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ABSTRACT
Disaggregated evaluation is a central task in AI fairness assessment,

where the goal is to measure an AI system’s performance across

different subgroups defined by combinations of demographic or

other sensitive attributes. The standard approach is to stratify the

evaluation data across subgroups and compute performance met-

rics separately for each group. However, even for moderately-sized

evaluation datasets, sample sizes quickly get small once considering

intersectional subgroups, which greatly limits the extent to which

intersectional groups are included in analysis. In this work, we

introduce a structured regression approach to disaggregated eval-

uation that we demonstrate can yield reliable system performance

estimates even for very small subgroups. We provide correspond-

ing inference strategies for constructing confidence intervals and

explore how goodness-of-fit testing can yield insight into the struc-

ture of fairness-related harms experienced by intersectional groups.

We evaluate our approach on two publicly available datasets, and

several variants of semi-synthetic data. The results show that our

method is considerably more accurate than the standard approach,

especially for small subgroups, and demonstrate how goodness-of-

fit testing helps identify the key factors that drive differences in

performance.
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1 INTRODUCTION
A core task when assessing the fairness of an AI system is measur-

ing its performance across different subgroups defined by combi-

nations of demographic or other sensitive attributes. Many of the

best-known studies of algorithmic bias are grounded in this type

of analysis [1, 5, 21, 25, 30], including Buolamwini and Gebru’s

Gender Shades study [5], which found that commercial gender

classifiers have much higher error rates for darker-skinned women

than other groups, and Obermeyer et al.’s study [25] finding bias

in commercial algorithms used to guide healthcare decisions.

In their work formalizing this type of analysis, Barocas et al. [3]

introduce the term disaggregated evaluation to refer to this task. The
authors draw attention to the many decisions that implicitly shape

any given disaggregated evaluation: from who will be involved,

to what data will be used, which statistical approach taken, and

what kinds of inferences drawn. In our work, we focus on the

question of statistical methodology given an available dataset and

pre-determined subgroups and performance metrics of interest. We

introduce a method for estimating performance across subgroups

that we show (i) is more accurate than approaches taken in standard

practice; and (ii) can provide greater insight into which factors

drive observed variation in performance. We do so through careful

adaptations of well-established techniques rather than development

of entirely novel statistical methods.

The “standard approach” to disaggregated evaluation proceeds

by stratifying the evaluation data across subgroups and then con-

ducting inference (i.e., computing performance metrics, confidence

intervals, or other statistics) separately for each group. The primary

challenge when applying this approach comes from small sample

sizes. Even for moderately-sized evaluation datasets, sample sizes

quickly get small once considering intersectional subgroups. For

instance, in a medical diabetes mellitus dataset we use later in the

paper, we have a 5000-patient evaluation dataset, of which 2689

patients are female, 620 are female and over age 80, but only 6 are

female, over age 80, and Hispanic. Indeed, of the 32 distinct gender-

age-race/ethnicity subgroups that can be formed in the data, 8 (i.e.,

25%) have fewer than 10 observations, and nearly half have fewer

than 25 observations. Inference based on so few observations is

often uninformative, and may be unreliable. In practice, subgroups

that are too small tend to be either excluded from analysis or merged

with other small but potentially heterogeneous subgroups to form

higher-level “catch-all” categories (e.g., “other”). These practices
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greatly limit the extent to which intersectional groups are even

considered in many disaggregated evaluations. As a consequence,

standard assessments may fail to surface fairness-related harms that

could disproportionately affect intersectional subgroups [7], which

in turn means that steps to mitigate those harms might not be taken.

In this work, we introduce a structured regression approach to

disaggregated evaluation that we demonstrate can yield reliable

system performance estimates even for very small subgroups (e.g.,

for groups with fewer than 25 observations). We also provide corre-

sponding inference strategies for constructing confidence intervals

for the subgroup-level performance estimates.We then demonstrate

how goodness-of-fit testing can provide insight into the structure

of fairness-related harms experienced by intersectional groups and

also identify situations where observed variation in performance

is attributable to benign factors. Lastly, we present results on two

publicly available datasets, and several variants of semi-synthetic

data. The results show that our method is considerably more ac-

curate than the standard approach, especially for small subgroups.

They further show that our method outperforms more statistically

sophisticated baselines, including the model-based metrics method

introduced by Miller et al. [23], while also offering additional advan-

tages. We conclude by discussing limitations and future directions.

2 BACKGROUND AND RELATEDWORK
In their taxonomy of sociotechnical harms of algorithmic systems,

Shelby et al. [27] identify five high-level categories of harm: repre-

sentational, allocative, quality of service, interpersonal, and social

system. Our work contributes to the broader literature characteriz-

ing and assessing allocative and quality-of-service harms that can

result from the use of algorithmic systems. Allocative harms, first

discussed by Barocas et al. [2], occur when systems produce an

inequitable distribution of information, opportunity, or resources

across groups. As a running example, we consider a hypothetical

setting in which a model trained to predict 30-day hospital read-

mission is used to prioritize high-risk patients for more intensive

post-discharge care. Allocative harms might occur if certain sub-

groups of patients are disproportionately under-prioritized for more

intensive care (i.e., have low selection rates) or are under-selected

relative to their observed rate of readmission (i.e., have high false

negative rates).

Quality-of-service harms occur when algorithmic systems un-

derperform for certain socially salient groups of users [27, 35]. We

examine quality-of-service harms across race and gender groups

in the context of commercial automated speech recognition (ASR)

systems using data previously analyzed by Koenecke et al. [21].

Specifically, we assess whether there is significant variation in the

word error rate (WER) of the ASR systems across intersectional

race and gender subgroups.

The term “intersectionality” was introduced by Crenshaw [7] to

describe the distinct patterns of discrimination and disadvantage ex-

perienced by Black women, which she argued cannot be understood

in terms of race or gender discrimination alone. In recent years,

algorithmic fairness research has examined intersectional bias from

many perspectives. This includes work introducing quantitative

metrics intended to capture notions of intersectional fairness, such

as subgroup fairness [20], differential fairness [11, 12], and multi-

calibration [14], along with learning algorithms for estimating and

achieving these criteria. Wang et al. [34] study “predictivity differ-

ences” across intersectional subgroups, and discuss limitations of

existing summary statistics (such as the maximum disparity across

all groups) in capturing meaningful notions of intersectional harm.

Our work differs from this literature because we are specifically

interested in the task of disaggregated evaluation. This entails esti-

mating and reporting system performance for each intersectional

subgroup, rather than computing a particular fairness metric or

learning a fairness-constrained model.

Our work most directly contributes to the growing literature

introducing more sample-efficient methods for conducting disag-

gregated evaluations. This literature includes methods that lever-

age unlabelled data in model evaluation [6, 18, 19]; methods that

bound or approximate performance for intersectional subgroups

using marginal statistics [24]; and synthetic data augmentation

approaches [32]. In work more closely related to the spirit of our

structured regression approach, Piratla et al. [26] introduce the at-
tributed accuracy assay (AAA) method, which models the accuracy

of a model as a function of sensitive attributes and other features

via a Gaussian process (GP). While we do not rely on GPs, we do

proceed similarly by modeling the accuracy (or error) of a given

model. Whereas we are specifically concerned with fairness and

disaggregated evaluation, Piratla et al. [26] aim to produce an “accu-

racy surface” model that clients can use to estimate the performance

of an existing model on their data.

