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ABSTRACT
Decision support systems became ubiquitous in every aspect of
human lives. Their reliance on increasingly complex and opaque
machine learning models raises transparency and fairness concerns
with respect to unprivileged groups of people. This motivated sev-
eral efforts to estimate importance of features towards the models’
performance and to detect unfair/disparate decisions. The latter is
often dealt with by means of fairness metrics that rely on perfor-
mance metrics with respect to predefined features that are consid-
ered protected (salient features such as age, gender, ethnicity, etc.)
and/or sensitive (such as education, /occupation, banking informa-
tion). However, such an approach is subjective (as fairness metrics
depend on the choice features), there may be other features that
lead to unfair (disparate) decisions and that may ask for suitable
interpretations.

In this paper we focus on the latter issues and propose a statistical
preprocessing approach that is inspired by both the Hilbert-Schmidt
independence criterion and Shapley values to estimate feature im-
portance and to detect disparity prone features. Unlike traditional
Shapley value-based approaches, we do not require trained models
to measure feature importance or detect disparate results. Instead,
it focuses on data and statistical criteria to measure the dependence
of feature distributions. Our empirical results show that features
with the highest dependence degrees with the label vector are also
the ones with the highest impact on the model performance. More-
over, our empirical results indicate that this relation enables the
detection of disparity prone features.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification.
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1 INTRODUCTION
Machine Learning (ML) models are now massively used to tackle
a wide variety of real-world problems [19, 53]. Such models have
thus a direct impact into people lives, and there are increasing
transparency and fairness concerns that practitioners should be
aware of when deploying ML methods into real applications [2, 9].
One may consider as a transparent method the ones whose result
can be understood. For example, in recidivism risk prediction [8],
one should be able to interpret how each individual characteristic is
contributing towards the model’s output. However, some practical
situations require the use of complex methods which may be rather
opaque and whose results may be hard to understand. To deal with
such issues, several model-agnostic approaches have been proposed
in the literature, e.g., those based on surrogate models and on Shap-
ley values [36, 48, 58]. Besides transparency, one also expects the
algorithm to be fair with respect to sensitive or protected groups
of people, for instance, according to their gender [13] or race [8].
The fairness concern has become an important discussion in ma-
chine learning. Several techniques have been developed to mitigate
disparate results. Examples include pre-processing [11, 47, 52], in-
processing [3, 66] and post-processing [26, 28, 40, 43] algorithms
(see also [6, 38, 61] for recent surveys and further discussions on
fairness related issues). Moreover, to analyze ethical disparities pro-
vided by a ML model, one should understand the results achieved
by such models. This asks for the interpretation of feature contribu-
tions towards disparate outcomes [10, 22, 34]. A common point in
the aforementioned approaches to explain the performance of ML
models or the potentially disparate results is that they are generally
based on a trained model. In other words, one must firstly train the
model and, secondly, determine the features that contribute to the
predicted outcome and/or the disparate result. However, training
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a model before analysing features contributions can be computa-
tionally expensive, especially when using coalition based feature
importance values, e.g., Shapley values [36]. Indeed, as the com-
plexity of computation of Shapley values increases exponentially
with the number of features1, the retraining of ML models could
be practically infeasible.

In [46] the authors addressed the issue of detecting features
and subfeatures that are likely to entail disparate outcomes, possi-
bly disadvantageous for minorities and/or protected groups. Such
situations may be due to imbalanced feature distributions, or to
features that are prone to systematically dividing instances into
subgroups with disparate outcomes, and that this division may not
be rooted in acceptable ethical principles. The authors of [46] refer
to such features (or subfeatures) as disparity prone features, i.e.,
(sub)features that entail disparate (unfair) outcomes. To verify such
disparities among different (sub)groups, it is common to train an
MLmodel, e.g., a classifier, and compute a pertaining fairness metric
that measures the difference or the ratio between the performances
for the different (sub)groups [6, 25, 26, 38, 65]. This process may be
computationally costly depending on the ML model that is adopted,
and raises the question of how to detect possible disparities before
the training step. To tackle these issues, [46] proposed a statisti-
cal approach based on the Hilbert-Schmidt independence criterion
(HSIC) [24, 63]. The HSIC essentially measures the dependence
between vectors or matrices, and it has been used as a feature se-
lection method [56, 57] in classification and regression tasks. The
working hypothesis in [46] was that, if a feature that divides in-
stances into different groups has a high HSIC with the label vector,
then it will entail disparate outcomes among the (sub)groups dis-
criminated by this feature. The authors also observed that the HSIC
or its normalized variant (NOCCO) simply indicate the features’
potential to entail disparities, and features with high HSIC should then
be analyzed by practitioners and domain experts to decide whether
they should be considered as sensitive, especially, when a cause-effect
relation is detected. The appealing aspect of this framework is the
detection of disparity prone and proxy features at the preprocessing
stage, thus avoiding the computational cost of using trained ML
models to verify unfair results.

However, HSIC (or NOCCO) based approach has some limita-
tions. Firstly, it cannot account for coalitions (combinations) of fea-
tures, that may themselves entail disparate outcomes. For instance,
in recent years several anti-discrimination efforts have resulted in
decreased gender pay gaps in Europe. However, this tendency is
reversed when combined with additional information on whether it
is in the public or the private sector2. Secondly, it does not provide
key information (e.g., in the form of coalition importance) that can
help interpreting and explaining the impact of such coalitions in
the performance metrics (for instance, fairness metrics).

