselves by leveraging the full

information of their own dataset. The third method is called mean

decentralised estimation, where each coalition has a coalition score

assigned by the function in equation 4. The function performs a

mean over the coalition scores given by the decentralised estima-

tion. We tested the methods by using the same strategy as before,

measuring the RMSE for 120 samples at fixed estimation method

and edge fraction.

For a fixed sampling technique, each method uses an increasing

amount of information to estimate the Shapley value. This, in turn,

results in obtaining better estimates, as mean decentralised estima-

tion is shown to be the best method to evaluate the Shapley value

in this artificial setting. This can be seen in Figure 3b, where each

sample is extracted through uniform (edge) random sampling. On

average, the mean values method allows us to obtain a value closer

to the actual Shapley value of the whole sample. This is further

proven by looking at the different methods on artificial coalitions

extracted from the three graph sources as in Table 4. The mean de-

centralised estimation proves to greatly reduce the error, especially

at low sampled fractions.

6 CONCLUSIONS
In this paper, we introduced E-GraDE, a framework designed to

assess the value of context-specific graph data. Through extensive

computational experiments, we show how the framework facili-

tates a collaborative data sharing process, highlighting the critical

requirements that must be addressed before assessing data value.

Additionally, we show how E-GraDE provides accurate value esti-

mates while minimizing the amount of shared data, a key aspect that

could enhance collaborative agreements. A limitation of E-GraDE is

its reliance on honest players with aligned goals. In adversarial set-

tings where one or more players seek to maximize their individual

payoff, we might observe diverse sharing strategies aimed at max-

imising the player’s Shapley value estimate, rather than minimizing

the overall error.

While this paper presents E-GraDE solely in the context of node

classification tasks, the framework is versatile enough to be adapted

to other downstream tasks such as link prediction. Future work

will focus on applying E-GraDE to these settings, documenting all

the phases and iterations of the decision-making process. We aim

to refine the data valuation process to include the actual business

value added through dataset sharing. Additionally, we may explore

bidding dynamics that emerge when data value is assessed through

increased data sample sharing. We are committed to promoting

collaboration among multiple stakeholders to validate the usability

of E-GraDE in real-world settings.
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APPENDIX
Uniform Random Spanning Trees
Consider a finite, weighted, undirected and connected graph G =(
VG, EG

)
. A spanning tree T is a subgraph of G such that T is

connected and acyclic (i.e. it is a tree) and T spans over all the

nodes of G, i.e.VT = VG .
For each graph, there are many possible alternative spanning

trees. Throughout this work, we use Wilson’s method to sample

uniform random spanning trees. If we call by 𝑐 (𝑒) the weight of

an edge 𝑒 and by 𝑃 [T ] the probability of extracting the span-

ning tree T through Wilson’s method, it is possible to show that

𝑃 [T ] ∝ ∏
𝑒∈T 𝑐 (𝑒). In other words, the probability of extracting

the spanning tree T is proportional to the product of the weights

of its edges. When dealing with unweighted graphs, this results in

uniform sampling between all possible spanning trees at random.

By interpreting an undirected graph with positive weights as an

electrical network, we identify the weight of an edge 𝑐 (𝑒) as the
conductance between two nodes, and thus it is possible to prove

that, given an edge 𝑒 and a uniform random spanning tree T :

𝑃 [𝑒 ∈ T ] = 𝑐 (𝑒)𝑅(𝑒),

where 𝑅(𝑒) is the effective resistance of the edge. The effective

resistance depends not only on the conductance between the two

nodes but on the conductance of all possible paths connecting the

two. When the graph is unweighted and therefore 𝑐 (𝑒) = 1, ∀𝑒 ∈
EG , we have that 𝑅(𝑒) = 1 when the edge 𝑒 is the only connection

between two subgraphs otherwise disconnected, while it is lower

between two nodes belonging to a common dense subgraph.

The latest observation is particularly relevant in the context of

learning on graphs. A general, common assumption which is taken

for many applications, including many Graph Neural Networks

architectures [15, 16, 43], is homophily [22]. Homophily, in the

context of node classification, assumes that nodes belonging to the

same class will be more likely to be connected. Nodes belonging

to the same class will tend to form subgraphs which are more

densely connected than the rest. It is therefore likely that edges

with a high effective resistance may divide two nodes belonging to

different classes. Since a high effective resistance corresponds to a

high probability that the edge belongs to a uniform spanning tree

T , it is possible to take advantage of this result for predicting the

classes of the nodes. An example of such a method is [6], where

spanning trees are integrated along Label Propagation in an active

learning theoretical framework.

