ABSTRACT
Algorithmic recommendation is one of the most popular applications of machine learning (ML) systems. While the implication of algorithmic recommendation has been studied in the context of high-stakes domains such as finance and healthcare, there has been very little focus in understanding its impacts with respect to the arts domain. Given that ML is increasingly finding place in the arts domain such as in generative arts and content analysis, in this paper, we examine the tensions of algorithmic curation in the context of visual arts. Through case studies, we describe how curatorial algorithms that are oblivious of broader socio-cultural contexts could potentially result in ethical concerns such as over-representation and misattribution, to name a few. Towards addressing some of these concerns, the paper offers design guidelines. Specifically, the paper outlines repair strategies that suggest ways 1) to engage with cultural stakeholders in building visual art curatorial algorithms, 2) to unlearn biases embedded in digital artworks and their meta-data, and 3) emphasize the need to establish regulatory norms specific to the use of ML in visual art curation. Taking cue from the process employed by artwork curators, the paper also describes how authenticity can be prioritized by re-calibrating visual art curatorial algorithms. The paper also suggest ways through which the potential of state-of-the-art ML curatorial algorithms can be re-imagined towards empowering the audience of artworks. We hope the insights presented in the paper spark interdisciplinary discussions and pave way for fostering reformation in algorithmic curation of visual arts.

CCS CONCEPTS
• Computing methodologies → Machine learning algorithms;
• Human-centered computing → Human computer interaction (HCI);
• Social and professional topics;

KEYWORDS
algorithmic recommendation, visual arts, case studies, machine learning, curation

1 INTRODUCTION
From social media feeds to personalized search results, our daily digital life is replete with algorithmically-recommended content, shaping individual experiences and perceptions [115]. The massive scale at which online data is being produced coupled with technological advancements, in particular breakthroughs in machine learning (ML), has made algorithmic recommendation a very attractive venture. These developments have in turn triggered debates concerning the counter-benefits of algorithmic recommendation: the biases and prejudices recommendation algorithms can embed [22], the historical discrimination algorithms can amplify [9], and the power centralization that algorithms can reinforce [51].

Past studies have investigated issues of concern in algorithmic recommendation in high-stake domains such as healthcare [5], finance, and law [62]. There are also works that have examined social media/news feeds to uncover issues related to algorithmic biases [74] and exacerbation of power imbalance due to algorithmic interventions [99]. In parallel, there have been efforts to address these biases by designing bias-mitigating algorithms [44, 68] or through human-centered approaches [26, 79, 81, 111]. While there are a few studies that examine new age media such as music [1, 10, 73, 95, 102], there is not as much focus on visual art forms.

Visual arts deserves attention for various reasons. Firstly, visual arts encompasses a broad and wide variety of both traditional and modern art forms from ancient paintings to modern photography and video-making. From pre-historical times, visual art has been a form of communication deeply imprinted in human nature, having also the power to facilitate cognitive development in individuals [100, 114]. Researchers even argue that visual arts can provide a glimpse into history and culture—from the prehistoric cave paintings to the modern times, visual arts is regarded as a powerful means of storytelling [108], helping in documenting important social, religious, cultural, political, and other historic events of the past [27, 63].

More importantly, visual arts has been explored widely within the ML community—ML technologies are making inroads into a variety of visual arts applications such as for generating art, content analysis, artist identification, and style modeling [52, 89, 106, 117]. Amidst these advancements, many concerns have surfaced. There are philosophical and epistemological concerns—questions have been raised with regards to creative potential of algorithms [118]. Then, there are a variety of social, cultural, and economic concerns pertaining to the impact of AI art on traditional artists [45, 119]. As authors in [45] note, from reputational damage and economic loss to plagiarism and copyright infringement, traditional artists have had to experience a variety of harms due to the proliferation...
of generative arts. Thus, understanding the ethical and normative implications of algorithmic curation in the context of visual arts becomes necessary. For these reasons, in this paper we discuss issues related to algorithmic curation of visual arts.