The most closely related work in recent literature is that of

Miller et al. [23], who introduce a Bayesian structured regression

approach that they call model-based metrics (MBM). Their method

applies to AI models that produce a score (say to predict a risk of

hospital readmission). By modeling the distribution of scores given

select features and the observed outcome, they are able to make

inference on any performance metric of interest, but the approach

is not directly applicable to the evaluation of models that do not

produce classification scores (e.g., MBM does not directly apply to

the evaluation of WER in ASR systems). Unlike the MBM approach,

we model the target metric directly and fit separate models for each

performance metric of interest. Our experiments show that our

method yields more accurate estimates than MBM (see §5.1).

Our approach is also related to the classical line of research on

normal means estimation, originating with the James-Stein (JS)

estimator [15, 28]. The JS estimator works by shrinking standard

estimates towards zero (or some other constant). This leads to a

substantial decrease in variance, which outweighs a moderate in-

crease in bias, and yields a more accurate estimator. The empirical

Bayes (EB) approach [8] also leads to a form of shrinkage, but its

motivation is different. It posits a hierarchical Bayesian model and

estimates metric values by posterior means, while fixing prior hy-

perparameters to their point estimates. Our estimator works by

optimizing bias–variance trade-off similar to JS, but it enjoys ad-

ditional advantages compared with JS and EB: availability of confi-

dence intervals and flexibility to incorporate covariate information.

In our experiments we show that our approach can outperform JS

and EB in terms of estimation accuracy (see §5.1).
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3 PROBLEM SETTING
Our goal is to assess fairness-related harms of an AI system by

evaluating its performance on intersectional subgroups of users

specified by 𝑘 ≥ 2 sensitive attributes (like race and gender), taking

values in finite sets A1, . . . ,A𝑘 . The set of all possible 𝑘-tuples of

sensitive-attribute values is denoted A = A1 × · · · × A𝑘 .

We assume that we have access to an evaluation dataset 𝑆 , con-

sisting of individuals described by tuples of the form (𝑋,𝐴,𝑌,𝑌 )
sampled i.i.d. from some underlying distribution D, where 𝑋 con-

tains application-relevant information about the individual (e.g.,

the health history of a patient), 𝐴 ∈ A is a 𝑘-tuple of sensitive

attributes, 𝑌 is an observed outcome variable (e.g., whether the

patient was readmitted within 30 days of discharge), and 𝑌 is an

output produced by the AI system (e.g., a score used for prioritizing

patients into post-discharge care).

For any 𝑘-tuple 𝑎 ∈ A, we write 𝑎[1], . . . , 𝑎[𝑘] to denote its

components. In the ASR example below, we consider two sensi-

tive attributes, race and gender , with domains A1 = {Black,white}
and A2 = {male, female}. For 𝑎 = (Black, female), we then have

𝑎[1] = Black and 𝑎[2] = female. When possible, we use mnemonic

indices for components of 𝑎 and write 𝑎[race] and 𝑎[gender] to
mean 𝑎[1] and 𝑎[2], and similarly Arace and Agender to mean A1

and A2.

For each 𝑎 ∈ A, we define D𝑎 to be the distribution of individu-

als with 𝐴 = 𝑎, so D𝑎 is the conditional distribution D(𝑋,𝐴,𝑌,𝑌 |
𝐴 = 𝑎), representing an intersectional group. Let Δ denote the set

of all probability distributions over tuples (𝑋,𝐴,𝑌,𝑌 ), so D ∈ Δ
and also D𝑎 ∈ Δ for all 𝑎 ∈ A. A performance metric is a func-

tion𝑚 : Δ → R that maps a probability distribution over tuples

(𝑋,𝐴,𝑌,𝑌 ) into a real number. For example, if the underlying AI

system performs binary classification, so 𝑌,𝑌 ∈ {0, 1}, we could
measure its performance using accuracy, defined, for any 𝑝 ∈ Δ, as

ACC(𝑝) = P𝑝 [𝑌 = 𝑌 ],

where P𝑝 [·] is the probability of an event with respect to 𝑝 . The

overall system performance is then quantified by ACC(D) and the

performance on a group 𝑎 ∈ A by ACC(D𝑎).
Given a performance metric𝑚, the goal of disaggregated evalua-

tion is to estimate, for all 𝑎 ∈ A, the values

𝜇𝑎 =𝑚(D𝑎).

Our only source of information aboutD is the evaluation dataset

𝑆 of size 𝑛 = |𝑆 |, sampled i.i.d. from D. The standard approach
to disaggregated evaluation splits the dataset 𝑆 into groups 𝑆𝑎 =

{(𝑋,𝐴,𝑌,𝑌 ) ∈ 𝑆 : 𝐴 = 𝑎} of size 𝑛𝑎 = |𝑆𝑎 |, and then evaluates𝑚

on each 𝑆𝑎 (or, more precisely, on the probability distribution that

puts an equal probability mass on each data point in 𝑆𝑎). We denote

the resulting standard estimates by

𝑍𝑎 =𝑚(𝑆𝑎) .

For example, if𝑚 is accuracy, then

𝑍𝑎 = ACC(𝑆𝑎) =
1

𝑛𝑎

∑︁
(𝑋,𝐴,𝑌,𝑌 ) ∈𝑆𝑎

1{𝑌 = 𝑌 },

where 1{·} is an indicator equal to 1 if its argument is true and 0 if

it is false.

We next connect this abstract framework to two concrete sce-

narios already mentioned in §2.

Example 1 (Diabetes). We consider an AI system that refers high-

risk patients into a post-discharge care program. We wish to assess

allocative harms of this system. To explore this scenario, we use a

publicly available dataset of diabetes patients developed by Strack

et al. [29]. The dataset contains information about patient hospital

visits, including whether each patient was readmitted within 30

days after discharge. We use the readmission as a proxy for whether

the patient should be recommended for the care program.

Each data point corresponds to a patient admission, where 𝑋

describes the patient history and hospital tests; 𝐴 describes the pa-

tient’s race, gender , and (binned) age; 𝑌 ∈ {0, 1} indicates whether
the patient was readmitted within 30 days after discharge; and 𝑌 ∈
[0, 1] is the score produced by the AI system that has been trained

to predict 𝑌 . We assume that the hospital uses a threshold 𝑟 , and pa-

tients with 𝑌 ≥ 𝑟 are automatically referred into the care program.

One type of allocative harm occurs when a subgroup of patients

is disproportionately under-prioritized, i.e., if a subgroup has a low

selection rate, denoted as

SEL(D𝑎) = PD𝑎
[𝑌 ≥ 𝑟 ] .

We also consider a second type of harm, which occurs when a

subgroup of patients experiences a disproportionately large rate of

false negatives (i.e., many of those patients that should be recom-

mended are not), measured by the false negative rate

FNR(D𝑎) = PD𝑎
[𝑌 < 𝑟 | 𝑌 = 1] .

Example 2 (ASR). To assess quality-of-service harms of an ASR

system, we use a dataset from Koenecke et al. [21], consisting of

audio snippets (of length between 5s and 50s) spoken by various

speakers. In the dataset, 𝑋 describes properties of the snippet (like

duration in seconds), 𝐴 has two components corresponding to the

speaker’s race and gender , 𝑌 is the ground-truth transcription of

the snippet, and 𝑌 is the transcription provided by the AI system.

The quality-of-service harms occur when the system underper-

forms for a subgroup of users. The performance is evaluated by the

word error rate

WER(D𝑎) = ED𝑎
[wer(𝑌,𝑌 )],

where wer is a snippet-level word error rate defined as

wer(𝑌,𝑌 ) = subst + del + ins
|𝑌 | ,

where subst, del, and ins is the number of word substitutions, dele-

tions, and insertions in 𝑌 compared with the ground truth 𝑌 , and

|𝑌 | is the number of words in 𝑌 .

To quantify the accuracy of an estimator, like the standard esti-

mator introduced above, we often use mean squared error (MSE).