This motivated us to generalize NOCCO by taking into account
these two aspects, namely, different combinations of features to-
gether with their importance to the outcomes. Although being
a general framework, we only illustrate its feasibility by taking
Shapley values (that compute the importance of coalitions to the

1Surely, there are techniques to estimate the Shapley values [1, 7, 41], however, one
still need to train the model several times.
2https://l1nq.com/FYJU8

outcomes) of ML models such as multi-layer perceptron and ran-
dom forest. We first perform an empirical study on synthetic data to
attest our hypotheses, and then experiments on well-know datasets
followed by a qualitative analysis that clearly shows the correlation
between NOCCO Shapley values and fairness metrics (here, overall
accuracy equality).

This paper is organized as follows. In Section 2, we introduce
the underlying problem considered together with the notation em-
ployed throughout the paper. We briefly recall the key notions
pertaining to the HSIC and Shapley values and discuss their use in
practice in Sections 3 and 4, respectively. We propose extensions
to the NOCCO based approach to detect disparity prone features
in Section 5, that is followed by a preliminary experiment on syn-
thetic data in Section 6. Further empirical studies on real world
data are presented in Section 7, followed by qualitative analysis of
the obtained results. We conclude the paper in Section 8 where we
discuss some future perspectives.
Main Contributions:
• We propose a preprocessing approach based on the NOCCO
and Shapley values to address the problem of assigning fea-
ture importance measures towards the algorithm perfor-
mance.
• In the case of sensitive/protected features with high depen-
dence degree with the outcome, our proposal also allows
us to detect disparity prone features without the need of a
trained model.
• We present an empirical study on four datasets frequently
used in the literature. The higher is the NOCCO Shapley
values, the higher is the feature impact on either the model
performance and the disparate outcome.
• The interaction indices indicate the presence of interaction
effects between features, which can be used to detect proxies
in the dataset (the case of a redundant effect) or coalitions
of features whose simultaneous use increases the predictive
power of the ML model (the case of a complementary effect).

2 NOTATION AND PROBLEM SETTING
In this paper, we deal with binary classification problems whose
input variables are represented by matrices X𝑛×𝑚 , where 𝑛 is the
number of samples and𝑚 is the number of features. For each sam-
ple, we have the associated class 𝑦 ∈ {−1, 1}. Let us also define
𝐺 𝑗 , 𝑗 = 1, . . . ,𝑚, as the feature described in the 𝑗−th column of
X, i.e., X( 𝑗 ) . Very often, some features are categorical and, there-
fore, one should convert them into binary features3 to be able to
apply a ML model. Suppose, for instance, that a categorical feature
𝐺 𝑗 (e.g., race) is described by 𝑞 = 3 categories (or subfeatures),
namely 𝐺 𝑗,1, 𝐺 𝑗,2 and 𝐺 𝑗,3 (e.g., whites, blacks and Asians). By con-
verting this categorical feature into 3 binary variables, the novel
data X̃( 𝑗 )

𝑛×3 representing X
( 𝑗 ) has 3 columns. The same procedure

is repeated for all categorical features, which will increase the to-
tal number of features (and subfeatures) from𝑚 to �̃�. The input
variables after converting all categorical features is represented
by X̃𝑛×�̃� . The problem that we address consists in estimating the
importance of features towards performance and fairness measures
3In this paper, we adopted the one-hot encoding strategy to convert the categorical
features into binary variables.

https://l1nq.com/FYJU8
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before the training step. In contrast with classical feature attribution
approaches, we only consider the dataset X and the output vector
y𝑛×1 to calculate the importance measures. For this purpose, one
firstly needs to define a measure that evaluates the predictive power
of each feature or coalition of features. Based on such values, one
should then adopt a strategy to calculate the marginal predictive
power of features towards the prediction y. We discuss these two
steps in the next sections.

3 HILBERT-SCHMIDT INDEPENDENCE
CRITERION

Calculating the predictive power of features is an important step
in feature selection process. In summary, the idea is that feature
whose predictive power is insignificant could be removed from the
dataset without relevant impact on the ML performance. In order to
calculate such a measure, several approaches have been proposed in
the literature, such as those based on the correlation coefficient or
mutual information (see [29, 59, 60] for reviews of feature selection
approaches inML). Although these strategies can be easily deployed
to calculate the relation between each featureX( 𝑗 ) and the predicted
value y, there are some drawbacks with their use. For instance, the
correlation coefficient is based on second-order moments between
vectors, which is a weaker measure if the purpose is to estimate
statistical dependence. Although the mutual information is stronger
than the correlation coefficient in measuring statistical dependence,
its calculation requires estimating probability density functions,
which can be a difficult task. Moreover, the use of both measures is
straightforward only to evaluate the dependence degree between
two vectors. However, in our approach, one needs a strategy to
evaluate the relation between any coalition of features and the
output vector y.

Recently [46, 62, 63] used another measure to estimate the de-
pendence degree between variables, namely, the Hilbert-Schmidt
independence criterion [17, 18, 24]. Differently from the correlation
coefficient or the mutual information, the HSIC can be used to
calculate the dependence degree between matrices4. The HSIC can
be empirically calculated by

𝐻𝑆𝐼𝐶 (X, y) =
tr
(
KXHKyH

)
(𝑛 − 1)2

=
tr
(
HKXHKy

)
(𝑛 − 1)2

, (1)

where KX is the kernel matrix of X, Ky is the kernel matrix of y,
H = I − 𝑛−1ee𝑇 is the centering matrix, and e is the 𝑛-dimensional
column vector 1. Note that, by multiplying KX by H on both sides,
one removes its columns and rows mean. Therefore, one ensure
that the kernel is centered.