It is to be noted that the term ‘curation’ is often used in the context of selection, organization, and presentation of artworks, especially in galleries, museums, art exhibitions, and other related venues. Curation often involves expert humans who oversee the selection and presentation process. On the other hand, recommendation is a more broad term that can refer to a wider set of applications (beyond arts) where lay users and algorithms can take the place of expert humans in selecting, organizing, and presenting content. In the context of this paper, we are focusing more on the curation and less on recommendation, specifically to refer to the process of selection, organization, and presentation of artworks across all platforms where artworks can be showcased. Thus, these could include physical platforms such as museums and physical galleries as well as online art galleries. In the rest of the paper algorithmic curation refers to ML based curation.

Motivated by the recent applications of ML algorithms in the visual arts domain, the paper discusses two important but non-exhaustive issues of conflict that arise as a consequence of algorithmic curation. First, we discuss the tensions surrounding the generation and digital reproduction of artworks. With the emergence of various generative AI tools and interfaces, artworks are being created and reproduced for a variety of tasks such as for simulating the styles of ancient artists and for rendering new art forms. Although generative AI might have enhanced accessibility to art, it has also paved the way for adverse downstream effects. Through two visual art case studies concerning artist style simulation, we illustrate how the nuanced elements of artists’ style and the traditions of art movements can be overlooked by generative algorithms. The second aspect of tension that the paper discusses concerns how algorithmic curation which was seen as a means to include global artistic narratives can potentially lead to exclusion of certain context specific narratives—two visual art case studies—one concerning curation of artworks aided by ChatGPT and another related to similar artwork retrieval based on culture are described to illustrate how algorithmic curation can lead to mis-attribution and other ethical concerns.

The paper outlines three potential pathways towards fostering reformations in algorithmic curation—through ‘repair’, ‘recalibration’, and ‘re-imagining’. Repair outlines ways to 1) engage with cultural stakeholders in building visual art recommendation algorithms, 2) unlearn biases embedded in digital artworks and their meta-data, and 3) emphasize the need to establish regulatory norms specific to the use of ML in visual art curation. We discuss how some of these measures can be implemented in practice. Recalibration calls for deliberation and a temporal re-orientation by shifting the focus towards a slow and enduring algorithmic curation whereby aspects such as authenticity are prioritized over speed and efficiency. Finally, we discuss ways through which the potential of state-of-the-art ML curatorial algorithms can be re-imagined towards empowering the audience of artworks.

Specifically, the paper aims to broaden the understanding of the implications of algorithmic curation with respect to visual arts by offering:

- A snapshot of the tensions associated with algorithmic curation for visual arts, taking into account the implications induced by recent ML advancements
- Accompanying case studies, illustrating some ethical concerns that can surface
- Potential pathways towards reforming the current state of algorithmic curation of visual arts—how can existing curatorial algorithms and platforms be repaired, why they need to be recalibrated, and how the potential of state-of-the-art ML curatorial algorithms can be re-imagined towards empowering the audience of artworks. Design guidelines are discussed, a summary of which is provided in Table 1

2 BACKGROUND

Machine learning (ML) technologies are being used for a variety of visual arts related applications such as for content analysis [89, 106], artist classification [61], style transfer[117], etc. A comprehensive review of ML based art applications can be found in [18]. Furthermore with the emergence of generative algorithms, ML technologies are also being used for supporting existing artistic practices [23, 49] and for establishing novel methods of creating and re-mixing media [58]. In this section, we briefly situate our paper in the specific context of ML based curation of artworks and their associated concerns. The paper complements and extends previous works that have investigated biases in recommendation algorithms—by discussing issues specific to visual arts and by suggesting potential pathways towards addressing the concerns outlined.

2.1 Algorithmic curation of artworks: Design and Interaction Studies

From virtual and augmented reality systems to recommendation engines, researchers have extensively investigated on how to design interactive creative systems. From ethnographic fieldwork to people-powered collaborative system design, these studies have been informed by computational principles from various fields such as HCI, AI, humanities, and the social sciences.