We use a modified definition of MSE that accounts for the fact that

estimates like 𝑍𝑎 =𝑚(𝑆𝑎) are sometimes undefined, for instance,

when the metric𝑚 is defined as a conditional probability, like FNR

in Example 1, and the set 𝑆𝑎 has no samples that satisfy the condi-

tion (e.g., no samples with 𝑌 = 1 in case of FNR). For an estimator

𝜇 of a quantity 𝜇, let E denote the event that 𝜇 is defined. The bias,
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Figure 1: Point estimates and 95% confidence intervals of selection rate (SEL) and false negative rate (FNR) on diabetes data.
Confidence intervals of the standard estimator are calculated using pooled variance (see Eqs. 3 and 4).

variance, and mean squared error (MSE) of 𝜇 are defined as

Bias(𝜇) = E[𝜇 | E] − 𝜇,

Var(𝜇) = E
[ (
𝜇 − E[𝜇 | E]

)
2
�� E]

,

MSE(𝜇) = E
[ (
𝜇 − 𝜇

)
2
�� E]

,

where the expectations are with respect to the data-generating

process giving rise to the dataset used to calculate 𝜇 (which is itself

a random variable). An estimator with bias equal to zero is called

unbiased.
Mean squared error decomposes into bias and variance terms as

MSE(𝜇) =
[
Bias(𝜇)

]
2 + Var(𝜇),

so for unbiased estimators, mean squared error is equal to variance.

Throughout the paper, we assume that the standard estimates

𝑍𝑎 are unbiased. Writing this condition in terms of the metric𝑚,

we assume that for allD ∈ Δ and all 𝑛 ≥ 1, the performance metric

𝑚 satisfies

E𝑆∼D𝑛 [𝑚(𝑆) | 𝑚(𝑆) is defined] =𝑚(D), (1)

which is true for all the metrics in this paper. Substituting D𝑎 for

D and 𝑛𝑎 for 𝑛 in Eq. (1) implies that E[𝑍𝑎 | 𝑍𝑎 is defined] = 𝜇𝑎 .

In the rest of the paper we drop conditioning on the events like “𝑍𝑎
is defined,” and just write E[𝑍𝑎] = 𝜇𝑎 for simplicity.

Since the standard estimates 𝑍𝑎 are unbiased, their MSE is equal

to their variance, which typically scales as 𝑂 (1/𝑛𝑎), the inverse
of the number of samples in the group. Thus, standard estimates

are accurate when 𝑛𝑎 is large, but less so when 𝑛𝑎 is small. Unfor-

tunately, even for moderately sized evaluation datasets, the sizes

of intersectional groups can be quite small. In Figure 1, we show

standard estimates of SEL and FNR on diabetes data (alongside es-

timates produced by methods introduced later in the paper), along

with group sample sizes, 𝑛𝑎 (almost half of which are less than 25).

4 STRUCTURED REGRESSION APPROACH
We next develop a structured regression (SR) approach, which seeks

to overcome the main shortcoming of the standard estimator: its

large variance for small groups. Our approach builds on two main

ideas. First, we enable variance reduction by leveraging information

across all data points, not just data points in 𝑆𝑎 , to estimate 𝜇𝑎 .

We do this by pooling the data across related groups, for example,

across intersectional groups that agree in one of their attributes

(like age), and by using additional explanatory variables (like 𝑋 ),

both of which is accomplished by fitting a regression model for 𝜇𝑎 ’s,

viewing 𝑍𝑎 ’s as observations thereof. Second, we ensure our re-

gression model is always correctly specified (and thus can produce

an unbiased estimate) by including all 𝑘-way interaction features.

This means our regression model can recover the standard unbiased

estimates 𝑍𝑎 as a special case. Regularization is used to optimize

the bias–variance trade-off between the high-variance standard

estimator and a high-bias (but low-variance) constant estimator.

To start, since the standard estimates are unbiased, i.e., E[𝑍𝑎] =
𝜇𝑎 , we can write

𝑍𝑎 = 𝜇𝑎 + 𝜀𝑎

for all 𝑎 ∈ A, where 𝜀𝑎 ’s are independent random variables with

E[𝜀𝑎] = 0. We denote the variance of 𝑍𝑎 as 𝜎2𝑎 = Var(𝑍𝑎) = E[𝜀2𝑎].
In order to estimate 𝜇𝑎 , we consider a linear model of the form

𝜇𝑎 = 𝜃0 + 𝜽 · 𝝓𝑎

for all 𝑎 ∈ A, where 𝝓𝑎 ∈ R𝑑 is the feature vector describing the

group 𝑎, and 𝜃0 ∈ R, 𝜽 ∈ R𝑑 are the parameters of the linear model.

It remains to specify how to define 𝝓𝑎 , how to fit the parameters

𝜃0 and 𝜽 , and how to estimate 𝜎𝑎 .

Defining feature vectors 𝝓𝑎 . The coordinates of 𝝓𝑎 are referred to as

features and denoted as 𝜙𝑎
𝑗
for 𝑗 from some suitable index set. We

allow features to be linearly dependent. We consider the following

types of features:

(1) Sensitive features. These are derived directly from 𝑎. We al-

ways include group-identity indicators for all the groups

𝑎′ ∈ A, yielding features of the form 𝜙𝑎
𝑎′ = 1{𝑎 = 𝑎′}. This

allows the linear model to express any combination of val-

ues 𝜇𝑎 . Additionally, in order to pool information across
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related groups, we also define indicators for individual at-

tribute values, that is, features of the form 𝜙𝑎
𝑖,𝑣

= 1{𝑎[𝑖] = 𝑣}
for 𝑖 ∈ {1, . . . , 𝑘} and 𝑣 ∈ A𝑖 . In our diabetes example, there

are three sensitive attributes: race, age, and gender , with
|Arace | = 4, |Aage | = 4, and |Agender | = 2, so |A| = 4 · 4 · 2 =
32. We use a total of 42 sensitive features: 32 group-identity

indicators, 4 indicators of race, 4 indicators of age, and 2 indi-
cators of gender . An example of a group-identity indicator is

𝜙𝑎
(Hispanic,80–99,female)

and an example of a sensitive-attribute

indicator is 𝜙𝑎race,Hispanic.

(2) Explanatory features. These are derived from 𝑋 , 𝑌 , and possi-

bly 𝑌 . We first featurize 𝑋 using some real-valued functions

𝑓𝑗 (𝑋 ), 𝑗 = 1, . . . , ℓ , and then define explanatory features

𝜙𝑎
𝑗
= E𝑋∼𝑆𝑎 [𝑓𝑗 (𝑋 )] (i.e., the average of the feature for group

𝑎). Additionally, when 𝑌 is categorical, we define features

𝜙𝑎𝑦 = P𝑌∼𝑆𝑎 [𝑌 = 𝑦] measuring rates of different outcomes

in the group 𝑎. In our diabetes example, we use 7 explana-

tory features: 5 are derived from individual-level features

𝑓𝑗 , including, for example, the number of inpatient days of

a given patient in the prior year; and 2 are of the form 𝜙𝑎𝑦
corresponding to 2 possible values of 𝑌 .

(3) Interaction terms. It is also possible to consider various in-

teraction terms, both among features of the same type (e.g.,

between gender and age indicators), or of different types (e.g.,
between the outcome 𝑌 and age).