Step-by-step description of the estimation
algorithms
We proceed to describe each of the estimation procedures we pro-

posed in detail. As a general remark, none of these methods address

the problem of approximating Shapley values due to computational

constraints. While Shapley values are notoriously hard to compute

exactly for large number of players, this problem is not relevant in

our scenario, where we expect to involve a relatively small number

of data owners, typically not exceeding 5-10 players. Since we ex-

plore whether the Shapley values found when players contribute

only partially (i.e. with limited data sharing) to a game are similar to

the Shapley values found when players contribute fully, improving
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the computational cost of each "estimation" does not necessarily of-

fer advantages over computing Shapley values exactly. Nonetheless,

when required, Shapley value calculations can be approximated

using established techniques.

Centralised estimation. The estimation of the Shapley value of a

dataset is performed exclusively on the sample shared with the data

owner:

(1) Each data owner shares a sample of her dataset to a third

party;

(2) The third party computes the Shapley values with respect

to a pre-defined coalition function using exclusively these

samples.

The method has the advantage that each data owner does not

share her data with one another, assuring an higher level of safety.

Howevever, the estimation could be strongly biased by the sample

chosen by each data owners.

Decentralised estimation. The estimation of the Shapley value of a

dataset is performed privately by each data owner, using the sample

of the other data owners.

(1) Each data owner shares a sample of her dataset with the

others;

(2) Each data owner computes the Shapley value with her own

full dataset and the samples of the other;

(3) Each data owner shares the resulting Shapley value of her

own dataset

While this method may compromise some of the data by sharing

them with the other data owners, it has two advantages. First, it

allows for a data owner to estimate more precisely the value of their

full dataset. Second, each data owner could possibly identify more

clearly which of the other dataset are important for her interest,

by testing individually the different samples. Another drawback,

however, is that the Shapley values obtained from this approach

of own full dataset with another is formally impropriate, as each

Shapley value was obtained from a game defined by a slightly

different set of playes.

Mean decentralised estimation. This method builds on the previous

one, but by defining a new coalition function, allows for a proper

game definition (see Game 4).

(1) Each data owner shares a sample of her dataset with the

others;

(2) Each data owner computes completely the coalition function

values with her own full dataset and the sample of the others;

(3) Each data owner shares the coalition function values they

obtain;

(4) The new coalition function𝑊 is computed, according to

Equation 3;

(5) The Shapley values according to the new coalition function

are computed.

This latter method requires that the data owners share even

more information regarding their datasets, in the form of the per-

formances obtained with the samples of the others. However, it

allows to properly define a game in which each Shapley value de-

pends on the full dataset, without requiring to share it fully with

the other data owners.

Toy Model for Estimating Shapley values with
partial data
To test different Shapley value estimations, we defined a toy model

game in Section 3.2. Here, we compare the different estimates for

each game two-by-two: for each couple of estimation methods we

compute the ratio between the root mean square error (RMSE) over

the three players in Figure 4.

Relation between Shapley values and graph
metrics
To check whether the dataset Shapley value (that is potentially

intensive to compute and requires some level of data disclosure) is

necessary, we analyzed the relation between the Shapley value of

graphs in an artificial coalition and metrics defined over the graph.

Various properties of each dataset were quantitatively measured, in

particular: diameter, average clustering coefficient, average degree,

and label distance (measured as the sum of the absolute differences

between the frequency of a label in the graph and its frequency on

the corresponding graph source), normalized cut size (the number

of edges between two nodes belonging to different classes), degree-

based assortative mixing [23].

In Figure 5, the metrics are presented for artificial coalitions

extracted from Cora. The Shapley values are calculated using the

accuracy of the models as coalition score and were then normalized,

such that the sum of their values in a coalition is always one. In each

subplot, the colour corresponds to the relative size of each dataset

in comparison to the full coalition (measured by the number of

edges with respect to the number of edges of the entire graph). The

extraction method used for each dataset is also represented through

different symbols for the points. The analysis of the diameter metric

does not reveal a clear correlation with the corresponding Shapley

values. In the case of other metrics, it seems plausible that there is

a relation between the metrics and the corresponding normalized

Shapley value. However, there is also a huge variability and noise.

Moreover, the properties corresponding to the larger Shapley value

appear to be dependent on the graph source: when plotting similar

plots for artificial coalitions extracted from PubMed and Pokec we

obtain different values corresponding to increasing Shapley values,

although the qualitative behaviour is similar.

Based on these observations, we can conclude that predicting

Shapley values based on these properties is a complex and context-

dependent task, as variations in underlying graph sources, models,

and testing procedures can lead to different results. Even if it is pos-

sible to compute these properties before training a model over the

datasets, its contribution will not depend on these metrics always

in the same manner.
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Figure 4: Comparison of the estimation strategies with the toy model described in Section 3.2, for two different shared fractions
𝑝, 0.1 and 0.5, and at fixed𝑤𝐴 = 0.4. (a) Method with the lowest RMSE over the three players. (b) Log-ratio of the RMSE of the
three different estimation strategies. The best strategy varies depending on the parameters of the game (defined by (𝑤𝐵,𝑤𝐶 ))
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