For example, HCI researchers have offered ethnographic fieldwork based insights for the design studio culture [105]. In [48], a theoretical and methodological framework of art-based modes of inquiry in HCI and the broader STEM fields is offered. Studying the notion of embodied interactions in museums, the authors in [98] note that mode type impacts the number of visitors that interact with the installation, the gestures that people do, and the amount of time that visitors spend observing the data on display and interacting with the system. In [69], the potential of exhibits to engage new audiences in collaborative scientific discussions as part of people-powered research in science museums is studied. The authors in [87] discuss how visitors to museums and cultural heritage sites use and link digital information with physical information to shape others’ understandings of cultural heritage. In [75] implications for how design can support learners’ expression across culturally relevant themes are identified. An investigation of cross-cultural differences for website design is provided in [6]. To deepen people’s experiences with public art, [33] provides designers with the grounds for informed inspiration in ideating such systems. The
authors in [54] examine the role of live streams in the preservation of intangible digital heritage.

The richness of artworks and other such cultural heritage poses both opportunities and challenges in the development of tools for its curation and exploration [5]. Curation methods have to not only enhance information discovery and analysis, but also aid the audience by presenting authentic and interesting content. Thus, designing and delivering accessible and enjoyable experiences of cultural artefacts is an important research and development area that calls for a collaborative effort across disciplines.

2.2 Algorithmic curation of artworks: Applications

With the abundance of digital artworks, conventional modes of acquisition patterns are being disrupted. Art institutions are increasingly resorting to ML algorithms for curation [12, 39]. Recent years have witnessed several applications wherein ML technologies have been employed for curation of visual arts. One prominent application concerns personalized visual art recommendation based on user preferences. In this regard, the authors in [113] propose a multimodal visual art recommendation pipeline to customize the results based on user preferences. In another work [112], the authors propose a visual art recommendation system based on textual and visual features, and perform user-centric evaluations for assessing the quality of the recommendations.

Recommendation algorithms for visual arts have also been used to aid in understanding history. For example, a deep learning approach to cluster visual arts is proposed in [17] for historical knowledge discovery. In [37], the authors have designed an interactive web app that allows users to find pairs of semantically related artworks that span different cultures, media, and millennia. In [15], the authors propose a visual art recommendation system that they claim to be generalizable to any recommendation application. With rapid ML advancements, the number of applications related to visual art recommendation is likely to grow.

2.3 Algorithmic curation of artworks: Concerns

Despite the aforementioned progress, critics state that recommendation systems seem to flatten culture into numbers, that they normalize ever-broadening data collection, and profile their users for commercial ends [85, 86]. It is argued that algorithms are nothing more than objects of marketing and that this produces distinctive representations of algorithms that have evolved from technical and educational imagery [84].

Casting modernity as an ongoing contest between visuality and countervisuality, or ‘the right to look’, Nicholas Mirzoeff in his book The Right to Look: A Counterhistory of Visuality argues that the ‘right to look’ is the claim to a subjectivity that has the autonomy to arrange the relations of the visible and the sayable [64]. It is ironic that although artists are beginning to deconstruct algorithms to visualize and counter-visualize their underpinnings, how algorithms curate content, what they promote, and what gets seen by the viewers largely remains opaque. Researchers argue that AI should not only be understood not only as a tool for artists but also as cultural and political design material [13]. The author in [65] argues that an emerging layer of companies — referred to as the ‘infomediaries’ — are increasingly responsible for shaping how audiences experience cultural content. The author adds that the cultural content towards which infomediaries point users has less to do with user preferences and more to do with a supposed fit with quality that companies care about.

Recent research has exposed the biases associated with curatorial algorithms, prompting for greater diligence and emphasis on bias-mitigating strategies. However, researchers state that even if there was greater transparency about how algorithmic curation works [7], the dynamic and highly fluid nature of the algorithms which are constantly tuned based on the data collected from users implies that some amount of opaqueness always exists, that there is something ‘impenetrable’ about their performance [30]. The rapid pervasiveness of algorithms has given impetus to anxieties about the entanglement between the social, cultural, and the algorithmic — artworks have become intriguing in many ways— “they are invisible yet omnipresent, proprietary yet pervasive, and with assumed socio-political powers that co-produce our lives” [24].

While recent studies have investigated the implications of algorithmic curation on social media [29, 79, 103] and online music platforms [1, 10, 73, 95, 102, 103], there is not much focus on examining the impacts of algorithmic curation of visual arts. Works such as [33, 54, 69, 75, 105] that investigate the interplay between technology, culture, and creative practices offer valuable insights for designing people-powered ML systems that can facilitate collaborative scientific advancements. This paper complements and extends previous works by focusing on the specific use case of algorithmic curation of visual arts. Through case studies, we illustrate the contradicting objectives of algorithmic curation for visual arts, while also suggesting potential pathways towards addressing some of the issues of concern.