Fitting the linear model. We fit (𝜃0, 𝜽 ) by lasso regression [31], min-

imizing an ℓ1-penalized square loss. To improve the statistical effi-

ciency of the estimator, loss for each group 𝑎 is weighted inversely

proportional to the variance of 𝑍𝑎 . Intuitively, since our model can

express the true 𝜇𝑎 , we expect the square loss on each group to be

on the order of the variance of 𝑍𝑎 , so inverse weighting “equalizes

the scale” of losses across groups. The penalized loss is then

𝐿𝜆 (𝜃0, 𝜽 ) =
∑︁
𝑎∈A

1

𝜎2𝑎

(
𝜃0 + 𝜽 · 𝝓𝑎 − 𝑍𝑎

)
2

+ 𝜆∥𝜽 ∥1, (2)

where 𝜆 is the regularization hyperparameter. Denoting the min-

imizer of 𝐿𝜆 (for a given 𝜆) as ( ˆ𝜃0, 𝜽 ), we obtain the structured
regression estimates 𝜇𝑎 = ˆ𝜃0 + 𝜽 · 𝝓𝑎 .

Tuning 𝜆 allows us to navigate the bias–variance trade-off. Be-

cause sensitive features include indicators of all values 𝑎 ∈ A,

when 𝜆 = 0, the loss is minimized by 𝜇𝑎 = 𝑍𝑎 (i.e., we recover the

standard estimates). As 𝜆 → ∞, the optimization returns 𝜽 ≈ 0.
Fixing 𝜽 = 0 and optimizing only over the intercept term yields the

constant solution

𝜇𝑎 = 𝜇0 for all 𝑎 ∈ A, with 𝜇0 =

∑
𝑎∈A 𝑍𝑎/𝜎2𝑎∑
𝑎∈A 1/𝜎2𝑎

,

corresponding to a weighted average of 𝑍𝑎 ’s. This solution has

a small variance, but it may suffer from a large bias when the

true values 𝜇𝑎 are far from identical. By tuning 𝜆, we thus move

between the high-variance standard estimate and the high-bias

(but low-variance) constant estimate. The mean squared error is

typically minimized at some intermediate value of 𝜆 (see Figure 2).

We tune 𝜆 by 10-fold cross-validation, where the individual folds

are obtained by stratified sampling of the dataset 𝑆 with respect

to the sensitive attribute tuple 𝐴. We can expect our method to

be consistent (i.e., converge to the true values 𝜇𝑎 as all subgroup

sizes 𝑛𝑎 grow) because the standard approach is consistent, and is

included as the special case of our method with 𝜆 = 0.

Estimating variance𝜎2𝑎 . Variances𝜎
2

𝑎 are needed to calculate weights

in our optimization procedure. A simple approach is to estimate 𝜎2𝑎
separately on each dataset 𝑆𝑎 by using standard variance estimators

(when available), or, more generically, by bootstrap. Unfortunately,

for small sample sizes, these variance estimates themselves might

be inaccurate.

To overcome this limitation, we posit a parametric model for

variance, namely, 𝜎2𝑎 = 𝜎2/𝑛𝑎 , for some parameter 𝜎 . To estimate 𝜎 ,

we proceed in two stages. We first use bootstrap on each set 𝑆𝑎 to

obtain the initial estimate of 𝜎2𝑎 , which we denote (�̂�boot𝑎 )2. Thus,
𝑛𝑎 (�̂�boot𝑎 )2 is the initial estimate of 𝜎2. We expect the variance

of this estimate to be on the order 𝑂 (1/𝑛𝑎). Taking a weighted

average across groups, with weighting inversely proportional to

(1/𝑛𝑎), yields our final estimator of 𝜎2, which translates into an

estimator of 𝜎2𝑎 :

�̂�2 =

∑
𝑎∈A 𝑛𝑎 ·

[
𝑛𝑎 (�̂�boot𝑎 )2

]∑
𝑎∈A 𝑛𝑎

,

�̂�2𝑎 = �̂�2/𝑛𝑎 for all 𝑎 ∈ A. (3)

We refer to these as the pooled estimates of variance. In our prelimi-

nary experiments, these performed better than the initial estimates

(�̂�boot𝑎 )2, particularly on small datasets. We note that even if we se-

verelymisestimate the variances𝜎2𝑎 , our estimationmethod remains

consistent. This is because estimates �̂�𝑎 appear only as weights in
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the objective (2). Misspecifying the weights will negatively impact

the efficiency of the estimator, but not its consistency.

4.1 Confidence intervals
So far we have focused on obtaining point estimates 𝜇𝑎 . However,

in order for these estimates to be useful in practice, we also need

to quantify our uncertainty about their values. We do so by using

confidence intervals. For unbiased estimators, like the standard

estimator 𝑍𝑎 , confidence intervals can be derived by estimating the

variance and then using normal approximation, which works quite

well for 𝑍𝑎 with the pooled estimates of variance (see Appendix A).

This approach does not work with lasso estimates, because they

are biased—in fact, they achieve their improved accuracy by being
biased—and so simple confidence intervals derived from variance

estimates or bootstrap percentiles are too narrow. Fortunately, there

is a rich literature on lasso-based confidence intervals [17, 33, 36].

We use the residual bootstrap lasso+partial ridge (rBLPR) approach
of Liu et al. [22]. As the name suggests, it is based on a two-stage

lasso+partial ridge (LPR) point estimator, which first runs lasso as

a feature-selection method, and then fits a ridge regression model,

which only penalizes the features that were not selected by lasso.

The rBLPR method calculates confidence intervals for the LPR es-

timate by residual bootstrap (see [22] for details).

4.2 Understanding structure of performance
variation through goodness-of-fit testing

When presenting the results of disaggregated evaluations, the most

common approach is to display point estimates and (sometimes)

confidence intervals for every subgroup, as we see, for example,

in Figure 1. While this type of a plot can be helpful in identifying

groups that may experience poor performance or allocation, it does

not provide a narrative for understanding how these harms accrue.

Goodness-of-fit testing can complement disaggregated evaluations

by allowing us to answer questions such as:

(1) Do intersectional groups experience additive, sub-additive, or
super-additive fairness-related harms? For example, when a

model is found to perform poorly for Black women, is this

explained by the model performing poorly for Black people

and women, or are there additional sources of error specific

to the intersectional group of Black women? An answer to

this question can, for example, inform future collection of

training data.

(2) Are there benign factors that explain a significant amount of
the observed performance variation across groups? For exam-

ple, are observed differences in the performance of an ASR

system attributable to systematically worse audio quality

in the recordings for speakers from certain groups? Pres-

ence of such benign factors does not lessen the harm, but the

knowledge of the factors that drive performance differences

can be used to design mitigations (for example, denoising

algorithms targeted at specific types of sensors or noise char-

acteristics).

These types of questions can be framed as goodness-of-fit tests.

We consider goodness-of-fit tests that compare two linear models:

𝑀0, with fewer features, and 𝑀1, with some additional features.

Such a test asks whether the additional features included in model

𝑀1 improve the goodness of fit compared with model 𝑀0, where

the goodness of fit is measured using the square loss as in Eq. (2).

To answer the first question above, we can compare a model 𝑀0,

which includes only indicators of race and gender , with a model

𝑀1, which also includes interaction terms. To answer the second

question, we can compare a model𝑀′
0
, which only includes benign

factors, with a model𝑀′
1
, which additionally includes indicators of

race, gender , and age.
While there are goodness-of-fit tests that have been designed

for lasso regression [16], in this paper, we use standard 𝐹 -tests

designed for unregularized linear regression. In contrast to the

foregoing discussion, we do not include features corresponding to

the indicators of 𝑎 (because these would trivially yield the standard

estimates 𝑍𝑎 with 0 residual sum-of-squares (RSS), which in this

case corresponds to overfitting).