Although in (1) the kernels are centered, one may have an incor-
rect interpretation when comparing the HSIC for different entities
(e.g.,𝐻𝑆𝐼𝐶 (X, y) and𝐻𝑆𝐼𝐶 (X′, y) whereX ≠ X′). Indeed, the HSIC
calculation is sensitive to the dataset scale [32]. Therefore, in order
to properly compare relative dependence degrees, in our analysis
we consider a normalized version of HSIC called NOCCO (NOrmal-
ized Cross-Covariance Operator) [17, 18]. It is defined as follows:

𝑁𝑂𝐶𝐶𝑂 (X, y) = tr
(
RXRy

)
, (2)

4Note that the possibility to calculate the dependence degree between matrices gener-
alizes the use of HSIC between two matrices, two vectors or a matrix and a vector.

where RX = HKXH (HKXH + 𝑛𝜖I𝑛)−1, Ry =

HKyH
(
HKyH + 𝑛𝜖I𝑛

)−1, 𝜖 is a regularization parameter (e.g.,
10−6) and I𝑛 is a 𝑛 × 𝑛 identity matrix. As 𝑁𝑂𝐶𝐶𝑂 (X, y) ∈ [0, 1],
y is independent of X if the NOCCO value is 0. Conversely, greater
the NOCCO values, greater the dependence degree between X and
y.

4 SHAPLEY VALUE AS A FEATURE
ATTRIBUTION METHOD

The application of the Shapley value as a feature attribution method
has gained attention in the ML community in the last years [5, 39,
51, 58]. The inspiration lies on the use of the Shapley value as a
solution concept in cooperative game theory [55]. Assume a set of
players𝑀 = {1, . . . ,𝑚} that cooperate to achieve a common goal.
Let us define 𝜐 (𝐴) as the payoff (or gain) of a game 𝜐 when players
in 𝐴 ⊆ 𝑀 act by cooperation (one generally assumes 𝜐 (∅) = 0).
Given the payoff achieved by the grand coalition𝑀 , i.e., 𝜐 (𝑀), the
Shapley value emerges as a mechanism to fairly distribute the total
gain among all players 𝑗 = 1, . . . ,𝑚. The Shapley value of a player
𝑗 is calculated as follows:

𝜙 𝑗 =
∑︁

𝐴⊆𝑀\{ 𝑗 }

(𝑚 − |𝐴| − 1)! |𝐴|!
𝑚!

[𝜐 (𝐴 ∪ { 𝑗}) − 𝜐 (𝐴)] , (3)

where |𝐴| indicates the cardinality of subset 𝐴. It indicates the
marginal contribution of player 𝑗 towards the game payoff when
joining all possible coalitions of players. One considers the Shapley
value a fair mechanism since it satisfies some desirable properties
when sharing the benefits from a game [64]. The most relevant for
our analysis are the following:

Properties 1. Efficiency: The total gain 𝜐 (𝑀) is divided
among all players 𝑗 = 1, . . . ,𝑚. Mathematically,

∑𝑚
𝑗=1 𝜙 𝑗 =

𝜐 (𝑀) .
Properties 2. Dummy: If a player does not contribute towards

the goal (i.e., its marginal contribution is null), he/she should
not receive a benefit when sharing the total gain. In other
words, if, for all subsets 𝐴 ⊆ 𝑀 , 𝜐 (𝐴 ∪ { 𝑗}) = 𝜐 (𝐴) , then
𝜙 𝑗 = 0.

Properties 3. Symmetry: In the case where two players con-
tribute equally when joining all coalitions, they should
receive the same benefit. In this case, for all 𝐴 ⊂ 𝑀

(𝐴\ { 𝑗, 𝑗 ′}) and two players 𝑗 and 𝑗 ′ such that 𝜐 (𝐴 ∪ { 𝑗}) =
𝜐 (𝐴 ∪ { 𝑗 ′}) , then 𝜙 𝑗 = 𝜙 𝑗 ′ .

The aforementioned properties (specially the efficiency one)
brought the attention of the ML community to use the Shapley
value as a feature attribution approach. It has been applied to inter-
pret either local predictions [4, 36, 37] or global performances of
machine learning models [12, 22, 33, 35, 50]. For instance, in global
interpretability, the marginal contribution assigned to each feature
can be used as a feature selection strategy [15, 23, 50].

Besides the marginal contribution of features, Eq. (3) can be
extended to evaluate the interaction degree between pairs of fea-
tures5. This measure, called Shapley interaction index, is defined

5In fact, one can extend the Shapley value calculation to any coalition of features𝐴.
However, the interpretation is clear only for singletons or pairs of features.
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as follows [20, 42]:

𝐼 𝑗, 𝑗 ′ =
∑︁

𝐴⊆𝑀\{ 𝑗, 𝑗 ′ }

(𝑚 − |𝐴| − 2)! |𝐴|!
(𝑚 − 1)!

×
[
𝜐 (𝐴 ∪

{
𝑗, 𝑗 ′

}
) − 𝜐 (𝐴 ∪ { 𝑗}) − 𝜐 (𝐴 ∪

{
𝑗 ′
}
) + 𝜐 (𝐴)

]
. (4)

The sign of 𝐼 𝑗, 𝑗 ′ indicates the type of interaction between features
𝐺 𝑗 ,𝐺 𝑗 ′ . If 𝐼 𝑗, 𝑗 ′ < 0, there is a redundant effect between 𝐺 𝑗 ,𝐺 𝑗 ′ .
This is the case of negatively correlated features, where the payoff
𝜐 ({ 𝑗, 𝑗 ′}) < 𝜐 ({ 𝑗}) + 𝜐 ({ 𝑗 ′}) means that both features together are
not better than the sum of them individually. If 𝐼 𝑗, 𝑗 ′ > 0, there is a
complementary effect between𝐺 𝑗 ,𝐺 𝑗 ′ . This is the case of positively
correlated features, where the payoff 𝜐 ({ 𝑗, 𝑗 ′}) > 𝜐 ({ 𝑗}) + 𝜐 ({ 𝑗 ′})
and means that the effect of both features together is better than the
sum of them individually. Finally, if 𝐼 𝑗, 𝑗 ′ = 0, there is no interaction
between𝐺 𝑗 ,𝐺 𝑗 ′ . In this case, they act independently. Although the
interaction index has been largely exploited in the context of multi-
criteria decision making problems [21], in machine learning, only
few works used such a measure for the purpose of interpretabil-
ity [35, 44, 48, 49]. However, it brings interesting insights about
how features interacts towards the model performance.