3 THE TENSIONS OF ALGORITHMIC CURATION

Although a variety of tensions exist in the context of algorithmic curation of visual arts, here, we examine two points of friction. Through visual art case studies, we describe how generative algorithms used for curating artworks in the styles of ancient artists can be misleading, and how algorithmic curation can decontextualize artistic narratives by not considering the broader social-cultural contexts surrounding the artworks.

3.1 Digital Reproduction vs Irreproducibility

Starting from the times of mechanical reproduction and photography to the more recent ML based reproduction and generation, the discussion around pros and cons of digital reproduction of arts has had a long history. On the one hand, digital reproduction of artworks enables institutions to expand their presence beyond physical boundaries of museums and galleries while also allowing the audience to search for artworks from a large repository of worldwide collections. On the other hand, digitization and generation can pave way for many adverse downstream effects [39].

In the seminal essay ‘The Work of Art in the Age of Mechanical Reproduction’, Walter Benjamin writes “…Unmistakably, reproduction as offered by picture magazines and newsreels differs from the image seen by the unarmed eye. Uniqueness and permanence are as
closely linked in the latter as are transitoriness and reproducibility in the former” [8]. Although Benjamin’s comments are in the context of mechanical reproductions as relevant to the 1930s when the essay was written, the argument concerning the unique, indefinable, and irreproducible aura associated with the visual artworks applies to the current times of digital reproductions [19]. With ML generated art, there are additional layers of complexities [21, 66]. Generative art can be embedded with a variety of biases, including racial bias, gender bias, and cultural appropriation which can stem from the datasets used in training these models [91].

Furthermore, even if unethical datasets are deprecated, models and datasets derived from the source dataset can continue to raise ethical issues [56]. In a recent art exhibition, artist Trevor Paglen and researcher Kate Crawford uncovered the biases associated with the ‘person’ category of ImageNet, a foundational image dataset [20]. The creators of the dataset subsequently removed the offensive images, but there were already plenty of generative models and datasets based on ImageNet by then. For example, audit on the text to image generation CLIP model (trained on ImageNet) has revealed a variety of gender and racial biases [109]. CLIP and several other generative models have been extensively used to (re)create famous artworks of the past, albeit embedded with stereotypes and biases [91]. Below we describe two visual art case studies involving generative algorithms and describe some ethical concerns that arise in the context of curation.

3.1.1 Case study 1. A generative ML model called ‘CycleGAN’ [117] claims to model the style of famous artists like Monet and van Gogh. However, in training the model, the influence of art movements (i.e., tendencies or styles in art with a specific common philosophy influenced by various factors such as cultures, geographies, political-dynastical markers, etc. [107]) is not considered. It is to be noted that Monet was primarily influenced by Impressionism, a modern art movement while van Gogh’s renditions were influenced by the Post-Impressionism art movement. When images across art movements are combined as was the case in the CycleGAN model, the fact that art movement is a potential confounder is ignored, thereby leading to biased representations. This is an illustration of the Simpson’s paradox [76]. It was shown that spontaneous and accurate depiction of light along with its changing quality, an important characteristic of Impressionism was missing in the generated Monet versions, and expressive brushstrokes emphasizing geometric forms were missing in generated images corresponding to Post-Impressionist style of van Gogh [92]. Thus, not only the true cognitive abilities of an artist are undermined, but also the larger cultural practices as reflected in the art movements are misrepresented in the process. Despite this fundamental flaw in modeling, CycleGAN has been widely adapted for various applications, including in a recently exhibited application called ‘Electronic Curator’ [36] wherein the CycleGAN based algorithm not just generates a new image, but also takes the role of a curator evaluating the quality of the art piece.