5 EXPERIMENTS
In this section, we evaluate the accuracy of point estimates and

calibration of confidence intervals produced by our structured re-

gression (SR) approach. We also demonstrate how goodness-of-fit

tests can be used to provide insights about what drives the variation

of performance across groups.

We compare SR with several baselines. First, there is the stan-
dard estimator 𝑍𝑎 = 𝑚(𝑆𝑎). We construct confidence intervals

for 𝑍𝑎 using normal approximation with pooled variance estimates

(�̂�𝑎)2 from Eq. (3). Given a confidence level 𝛾 (say 95%), or a signif-

icance level 𝛼 = 1 − 𝛾 (say 5%), we use the confidence interval

[𝑍𝑎 + 𝑞𝛼/2�̂�𝑎, 𝑍𝑎 + 𝑞
1−𝛼/2�̂�𝑎], (4)

where 𝑞𝑝 is the 𝑝-th quantile of the standard normal distribution.

Our second baseline is the model-based metrics (MBM) ap-
proach [23]. As mentioned in §2, MBM is a Bayesian approach to

structured regression that models the scores produced by an AI

system (like 𝑌 in the diabetes example). It is not directly applica-

ble to performance metrics that are not based on scores, so we do

not use it in the ASR experiments. Similar to SR, MBM uses linear

modeling, and so requires specifying features for each data point. It

comes with a boostrapping procedure for constructing confidence

intervals.

We also compare our point estimates with the classical James-
Stein (JS) estimator [15, 28]. The estimator works by shrinking

standard estimates towards zero (or some other constant). We use

a variant due to Bock [4], which is adapted to unequal variances

(in our case, pooled estimates �̂�2𝑎 = �̂�2/𝑛𝑎), giving rise to

𝜇
js

𝑎 = 𝜇0 +
(
1 − (|A| − 3)�̂�2∑

𝑎′∈A 𝑛𝑎′ (𝑍𝑎′ − 𝜇0)2

)
+
(𝑍𝑎 − 𝜇0),

where 𝜇0 = (∑𝑎∈A 𝑛𝑎𝑍𝑎)/𝑛 is a weighted average of 𝑍𝑎 ’s. Com-

pared with Bock’s original estimator [4], we use |A| in the nu-

merator, as this has been previously observed to lead to better

performance [9]. Since 𝜇js is not an unbiased estimator, construc-

tion of confidence intervals presents a challenge and we are not

aware of any standard procedure.

And finally, we compare our method with the empirical Bayes
(EB) approach [8], which posits a hierarchical Bayesian model, and

then estimates 𝜇𝑎 by posterior means, while fixing hyperparameters

to their point estimates. In Appendix B we derive the following
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Figure 3:Mean absolute error of estimates of 6 metrics using 5 methods on diabetes data. Averaged across all groups, small groups
(size at most 25), and large groups (size above 25), across 20 draws of evaluation dataset.

variant, which we use in our experiments:

𝜇eb𝑎 = 𝜇 +
(
1 − �̂�2𝑎

𝜏2 + �̂�2𝑎

)
(𝑍𝑎 − 𝜇),

where �̂�2𝑎 is the pooled estimate of variance, and 𝜏2 and 𝜇 are ob-

tained by

𝜏2 =

(∑
𝑎∈A 𝑛𝑎 (𝑍𝑎 − 𝜇0)2 − (|A| − 1)�̂�2

𝑛 − ∑
𝑎 𝑛

2

𝑎/𝑛

)
+
,

𝜇 =

∑
𝑎∈A 𝑍𝑎/(𝜏2 + �̂�2𝑎)∑
𝑎∈A 1/(𝜏2 + �̂�2𝑎)

.

Similar to JS, we are not aware of any standard procedure for con-

struction of confidence intervals.

5.1 Diabetes experiments
We first explore the scenario from Example 1 using the dataset de-

veloped by Strack et al. [29], and previously used in an AI fairness

tutorial [13] and to evaluate the MBM approach [23]. The dataset

contains hospital admission records from 130 hospitals in the U.S.

over a ten-year period (1998–2008) for patients who were admitted

with a diabetes diagnosis and whose hospital stay lasted one to

fourteen days. It is a tabular dataset with 47 features describing each

encounter, including patient demographics and clinical informa-

tion. Following Miller et al. [23], we filter out records with missing

demographics and those with age below 20. We preprocess clinical

features as in [13]. To emulate an AI system that scores patients

for a post-discharge care program, we use 25% of the data to train a

logistic regression model to predict whether the patient will be read-

mitted into hospital within 30 days. The remaining 75% of the data,

consisting of 73,988 hospital admissions across 55,157 individuals,

is used as the ground truth D in all of our evaluation experiments.

We consider three sensitive attributes, race, age, and gender,
with Arace = {African American,Hispanic,white, other}, Aage =

{20–39, 40–59, 60–79, 80–99}, and Agender = {male, female}. Hos-
pital admissions are represented as tuples (𝑋,𝐴,𝑌,𝑌 ), where𝑋 con-

tains clinical features, 𝐴 = (race, age, gender), 𝑌 ∈ {0, 1} indicates
whether the patient was readmitted within 30 days of discharge, and

𝑌 ∈ [0, 1] is the readmission probability predicted by the logistic

regression model. From the ground truth we then sample an eval-

uation dataset 𝑆 of size 5000 by stratified sampling according to 𝐴.

As in Example 1, we assume that the hospital uses a threshold 𝑟 ,

and patients with 𝑌 ≥ 𝑟 are automatically referred into the care

program. We set the threshold 𝑟 so that PD [𝑌 ≥ 𝑟 ] = 0.2, meaning

that only 20% of patients are referred, and write 𝜋 (𝑌 ) = 1{𝑌 ≥ 𝑟 } to
denote this decision rule. We consider six performance metrics (in-

cluding those already introduced earlier), defined for any 𝑝 ∈ Δ as

SEL(𝑝) = P𝑝 [𝜋 (𝑌 ) = 1],
ACC(𝑝) = P𝑝 [𝜋 (𝑌 ) = 𝑌 ],
FNR(𝑝) = P𝑝 [𝜋 (𝑌 ) = 0 | 𝑌 = 1],
FPR(𝑝) = P𝑝 [𝜋 (𝑌 ) = 1 | 𝑌 = 0],
PPV(𝑝) = P𝑝 [𝑌 = 1 | 𝜋 (𝑌 ) = 1],
AUC(𝑝) = P(𝑌,𝑌 )∼𝑝, (𝑌 ′,𝑌 ′ )∼𝑝 [𝑌 < 𝑌 ′ | 𝑌 = 0, 𝑌 ′ = 1] .

The first five metrics (selection rate, accuracy, false positive rate,

false negative rate, and positive predictive value) are derived from

the confusion matrix. The final metric is the area under the ROC

curve; (𝑌,𝑌 ) and (𝑌 ′, 𝑌 ′) in its definition are sampled indepen-

dently according to 𝑝 .

In order to apply SR, we need to specify features 𝝓𝑎 . As sensitive
features, we use indicators of race, age, gender , as well as indicators
of the triple (race,age,gender). We use 7 explanatory features: indi-

cators for 2 possible values of 𝑌 , and 5 additional clinical features

describing the number of inpatient visits, outpatient visits, and

emergency visits in the preceding year, number of diagnoses at

admission, and whether any of the diagnoses was congestive heart

failure. For MBM, we use the same set of features, but without the

triple indicators.

In Figure 1 from earlier, point estimates obtained by SR appear

to be closer to the ground truth than those obtained by the standard

method and MBM. Confidence intervals constructed by SR are of

similar size as the standard confidence intervals, and occasionally

smaller. MBM appears to produce smaller confidence intervals than

SR, but they seem tomiss the ground-truthmetric values more often.