A remark in most of the aforementioned Shapley value-based
approaches is that they require a trained model in order to calculate
the marginal contributions and assign importance measures to
features. In this scenario, one first needs to train the model and then
apply the game theory strategy. This can be computationally tricky
in scenarios with a complex training step. Moreover, if it is required
to train the model for all 2𝑚 coalitions of features, this can be timely
infeasible. In this paper, we propose a preprocessing approach that
assigns importance measures to features and interaction indices to
coalitions, i.e., without the need of a trained model. We discuss our
proposal in the next section.

5 PROPOSED APPROACH
The use of the HSIC (more precisely, the normalized version
NOCCO) in our analysis was inspired by the work conducted
in [46]. The authors proposed a preprocessing approach based on
the NOCCO value to detect disparity prone features. The idea is
that, greater the NOCCO value of a feature (or subfeature), greater
the chance that such a feature (or subfeature) entails disparate re-
sults. However, the analysis conducted in [46] was only based on
dependence measures between the vector representing a feature (or
subfeature) and the vector of labels. The authors did not consider,
for instance, interactions between features. In order to exploit the
marginal dependence degree of features towards the trained model
performance and fairness metrics, in this paper, we adopted an
approach based on cooperative game theory. Instead of detecting
relevant and disparity prone features based on single measures of
dependence between vectors, we consider all coalitions of features
when calculating the marginal importance of features.

In the game theory framework, we assume as the payoff of a coali-
tion 𝐴 the dependence measure between features in 𝐴 and the out-
put vector y. Mathematically, we define𝜐 (𝐴) = 𝑁𝑂𝐶𝐶𝑂 (X(𝐴) , y) =
tr
(
RX(𝐴)Ry

)
, where X(𝐴) represents the input data whose columns

are composed by features (or subfeatures after converting cate-
gorical features into binary variables) in the subset 𝐴. Note that,
in [46], the authors used 𝜐 ({ 𝑗}) = 𝑁𝑂𝐶𝐶𝑂 (X( 𝑗 ) , y) for singletons

𝑗 = 1, . . . ,𝑚 to detect disparity prone features. In this paper, we con-
sider the Shapley value 𝜙 𝑗 as the measure indicating the relevance
of feature𝐺 𝑗 towards the trained model performance and fairness
measures. The marginal contribution of feature 𝐺 𝑗 is defined as
follows:

𝜙𝑁𝑂𝐶𝐶𝑂
𝑗 =

∑︁
𝐴⊆𝑀\{ 𝑗 }

(𝑚 − |𝐴| − 1)! |𝐴|!
𝑚!

×
[
𝑁𝑂𝐶𝐶𝑂 (X(𝐴∪{ 𝑗 }) , y) − 𝑁𝑂𝐶𝐶𝑂 (X(𝐴) , y)

]
.(5)

For the empty set, we assumed 𝜐 (∅) = 0, as there is no data to
calculate the dependence degree with the output vector y.

Clearly, we considered NOCCO values between any coalitions of
features (or transformed data, after converting categorical features
into binary ones) and the vector of labels in the Shapley value
calculation. Based on the Shapley values, we may estimate relevant
features towards the trained model performance before the training
step. The idea is that, greater 𝜙𝑁𝑂𝐶𝐶𝑂

𝑗
, greater is the impact of

feature𝐺 𝑗 in the trained model. Recall from the efficiency property
that

∑𝑚
𝑗=1 𝜙

𝑁𝑂𝐶𝐶𝑂
𝑗

= 𝑁𝑂𝐶𝐶𝑂 (X, y), i.e., the dependence degree of
the whole dataset X is decomposed by the marginal contributions
of each feature 𝐺 𝑗 . Moreover, in scenarios with sensitive features,
high marginal contributions will also indicate the ones that may
entail ethical disparities.

We also considered in our analysis the Shapley interaction in-
dices between features 𝐺 𝑗 ,𝐺 𝑗 ′ , defined by

𝐼𝑁𝑂𝐶𝐶𝑂
𝑗,𝑗 ′ =

∑︁
𝐴⊆𝑀\{ 𝑗, 𝑗 ′ }

(𝑚 − |𝐴| − 2)! |𝐴|!
(𝑚 − 1)!

×
[
𝑁𝑂𝐶𝐶𝑂 (X(𝐴∪{ 𝑗, 𝑗

′ }) , y) − 𝑁𝑂𝐶𝐶𝑂 (X(𝐴∪{ 𝑗 }) , y)

−𝑁𝑂𝐶𝐶𝑂 (X(𝐴∪{ 𝑗
′ }) , y) + 𝑁𝑂𝐶𝐶𝑂 (X(𝐴) , y)

]
.

As will be further discussed in the numerical experiments (see
Sections 6 and 7.3), while the Shapley values indicate the marginal
contribution of features, the interaction indices will indicate how
pairs of features interact towards the model performance. For ex-
ample, in the case when the interaction index between features 𝑗
and 𝑗 ′ is negative (i.e., there is a redundant effect between them),
these features may be acting as proxies. In other words, the use of
both features may bring similar results as in the case where only
one of them is considered. Furthermore, a positive interaction index
may indicate a synergistic effect on the model performance.