3.1.2 Case study 2. As another instance, consider ‘The Next Rembrandt Project’ [80] wherein paintings of artist Rembrandt (owned by the Rembrandthuis museums) were processed to generate paintings in the artist’s style. In training the algorithm, the original images were divided into smaller patches to make it amenable for processing, a step which can greatly degrade the original image resolution and color calibration [78]. Experts argue that the generated images do not reproduce Rembrandt’s style, and could contributes towards misattribution [16]. Despite such issues, a similar algorithm was used to ‘reproduce’ the lost fragments of Rembrandt’s 1642 artwork ‘Night Watch’ (Please see Figure 1). The missing part was restored using a smaller seventeenth-century copy made by artist Gerrit Ludens (Please see Figure 2), on which the ML algorithm applied ‘Rembrandt’s style’ to complete the missing left portion of Figure 1 [78]. The algorithm worked on small patches of both paintings’ reproductions, comparing the two styles. Despite the poor quality of image used in (mis)creating the lost fragment, the ‘reproduced’ painting was featured at the Rijksmuseum museum. From stereotyping artists to misattribution, these case studies illustrate some of the concerns induced by the use of new age digital reproductions/generations in curatorial applications.

3.2 Inclusion vs Exclusion

In the interpretation of visual arts, museum work often involves the establishment of a canon through which order is created ‘by giving authority to certain texts, figures, ideas, problems, discursive strategies and historical narratives’ [41]. Researchers argue that algorithms lack the intellectual predisposition of artistic intention and in their attempt to form a narrative of contemporary humanism, may overwhelm and choke the development of historical schools of thought [77].

Artworks are embedded in social, cultural, environmental, political, and religious contexts—the artist behind the artwork, the style or art movement that influenced the artwork, the materials that were used in creating the artwork, the commissioning authorities, the purpose behind the artwork characterizes the value and relevance of artworks. Algorithms seldom consider these aspects in curation. Algorithms often determine value by means of indexing and connections [46]. It has been argued that algorithmic curation can tag significant portion of contemporary events in the visual arts as ‘historical’ by the diffusion of information that is compatible to algorithmic computation [77]. For instance, the ‘Art Genome Project’ recommends other artworks to users based on personal taste and previous choices, an approach that has been criticized for being over-simplistic and devoid of contexts [39]. In the process, audience may be made subjects to an invisible history as perceived by the algorithm, a history that is decontextualized and misrepresented [57].

3.2.1 Case study 3. Recently, students and faculty in Duke university’s Art, Art History and Visual Studies department along with Duke Digital Art History and Visual Culture Research Lab set out to understand the usefulness and limitations of AI as a curator in museums. In their experiment, they gathered a dataset of nearly 14,000 objects in the Nasher Museum’s collection by developing a tool to extract publicly accessible information from the museum’s databases [71]. This was further transformed into machine-readable data that is understandable by OpenAI’s ChatGPT platform. Specifically, the research developed a series of prompts and instructions for ChatGPT that asked it to select artworks for the exhibition. While there were many aspects to admire in the collection displayed by the
algorithm, there were also notable flaws [31]. For example, the algorithm called one painting a sculpture and mis-titled another, raising questions related to mis-attribution. It was also observed that the algorithm picked a non-descriptive bowl to be displayed alongside a Dali [31], potentially leading to simplification of a complex work of art. Additionally, as the author in [31] writes, the language used in the descriptions was somewhat rigid and repetitive.

3.2.2 Case study 4. As another instance, consider ‘MosAIc’, an interactive web app that allows users to find pairs of semantically related artworks that span different cultures, media, and millennia [37]. Specifically, visual similarity search is conducted using user supplied filters or ‘conditions’ to find pairs of similar images that span distinct subsets of the image corpus. Examples of filters or conditions that users can provide include ‘culture’ and ‘medium’. However as the authors themselves acknowledge, the method chooses some items significantly more than others, this is known as the ‘hubness problem’ [37]. This means certain artworks are shown to be more similar to the query primarily because the algorithm sees it in the nearest neighborhood of the query often. Although the artworks may be distinct in many ways, the algorithm fails to recognize the nuances of artistic traditions, potentially contributing to misattribution and cultural appropriation. Thus, while the original intention of leveraging algorithms was to provide a diverse and authentic representation of world culture and history, such examples raise questions concerning the authenticity and diversity associated with algorithmic curation.