We next evaluate these anecdotal observations more systematically.

In Figure 3, we evaluate the quality of point estimates using

mean absolute error (MAE), which is the mean deviation of the

point estimate from the truth, averaged across 20 draws of evalu-

ation dataset, and over all groups, or separately over the groups

of size at most 25 (which we call small) and groups of size greater

than 25 (which we call large). JS, EB and SR yield substantially more

accurate point estimates than the standard method and MBM. The

improvement is particularly dramatic for small groups. JS, EB and

SR all perform at a similar level, but SR tends to work best on small

groups, and EB is marginally better than JS and SR on large groups

(see Figure 7 in Appendix D for a comparison limited to these three
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Figure 4: Coverage and mean relative width of confidence intervals for 6 metrics constructed by 3 methods on diabetes data.
Averaged across all groups and across 20 draws of evaluation dataset. Relative width is with respect to the width of the standard
confidence interval.

Table 1: Goodness-of-fit tests on diabetes data. From left to
right, we consider increasingly more complex models with
a growing set of features and report the 𝑝-values of the asso-
ciated goodness-of-fit tests; 𝑝-values below 0.05 are in bold.

Estimated Goodness-of-fit test 𝑝-values

metric (comparing a more expressive vs a less expressive model)

expl sens expl + sens expl + sens +𝑌 · sens
vs ∅ vs ∅ vs expl vs expl + sens

AUC 0.281 0.438 0.726 0.543
SEL 0.000 0.000 0.000 0.842
FNR 0.093 0.473 0.735 0.565
FPR 0.001 0.000 0.000 0.431
ACC 0.000 0.000 0.005 0.182
PPV 0.316 0.493 0.470 0.874

Model abbreviations: ∅=intercept only, expl=explanatory features,
sens=sensitive features, ·=interactions

methods). We use MAE instead of MSE, because MAE values are

easier to interpret, but MSE results are qualitatively similar.

In Figure 4, we shift attention to confidence intervals. In the top

plots, we evaluate coverage, that is, how often the ground truth lies

in the confidence intervals (across 20 draws of evaluation dataset

and across all groups). We show coverage as a function of the

confidence level. We see that both standard method as well as SR

are well-calibrated, with their coverage close to the confidence

level, whereas MBM is over-confident, with coverage well below

the confidence level. In the bottom plots, we evaluate the mean
relative width of confidence intervals, meaning the mean of the

ratio between the width of a confidence interval and the width

of the standard confidence interval. We see that MBM has the

narrowest intervals, but this is at the expense of coverage. On the

other hand, SR is able to maintain well-calibrated coverage while

still decreasing the confidence intervals by up to 20% compared

with the standard method.

Finally, in Table 1, we demonstrate the use of goodness-of-fit

tests. We begin with the question: Is there statistically significant

evidence of performance disparity across groups; and if so, is there
further evidence of intersectional harm? Table 1 shows 𝑝-values for
goodness-of-fit tests beginning with just the intercept, adding ex-

planatory features, then sensitive features (just the indicators of

race, age, and gender , but not of their combination), and eventually

interaction terms between the outcome 𝑌 and sensitive features.

There is no evidence to go beyond the intercept-only model when

estimating AUC, FNR, PPV. That is, there is no detectable variation
in AUC, FNR, or PPV across groups (or other explanatory vari-

ables). For FNR, this is consistent with what we observe in Figure 1.

The confidence intervals shown are large and overlapping for the

vast majority of groups, even after SR is applied to help reduce

uncertainty. Because of how wide the FNR confidence intervals

are, the reasonable conclusion is that sample sizes are too small

for the inference to be conclusive, and not that we have definitive
evidence of equal performance across groups. On the other hand,

the table shows that both explanatory and sensitive features help

with modeling SEL, FPR, and ACC. In fact, sensitive features im-

prove the fit after the explanatory features have already been added,
meaning that differences in performance across the groups cannot

be explained by the “benign” explanatory features alone.

In Appendix C we provide more examples of insight that may

be gained through goodness-of-fit analysis using semi-synthetic

variants of the diabetes data generated to exhibit different ground-

truth structures for the underlying variation in system performance.

5.2 Experiments with ASR data
We now explore the scenario from Example 2 using the data pro-

vided by Koenecke et al. [21] as a supplement to their paper finding

racial disparities in commercial ASR systems. Similar to Koenecke

et al. [21], we use thematched dataset, which contains 4282 snippets
across 105 distinct speakers. (Matching ensures that there is the

same number of snippets from Black and white speakers and that

the marginal distributions of various descriptive statistics match.)

For each audio snippet, we are provided with various statistics

(like duration and word count), an anonymized speaker id, speaker

demographics, and word error rates (WERs) on that snippet by

five ASR systems (by Google, IBM, Amazon, Microsoft, and Apple).
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Figure 5: Point estimates and 95% confidence intervals of word error rates of five ASR systems.

This information is encoded as a tuple (𝑋,𝐴,𝑊1, . . . ,𝑊5), where 𝑋
contains the identity of the speaker, the duration of the snippet in

seconds, and word count, 𝐴 contains two sensitive attributes, gen-
der and race,Agender = {male, female} andArace = {Black,white},
and finally, instead of 𝑌 (human transcription) and 𝑌1, . . . , 𝑌5 (tran-

scriptions by five ASR systems), we directly have the corresponding

word error rates𝑊𝑖 = wer(𝑌𝑖 , 𝑌 ). The performance metric for the

system 𝑖 is thus𝑚(𝑝) = E𝑝 [𝑊𝑖 ] for any 𝑝 ∈ Δ.
Although there appears to be a large number of samples (𝑛 =

4282), there are only 105 distinct speakers. We expect there to be a

substantial amount of correlation between WERs of the same indi-

vidual, so an analysis that treats the WERs as independent is likely

to overstate the statistical significance of findings, and may arrive

at incorrect conclusions, in particular, when some speakers have

many more snippets than others. In our experiments, we therefore

present results both from a snippet-level analysis that treats the

WERs across all snippets as independent (as done in [21]), and a

speaker-level analysis that first reduces the data to speaker-level

WERs by taking an average of WERs across the speaker’s snippets.

We first compare disaggregated evaluation results obtained by

SR versus the standard method. To apply SR, we need to specify

features 𝝓𝑎 . As sensitive features, we use indicators of race and
gender , as well as indicators of the pair (race,gender). We use only

one explanatory feature, equal to the log duration of the snippet.

In Figure 5, we report the results. At the snippet level, both

methods generally replicate the results of Koenecke et al. [21]:

Blackmale speakers have the largestWER, followed by Black female

speakers, whitemale speakers, andwhite female speakers. Themain

difference is that SR systematically shrinks the WER values of the

extreme groups (Black male speakers and white female speakers)

towards the mean. Results at the speaker level have substantially

larger confidence intervals than the snippet-level results, reflecting

smaller group sizes. Also, due to smaller group sizes, the SR point

estimates are shrunk towards the mean more aggressively.

We also carry out the goodness-of-fit analysis of structure of

intersectional harms. At the speaker level, we find that the varia-

tion of performance of all systems is well-explained by the additive

model expl + race + gender (the 𝑝-values of adding each variable in

turn are below 0.003), but not by a model with interactions. This

is in contrast with the snippet-level analysis, which supports the

model with interactions (with 𝑝-values below 0.001). We interpret

this conservatively and conclude that there is evidence for an ad-

ditive structure of intersectional harms, but not for an interaction

term. This does not mean that there are no interaction effects, just

that we cannot conclude that from the data at hand.

6 CONCLUSION
We have introduced a structured regression approach to disaggre-

gated evaluation and compared its performance with a variety of

baselines. We have seen that the structured regression (SR), James-

Stein (JS) and empirical Bayes (EB) estimators all substantially

improve accuracy of point estimates compared with the standard

approach as well as a more sophisticated MBM baseline. SR, JS and

EB are simple to implement, and are also close in terms of perfor-

mance, so the choice among them should be driven by their usability.

Here, SR has some advantages. Its ability to include application-

specific features makes it more flexible, and it has a well-developed

inference procedures like construction of confidence intervals and

goodness-of-fit tests. Examining JS and EB more closely from in-

ference perspective in the context of disaggregated evaluation is

a promising direction for future research and a necessity for their

practical use. Note that we have evaluated SR only in two domains,

so any applications in domains with different characteristics (like

the number and types of explanatory and sensitive features, or

dataset size) require additional validation.

Many important challenges lie outside the scope of this paper. For

example, we assume that relevant sensitive attributes and perfor-

mance metrics have been determined. However, as Barocas et al. [3]

discuss, the sensitive attributes often include socially constructed—

and potentially contested—features (like race and gender), which

makes the task of mapping people to attributes and correspond-

ing subgroups potentially fraught, particularly when it involves

inference or use of proxy variables, or poses a risk for members of

already-marginalized subgroups. As a separate challenge, in many
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high-stakes applications (like education and healthcare), we are

not able to directly measure who might benefit, so we need to rely

on proxies. A poor choice of a proxy may further exacerbate exist-

ing inequities, as is the case, for instance, when predicting risk of

re-offense from arrest records [10] or predicting healthcare needs

based on healthcare expenditures [25].

Once the disaggregated results are produced, a complementary

set of challenges arises in how to interpret them. We have con-

spicuously omitted analysis of regression coefficients, because in

our preliminary experiments, we found that lasso coefficients ex-

hibit too much variance for reliable inference. Instead, we suggest

to use goodness-of-fit tests and have demonstrated several ways

how. We acknowledge that we have just taken some initial steps

in this area, and there are many opportunities to apply more so-

phisticated statistical techniques. Our exploration also completely

leaves out important sociotechnical questions about how to draw

actionable conclusions, and how to best communicate the results to

relevant stake-holders, both of which are key in translating fairness

assessments into a reduction in fairness-related harms.
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Figure 6: Comparison of methods for constructing confidence intervals for the standard estimator. Showing coverage of confidence
intervals constructed for six metrics on diabetes data, averaged over all groups and over 20 draws of evaluation dataset.
Confidence intervals constructed from pooled variance are close to the perfect line (corresponding to coverage equal to
confidence level). Confidence intervals derived from separately estimated variances undercover true values.

A CONFIDENCE INTERVALS FOR STANDARD
ESTIMATES

We consider three methods for constructing confidence intervals

for standard estimates 𝑍𝑎 at a given confidence level 𝛾 (e.g., 95%),

or equivalently, at a significance level 𝛼 = 1 − 𝛾 (e.g., 5%).

Two of the methods are based on normal approximation and

take form

[𝑍𝑎 + 𝑞𝛼/2�̂�𝑎, 𝑍𝑎 + 𝑞
1−𝛼/2�̂�𝑎],

where𝑞𝑝 is the 𝑝-th quantile of the standard normal distribution and

�̂�2𝑎 is an estimate of variance of 𝑍𝑎 . We consider either the pooled

estimate of variance derived in Eq. (3), or the estimate (�̂�boot𝑎 )2
obtained by boostrap on 𝑆𝑎 . The third method uses bootstrap per-

centiles on 𝑆𝑎 .

In Figure 6, we compare coverage properties of the resulting con-

fidence intervals on diabetes data. Confidence intervals constructed

from pooled variance estimates are well-calibrated, with coverage

closely matching their confidence level. The other two methods

substantially undercover true values.

B DERIVATION OF THE EMPIRICAL BAYES
ESTIMATOR

We posit the following hierarchical Gaussian model:

𝜇𝑎 ∼ N(𝜇, 𝜏2) for all 𝑎 ∈ A,

𝑍𝑎 ∼ N(𝜇𝑎, 𝜎2𝑎) for all 𝑎 ∈ A,
(5)

where 𝜎𝑎 is known and 𝜇 and 𝜏 are unknown hyperparameters. We

observe values 𝑍𝑎 and need to predict 𝜇𝑎 .

Conditioning on the prior and observations, we obtain the pos-

terior distribution

𝜇𝑎 | 𝜇, 𝜏, 𝑍𝑎 ∼ N
(
𝜇eb𝑎 , (�̂�eb𝑎 )2

)
where the posterior mean and variance are equal to

𝜇eb𝑎 = 𝜇 + 𝜏2

𝜏2 + 𝜎2𝑎
· (𝑍𝑎 − 𝜇), (�̂�eb𝑎 )2 = 𝜏2

𝜏2 + 𝜎2𝑎
· 𝜎2𝑎 . (6)

The empirical Bayes approach takes point estimates of the hy-

perparameters 𝜇 and 𝜏 , and plugs them into Eq. (6). The resulting

𝜇eb𝑎 is used as a point estimate for 𝜇𝑎 and the resulting �̂�eb𝑎 is used

to construct credible intervals for 𝜇𝑎 .

We estimate 𝜏2 by analyzing a suitable sum of squares (similarly

as in the analysis of variance). To start, note that if we marginalize

out 𝜇𝑎 from Eq. (5), we find that the values 𝑍𝑎 are conditionally

independent given 𝜇 and 𝜏 , with

𝑍𝑎 | 𝜇, 𝜏 ∼ N(𝜇, 𝜏2 + 𝜎2𝑎) for all 𝑎 ∈ A . (7)

For each 𝑎, we consider the square (𝑍𝑎 − 𝜇0)2, where

𝜇0 =
∑︁
𝑎∈A

𝑤𝑎𝑍𝑎, with 𝑤𝑎 = 𝑛𝑎/𝑛 for all 𝑎 ∈ A.

The expectation of (𝑍𝑎 − 𝜇0)2 then takes the following form:

E
[(
𝑍𝑎 − 𝜇0

)
2
��� 𝜇, 𝜏 ]

= E

[(∑︁
𝑎′≠𝑎

𝑤𝑎′𝑍𝑎′ − (1 −𝑤𝑎)𝑍𝑎

)
2
����� 𝜇, 𝜏

]
= E

[(∑︁
𝑎′≠𝑎

𝑤𝑎′ (𝑍𝑎′ − 𝜇) − (1 −𝑤𝑎) (𝑍𝑎 − 𝜇)
)
2
����� 𝜇, 𝜏

]
=

∑︁
𝑎′≠𝑎

𝑤2

𝑎′ (𝜏
2 + 𝜎2𝑎′ ) + (1 −𝑤𝑎)2 (𝜏2 + 𝜎2𝑎) (8)

=
∑︁
𝑎′∈A

𝑤2

𝑎′ (𝜏
2 + 𝜎2𝑎′ ) + (1 − 2𝑤𝑎) (𝜏2 + 𝜎2𝑎), (9)

where Eq. (8) follows by Eq. (7) and conditional independence of

𝑍𝑎 ’s. Multiplying Eq. (9) by𝑤𝑎 and summing across all 𝑎, we obtain

E

[ ∑︁
𝑎∈A

𝑤𝑎

(
𝑍𝑎 − 𝜇0

)
2

����� 𝜇, 𝜏
]

=
∑︁
𝑎′∈A

𝑤2

𝑎′ (𝜏
2 + 𝜎2𝑎′ ) +

∑︁
𝑎∈A

𝑤𝑎 (1 − 2𝑤𝑎) (𝜏2 + 𝜎2𝑎)

=
∑︁
𝑎∈A

𝑤𝑎 (1 −𝑤𝑎) (𝜏2 + 𝜎2𝑎) .

We rearrange the final expression to obtain an unbiased estimate

of 𝜏2:

𝜏2 =

∑
𝑎∈A 𝑤𝑎 (𝑍𝑎 − 𝜇0)2 −

∑
𝑎∈A 𝑤𝑎 (1 −𝑤𝑎)𝜎2𝑎

1 − ∑
𝑎∈A 𝑤2

𝑎

. (10)

Since E[𝑍𝑎 | 𝜇, 𝜏] = 𝜇 and Var[𝑍𝑎 | 𝜇, 𝜏] = 𝜏2 + 𝜎2𝑎 , we estimate 𝜇

by taking a weighted average of𝑍𝑎 ’s, with the weights proportional

to the inverse of the variance, but with 𝜏2 plugged in for 𝜏2:

𝜇 =

∑
𝑎∈A 𝑍𝑎/(𝜏2 + 𝜎2𝑎)∑
𝑎∈A 1/(𝜏2 + 𝜎2𝑎)

. (11)
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Table 2: Semi-synthetic data generation.We consider four semi-synthetic ground-truth structures, which we refer to as modelage,
modelage+rc, modelage·rc, and modelexpl, depending which variables they depend on and how, with “+” denoting additive
dependence and “·” presence of interaction. Model coefficients have been chosen to ensure that in all cases ED [𝑌 ] ≈ 0.27 and
(VarD [𝑌 ])1/2 ≈ 0.44.

Model name Ground-truth value of 𝜇𝑎 Data-generating process

modelage 𝜇𝑎 = 0.35 − 0.3 · 𝜙𝑎
age,40–60 𝑌 = Bernoulli(𝜇𝐴 )

modelexpl 𝜇𝑎 = −0.93 + 0.16 · ED𝑎 [𝑋number_diagnoses ] 𝑌 = N(𝜇𝐴, 0.1)
modelage+rc 𝜇𝑎 = 0.65 − 0.15 · 𝜙𝑎

age,40–60 − 0.45 · 𝜙𝑎
race,white 𝑌 = Bernoulli(𝜇𝐴 )

modelage·rc 𝜇𝑎 = 0.32 − 0.27 · 𝜙𝑎
age,40–60 · 𝜙𝑎

race,white 𝑌 = Bernoulli(𝜇𝐴 )

Table 3: Goodness-of-fit tests on semi-synthetic data. From left to right, we consider increasingly more complex models with a
growing set of features and report the 𝑝-values of the associated goodness-of-fit tests; 𝑝-values below 0.05 are in bold.

Data-generating Goodness-of-fit test 𝑝-values

model (comparing a more expressive vs a less expressive model)

expl age expl+ age expl+ rc expl+ age+ rc expl+ age+ rc expl+ age+ rc+ age · rc
vs ∅ vs ∅ vs expl vs expl vs expl+ age vs expl+ rc vs expl+ age+ rc

modelage 0.025 0.000 0.000 0.487 0.153 0.000 0.576
modelexpl 0.000 0.000 0.323 0.366 0.608 0.551 0.000
modelage+rc 0.013 0.661 0.142 0.000 0.000 0.000 0.089
modelage·rc 0.003 0.000 0.000 0.040 0.015 0.000 0.002

Model abbreviations: ∅=intercept only, expl=explanatory features, rc=race, ·=interactions

The last missing piece is 𝜎2𝑎 , for which we use the pooled estimate

from Eq. (3).

Combining it all together, we use the pooled estimates of variance

�̂�2𝑎 and the weighted mean 𝜇0 alongside observations𝑍𝑎 to calculate

𝜏2 using Eq. (10); then we calculate 𝜇 using Eq. (11); and finally we

calculate 𝜇eb𝑎 and (�̂�eb𝑎 )2 using Eq. (6).

C GOODNESS-OF-FIT EXPERIMENTS WITH
SEMI-SYNTHETIC DATA

In this appendix we provide further examples of the kinds of in-

sight concerning the structure of intersectional harm that may be

obtained through goodness-of-fit analysis. Our examples rely on

semi-synthetic data. More precisely, we continue to use the diabetes

dataset as described in §5.1, but with different values 𝑌 . We con-

sider the performance metric𝑚(𝑝) = E𝑝 [𝑌 ] (this is quite similar

to selection rate or word error rate) and generate 𝑌 in such a way

that ground-truth metric values 𝜇𝑎 have a specific structure.

We consider four semi-synthetic ground-truth structures, which

we refer to as modelage, modelage+rc, modelage·rc, and modelexpl,

depending which variables they depend on and how, with “+” de-
noting additive dependence and “·” presence of interactions. These
models correspond, respectively, to settings where the true varia-

tion in model performance is explained entirely by age alone; by
age and race additively, with middle-age patients and white patients

experiencing lower values of the performance metric; by age and
race interactionally, with the intersectional group of white middle-
age patients experiencing lower values of the performance metric

whereas middle-age patients of other races and white patients of

other ages do not; and entirely by non-demographic explanatory

factors. The details of the underlying data generation process are

summarized in Table 2.

Table 3 summarizes the results of a sequence of goodness-of-fit

tests set up to investigate different questions about the structure

of the underlying performance disparity using the observed semi-

synthetic data. Moving from left to right, we test goodness-of-fit of

more and more complex models. The first column, expl vs ∅ asks:

is the data consistent with constant model performance that does
vary with available (non-demographic) explanatory variables? In

the first row, the ground-truth depends only on age, but we see a
statistically significant improvement in goodness-of-fit from ∅ to

expl, because of correlation between age and expl. The third column

then asks: is the variation in performance explained by the benign
explanatory factors alone, or is there evidence of further variation
with age? After the explanatory features have been included, age
still helps (the improvement from expl to expl + age is significant),
so the variation in the performance metric cannot be explained by

the “benign explanatory factors” alone. While not presented here,

the results of expl + age vs age are not statistically significant in this

setting, confirming that the benign factors do not explain additional

variation that is not explained by age alone.

Shown in the second row is the setting where the data is drawn

from modelexpl. Columns 3 and 4 ask whether there is additional

variation in performance in age or race, respectively, that is not
explained by the benign factors. The 𝑝-values for these goodness-

of-fit tests are not statistically significant, so we conclude correctly

that there is no evidence that age or race help after explanatory

features have been added.

In the last two rows of Table 3, we demonstrate how goodness-

of-fit tests handle data from additive models versus models with
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Figure 7:Mean absolute error of estimates of 6 metrics using 3 best-performing methods on diabetes data. Averaged across all
groups, small groups (size at most 25), and large groups (size above 25), across 20 draws of evaluation dataset.
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Figure 8: Comparison of structured regression with the intercept-only model. Showing mean absolute error, averaged across all
groups, small groups (size at most 25), and large groups (size above 25), across 20 draws of evaluation dataset.

interaction terms. The former correspond to the situation when

harms experienced by intersectional groups combine additively,

the latter when there is an additional intersectional effect. For the

additive ground truth (modelage+rc), tests suggest a sequence of

variable additions expl + rc + age, but then show no support for

including interaction terms. For the data from modelage·rc, tests
correctly provide support for an inclusion of interactions. That is,

we correctly identify the presence of super-additive harms that

would accrue to intersectional age-race subgroups.

D ADDITIONAL DIABETES EXPERIMENTS
In Figure 7, we evaluate the quality of the point estimates produced

by the three best-performing methods. In Figure 8, we compare

the performance of the structured regression approach with an

intercept-only model.
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