Algorithm 1 presents a pseudo-code of our proposal. For each
coalition of features 𝐴 ⊆ 𝑀 , one firstly encodes the categorical
features in 𝐴 (if it is necessary). Then, we calculate the NOCCO
value between 𝑁𝑂𝐶𝐶𝑂 (X(𝐴) and the vector of outcomes y. Once
all 𝑁𝑂𝐶𝐶𝑂 (X(𝐴) was obtained, we calculate the NOCCO Shapley
values and interactions indices. The Shapley values will indicate
which features are more relevant in predicting the vector of out-
comes and the interaction indices will highlight redundant and/or
complementary effects between pairs of features.

It is worth mentioning that, in our analysis we considered the
radial basis function (RBF) kernel in the NOCCO values calculation.
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Algorithm 1 (Preprocessing approach to detect relevant and disparity
prone features)

Input: X and y.
Output: Features contributions 𝜙𝑁𝑂𝐶𝐶𝑂

𝑗
and interaction indices

𝐼𝑁𝑂𝐶𝐶𝑂
𝑗,𝑗 ′ , 𝑗, 𝑗 ′ = 1, . . . ,𝑚.
1: Calculate the kernel matrix of y: Ky = 𝑘𝑒𝑟𝑛𝑒𝑙 (y).
2:Calculate the NOCCO values for all coalitions of features:

for 𝐴 ⊆ 𝑀 do
Define the (initially empty) dataset used in NOCCO cal-
culation: X(𝐴) = [].
for 𝑗 ∈ 𝐴 do

if 𝐺 𝑗 is either a numerical or binary feature then
Update the dataset: X𝑁𝑂𝐶𝐶𝑂 =

[
X(𝐴) ;X( 𝑗 )

]
.

else
Encode the categorical feature: X̃( 𝑗 ) ←
𝑒𝑛𝑐𝑜𝑑𝑒

(
X( 𝑗 )

)
.

Update the dataset: X𝑁𝑂𝐶𝐶𝑂 =

[
X(𝐴) ; X̃( 𝑗 )

]
.

end if
end for
Calculate the kernel matrix associated with X(𝐴) :
KX𝑁𝑂𝐶𝐶𝑂

= 𝑘𝑒𝑟𝑛𝑒𝑙

(
X(𝐴)

)
.

Calculate the dependence measure: 𝑁𝑂𝐶𝐶𝑂 (X(𝐴) =

tr
(
RX(𝐴)Ry

)
end for
for 𝑗 = 1, . . . ,𝑚 do

Calculate the Shapley value: 𝜙𝑁𝑂𝐶𝐶𝑂
𝑗

(Eq. (5)).
for 𝑗 ′ = 𝑗 + 1, . . . ,𝑚 do
Calculate the interaction index: 𝐼𝑁𝑂𝐶𝐶𝑂

𝑗,𝑗 ′ (Eq. (6)).
end for

end for

The RBF kernel is defined by

𝐾𝑅𝐵𝐹 (ℎ𝑖 , ℎ𝑖′ ) = 𝑒−
1
𝑛
(ℎ𝑖−ℎ𝑖′ )2 . (6)

However, there exists other kernels that could be used in our for-
mulation [54].

6 ILLUSTRATIVE EXAMPLE WITH
SYNTHETIC DATA

In order to illustrate the application of our proposal in assigning an
importance measure to each feature, we first consider a synthetic
dataset with 𝑛 = 3000 samples and𝑚 = 5 features. The dataset X
was randomly generated as follows: (1) for 𝑗 ∈ {1, 2, 3, 4}, X( 𝑗 ) ∼
U(0, 1), wereU(0, 1) indicates a uniform distribution in the range
[0, 1]; (2) for 𝑗 = 5, X(5) is a copy X(4) . Before defining the class
of each sample, assume the weights w = [𝑤1,𝑤2,𝑤3,𝑤4,𝑤5] =
[0.25, 0.40, 0, 0.15, 0.20] and the aggregation function

𝑧𝑖 =

5∑︁
𝑗=1

𝑤 𝑗𝑋
( 𝑗 ) + 0.01𝜂𝑖 , 𝑖 = 1, . . . , 3000, (7)

where 𝜂𝑖 ∼ N(0, 1) is a random Gaussian noise (with zero mean
and unit variance). The classes were defined as follows: 𝑦𝑖 = 1 if
𝑧𝑖 > 𝑧, and 𝑦𝑖 = 0, otherwise, where 𝑧 = 1

3000
∑3000
𝑖=1 𝑧𝑖 is the mean

value of z = [𝑧1, . . . , 𝑧3000].
The application of our proposal leads to the features importance

presented in Figure 1a. The results are in accordance with the
weights used to aggregate the dataset and define the classes. Fea-
ture 2, which is associated with the highest weight (𝑤2 = 0405) in
the aggregation function, achieved the highest Shapley value. The
contribution assigned to feature 3 was practically zero. This attests
the null player property of the Shapley value, which ensures that
features with no contribution into the predicted outcome would re-
ceive zero payoff. As features 4 and 5 are identical (recall that X(5)

is a copy X(4) ) and given the symmetry property of the Shapley
value, the obtained marginal contributions for such features were
the same regardless the associated weights. Clearly, the magnitude
of𝑤4 and𝑤5 impacts both 𝜙𝑁𝑂𝐶𝐶𝑂

4 and 𝜙𝑁𝑂𝐶𝐶𝑂
5 , however, both

features 4 and 5 equally share their impacts on the output vector.
These results highlight the novelty of our approach in comparison
with [46]. As illustrated in Figure 1b, if one only considers the in-
dividual NOCCO values, redundant features will achieve higher
importance measures than the correct one. Indeed, redundant fea-
tures should share their total impact instead of receiving the same
total impact.

Another interesting result can be seen in the interaction effects
presented in Figure 1c. Note that 𝐼𝑁𝑂𝐶𝐶𝑂

4,5 ≈ −0.3, i.e., the interac-
tion index attests that features 𝐺4 and 𝐺5 are redundant in predict-
ing the classes. Therefore, besides estimating the feature contribu-
tions towards the model prediction, our approach also indicates
proxies. Although this could be verified by taking a similarity de-
gree between features (such as the correlation coefficient), proxies
may also exists between categorical features. In such a case, in con-
trast of similarities measures which are difficult to be calculated, our
approach is able to indicate which features can be seen as proxies.

7 NUMERICAL EXPERIMENTS ON REAL DATA
In this section, we present the numerical experiments based on real
datasets. Differently from the previous section where we know the
aggregation function parameters, by assuming real datasets we do
not know the relation between input features and the outcome vec-
tor. Given the absence of the ground truth weights to compare with
the obtained feature contributions (NOCCO Shapley values), we
will compare them with the Shapley values calculated after training
the ML model and collecting the performance measures. Therefore,
for each subset of features 𝐴 ⊆ 𝑀 , we trained the model6 and cal-
culated the performance measure. In this paper, we considered the
overall accuracy, defined by

𝑂𝐴𝐴 =
𝑇𝑃𝐴 +𝑇𝑁𝐴

𝑛
, (8)

where 𝑇𝑃𝐴 and 𝑇𝑁𝐴 are the true positive (# of instances correctly
classified as class 1) and the true negative (# of instances correctly
6In all experiments conducted in this paper, we applied a Neural Network classifier
borrowed from Scikit-learn library [45] in Python (MLPClassifier), with at most 1000
iterations. We performed similar experiments with Random Forests with similar results.
These are presented in the Supplementary Material. As our proposal consists in a
preprocessing step independent from the training step, it is model-agnostic, that is,
any ML model could be used.
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(a) Features importance. (b) NOCCO values for individual features. (c) Interaction effects between fea-
tures.

Figure 1: Results for the synthetic dataset.

classified as class -1) calculated from the trained model based on
features in 𝐴. Once all𝑂𝐴𝐴 , 𝐴 ⊆ 𝑀 , are calculated, one obtains the
overall accuracy Shapley values as follows:

𝜙𝑂𝐴
𝑗 =

∑︁
𝐴⊆𝑀\{ 𝑗 }

(𝑚 − |𝐴| − 1)! |𝐴|!
𝑚!

[
𝑂𝐴𝐴∪{ 𝑗 } −𝑂𝐴𝐴

]
. (9)

As the 𝜙𝑂𝐴
𝑗

indicates the importance measure of feature 𝑗 in the
trained machine, we compare it with our preprocessing proposed
approach.

In some scenarios, we also aim at detecting disparity prone fea-
tures. For this purpose, we compare the obtained features contribu-
tions with a fairness metric (also calculated after training the ML
model). In this paper, we adopted the overall accuracy equality. As
some sensitive features have more than two categories, for each
sensitive feature 𝐺 𝑗 with 𝑞 categories, we calculated the average
disparity when splitting the samples according to all possible pairs
of categories. This leads to the following overall accuracy equality
considered in this paper:

𝑂𝐴𝐸 =
1

𝐶𝑞,2

∑︁
𝑘,𝑘 ′,𝑘≠𝑘 ′

�����𝑇𝑃𝐺 𝑗,𝑘
+𝑇𝑁𝐺 𝑗,𝑘

𝑛𝐺 𝑗,𝑘

−
𝑇𝑃𝐺 𝑗,𝑘′ +𝑇𝑁𝐺 𝑗,𝑘′

𝑛𝐺 𝑗,𝑘′

����� ,
where 𝑛𝐺 𝑗,𝑘

and 𝑛𝐺 𝑗,𝑘′ are the number of samples that belong to

group 𝐺 𝑗,𝑘 and 𝐺 𝑗,𝑘 ′ , respectively, and 𝐶𝑞,2 =
𝑞!(𝑞−1)!

2 is the num-
ber of pairs of categories for feature 𝐺 𝑗 . The supplementary mate-
rial as well as all datasets and codes are freely available at https:
//github.com/GuilhermePelegrina/NOCCO_Shapley_values.git.

7.1 Datasets
We attest our proposal based on four datasets frequently consid-
ered in the literature7: Rice [14], Red Wine Quality [16], COMPAS
recidivism risk [8] and Adult8. We used the first two to estimate
the relevance of features towards the model performance. For both
COMPAS and Adult datasets, in addition to feature importance, we
also explore the detection of disparity prone features. We briefly
describe each dataset in the sequel.
• Rice dataset: In this dataset, the aim is to identify specie of
rices (Cammeo or Osmancik). There are 𝑛 = 3810 samples
and the following𝑚 = 7 rices characteristics: Area, Perimeter,

7See the supplementary material for more results in other datasets.
8https://archive.ics.uci.edu/ml/datasets/adult

Major_Axis_Length, Minor_Axis_Length, Eccentricity, Con-
vex_Area and Extent.
• Red Wine Quality dataset: This dataset contains 𝑛 = 1599
samples of red wines described by 𝑚 = 11 features: fixed
acidity, volatile acidity, citric acid, residual sugar, chlorides,
free sulfur dioxide, total sulfur dioxide, density, pH, sulphates
and alcohol. For each wine, we also have an score (from 0
to 10) indicating its quality. The purpose is to classify each
wine as good or a bad one. In our analysis, we consider as
good (resp. bad) wines the ones with score greater than (resp.
at most) 5.
• COMPAS dataset: In this dataset, the aim is to classify indi-
viduals as a potential criminal recidivist. Each individual (for
a total of 𝑛 = 6167) is characterized by the following𝑚 = 8
features: sex (male or female), age_cat (age category - less
than 25, between 25 and 45 or greater than 45), race (African
Americans, Caucasians or others), juv_fel_count (number of
juvenile felony), juv_misd_count (number of juvenile mis-
demeanor), juv_other_count (number of others infractions),
priors_count (number of priors) and c_charge_degree (type
of the charge degree - felony or misdemeanor). Although
only race and sex are typically considered as sensitive fea-
tures, in our experiments, we also evaluate ethical disparities
associated with age category.
• Adult dataset: This dataset is composed by 𝑛 = 45222 peo-
ple described by𝑚 = 12 features (after removing missing
values and grouping some categories - see [31] for further
details), namely age,workclass, educational-num (educational
degree), marital-status (married, never married or other), oc-
cupation, relationship (husband, not in family, other relative,
own child, unmarried or wife), race (split among Indian-
Eskimo, Asian-Pacific Islander, black, white or other), gender
(male or female), capital-gain, capital-loss, hours-per-week
and native-country (US or non-US). For each person, the goal
is to predict whether he/she makes over 50K a year. Age, gen-
der and race are considred the sensitive features within this
dataset. However, we also evaluate unfair results entailed by
marital status, relationship and native country.

https://github.com/GuilhermePelegrina/NOCCO_Shapley_values.git
https://github.com/GuilhermePelegrina/NOCCO_Shapley_values.git
https://archive.ics.uci.edu/ml/datasets/adult
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(a) Features importance. (b) Relation between 𝜙𝑁𝑂𝐶𝐶𝑂 and 𝜙𝑂𝐴 .

Figure 2: Results for the Rice dataset.

7.2 Estimating the importance of features
towards the model performance

As a first analysis, we aim at assigning an importance measure to
each feature which will be used to evaluate how relevant they are
in predicting the output vector. For this analysis, we considered the
Red Wine Quality and Rice datasets. The results are discussed in
the sequel.

Rice dataset. We present the obtained NOCCO Shapley values in
Figure 2a. Note that, while the Major_Axis_Length and Perimeter
have high marginal contribution towards the whole dependence
degree, the impact of Extend is very low. The scatter plot in Figure 2b
shows a comparison between the NOCCO Shapley values and the
overall accuracy Shapley values.We can see a clear relation between
both measures (almost perfect, in this case), with a Spearman’s rank
correlation 𝜌 ≈ 1. Therefore, we attested our hypothesis that by
using marginal dependence measures in the preprocessing step,
we can estimate the contribution of features towards the trained
model (i.e., in a postprocessing step). The time used to compute
all dependence measures was 620.00 seconds, which indicates an
average of 4.84 seconds for each coalition of features9.

Red Wine Quality dataset. Figure 3 presents the results for the
Red Wine Quality dataset. As can be seen in Figure 3a, although
all features have relevant Nocco Shapley values, volatile acidity,
sulphates and alcohol (mainly the latter one) are the ones with the
highest contributions towards the dependence degree. The relation
between 𝜙𝑁𝑂𝐶𝐶𝑂 and 𝜙𝑂𝐴 is depicted in Figure 3b. As in the
previous experiment, we also see an strong relation between both
importance measures (𝜌 = 0.91). Moreover, in this dataset, the time
used to compute all dependence measures was 1700 seconds (i.e.,
an average of 0.83 seconds for each coalition of features).

7.3 Detecting disparity prone features
Similarly as in the previous analysis, in this second set of experi-
ments we also calculate the NOCCO Shapley values and evaluate
their relation with features importance assigned after training the
ML model. However, as in the following datasets we have ethical

9Computations performed on a laptop Intel Core i7-8565U, CPU 1.80 GHz, 8.00 GB
RAM, Python 3.9.

concerns associated with sensitive features, we also highlight how
the NOCCO Shapley values can be used to detect disparity prone
features.

COMPAS dataset. The results for the COMPAS dataset are pre-
sented in Figure 4. Note from Figure 4a that the number of priors,
age category and race are the features with higher NOCCO Shapley
values. In Figure 4c, we attest the relation between NOCCO and
overall accuracy Shapley values (𝜌 = 0.93). Note that some fea-
tures frequently considered as sensitives, such as age category and
race, are important in predicting recidivism risk. We confirm the
hypothesis that such features are prone to entail disparate results
in Figure 4d, where there is a clear relation between the NOCCO
Shapley values and the overall accuracy equality (𝜌 ≈ 1). Greater
the Shapley value of a sensitive feature, greater the disparity when
splitting the dataset based on such a feature. Indeed, both age cate-
gory and race are associated with the highest inequalities in this
dataset. On the other hand, it is interesting to remark that although
gender is assumed as a sensitive feature, its NOCCO Shapley value
is very low and it does not entail disparity results.

Other relevant findings in the COMPAS dataset are depicted in
Figure 4b. The interaction indices indicate that there are interac-
tions effects between pairs of features. The complementary effect be-
tween age_cat and priors_count can be explained by how the use of
both features simultaneously contributes towards predicting recidi-
vism risk (indeed, 0.2977 = 𝑁𝑂𝐶𝐶𝑂 (X({age_cat,priors_count}) , y) >
𝑁𝑂𝐶𝐶𝑂 (X({age_cat}) , y) +𝑁𝑂𝐶𝐶𝑂 (X({priors_count}) , y) = 0.0754+
0.1706 = 0.2460). If one only considers the number of priors,
one would classify as possible recidivists the individuals with
at least a predetermined number of priors. However, by includ-
ing the age category into the classification task, one may de-
fine different thresholds for the number of priors according to
the age. For instance, for a certain numbers of priors, younger
individuals can be classified as recidivists while older ones will
only be for a greater number of priors. On the other hand, the
use of race with priors_count is not better than both of them in-
dividually (indeed, 0.2079 = 𝑁𝑂𝐶𝐶𝑂 (X({race,priors_count}) , y) <

𝑁𝑂𝐶𝐶𝑂 (X({race}) , y) + 𝑁𝑂𝐶𝐶𝑂 (X({priors_count}) , y) = 0.0812 +
0.1706 = 0.2518). An explanation for this negative effect lies in the
average number of priors of each race, which are 4.24, 2.29 and 1.98
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(a) Features importance. (b) Relation between 𝜙𝑁𝑂𝐶𝐶𝑂 and 𝜙𝑂𝐴 .

Figure 3: Results for the Red Wine Quality dataset.

for African Americans, Caucasians and other races, respectively.
Therefore, there is a degree of redundancy between race with pri-
ors_count, African Americans are likely to have more priors than
Caucasians which are likely to have more priors than other races.
The algorithm spent 2470.40 seconds to compute all dependence
measures. This constitutes to an average time of 9.65 seconds for
each coalition.

Adult dataset. We present the results for the Adult dataset in
Figure 5. The NOCCO Shapley values described in Figure 5a indi-
cates that relationship and capital-gain are the features with more
contributions towards the total dependence degree. The relation
between 𝜙𝑁𝑂𝐶𝐶𝑂 and 𝜙𝑂𝐴 is presented in Figure 5c. Although
the points does not compose a straight line10, we note a positive
relation between both importance measures (𝜌 = 0.91). A positive
relation is also achieved between the NOCCO Shapley values and
the fairness measure, with a Spearman’s rank correlation 𝜌 = 0.94
(see Figure 5d). Among the features frequently considered as sensi-
tive (age, gender and race), age is the one with the highest chance of
entailing ethical disparities (which was confirmed by the associated
OAE).

It is important to highlight the negative interaction index
achieved for features marital-status and relationship in Figure 5b.
Indeed, both features bring very similar information. For instance,
being a husband or a wife (relationship categories) implies that the
person is married (marital status category). Therefore, as pointed
out by the interaction index, both features have a relevant degree
of redundancy and can be considered as proxies. Moreover, as rela-
tionship is related to gender (note that being a husband or a wife
generally indicates a man or woman, respectively) and marital sta-
tus is related to age (we tend to have more aged married people
than younger ones), one should be aware of such features when
training the model. Although they are not typically assumed as
sensitive ones [31], as they bring sensitive information, they can
also entail disparate results. With respect to the computational time,
all dependence measures were computed in 18100.00 seconds, that
is, an average of 4.41 seconds for each coalition.
10It is worth highlighting that our approach is based on statistics measures extracted
from the dataset. Moreover, the training step is not deterministic. Therefore, both
characteristics explain the deviation from a perfect relation between the NOCCO and
the overall accuracy Shapley values.

8 CONCLUSION AND PERSPECTIVES
In this paper, we proposed a preprocessing approach to detect rele-
vant and disparity prone features based on a normalized version of
the Hilbert-Schmidt independence criterion and the Shapley values.
A novelty of our proposal in comparison with existing methods
is that we do not need a trained model to estimate feature con-
tributions towards the model performance. Therefore, we reduce
this effort when conducting feature importance analysis. Indeed,
in the empirical experiments, we attested the relation between
our proposal and methods based on a trained model. Greater the
NOCCO Shapley value, greater is the feature contributions towards
the model performance. Moreover, we also proposed to use this
marginal dependence degree to evaluate disparity prone features.
As also attested by the experimental results, our proposed approach
can be used to detect such features. Similarly as with the algorithm
performance, sensitive features with high marginal dependence de-
gree with the vector of labels are the ones that entail high disparate
outcomes.

Besides evaluating features contributions, our proposal also in-
dicates feature interactions. As could be noted from the COMPAS
dataset, the positive interaction indices between the numbers of
priors and the age category suggests that there is a complemen-
tary effect between such features and, therefore, the use of both
simultaneously, brings relevant information to the classifier pre-
dictive power. Moreover, from the Adult income dataset, we could
highlight the use of our proposal as a mechanism to investigate
the presence of proxies. Indeed, although marital status is not as-
sumed as a sensitive feature, in this dataset, its redundant effect
with gender indicates that it is acting as a proxy.

As future work it would be interesting to consider further combi-
nations of features and their impact on fairness metrics. Indeed, we
looked at disparities from a global perspective, but a fine grained
analysis may reveal hidden disparities. For instance, it could be the
case that gender disparities are overlooked when looking at the Eu-
ropean population as a whole, but that they become apparent when
focusing on different ethnic groups. Also, it would be interesting to
compare our utility based method (here, focused on the HSIC and
Shapley values) with other approaches assessing marginal contri-
butions, such as in [27] where optimal transport distances are used
instead, as well as evaluate the robustness of the method to noisy
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(a) Features importance.

(b) Interaction effects between features.

(c) Relation between phi NOCCO and phi OA.

(d) Relation between phi NOCCO and OAE.

Figure 4: Results for the COMPAS dataset.

(a) Features importance.

(b) Interaction effects between features.

(c) Relation between phi NOCCO and phi OA.

(d) Relation between phi NOCCO and OAE.

Figure 5: Results for the Adult dataset.
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or out-of-sample data. Another potentially interesting extension is
to adapt our framework to other data types such as audio data11
where performance disparities have been detected in models such
as automatic speech recognition (ASR) systems [30]12. Furthermore,
our approach can be naturally applicable to multiclass classification
settings, and this constitutes a topic of ongoing research.
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