4 DISCUSSION
In what follows, we outline three non-exhaustive potential pathways towards fostering reformations in algorithmic curation of...
visual arts—through what we refer to as ‘repair’, ‘recalibration’, and ‘re-imagination’. In section 4.1 under repair, we discuss what could to be done to fix existential issues of concern in algorithmic cura-
tion. Section 4.2 (recalibration) discusses the need for a temporal reorientation facilitating deliberation instead of rapid scaling of algorithmic curation. Section 4.3 discusses various ways through which the potential of ML algorithms could be leveraged towards empowering the audience of visual arts. Table 1 provides a summary of the design recommendations.

4.1 Repair: Unlearning biases, facilitating regulation, and restoring dialogue

The first repair pathway concerns unlearning the biases embedded in ML models and training datasets. For decades now, ML systems interpret tasks (be it recommendation, classification, or anything else) as something that is objective and definable. For example, algorithmic curation largely perceives artworks as static; in contrast, artworks are dynamic and continuous bodies of knowledge shaped by a variety of social, cultural, religious, and political contexts. Thus, there is a need to recognize the co-constructed elements that govern artworks as opposed to the existing prejudiced notions of discreteness, immobility, and objectivity that are wrongly associated with artworks [11, 53]. Such a repair process may embed modes of human interaction with technology and with each other in ways that surface values as contingent and ongoing accomplishments, as suggested in [42].

Specifically, techniques that strategically limit the influence of a data point in the training procedure can been seen as a viable option to unlearn existing biases [55]. Formally called ‘machine un-learning’, these are techniques to make ML models ‘forget’ certain training data instances (e.g., those that embed biases or infringe
Reformative measure | Potential Pathways
--- | ---
Repair: unlearning biases | ‘machine unlearning’ techniques to limit the influence of biased data instances; active learning methods to interactively update identity labels of artworks
Repair: regulation | standardization measures for artwork content quality and moderation; establishment of best practices for art datasets documentation
Repair: restore dialogue | leveraging expert interaction data for evaluation of curation results; employing jury learning for resolving artwork metadata disagreements
Recalibrate | temporal reorientation that prioritizes authenticity and fairness over speed; multi-level multi-interest recommendation algorithms for fine grained analysis of individual and collective interactions embedded in artworks
Reimagine | conscious data contribution, data protection measures, cultural resistance, leveraging visual art to raise awareness, anti-consumption activism

Table 1: Summary of potential pathways towards reforming the current state of algorithmic curation of visual arts

In the seminal work ‘Thinking Fast and Slow’ [47], Daniel Kahneman remarks that good decision-making demands a tradeoff between the efficiency of fast paced intuitive thinking and the accuracy of slow and deliberative thinking. A significant portion of technological acceleration can be attributed to speed—the fact that algorithms save time is one of the main factors for their appeal and adoption. However, as Kahneman and several other scholars argue, using computational tools to speed up (or slow down) certain decisions is not a ‘neutral’ adjustment—how quickly or slowly algorithms make decisions is often intertwined with latent objectives that are in turn governed by individual, organizational, social, or political motives [38, 93].

The following example serves as an illustration to the aforementioned point. At a public exhibition organized in London in January 2023, Oxford researchers launched a project called ‘The Algorithmic Pedestal’ that highlighted the differences between algorithmic and human curation. Specifically, drawing on the Metropolitan Museum of Art’s open access collection, both a human artist and an algorithm used in Instagram were invited to select images for this exhibit. Sorting through thousands of images, twenty to thirty images from each (human artist and the Instagram algorithm) were chosen to be displayed in a particular layout and order [40]. The human artist involved, namely, Fabienne Hess, chose to select images that corresponded to the concept of ‘loss’. According to Hess, loss is a uniquely—and universally—human experience. The images that were displayed were part of her collection called “Dataset of Loss”, which she created over the course of three years as a resistance to the dominant algorithmic ways of seeing.
As mentioned in [40], Hess’s curatorial process was driven by the human experiences of time, curiosity, and patience as she spent years physically exploring collections in an embodied fashion, learning about each object’s stories and photographing them during site visits [40]. On the other hand, the rationale behind Instagram algorithm’s selection was largely opaque due to its blackbox nature. It is argued that many of the algorithms used by social media platforms like Instagram are not motivated by the goal of artistic display, instead they are optimized to maximize social connections and selling ads [72]. Curatorial platforms that jump to judgment before considering relevant contexts can decontextualize art history leading to many adverse downstream effects. The speed at which decisions are made can privilege certain values over others (e.g., monetary benefit over artistic appeal).

Instances such as the above reiterate the need for deliberation in the entire process [70]. Although deliberation implies more time, making algorithmic curation less attractive and efficient, it can decrease the probability of misattribution, over-representation, and other systemic biases. There is thus a need to recalibrate curatorial algorithms to weigh in factors such as authenticity and reliability—choosing to use existing systems without attending to questions about their temporalities implicitly prioritizes speed and efficiency over decision-making accuracy [93].

It is important to note that cultural phenomena are inherently multi-scale spanning time and space, entailing varying levels of interactions. In the illustration described above, artist Hess’s curation was a slow and detailed process. It was not merely labeling what the images depicted, but instead a process that asked questions about origin and content while resisting being categorized and labelled [40]. Thus, deliberation would require curatorial algorithms to be able to scale down to the micro-levels of individual artistic renditions and up to the macro-levels of collective societal interactions that shape the artworks. Towards understanding and capturing such multi-level interactions in curation, a class of techniques called ‘multi-interest recommendation algorithms’ that aim to learn multiple aspects using the interaction data between users and items could serve as a starting point [116]. These algorithms could be leveraged to learn distinct aspects of artworks while optimizing for correlation between user interest and artwork authenticity. Additionally, hierarchical ML methods such as graph neural networks and agent based modeling methods that take into account scaling and universal dynamics in both social (e.g., in learning the influence of artists’ lineage and art movements) and physical properties (e.g., in understanding the art material) could be used in conjunction with multi-interest recommendation algorithms for enabling fine grained analysis in visual art curatorial algorithms [14, 50, 97].

4.3 Re-imagine: Exploring opportunities to resist status quo and enabling reconceptualization

Audience and users of curatorial platforms can help in enabling reformation in the state of curatorial algorithms. By audience and users, we are referring to a) human curators involved in galleries and museums b) art connoisseurs and private art collectors as well as c) casual viewers.

In 2015, Swedish design student Johanna Burai began a project to change Google Image search results. After being annoyed with the racial bias in the search results – while, for example, searching for depictions of hands – she decided to test and correct the algorithm [101]. Although her idea might not have been revolutionary, the audit experiment elucidated the possibilities of users to resist algorithmic power [104].

It becomes important to acknowledge the mutual co-construction of algorithms and their users, and re-imagine alternative uses of algorithms, including how algorithms can help in auditing some of its own products. For example, the authors in [101] reframe the public and scholarly debates on algorithmic power, drawing on media as practice to advance a framework for studying algorithms with a focus on user agency. In the work ‘Manifesto for the Broken Machine’ [88], Prof. Sarah Sharma investigates how feminism can help in reframing the technological as a mode of resistance, rather than a form of control. Prof. Sharma writes that technologies such as ML often neglect systemic forms of social injustice and conveniently discard and replace “malfunctioning parts (nonconforming subjects)”. She reckons “But the idea of our contemporary social-political-economic system as an already-broken machine full of the incompatibly queer, raced, classed, and sexed broken-down machines is politically exciting for feminism”. Taking cue from Prof. Sharma’s concept of brokenness, the artwork ‘This Recommendation System is Broken’, provides a critical reflection on discriminatory practices induced by most common algorithmic recommendation systems, uncovering epistemologies of not knowing: incomplete, inaccurate, and unidentified digital accounts [94].

In the art exhibition ‘Recontres Internationales Paris-Berlin’, the piece ‘What the Robot Saw’, which is a live, continuously-generated robot film curated, analyzed, and edited using computer vision, neural networks, and contrarian search algorithms, highlighted some of the least viewed videos on YouTube, featuring first person narratives by some of the people that commercial ranking algorithms ignore [4]. What the Robots saw illustrates the complex relationship between the curatorial ML algorithms and the humans, depicting the awkward contemporary collision of performed selves and screen-centric perceptions [4]. Figure 3 is an image curated by What the Robot Saw, demonstrating gender stereotypes embedded in commercial recognition algorithms that are used for categorizing human faces.

Both the artworks ‘This Recommendation System isBroken’ and ‘What the Robot Saw’ are illustrations of how visual arts can be leveraged to uncover the drawbacks of algorithmic curation. Researchers argue that the field of visual arts organically possesses the ability to protest, challenge, inspire, and be instrumental in humanizing technological advances [59]. Guided by humans-in-the-loop, the potential of ML algorithms can be thus used to co-curate visual arts such that it helps in promoting cultural neutrality [43], facilitating situational interpretation and community participation [67].

Collective proactive people participation can play a pivotal role in re-conceptualizing algorithmic curation. As studies have pointed out, there is a need to shift the focus from people’s wants and deficits towards a deep understanding of people’s assets and capacities [110]. Leveraging Swidler’s theory of culture-in-action, the
authors in [110] propose an analytical lens for unpacking the complex relationship between people’s capacities, goals, and structural limitations.

There could be many channels through which people can reclaim some of their power back from the algorithms that currently determine what they see. Human-machine co-curation platforms that provide ample control to users in the curation process can be beneficial in this regard. For instance, in [60], the authors proposed training machine learning models that allow curators to document past curatorial practices of the newspaper’s photo librarians, retrace the editorial selection from photo-assignments and propose archival paths supported by several historical documents. Instead of relying on unique identifiers as seen in ontology-based curatorial practices, the proposed method promotes dialogue between archives by relying on metadata and image recognition.

Additionally, cultural resistance and anti-consumption activism can also reduce power centralization [83]. This could entail conscious data contribution whereby users are conscious of what artworks they endorse via likes, shares, subscriptions, etc., data protection measures that safeguard the interests of artists [45], and by displaying activism against forces that undermine cultural values. All these measures can be helpful in resisting status quo and help in re-imagining the purpose and principles governing algorithmic curation of visual arts.

5 LIMITATIONS

The list of concerns outlined or the strategies suggested in the paper are not exhaustive by themselves, and represents a subset of the broader set of concerns and reformatory pathways. The paper offered a set of potential pathways towards reforming algorithmic curation of visual arts without necessarily delving deep into the challenges involved in their implementation and deployment. For example, development of regulations for visual art content moderation requires establishment of international standards which in turn may necessitate policy intervention and consensus across government bodies and cultural organizations worldwide. Additionally, restoring dialogues with relevant stakeholders like artists would perhaps require the creation of inclusive forums through which all stakeholders can freely interact and exchange opinions/ideas without feeling intimidated or sidelined. In a future work, the goal is to study a broader set of ethical issues and interview artists and other stakeholders to incorporate first-person accounts in shaping the reformation of algorithmic curation of visual arts.

6 CONCLUSIONS

The field of visual arts has an important bearing on society through culture, history, philosophy, and economy. The growing use of ML technologies in visual arts such as for content analysis and curation makes it imperative to understand the ethical implications of such applications. In this paper, we examined the tensions of algorithmic curation of visual arts, taking into account recent ML advancements. Through visual art accompanying case studies, we highlighted how these tensions can lead to a variety of ethical concerns such as overrepresentation and misattribution. The paper suggested repair strategies to engage with cultural stakeholders in building visual art curatorial algorithms, to unlearn biases embedded in digital artworks and their meta-data, and emphasized the need to establish regulatory norms specific to the use of ML in visual art curation. The paper described the need for prioritizing authenticity through a recalibration of visual art curatorial algorithms, and suggested ways through which the potential of state-of-the-art ML curatorial algorithms can be re-imagined towards empowering the
The author has experience working with both traditional and generative art connoisseurs, and art journalists. REFERENCES

focus on understanding the ethical impacts of creative ML pipelines.

The author’s background spans computer vision, machine learning, and applied ethics, with a special focus on understanding the ethical impacts of creative ML pipelines. The author has experience working with both traditional and generative visual artists. The author has also extensively interacted with the broader visual art community members such as art historians, visual art connoisseurs, and art journalists.

REFERENCES

To See or Not to See: Understanding the Tensions of Algorithmic Curation for Visual Arts

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil


