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ABSTRACT
Neglecting the effect that decisions have on individuals (and thus,

on the underlying data distribution) when designing algorithmic

decision-making policies may increase inequalities and unfairness

in the long term—even if fairness considerations were taken into ac-

count in the policy design process. In this paper, we propose a novel

framework for studying long-term group fairness in dynamical sys-

tems, in which current decisions may affect an individual’s features

in the next step, and thus, future decisions. Specifically, our frame-

work allows us to identify a time-independent policy that converges,

if deployed, to the targeted fair stationary state of the system in the

long-term, independently of the initial data distribution. We model

the system dynamics with a time-homogeneous Markov chain and

optimize the policy leveraging the Markov Chain Convergence The-

orem to ensure unique convergence. Our framework enables the uti-

lization of historical temporal data to tackle challenges associated

with delayed feedback when learning long-term fair policies in prac-

tice. Importantly, our framework shows that interventions on the

data distribution (e.g., subsidies) can be used to achieve policy learn-

ing that is both short- and long-term fair. We provide examples of

different targeted fair states of the system, encompassing a range of

long-term goals for society and policymakers. In semi-synthetic sim-

ulations based on real-world datasets, we show how our approach

facilitates identifying effective interventions for long-term fairness.
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1 INTRODUCTION
The majority of fairness notions that have been developed for trust-

worthy machine learning [19, 25] assume an unchanging data gen-

eration process, i.e., a static system. Consequently, existing work

has explored techniques to integrate these fairness considerations

into the design of algorithms in static systems [2, 19, 25, 89, 90].

However, in many practical settings [8, 22], we observe a dynamic

interplay between algorithmic decisions and the individuals they

affect, which alters the data generation process over time – effec-

tively creating a dynamical system.

Consider a lending scenario, which we will be using as a running

example throughout this paper
1
, where a bank decides to give loans

based on a individuals credit scores. This is a common setting in

the literature on fair algorithmic decision-making [15, 17, 46, 83]. It

becomes a dynamical system when decisions to grant loans result

in changes in individuals’ credit scores for subsequent lending

applications. This phenomenon may occur for various reasons,

such as bureaucratic processes influencing credit score changes in

response to paid or unpaid loans after loan has been granted [46],

social learning [27], recourse efforts [36], or strategic behavior of

affected individuals [24]. In the presence of a feedback loop from

decisions to the data generation process, decision-making can be

viewed as an iterative process in many fairness scenarios. This

results in a data distribution that evolves over time, shaping a

dynamical system.

Prior work has shown that policies that do not take into account

their impact on the underlying data distribution, may exacerbate

inequalities and unfairness over time [17, 28, 29, 46, 54, 83, 91]. Re-

cently, research has introduced optimization approaches aimed at

learning decision-making policies that achieve long-term fairness.

The majority of these efforts have demonstrated the effectiveness of

reinforcement learning (RL) approaches in learning long-term fair

policies when modeling system dynamics as Markov Decision Pro-

cesses (MDPs) [10, 32, 64, 82, 85–87]. These approaches typically op-

erate under the assumption of unknown dynamics, which determine

how features change in response to decisions, and learn long-term

fair policies through iterative online training using model-free RL.

The goal then is to achieve a fair equilibrium in the long term. How-

ever, these approaches overlook certain characteristics inherent to

common fairness applications. In addition, they usually compromise

short-term fairness for long-term fair goals and thus neglect the

short-term needs of individuals affected by algorithmic decisions.

Prior work suggests deploying a new policy at each time step,

utilizing it to gather additional data, and iteratively refining the

1
However, our results apply to a wide variety of other scenarios, such as university

admissions [39, 43] and criminal recidivism [44].
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policy until it reaches convergence. Policy updates occur after ob-

serving features and their changes in response to decision-making.

In typical fairness scenarios, the time span between a decision and

the observation of its impact on individuals’ features can extend

over years.
2
This would result in updating a policy every several

years, which can significantly slow down the learning process in

practice [79, 80]. Successful applications of online RL typically oc-

cur in settings where a simulator or game is accessible and pro-

vides instant feedback to the decisions [16, 59]. However, in the

real world, meeting such requirements is often unfeasible.

Moreover, frequent policy updates may undermine trust in al-

gorithmic decision-making [67]. On one hand, a policy could yield

different decisions for the same individual due to random initializa-

tions. On the other hand, more importantly, individuals with the

same features may receive different decisions before and after pol-

icy updates. This temporal inconsistency of decisions can lead to a

perception of unfairness and a lack of trustworthiness in the algo-

rithmic decision-making system.

Finally, compromising short-term fairness for long-term fair

goals overlooks the critical need to address immediate fairness con-

cerns. By solely prioritizing future fairness objectives, individuals

may experience harm today. This can further erode trust in algo-

rithmic decision-making processes.

Our Contributions. In this paper, we introduce a structured frame-

work for thinking about long-term fairness. Inspired by [91], we

connect the existing work on the Markov Chain Convergence Theo-

remwith long-term fairness. Specifically, we employMarkov chains

(MCs) as a framework to model system dynamics, where the sought-

after long-term fair policy defines the Markov kernel. Similar to

prior work [9, 82, 86, 87, 91], we assume time-homogeneous (fixed)

dynamics. This allows us to: i) propose a new method for learn-

ing long-term group fair policies from historical temporal data, ii)

demonstrate that interventions in the data generative system can

ensure both short- and long-term fairness in the policy learning

process. To the best of our knowledge, our paper is the first to con-
nect the Markov Chain Convergence Theorem to the goal of learning
long-term fair policies.

First, we propose a method for policy learning that can be seen

as a form of model-based RL. We provide a structured framework

that separates i) environment estimation, ii) problem modeling, and

iii) optimization. This structured approach contributes to our un-

derstanding of long-term fairness and the design of policy and soci-

etal interventions. We assume that the environment (i.e., transition

probabilities or the Markov kernel) can be explicitly estimated. Fur-

ther, we assume that have access to a pre-existing temporal dataset

that provides sufficient information for the reliable estimation of

the environment. This dataset can be collected from other agents

or humans in the past to learn the dynamical model. Subsequently,

we impose the necessary convergence criteria from the Markov

Chain Convergence Theorem on the policy-induced kernel. This

ensures convergence to a unique equilibrium. Building upon this,

we propose an optimization problem to find a policy that converges

to a targeted fair equilibrium, provided such an equilibrium exists.

2
Common datasets report recidivism at intervals of 2 years [44], university graduation

typically occurs within 3-6 years after admission, and credits can extend for up to 30

years.

In cases where the historical dataset is not representative or is un-

available, our framework can be extended to accommodate neces-

sary policy updates.

Our policy, if found and deployed, ensures convergence to the

fair long-term target without requiring further policy updates. This

ensures consistent decision-making for individuals, where individ-

uals across time steps experience the same probability of a decision

(for given features). This can support public trust in algorithmic

decision-making. Our policy is robust to covariate shifts, which are

variations in feature distributions between training and test data

under identical dynamical systems [65]. In our lending example,

this means we can learn the policy from historical data collected

from a different financial institution than deployed at, as long as

the dynamic mechanism governing credit score changes remains

consistent. Unlike previous approaches, our method enables evalu-

ating a policy’s temporal evolution and equilibrium before deploy-

ment, avoiding the societal risks associated with deploying a sub-

optimal policy on a population.

Second, we show that societal interventions (e.g., subsidies) on

the distribution of the feature that defines the Markov Chain can

ensure both short- and long-term fairness during policy learning.

This eliminates the need for trading off long- and short-term fair-

ness during policy learning as seen in prior works.

Our primary contributions are:

• We introduce a modeling approach for learning long-term

fair policies, assuming access to a sufficient historical tem-

poral dataset and a time-homogeneous environment.

• Based on this, we introduce an optimization problem for

finding a policy that ensures convergence to a targeted long-

term fair equilibrium. If the model assumptions are correct,

this approach proves more efficient than purely data-driven

methods.

• Given a policy that is guaranteed to converge to a (fair) equi-

librium, we formally distinguish between interventions on

the data distribution that affect the short-term convergence

trajectory and those that affect the long-term equilibrium.

These allows to design interventions to achieve fairness both

short- and long-term fairness.

• We validate our method in simulated populations initialized

with real-world data, and show i) that our method finds a

decision-making policy that is robust to covariate shift and,

compared to short-term policies, offers a significantly more

stable learning process, achieving a better utility-fairness

trade-off at convergence; ii) external interventions on the

data distribution can ensure short-term fairness as the policy

converges to the long-term fair equilibrium.

2 GUIDING EXAMPLE
We present as guiding example a credit lending scenario [15, 17, 46].

The data generative process is shown in Figure 1. For assumptions

in this example, see § F.1. Our framework also applies to other

generative processes; see an example in § F.2. While our results hold

for continuous state and action spaces, for clarity, we predominantly

use finite state and action spaces for formalization in this paper.

Data Generative Model. Let an individual with protected attribute
𝑆 (e.g. gender) at time 𝑡 be described by a non-sensitive feature 𝑋𝑡
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𝛾 (𝑠 ) P(𝑆 = 𝑠 )
𝜇𝑡 (𝑥 | 𝑠 ) P(𝑋𝑡 = 𝑥 | 𝑆 = 𝑠 )
𝜋 (𝑑 | 𝑥, 𝑠 ) P(𝐷𝑡 = 𝑑 | 𝑋𝑡 = 𝑥, 𝑆 = 𝑠 )
ℓ (𝑦 |𝑥, 𝑠 ) P(𝑌𝑡 = 𝑦 | 𝑋𝑡 = 𝑥, 𝑆 = 𝑠 )
𝑔 (𝑘 |𝑥,𝑑, 𝑦, 𝑠 ) P(𝑋𝑡+1 = 𝑘 | 𝑋𝑡 = 𝑥, 𝐷𝑡 = 𝑑,𝑌𝑡 = 𝑦, 𝑆 = 𝑠 )

𝑃𝑠
𝜋 P(𝑋𝑡+1 = 𝑘 | 𝑋𝑡 = 𝑥, 𝑆 = 𝑠 )

=
∑
𝑑,𝑦 𝑔 (𝑘 |𝑥,𝑑, 𝑦, 𝑠 )𝜋 (𝑑 | 𝑥, 𝑠 )ℓ (𝑦 |𝑥, 𝑠 )

Figure 1: Data generative model over time steps (subscript)
𝑡 = {0, 1, 2}. Non-sensitive feat. 𝑋𝑡 , sensitive feat. 𝑆 , ground
truth 𝑌𝑡 , decision 𝐷𝑡 . Time-varying feature distribution 𝜇𝑡 ,
fixed sensitive distribution 𝛾 , policy 𝜋 (blue), ground truth
distribution ℓ , dynamics 𝑔, time-homogeneous kernel 𝑃𝑠𝜋 .

(e.g. credit score as a summary of monetary assets and credit his-

tory) and an outcome of interest 𝑌𝑡 (e.g. repayment ability). We as-

sume the sensitive attribute to remain immutable over time and

drop the attribute’s time subscript. For simplicity, we assume bi-

nary sensitive attribute and outcome of interest 𝑆,𝑌 ∈ {0, 1} and
a one-dimensional discrete non-sensitive feature 𝑋 ∈ Z. Let the
population’s sensitive attribute be distributed as 𝛾 (𝑠) := P(𝑆 =𝑠)
and remain constant over time. We assume 𝑋 to depend on 𝑆 ,

such that the group-conditional feature distribution at time 𝑡 is

𝜇𝑡 (𝑥 | 𝑠) := P(𝑋𝑡 =𝑥 | 𝑆 =𝑠).
For example, different demographic groups may have differ-

ent credit score distributions due to structural discrimination in

society. The outcome of interest 𝑌 is assumed to depend on 𝑋

and (potentially) on 𝑆 resulting in the conditional distribution

ℓ (𝑦 |𝑥, 𝑠) := P(𝑌𝑡 =𝑦 | 𝑋𝑡 =𝑥, 𝑆 =𝑠). This distribution is assumed to

remain unchanged over time. For example, payback probability may

be tied to factors like income, which can be assumed to be encom-

passed within a credit score. We assume that there exists a decision

maker that takes binary loan decisions based on 𝑋 and (potentially)

𝑆 and decides with probability 𝜋 (𝑑 | 𝑥, 𝑠) := P(𝐷𝑡 =𝑑 | 𝑋𝑡 =𝑥, 𝑆 =𝑠).

Dynamical System. Consider dynamics where a decision 𝐷𝑡 at

time step 𝑡 directly influences an individual’s features 𝑋𝑡+1 at the
next step. We assume that the transition from the current feature

state 𝑋𝑡 to the next state 𝑋𝑡+1 depends on the current features 𝑋𝑡 ,

outcome 𝑌𝑡 , and (possibly) the sensitive attribute 𝑆 . For example, af-

ter a positive lending decision, an individual’s credit score may rise

due to successful loan repayment. The magnitude of this increase

could potentially be influenced by their sensitive attribute. We de-

scribe the probability of an individual with 𝑆 =𝑠 transitioning from

a credit score of 𝑋𝑡 =𝑥 to 𝑋𝑡+1=𝑘 in the next step, conditioned on

the received decision 𝐷 =𝑑 and repayment 𝑌𝑡 =𝑦, as the dynamics

𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠) := P(𝑋𝑡+1 = 𝑘 |𝑋𝑡 =𝑥, 𝐷𝑡 =𝑑,𝑌𝑡 =𝑦, 𝑆 =𝑠). We assume

dynamics to remain unchanged over time. Then the probability of

a feature changing from 𝑋𝑡 =𝑥 to 𝑋𝑡+1 =𝑘 in the next step given

𝑆 =𝑠 is obtained by marginalizing out 𝐷𝑡 and 𝑌𝑡 , resulting in transi-

tion probabilities

P(𝑋𝑡+1 = 𝑘 | 𝑋𝑡 = 𝑥, 𝑆 = 𝑠)

=
∑︁
𝑑,𝑦

𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠)𝜋 (𝑑 | 𝑥, 𝑠)ℓ (𝑦 |𝑥, 𝑠) . (1)

Importantly, the next step feature state depends only on the

present feature state, and not on any past states. This dynamical

system can then be seen as a time-homogeneous Markov chain with

state space X and transition probabilities (1) that depend on a fixed

policy 𝜋 and a sensitive attribute 𝑆 (given time-independent𝑔 and ℓ).

Time-homogeneous Markov Chain. We remind the reader of the

formal definition of time-homogeneous Markov chains with dis-

crete states space. For a formulation for general state spaces refer

to § A or [51].

Definition 2.1 (Time-homogeneous Markov Chain [21]). A
time-homogeneousMarkov chain on a discrete spaceZ with transition
probability 𝑃 is a sequence of random variables (𝑍𝑡 )𝑡 ∈𝑇 with joint
distribution P, such that for every 𝑡 ∈ 𝑇 and 𝑧,𝑤 ∈ Z we have
P(𝑍𝑡+1=𝑤 | 𝑍𝑡 =𝑧) = 𝑃 (𝑧,𝑤).

In a Markov chain, each event’s probability depends solely on

the previous state. Recall that the transition probabilities must

satisfy 𝑃 (𝑧,𝑤) ≥ 0 for all 𝑧,𝑤 , and

∑
𝑤 𝑃 (𝑧,𝑤) = 1 for all 𝑧. Time-

homogeneous in this context pertains to the assumption that 𝑃

remains constant and does not undergo any changes over time.

Having established that the guiding example can be modeled

as a time-homogeneous Markov chain, we proceed to generalize

the objective for long-term fair policies, encompassing previous

approaches in the field.

3 DESIGNING LONG-TERM FAIR POLICIES
Consider a policymaker (e.g., bank, government), aiming to achieve

a fair equilibrium that takes the form of a fair distribution in the

long term. An example of such fair distribution could be equal

credit score distributions across demographic groups [17]. We pro-

pose definitions of fair distributions (or targeted equilibria) fur-

ther below (§ 6). To achieve a fair distribution in the long term,

we need to describe the evolution of the group-conditional fea-

ture distribution 𝜇𝑡 (𝑥 | 𝑠) across time 𝑡 . The behavior of the dynam-

ical system is defined by the transition probabilities (1) together

with the initial state distribution 𝜇0 (𝑥 | 𝑠). At time 𝑡 , the next step’s

feature distribution of group 𝑠 can be computed for all 𝑘 ∈ X as

𝜇𝑡+1 (𝑘 | 𝑠) = ∑
𝑥 𝜇𝑡 (𝑥 | 𝑠)P(𝑋𝑡+1 = 𝑘 | 𝑋𝑡 = 𝑥, 𝑆 = 𝑠).

Imagine a scenario where, at a specific time 𝑡 , credit scores are

already fair distributed. In such cases, the policymaker’s objective

is to uphold this fair distribution in the subsequent time step. This

means that the policymaker asks the following to hold for each

group 𝑠 and all 𝑥 ∈ X:

𝜇𝑡+1 (𝑥 | 𝑠) = 𝜇𝑡 (𝑥 | 𝑠) (2)

To formally define this, we remind the reader of the definition of a

stationary distribution, which is a state distribution that remains

unchanged when multiplied by the transition probabilities:
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Definition 3.1 (Stationary Distribution [21]). A stationary
distribution of a time-homogeneous Markov chain (Z, 𝑃) is a prob-
ability distribution 𝜇, such that 𝜇 = 𝜇𝑃 . More explicitly, for every
𝑤 ∈ Z the following needs to hold: 𝜇 (𝑤) = ∑

𝑧 𝜇 (𝑧) · 𝑃 (𝑧,𝑤).

Fundamental Objective for Long-term Fair Policies. We now pro-

vide a generalization of (2). Let a population’s feature distribution

over time be represented by a time-homogeneous Markov chain

(𝑍𝑡 )𝑡 ∈𝑇 with a (general) state spaceZ. The transition probabilities

𝑃𝑠𝜋 depend on the sensitive attribute 𝑆 and some policy 𝜋 . Consider

a scenario where our society is already in a fair state (𝜇𝑠 )𝑠∈S . In
this case, the policymaker would aim to find policy 𝜋 that defines a

transition probability 𝑃𝑠𝜋 such that the next state remains fair. More

formally, we would seek to satisfy the following equation:

𝜇𝑠 = 𝜇𝑠𝑃𝑠𝜋 (3)

for all 𝑠 ∈ S. Therefore, the fair distribution (𝜇𝑠 )𝑠∈S should be the

stationary distribution of theMarkov chain defined by (Z, 𝑃𝑠𝜋 ). Any
policy that aims for the fair stationary state (𝜇𝑠 )𝑠∈S will eventually

need to find a policy that satisfies (3) to at least transition from a

fair state to a fair state in the long term. In this sense, (3) defines
the fundamental problem of finding long-term fair policies. Reaching
a fair equilibrium is central to prior work (e.g., [86, 87, 91]), with

differences primarily emerging from definitions of a fair equilibrium

and the methods employed to achieve it.

Long-term Fair Policy Interventions. In our example, the objective

of the policymaker is to identify a policy 𝜋 that ensures the con-

vergence of the credit score distribution to the intended fair distri-

bution. We can formally describe this as follows: Suppose a policy-

maker aims to achieve a fair distribution (𝜇𝑠 )𝑠∈S . The goal for the
policymaker is then to find a policy 𝜋 such that the induced transi-

tion probabilities 𝑃𝑠𝜋 converge to the distribution (𝜇𝑠 )𝑠∈S , and the

distribution (𝜇𝑠 )𝑠∈S satisfies the defined fairness constraints. To

identify a long-term fair policy, we propose a general optimization

problem in § 5 that utilizes the Markov Chain Convergence Theo-

rem, which we introduce next.

4 LONG-TERM AND SHORT-TERM
INTERVENTIONS

In this section, we present the properties that our policy-induced

transition probabilities must possess to fulfill the previously estab-

lished objective of achieving long-term fair policies (§ 4.1). From

this, we can derive theoretical insights on the type of interventions

that yield short-term and long-term effects (§ 4.2).

4.1 Markov Chain Convergence Theorem
The Markov Chain Convergence Theorem establishes conditions

for a time-homogeneous Markov chain to converge to a unique

stationary distribution. In our model, the transition probabilities

depend on the sensitive attribute, and we will apply in (4) the

Markov Chain Convergence Theorem separately to each group’s

transition probabilities. We thus drop the superscript 𝑠 . We first

provide definitions for irreducibility and aperiodicity required for

stating the Markov Chain Convergence Theorem thereafter.

Definition 4.1 (Irreducibility [21]). A time-homogeneousMarkov
chain is irreducible if, for any two states 𝑧,𝑤 ∈Z, there exists a 𝑡 > 0

such that 𝑃𝑡 (𝑧,𝑤) > 0, where 𝑃𝑡 (𝑧,𝑤) = P(𝑍𝑡 = 𝑤 | 𝑍0 = 𝑧) repre-
sents the probability of going from 𝑧 to𝑤 in 𝑡 steps.

In other words, irreducibility ensures that there is a positive

probability of reaching any state𝑤 from any state 𝑧 after some fi-

nite number of steps. Note, for discrete state spaceZ, every irre-

ducible time-homogeneous Markov chain has a unique stationary

distribution (Thm. 3.3 [21]).

Definition 4.2 (Aperiodicity [21]). Consider an irreducible
time-homogeneous Markov chain (Z, 𝑃). Let the set of return times
from 𝑧 ∈ Z be 𝑅(𝑧) =

{
𝑡 ≥ 1 : 𝑃𝑡 (𝑧, 𝑧) > 0

}
, where 𝑃𝑡 (𝑧, 𝑧) repre-

sents the probability of returning to state 𝑧 after 𝑡 steps. The Markov
chain is aperiodic if and only if the greatest common divisor (gcd) of
𝑅(𝑧) is equal to 1: 𝑔𝑐𝑑 (𝑅(𝑧)) = 1 for all 𝑧 in Z.

In words, aperiodicity refers to the absence of regular patterns

in the sequence of return times to state 𝑧, i.e., the chain does not

exhibit predictable cycles or periodic behavior.

Theorem 4.3 (Markov Chain Convergence Theorem [21]).

Let (𝑍𝑡 )𝑡 ∈𝑇 be an irreducible and aperiodic time-homogeneousMarkov
chain with discrete state spaceZ and transition probabilities 𝑃 . Then
the marginal distribution P(𝑍𝑡 ) converges to the unique stationary
distribution 𝜇 as 𝑡 approaches infinity (in total variation norm), re-
gardless of the initial distribution P(𝑍0).

In other words, the Markov Chain Convergence Theorem states

that, regardless of the initial distribution, the state distribution of

an irreducible and aperiodic Markov chain eventually converges to

the unique stationary distribution.

For general state spaces the Markov Chain Convergence Theo-

rem can be proven under Harris recurrence, aperiodicity, and the

existence of a stationary distribution [51] (see § A).

4.2 Characterizing Long- and Short-term
Interventions

The Markov Chain Convergence Theorem establishes a formal

foundation for differentiating interventions that influence the long-

term dynamics of the system from those that do not. We summarize

this in the following remark:

Remark 4.4 (Short- and Long-term Interventions). In a
time-homogeneous Markov chain (𝑍𝑡 )𝑡 ∈𝑇 with state space Z and
transition probabilities 𝑃 that fulfill the necessary properties of the
Markov Chain Convergence Theorem, intervening on the state dis-
tribution 𝜇𝑡 at time 𝑡 does not impact the stationary distribution 𝜇

(short-term intervention). Intervening on the transition probabilities
𝑃 while preserving the necessary properties of the Markov Chain Con-
vergence Theorem can alter 𝜇 (long-term intervention).

This remark is important in the ongoing discourse regarding

long-term fair policy design and societal interventions [27, 52, 76]

and as well as for characterizing the trade-off between short-term

and long-term fairness. For any given data generative model that

can be described as a time-homogeneous Markov chain, we can

determine whether an intervention has a long-term effect, before

deploying it. In our lending example, altering the distribution of

credit scores via one-time economic subsidies might yield short-

time effects, but does not alter the long-term equilibrium. Instead,
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the transition probabilities (1) are defined by the decision-making

mechanism 𝜋 , dynamics 𝑔, and the probability of the outcome of in-

terest ℓ . An intervention in any of these probabilities, or a combina-

tion thereof, can influence the long-term equilibrium. A bank could

change decision-making policy 𝜋 (𝑑 | 𝑥, 𝑠) that determines whether

an individual receives a loan or not (as exemplified in this paper). In-

stead, given a fixed 𝜋 , a recourse policymaker could also alter its rec-

ommendations for feature changes to individuals with declined cred-

its, thereby changing the dynamics 𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠)3, or a government

could regulate the cost of credit, leading to a change in the proba-

bilities of repayment for the same features or risk score ℓ (𝑦 |𝑥, 𝑠).
We can further characterize the trade-off between short-term

and long-term interventions. We note that there is no inherent

trade-off between short and long-term interventions in reaching the

targeted fair equilibrium. However, a trade-off may emerge in the

temporal and reSource costs associated with convergence. Short-

term interventions, while addressing immediate population needs,

could potentially extend (or reduce) the time required to reach the

desired long-term target. We explore this empirically in § 7.3.

5 LONG-TERM FAIR POLICY OPTIMIZATION
We now reformulate objective (3) into a computationally solvable

optimization problem for finding a time-independent policy. This

policy, if deployed, leads the system to convergence to a fair station-

ary state in the long term, regardless of the initial data distribution.

Definition 5.1 (General Optimization Problem). Assume a
time-homogeneous Markov chain (Z, 𝑃𝑠𝜋 ) defined by a state spaceZ
and a kernel 𝑃𝑠𝜋 . To find policy 𝜋 that ensures the Markov chain’s con-
vergence to a unique stationary distribution (𝜇𝑠 )𝑠∈S , while minimiz-
ing a fair long-term objective 𝐽LT and adhering to a set of fair long-
term constraints 𝐶LT, we propose the following optimization problem:

min

𝜋
𝐽LT ((𝜇𝑠 )𝑠∈S, 𝜋)

subj. to 𝐶LT ((𝜇𝑠 )𝑠∈S, 𝜋) ≥ 0; 𝐶conv (𝑃𝑠𝜋 ) ≥ 0∀𝑠
(4)

where 𝐶conv are convergence criteria according to the Markov Chain
Convergence Theorem.

In words, we aim to find a policy 𝜋 that minimizes a long-term

objective 𝐽LT subject to long-term constraints𝐶LT and convergence

constraints𝐶conv. The objective 𝐽LT and constraints𝐶LT are depen-

dent on the policy-induced stationary distribution (𝜇𝑠 )𝑠∈S , which
represents the long-term equilibrium state of the data distribution

and may also depend directly on the policy 𝜋 . In § 6, we provide

various instantiations of long-term objectives and constraints to

illustrate different ways of parameterizing them. Convergence con-

straints 𝐶conv are placed on the kernel 𝑃𝑠𝜋 and guarantee conver-

gence of the chain to a unique stationary distribution for any start-
ing distribution according to the Markov Chain Convergence Theo-

rem (Def. 4.3). The specific form of𝐶conv depends on the properties

of the Markov chain, such as whether the state space is finite or

continuous.

3
Traditionally, algorithmic recourse is considered at an individual level within static

scenarios often in causal settings [34]. This proposal here would introduce a dynamic

perspective and consider a recourse policy on a population level.

Solving the Optimization Problem. In our example, the Markov

chain is defined over a categorical feature 𝑋 (credit score), result-

ing in a finite state space. In this case, the optimization problem

becomes a linear constrained optimization problem and we can em-

ploy any efficient black-box optimization methods for this class of

problems (e.g., [41]). We detail this for our example: The conver-

gence constraints𝐶conv are determined by the aperiodicity and irre-

ducibility properties of the corresponding Markov kernel (see § 4).

It has been shown that an 𝑛 × 𝑛 transition matrix 𝑃 constitutes an

irreducible and aperiodic Markov chain if and only if all entries of

(𝑃)𝑛 are strictly positive [7]. We can thus impose as convergence

constraint 𝐶conv for finite states

∑𝑛
𝑖=1

(
𝑇 𝑠
𝜋

)𝑛
> 0∀𝑠 , where 𝑛 is the

number of states (𝑛 = |𝑋 |), and 0 denotes the matrix with all en-

tries equal to zero. The group-dependent stationary distribution 𝜇𝑠𝜋
based on 𝑇 𝑠

𝜋 can be computed via eigendecomposition [81]. In the

next section we introduce objective functions 𝐽LT and constraints

𝐶LT that capture notions of profit and predictive fairness. Impor-

tantly, as we exemplify, for finite state spaces, these objectives and

constraints are linear. We acknowledge, however, the challenges as-

sociated with solving linear problems for high-dimensional discrete

states. While our general optimization problem remains applicable

in the context of a continuous state space, solving it becomes more

challenging with the potential introduction of non-linearities and

non-convexities. We defer solving these challenges to future work.

6 EXAMPLES OF DEFINING TARGETED FAIR
STATES

Our framework enables users to define their preferred long-term

group fairness criteria. Prior work on long-term fairness has sug-

gested different types of long-term fairness notions (e.g., return par-

ity [10, 82], equal acceptance rate [64]). Indeed, a majority of these

previously established group fairness criteria can be expressed as

functions of the stationary distribution, allowing for their seamless

integration into our framework. Here, we illustrate how long-term

fair targets are quantified by defining a long-term objective 𝐽LT and

constraints 𝐶LT in Def. (4). We provide these examples assuming

discrete 𝑋 and binary 𝐷,𝑌, 𝑆 as in our guiding example (§ 2). We

refer to the notation 𝜇𝜋 (𝑥 | 𝑠) when we are interested in (𝜇𝑠 )𝑠∈S at

certain values 𝑥 and 𝑠 . For more details see § C.

6.1 Profit
Assume that when a granted loan is repaid, the bank gains a profit

of (1−𝑐); when a granted loan is not repaid, the bank faces a loss

of 𝑐; and when no credit is granted, neither profit nor loss oc-

curs. We quantify this profit as utility [13, 38], considering the cost

𝑐 ∈ [0, 1] of a positive decision, as: U(𝜋 ; 𝑐) = ∑
𝑥,𝑠 𝜋 (𝐷 =1 |𝑥, 𝑠) ·

(ℓ (𝑌 = 1 |𝑥, 𝑠) − 𝑐) 𝜇𝜋 (𝑥 | 𝑠)𝛾 (𝑠), where 𝜋 (𝐷 =1 |𝑥, 𝑠) is the proba-
bility of a positive policy decision, ℓ (𝑦 |𝑥, 𝑠) the positive ground
truth distribution, 𝜇𝜋 (𝑥 | 𝑠) the stationary group-dependent feature

distribution, and 𝛾 (𝑠) the distribution of the sensitive feature. A

bank’s objective may be to maximize utility (minimize financial

loss, i.e., 𝐽LT := −U(𝜋, 𝑐)). In contrast, a non-profit organization

may aim to constrain its policy by maintaining a minimum profit

level 𝜖 ≥ 0 over the long term to ensure program sustainability

(𝐶LT := U(𝜋 ; 𝑐) − 𝜖).
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6.2 Predictive Fairness
Ensuring long-term predictive fairness can help a policymaker meet

regulatory requirements and maintain public trust. A common ex-

ample of such group unfairness notion is equal opportunity [25].

This notion measures the disparity in the loan approval rate for eli-

gible applicants based on their demographics, here formalized as:

EOPUnf(𝜋) =| P𝜋 (𝐷 =1 |𝑌 =1, 𝑆 =0) − P𝜋 (𝐷 =1 |𝑌 =1, 𝑆 =1) |, where
P𝜋 (𝐷 =1 |𝑌 =1, 𝑆 =𝑠) =

∑
𝑥 𝜋 (𝐷=1 |𝑥,𝑠 )ℓ (𝑌=1 |𝑥,𝑠 )𝜇𝜋 (𝑥 |𝑠 )∑

𝑥 ℓ (𝑌=1 |𝑥,𝑠 )𝜇𝜋 (𝑥 |𝑠 ) .

A policymaker may now define a maximum tolerable unfairness

threshold as 𝜖 ≥ 0 to be held at equilibrium 𝐶LT := 𝜖 − EOPUnf. Al-
ternatively, they may aim to minimize predictive unfairness EOPUnf
in the long term by imposing 𝐽LT := EOPUnf(𝜋). Our framework

also allows for other group fairness criteria, e.g., demographic par-

ity [19] or sufficiency [12].

In this section, we presented different long-term goals as illus-

trative examples for lending policies. Refer to § C for examples of

fairness objectives or constraints on the feature distribution (e.g.,

equal qualification [86, 91]) or constraints placed on the type of pol-

icy that can be deployed (e.g., monotonicity). This section serves

as a starting point for discussions on long-term fairness objectives.

We strongly encourage exploring different targets by consulting re-

search from social sciences and economics and involving affected

communities in defining these objectives. In the following section,

we validate our approach empirically and showcase the interplay

between short- and long-term interventions.

7 EXPERIMENTAL RESULTS
We validate our proposed optimization problem in semi-synthetic

simulations, where we initialize distributions using real-world data

and assume dynamics similar to prior work [10, 82, 86, 87, 91]. We

first demonstrate that the policy solution, if found, converges to

the targeted stationary state under known dynamics and is robust

to covariance shift (§ 7.1). We then assume dynamics are unknown

(§ 7.2) and estimate them from a historical temporal dataset. Fi-

nally, we illustrate how our approach facilitates distinguishing be-

tween short-term and long-term interventions (§ 7.3). For dataset

and setup details, see § D; for additional results, including explo-

ration of different dynamics and long-term targets, see § E. While

our experiments in finite state and action spaces serve as a proof

of concept, we acknowledge that addressing complex dynamics,

larger or continuous state and action spaces, and exploring more

sophisticated optimization methods are crucial directions for future

research. Our code is available at github.com/mrateike/designing-

long-term-fair-policies.

Data and Dynamics. We conduct experiments on two datasets

utilizing the graphical model introduced in § 2. The FICO loan re-

payment dataset [4, 68] includes a one-dimensional credit score 𝑋 ,

which we discretize into four categories, along with binary attribute

race 𝑆 and repayment behavior 𝑌 . From the COMPAS recidivism

dataset [44], we choose two-dimensional features 𝑋 (age category

and priors_count), and use binary attributes race 𝑆 and 2-year-

recidivism 𝑌 . We get static probabilities ℓ and 𝛾 and the starting

distribution 𝜇0 from the probabilities provided (FICO) or estimate

them from samples (COMPAS). Since the datasets are static and

thus lacking information on feature changes in response to deci-

sions, we assume dynamics 𝑔.4 If not stated otherwise, we assume

one-sided dynamics that are characterized by a particular (usually

positive) decision leading to changes in a feature distribution, while

other decisions do not incur any feature changes. Following prior

work [17, 46], we assume that if an applicant defaults on their loan,

their credit score remains the same; if the applicant repays the loan,

their credit score is likely to increase (the higher the better). Simi-

lar to previous research, when dynamics are artificially assumed,

our findings may lack generalizability.

Optimization Problem. We now exemplify a long-term target.

Consider a bank that aims to maximize its profit (U) while guar-

anteeing equal opportunity (EOPUnf) for loan approval. Given cost

of a positive decision 𝑐 and a small tolerated unfairness level 𝜖 , we

seek for a policy:

𝜋★EOP := arg𝜋 maxU(𝜋 ; 𝑐)
subj. to EOPUnf(𝜋) ≤ 𝜖 ; 𝐶conv (𝑇𝜋 ),

(5)

This target has been proposed for fair algorithmic decision-making

in static systems [25]. Short-term policies aiming to fulfill this target

at each time step have been examined in dynamical systems [15, 17,

91] and it has been imposed as long-term target [82]. We redefine

this concept as a long-term goal for the stationary distribution

to satisfy. We first apply the general principle (4) to formulate

an optimization problem via long-term objectives 𝐽LT and long-

term constraints 𝐶LT and convergence constraints 𝐶conv. Next, we

solve the optimization problem. Using the found policy 𝜋★ and the

resulting Markov kernel 𝑇𝜋★ , we generate the feature distribution

across 200 steps. We solve the problem using the Sequential Least

Squares Programming method from scikit-learn [61], initializing it

(warm start) with a uniform policy where all decisions are random

(𝜋 (𝐷 =1 |𝑥, 𝑠) = 0.5 ∀𝑠, 𝑥). Hereafter, we refer to a policy as fair if

it meets the 𝜖-fairness criteria.

7.1 Convergence to Fair Target and Temporal
Stability

We use the FICO dataset to demonstrate that the policy, solution to

the optimization problem specified above, converges to and main-

tains the targeted distribution without requiring updates, establish-

ing a consistent decision-making framework. We then demonstrate

that the identified policy converges to the same equilibrium across

populations with different feature distributions but shared dynam-

ics. This can be seen as a form of domain adaptation. This is partic-

ularly valuable when dynamics are unknown, as discussed in the

following subsection. Meanwhile, this section serves as a proof of

concept, assuming known dynamics. Additional results are in § E.1

and § E.2.

Convergence to Fair Target. We first validate that our policy is

converging to the targeted fair state and compare it to both fair and

unfair short-term policies. Figure 2a displays utility U and unfair-

ness EOPUnf. Using the initial distribution 𝜇0 (𝑥 | 𝑠) from FICO, we

solve the optimization problem (5) for tolerated unfairness 𝜖 = 0.01.

The short-term policies consist of Logistic Regression models for

4
While in practical situations expert knowledge can be employed to make assumptions

about dynamics, caution is needed to prevent confirmation bias [57].

github.com/mrateike/designing-long-term-fair-policies
github.com/mrateike/designing-long-term-fair-policies
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(a) Comparison of our long-term-EOP policy (𝜖 =0.01) with unfair short-
term-UTILMAX policy and fair short-term-EOP policy (𝜆=2). Short-
term policies over 10 seeds. On x-axis time steps, on y-axis left: utility
U (solid, ↑), EOP-Unfairness EOPUnf (dashed, ↓); middle-right: loan
probability 𝑃 (𝐷 =1 | 𝑆 =𝑠 ) (solid) and payback probability 𝑃 (𝑌 =1 | 𝑆 =𝑠)
(dashed) per sensitive 𝑠.

(b) Convergence of 𝜋★
EOP to unique stationary distribution★. Left: fea-

ture distribution (example of 𝑋 = 1), right: EOP-fairness dashed, 𝜖-
EOP-fairness gray (𝜖 =0.01). 200 time steps. Colors: random initial fea-
ture distributions. 𝑐 = 0.8.

Figure 2: Validation of our policy: (a) Convergence to fair target and temporal stability, (b) Robustness to covariance shift.

10 random seeds, which are retrained at each time step; fairness is

enforced using a Lagrangian approach (𝜆 = 2). Our policy demon-

strates high stability in both utility and fairness compared to short-

term policies, which exhibit high variance across time. Note since

our policy does not require training, we do not report standard

deviation over different seeds. Furthermore, while our policy con-

verges to the same fairness level as the short-term fair policy, it ex-

periences only a marginal reduction in utility compared to the (un-

fair) utility-maximizing short-term policy. Thus, it does not suffer

from a fairness-utility trade-off to the extent observed in the short-

term policies. Figure 2a (middle, right) displays loan P(𝐷 =1 |𝑆 =𝑠)
and payback probabilities P(𝑌 =1 |𝑆 =𝑠) for non-privileged (𝑆 = 0)

and privileged (𝑆 = 1) groups. The short-term fair policy achieves

fairness by granting loans to everyone. For the utility-maximizing

short-term policy, unfairness arises as the gap between individuals’

probability of paying back and the probability of receiving a loan is

much smaller for the privileged group. For our long-term policy, we

observe that loan provision probabilities converge closely for both

groups over time, while the gap between payback probability and

loan granting probability remains similar between groups. Similar

to prior research [82, 87], we observe that our policy achieves long-

term objectives, but the convergence phase may pose short-term

fairness challenges. In practice, it is essential to assess the potential

impact of this on public trust.

Robustness to Covariate Shift. We learn the policy based on the

initial FICO feature distribution (𝜖 = 0.01, 𝑐 = 0.8) and subsequently

conduct simulations using this policy with various randomly sam-

pled initial feature distributions 𝜇0 (𝑥 | 𝑠). Figure 2b displays the tra-
jectories of the distributions. On the left side, we show the feature

distribution for risk score 𝑋 = 1 for both sensitive groups (𝑆), on

the right side, we show the group-dependent acceptance probabil-

ity (𝐷 =1) among qualified individuals (𝑌 =1). Recall that an EOP-

fair policy requires these conditional acceptance rates to be equal

(dashed diagonal line). The region satisfying the relaxed fairness

constraint 𝜖-EOP-fairness is shaded in gray. We observe that while

the initial starting point affects the convergence process and time,

our policy consistently converges to a single feature distribution

that is an 𝜖-EOP-fair stationary distribution (star within the gray

area). In our example, this implies that a policy learned from his-

torical data in one financial institution can be effectively applied

to a population in another institution with different credit score

distributions, provided there are shared mechanisms governing dy-

namics and repayment behavior.

7.2 Policy Learning Under Unknown Dynamics
The previous section demonstrated a proof of concept assuming

known probability estimates and dynamics. Here, we expand our

methodology to address unknown probabilities and dynamics. We

presume access to a temporal dataset collected with an (unknown)

suboptimal policy. As most datasets for fair decision-making are

static, we generate a temporal dataset from the static COMPAS

dataset [44] with 5278 samples through simulations akin to prior

work [91]. In the offline approach, we derive the policy from prob-

abilities estimated from the historical temporal dataset. For com-

parison, we include results obtained by adapting our framework to

online learning. In the cold start scenario, we initialize the learn-

ing process with an uninformed guess and iteratively collect the

historical dataset by sampling 500 data points at each step. In the

warm start, we use probability estimates from the offline approach

as an informed initial guess and iteratively update them by collect-

ing new data and deploying the learned policy to the entire popula-

tion for 10 time steps. These online approaches, however, introduce

challenges related to delayed feedback, periodic policy updates, and

exploration costs, as encountered in prior work. The learned poli-

cies are deployed in simulated environments under true dynamics

for 200 time steps. Refer to § E.6 for details.

Results. Table 1 reports utility and EOP-unfairness at equilibrium
as well as cumulatively over 200 time steps. Equilibrium measures

indicate the effectiveness of the approach in achieving the target,

while cumulative measures reflect the convergence cost, including
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Table 1: Comparing learning 𝜋★EOP under known (true) and
unknown dynamics: online with a cold start, offline from
historical data collected with suboptimal policy, online with
a warm start from historical data. COMPAS dataset, 𝜖 =0.01,
𝑐 =0.6. Top: at equil. (★); bottom: cumulative (

∑
200

𝑡=1). Mean ±
std over 5 seeds.

Utility (↑) Unfairness (↓)

A
t
★

Known 0.0489 0.0089

Offline 0.0486 ± 0.0006 0.0697 ± 0.0071

Online cold 0.0425 ± 0.006 0.0797 ± 0.0162

Online warm 0.0486 ± 0.0003 0.0103 ± 0.0067

C
u
m
u
l
.

Known 9.8095 3.3142

Offline 9.7645 ± 0.1033 13.0371 ± 1.3748

Online cold 8.3493 ± 1.0915 15.4073 ± 3.0694

Online warm 9.3488 ± 0.0672 5.0753 ± 1.48

Figure 3: Convergence of 𝜋★EOP to equilibrium ★ under inter-
ventions (→). Colors: initial feature distributions. Dashed
colored: convergence w/o intervention to ★. Left: Short-term
interv.; right: Long-term interv. 𝜖 = 0.01, 𝑐 = 0.8, FICO. Gray
diagonal: 𝜖-fairness. Green numbers: time steps.

the learning phase in online approaches. Overall, our results indi-

cate that our approach can uncover long-term fair policies (from

historical data), even under partially observed labels. These policies,

upon deployment, converge to a fair target without requiring addi-

tional policy updates. As in prior work, reaching the targeted unfair-

ness value largely depends on the quantity and quality of available

training data. At equilibrium, the offline approach exhibits higher

utility and lower unfairness compared to the online approach with

a cold start. Yet unfairness remains beyond the targeted 𝜖 due to

the misestimation arising from the limited dataset size available.

Conversely, the online warm start approach, aiming to enhance the

offline information through real-time interaction with the environ-

ment, achieves significantly lower unfairness close to the fair target.

Cumulative results reveal that online learning of the long-term fair

policy with a cold start incurs, as anticipated, higher costs in terms

of utility and unfairness, and also high variance. The online warm

start demonstrates a relatively small decrease in accumulated utility

compared to offline learning, suggesting low costs associated with

learning. The findings suggest that exploring the combination of

offline learning and periodic policy updates with new information

could be a promising avenue for future research on long-term fair

policies, effectively balancing delayed feedback effects and accurate

environment estimation. Next, we demonstrate how interventions

can complement the deployment of long-term fair policies.

7.3 Short- and Long-Term Interventions During
Policy Deployment

We now empirically demonstrate the interplay between short- and

long-term interventions during policy deployment following Re-

mark 4.2. We use the same setup as in § 7.1 and deploy the learned

policy 𝜋★EOP.

In Figure 3 (left), we show the convergence of the policy under

a covariance shift occurring at 𝑡 =3 during deployment (short-term

intervention). Such shifts may result from economic shocks or gov-

ernmental subsidy programs, altering financial assets and conse-

quently changing risk scores. We assume that these interventions

do not impact the underlying dynamic mechanisms. We observe

that such a change in the feature distribution leads to a shift in the

fairness measure in the short term. For the orange population, the

shift increases unfairness, moving it further from a fair distribu-

tion (dashed black line) and prolonging the trajectory to the equi-

librium compared to the path without intervention. Conversely, for

the green and blue populations, the intervention leads to a trajec-

tory closer to a fair distribution. For the green population, fairness

is achieved at step 7, and the trajectory remains fair thereafter un-

til convergence. In the long term, the policy converges to the same

targeted stationary distribution as it would without the external

distribution shift (dashed colored trajectories). Our long-term fair

policy thus guarantees convergence to the targeted fair equilibrium

under unexpected short-term interventions, requiring no policy up-

dates. This means that a short-term intervention can function as an
effective mechanism to ensure that achieving long-term fairness does
not compromise short-term fairness.

In Figure 3 (right), we show the convergence of the fixed learned

policy under a shift of dynamics 𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠) occurring at 𝑡 = 3

during deployment (long-term intervention on transition probabil-

ities). Specifically, we assume the deployment of a (fair) recourse

policy [34, 76] advising individuals facing negative decisions on al-

tering their features to increase the likelihood of acceptance in the

next time step. We note a shift in the resulting equilibrium (from ★

to ★). While both equilibria are fair (within gray 𝜖-fair area), this

means that the implementation of a fair recourse policy results in

the approval of more loans for individuals likely to repay - (from

accepting ∼81% to ∼94%). This implies that given a long-term fair
policy, intervening in other mechanisms that define the kernel can re-
sult in a more favorable fair equilibrium. Additional results in § E.7

show that the fair recourse policy leads to an increase in both util-

ity and fairness accumulated over time.

Our results show that short- and long-term interventions can

effectively guide a long-term fair policy toward more favorable

convergence behavior and equilibria, respectively. Next, we discuss

strengths and limitations of our approach.
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8 DISCUSSION: STRENGTHS AND
LIMITATIONS

In this section, we discuss key assumptions and limitations. Addi-

tional discussion can be found in § B.

Modeling Assumptions. In this paper, we take several modeling as-

sumptions that need to be carefully validated in practice as they sim-

plify complex societal systems. First, we useMarkov chains (MCs) to

model the behavior of a system. Markov Decision Processes (MDPs),

are a specific type of MCs and are widely recognized for providing

a flexible approach to long-term fair policy learning [10, 64, 82, 85–

87]. They operate under the Markov assumption that the future

state depends solely on the current state and action. While effective

in simplifying sequential decision-making, this assumption may not

always hold in practice. A borrower’s creditworthiness can be influ-

enced by past behaviors and credit history, not accounted for in the

Markov assumption. Yet, if a credit score incorporates all relevant

historical financial information, theMarkov assumptionmay be con-

sidered valid. Second, we make several assumptions about sensitive

attributes. While these align with prior work [15, 82, 86, 91], they

simplify the complexity of social concepts. Group fairness tradition-

ally requires categorizing individuals into non-overlapping groups,

which assumes meaningful divisions, neglects intersections of iden-

tity [20], and fails to account for those who reject predefined labels

altogether. In our data generative model, the sensitive attribute is a

root node and remains static over time, which may fail to capture

the nature of social concepts within sociocultural contexts [30, 77].

Assumptions on Dynamics. The proposed general optimization

problem (4) assumes a time-homogeneous kernel and thus dynam-

ics defining it. Although real-world data often change over time,

we treat the dynamics as static for a shorter duration. This is plau-

sible, if they rely on bureaucratic [46] or algorithmic recourse poli-

cies [34] and is a common assumption in prior work [17, 86, 91]. If,

however, the transition probabilities become time-dependent, up-

dating the policy would be necessary. Further, we conceptualize

dynamics as shifts in the distribution of features across an entire

population. In this, we build upon the modeling assumptions and

dynamics established by prior work [17, 46, 91]. While our current

approach provides valuable insights into the macro-level dynam-

ics of feature distributions (see also § E.4 and § E.5), we believe it

would be interesting to explore more complex dynamics inspired by

game theory [56, 58, 63]. This could offer a deeper understanding

of the intricate interplay between individuals and features within

the population. For offline policy learning, we assume a sufficient

historical temporal dataset to learn the Markov kernel. For online

learning, the conditions of aperiodicity and irreducibility automati-

cally ensure exploration during data collection.

The Case of Non-existence of a Long-Term Fair Policy. In situations
where a fair policy exists, our optimization problem (3) is designed

to effectively discover it. Consider, however, the case that a solution

does not exist. Then, as argued in § 3, no policymaker with different

strategies of finding policies over time would find a solution to

the same problem, with the same assumed distributions, dynamics,

and constraints. If a solution to our optimization problem does not

exist, this insight may prompt practitioners to explore alternative

approaches for long-term fairness, such as redefining the fair state

or non-stationary objectives [91].

Interplay of Long-Term and Short-Term Goals. Our framework

aims to fulfill fairness in the long term. Prioritizing long-term ob-

jectives offers the potential to transform historical disparities [78].

This can temporarily come at the cost of reduced utility and fair-

ness in the short term [86]. While strict adherence to short-term

fairness may result in inferior long-term results [17, 46, 91], focus-

ing on long-term goals alone becomes a risk if it diverts attention

from population needs that require immediate intervention. If these

needs are unaddressed, it may prompt individuals to alter their be-

havior, resulting in time-variant dynamics that constrain the adapt-

ability of any policy learning approach. Our results in § 7.3 demon-

strate that deploying a long-term fair policy together with short-

term interventions on the feature distribution, can lead to fulfilling

short-term fairness without compromising convergence to the long-

term target. In our example, short-term interventions could take

the form of subsidies either from the government or from the bank

itself—to comply with regulations or due to the benefit of higher

utility and customer satisfaction. We defer an in-depth study of the

trade-off between short- and long-term fairness and the efforts to

quantify it to future work.

9 SUMMARY AND OUTLOOK
We have introduced a general framework for achieving long-term

fairness in dynamical systems, where algorithmic decisions in one

time step impact individuals’ features in the next time step, which

are consequently used to make decisions. We proposed a technical

approach for identifying a time-independent policy that is guaran-

teed to converge to a targeted fair stationary state, regardless of

the initial data distribution. We model the system dynamics with a

time-homogeneous Markov chain and enforce the conditions of the

Markov chain convergence theorem to the Markov kernel through

policy optimization. The theoretical results from this paper hold

for general state spaces. Our framework can be applied to differ-

ent dynamics and long-term fair goals. We demonstrate this in a

guiding example of credit lending assuming a finite state space. In

semi-synthetic simulations, we show the effectiveness of policy so-

lutions to converge to targeted stationary population states in a

stable manner. Our work extends our understanding of long-term

fairness and the short- and long-term effects of algorithmic and so-

cietal interventions. Future work lies in applying our framework to

a wider range of problems with more complex dynamics larger and

continuous feature spaces, multiple sensitive attributes, and using

more sophisticated optimization methods. This includes exploring

the use of temporal datasets from the fair recommending litera-

ture [10] and designing long-term interventions beyond decision-

making, such as learning long-term fair recourse policies.
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A MARKOV CHAIN CONVERGENCE
THEOREM FOR GENERAL STATE SPACES

The theoretical results from this paper hold for general state spaces.

This means that for a general state space, a policymaker that aims

for fairness will need to fulfill the fundamental objective (3) and

thus solve the general optimization problem (4). For general state

spaces, this entails, on the one hand, formulating objectives and

constraints tailored to such spaces. On the other hand, we need to

impose the necessary convergence criteria for the transition kernel

defined over the general state space. We then require appropriate

methods to efficiently the optimization problem.

In this section, we present the Markov convergence theorem

for general state spaces, as well as the conditions to satisfy the

conditions of the theorem. These are the convergence criteria we

need to impose in the optimization problem (4) for general state

spaces. We mainly follow the references of [3, 51, 69, 71].

Notation A.1. The following notations will be used.
(1) X denotes a standard measurable space (aka standard Borel

space), like X = R𝐷 or X = N, etc.
(2) We use BX to denote the 𝜎-algebra of (Borel subsets of) X.
(3) 𝑇 : X d X denotes a Markov kernel (aka transition proba-

bility) from X to X, i.e. formally a measurable map 𝑇 : X →
P(X) from X to the space of probability measures over X.

(4) For a point 𝑥 ∈ X and measurable set 𝐴 ∈ BX we write 𝑇
similar to a conditonal probability distribution:

𝑇 (𝐴|𝑥) := 𝑇𝑥 (𝐴) := probability of 𝑇 hitting 𝐴

when starting from point 𝑥 .
(6)

(5) We define the Markov kernel 𝑇 0
: X d X via: 𝑇 0 (𝐴|𝑥) :=

1𝐴 (𝑥).
(6) We inductively define the Markov kernels 𝑇𝑛

: X d X for
𝑛 ∈ N1 via:

𝑇𝑛 (𝐴|𝑥) :=
∫
X
𝑇 (𝐴|𝑦)𝑇𝑛−1 (𝑑𝑦 |𝑥)

=

𝑛-times︷                    ︸︸                    ︷
(𝑇 ◦𝑇 ◦ · · · ◦𝑇 ◦𝑇 ) (𝐴|𝑥) .

(7)

Note that: 𝑇 1 = 𝑇 .
(7) As the sample spaces we consider the product space:

Ω :=
∏
𝑛∈N1

X. (8)

(8) For 𝑛 ∈ N1 we have the canonical projections:

𝑋𝑛 : Ω → X, 𝜔 = (𝑥𝑛)𝑛∈N1
↦→ 𝑥𝑛 =: 𝑋𝑛 (𝜔) . (9)

(9) We use 𝑃𝑥 := 𝑇
⊗N1

𝑥 to denote the probability measure on Ω
of the homogeneous Markov chain induced by 𝑇 that starts
at 𝑋0 = 𝑥 . Note that for 𝑛 ∈ N1 the marginal distribution is
given by:

𝑃𝑥 (𝑋𝑛 ∈ 𝐴) = 𝑇𝑛 (𝐴|𝑥) . (10)

(10) We abbreviate the tuple: X := (𝑋𝑛)𝑛∈N1
. Note that X is a

(homogeneous) Markov chain that starts at 𝑋0 = 𝑥 under the
probability distribution 𝑃𝑥 . We will thus also refer to X as the
(homogeneous) Markov chain corresponding to 𝑇 .

(11) We abbreviate the probability of the Markov chain of ever
hitting 𝐴 ∈ BX when starting from 𝑥 ∈ X as:

𝐿(𝐴|𝑥) := 𝑃𝑥
©­«
⋃
𝑛∈N1

{𝑋𝑛 ∈ 𝐴}ª®¬ . (11)

(12) We abbreviate the probability of the Markov chain hitting
𝐴 ∈ BX infinitely often when starting from 𝑥 ∈ X as:

𝑄 (𝐴|𝑥) := 𝑃𝑥 ({𝑋𝑛 ∈ 𝐴 for infinitely many 𝑛 ∈ N1}) . (12)

(13) We abbreviate the expected number of times the Markov chain
hits 𝐴 ∈ BX when starting from 𝑥 ∈ X as:

𝑈 (𝐴|𝑥) :=
∑︁
𝑛∈N1

𝑇𝑛 (𝐴|𝑥) = E𝑥 [𝜂𝐴],

𝜂𝐴 :=
∑︁
𝑛∈N1

1𝐴 (𝑋𝑛) .
(13)

Definition A.2 (Irreducibility). 𝑇 is called irreducible if there
exists a non-trivial 𝜎-finite measure 𝜙 on X such that for 𝐴 ∈ BX we
have the implication:

𝜙 (𝐴) > 0 =⇒ ∀𝑥 ∈ X. 𝐿(𝐴|𝑥) > 0. (14)

The statement from [51] Prp. 4.2.2 allows for the following re-

mark.

Remark A.3 (Maximal irreducibility measure). If 𝑇 is irre-
ducible then there always exists a non-trivial 𝜎-finite measure𝜓 that
is maximal (in the terms of absolute continuity) among all those 𝜙
with property 14. Such a𝜓 is unique up to equivalence (in terms of
absolute continuity) and is called a maximal irreducibility measure

of 𝑇 . For such a𝜓 we introduce the notation:

B𝑇
X := {𝐴 ∈ BX |𝜓 (𝐴) > 0} . (15)

Note thatB𝑇
X does not depend on the choice of amaximal irreducibility

measure𝜓 due to their equivalence. With this notation we then have
for irreducible 𝑇 :

𝐴 ∈ B𝑇
X =⇒ ∀𝑥 ∈ X. 𝐿(𝐴|𝑥) > 0. (16)

Definition A.4 (Harris recurrence). 𝑇 is called Harris recur-

rent if 𝑇 is irreducible and we have the implication:

𝐴 ∈ B𝑇
X =⇒ ∀𝑥 ∈ X. 𝐿(𝐴|𝑥) = 1. (17)

Definition A.5 (Invariant probability measures). An invari-

ant probability measure (ipm) of 𝑇 is a probability measure 𝜇 on X
such that:

𝑇 ◦ 𝜇 = 𝜇. (18)

On measurable sets this can equivalently be re-written as:

∀𝐴 ∈ BX .
∫
X
𝑇 (𝐴|𝑥) 𝜇 (𝑑𝑥) = 𝜇 (𝐴). (19)

Remark A.6. Note that a general Markov kernel𝑇 can have either
no, exactly one or many invariant probability measures.

For irreducible 𝑇 we have the following results from [51] Prp.

10.1.1, Thm. 10.4.4, 18.2.2, concerning existence and uniqueness of

invariant probability measures.

Theorem A.7 (Existence and uniqeness of invariant prob-

ability measures). Let 𝑇 be irreducible.
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(1) Then 𝑇 has at most one invariant probability measure 𝜇; and:
(2) the following are equivalent:
(a) 𝑇 has an invariant probability measure 𝜇;
(b) the following implication holds for 𝐴 ∈ BX :

𝐴 ∈ B𝑇
X =⇒ ∀𝑥 ∈ X. lim sup

𝑛→∞
𝑇𝑛 (𝐴|𝑥) > 0. (20)

We have the following properties of invariant probability mea-

sures for irreducible 𝑇 . These are cited from [51] Thm. 9.1.5, Prp.

10.1.1, Thm. 10.4.4, 10.4.9, 10.4.10, and, [71] Prp. A.1, Lem. 3.2.

Theorem A.8 (Properties of irreducible Markov kernels

with invariant probability measures). Let𝑇 be irreducible with
invariant probability measure 𝜇. Then the following statements hold:

(1) 𝜇 is a maximal irreducibility measure for 𝑇 .
(2) 𝜇 satisfies the following condition for every 𝐴 ∈ B𝑇

X and
𝐵 ∈ BX :

𝜇 (𝐵) =
∫
𝐴

E𝑥

[
𝜏𝐴∑︁
𝑛=1

1[𝑋𝑛 ∈ 𝐵]
]
𝜇 (𝑑𝑥),

𝜏𝐴 := inf {𝑛 ∈ N1 |𝑋𝑛 ∈ 𝐴} .
(21)

(3) There exists a measurable set H ∈ B𝑇
X with 𝜇 (H) = 1 such

that:

∀𝑥 ∈ H . 𝑇 (H |𝑥) = 1, (22)

𝑇 restricted to H , 𝑇 : H d H , is well-defined and Harris
recurrent (with invariant probability measure 𝜇).

Definition A.9 (Aperiodicity). Let 𝑇 be irreducible. Then 𝑇 is
called:

(1) periodic if there exists𝑑 ≥ 2 pairwise disjoint sets𝐴1, . . . , 𝐴𝑑 ∈
B𝑇
X , such that for every 𝑗 = 1, . . . , 𝑑 , we have:

∀𝑥 ∈ 𝐴 𝑗 . 𝑇 (𝐴 𝑗+1(mod𝑑 ) |𝑥) = 1; (23)

(2) aperiodic if 𝑇 is not periodic.

With these notation we have the following convergence theo-

rems, see [51] Thm. 13.3.3, 17.0.1, and, [71] Thm. 2.16, 2.17, Assm.

2.12, Prp. 2.2.

Theorem A.10 (Strong Markov chain convergence theo-

rem). Let 𝜇 be a probability measure on X. Then the following are
equivalent:

(1) 𝑇 is aperiodic and Harris recurrent and 𝜇 is an invariant prob-
ability measure for 𝑇 .

(2) For every 𝑥 ∈ X we have the convergence in total variation
norm:

lim

𝑛→∞
TV(𝑇𝑛

𝑥 , 𝜇) = 0. (24)

Furthermore, if this is the case, then for every 𝑔 ∈ 𝐿1 (𝜇) and every
starting point 𝑥 ∈ X we have the convergences:

lim

𝑛→∞
1

𝑛

𝑛∑︁
𝑘=1

𝑔(𝑋𝑘 ) = E𝜇 [𝑔] 𝑃𝑥 -a.s. (25)

Theorem A.11 (Markov chain convergence theorem). Let 𝜇
be a probability measure on X. Then the following are equivalent:

(1) 𝑇 is aperiodic and irreducible and 𝜇 is an invariant probability
measure for 𝑇 .

(2) For every 𝑥 ∈ X we have:

lim

𝑛→∞
TV(𝑇𝑛

𝑥 , 𝜇) < 1, (26)

and, for 𝜇-almost-all 𝑥 ∈ X we have the convergence in total
variation norm:

lim

𝑛→∞
TV(𝑇𝑛

𝑥 , 𝜇) = 0. (27)

Furthermore, if this is the case, then for every 𝑔 ∈ 𝐿1 (𝜇) and 𝜇-almost-
all starting points 𝑥 ∈ X we have the convergences:

lim

𝑛→∞
1

𝑛

𝑛∑︁
𝑘=1

𝑔(𝑋𝑘 ) = E𝜇 [𝑔] 𝑃𝑥 -a.s. (28)

We now want to investigate under which conditions we can

achieve irreduciblity, aperiodicity or Harris recurrence. We first

cite the results of [3] Thm. 1 and Cor. 1.

Theorem A.12 (Harris recurrence via irreducibility and

density). Let 𝑇 be irreducible with invariant probability measure 𝜇.
Further, assume that 𝑇 has a density w.r.t. an irreducibility measure
𝜙 , i.e.:

𝑇 (𝐴|𝑥) =
∫
𝐴

𝑡 (𝑦 |𝑥) 𝜙 (𝑑𝑦), (29)

with a jointly measurable 𝑡 : X × X → R≥0. Then 𝜙 is a maximal
irreducibility measure for 𝑇 , 𝜇 has a strictly positive density w.r.t. 𝜙
and 𝑇 is Harrris recurrent.

Corollary A.13 (Harris recurrence via irreducibility and

Metropolis-Hastings form). Let 𝑇 be irreducible with invari-
ant probability measure 𝜇. Further, assume that 𝑇 is of Metropolis-
Hastings form w.r.t. an irreducibility measure 𝜙 :

𝑇 (𝐴|𝑥) = (1 − 𝑎(𝑥)) · 1𝐴 (𝑥) +
∫
𝐴

𝑎(𝑦 |𝑥) · 𝑞(𝑦 |𝑥) 𝜙 (𝑑𝑦), (30)

with jointly measurable 𝑎, 𝑞 : X × X → R≥0 and 𝑎(𝑥) > 0 for
every 𝑥 ∈ X. Note that: 𝑎(𝑥) =

∫
𝑎(𝑦 |𝑥) · 𝑞(𝑦 |𝑥) 𝜙 (𝑑𝑦). Then 𝜙 is a

maximal irreducibility measure for𝑇 , 𝜇 has a strictly positive density
w.r.t. 𝜙 and 𝑇 is Harrris recurrent.

We now have all ingredients to derive the following criteria for

the strong Markov chain convergence theorem A.10 to apply:

Corollary A.14 (Criterion for convergence via positive

density). Let𝜙 be a non-trivial𝜎-finitemeasure onX such that𝑇 has
a strictly positive jointly measurable density 𝑡 : X×X → R>0 w.r.t.𝜙 :

𝑇 (𝐴|𝑥) =
∫
𝐴

𝑡 (𝑦 |𝑥) 𝜙 (𝑑𝑦), (31)

then 𝑇 is irreducible, aperiodic and 𝜙 is a maximal irreducibility
measure for 𝑇 .

If, furthermore, 𝑇 has an invariant probability measure 𝜇 then 𝜇

has a strictly positive density w.r.t. 𝜙 , 𝑇 is Harris recurrent and the
strong Markov chain convergence theorem A.10 applies.

Corollary A.15 (Criterion for convergence via positive

Metropolis-Hastings form). Let 𝜇 be an invariant probability
measure of 𝑇 . Further, assume that 𝑇 is of Metropolis-Hastings form
w.r.t. a non-trivial 𝜎-finite measure 𝜙 :

𝑇 (𝐴|𝑥) = (1 − 𝑎(𝑥)) · 1𝐴 (𝑥) +
∫
𝐴

𝑎(𝑦 |𝑥) · 𝑞(𝑦 |𝑥) 𝜙 (𝑑𝑦), (32)
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with strictly positive jointly measurable 𝑎, 𝑞 : X × X → R>0 such
that for every 𝑥 ∈ X we have that:

𝑎(𝑥) :=
∫

𝑎(𝑦 |𝑥) · 𝑞(𝑦 |𝑥) 𝜙 (𝑑𝑦) !∈ (0, 1). (33)

Then 𝜙 is a maximal irreducibility measure for 𝑇 , 𝜇 has a strictly
positive density w.r.t.𝜙 ,𝑇 is aperiodic, Harrris recurrent and the strong
Markov chain convergence theorem A.10 applies.

Corollary A.16 (Criterion for convergence on countable

spaces). Let X be a countable space, i.e. finite or countably infinite.
Let 𝑇 be irreducible with invariant probability measure 𝜇 such that
for all 𝑥 ∈ X with 𝜇 ({𝑥}) > 0 we also have 𝑇 ({𝑥} |𝑥) > 0. Then
𝑇 is aperiodic and Harris recurrent and the strong Markov chain
convergence theorem A.10 applies.

B ADDITIONAL CLARIFICATIONS AND
DISCUSSION

In this section, we provide additional clarifications and discussion

on our proposed framework.

B.1 Existence of a Fair Stationary Distribution
Our approach also serves to determine whether a stationary distri-

bution exists in the first place. In situations where a fair policy does

indeed exist, our optimization problem (OP) is designed to effec-

tively discover it. If a solution to our optimization problem does not

exist, it implies that alternative methods (including, e.g., reinforce-

ment learning), would also not find a policy inducing and maintain-

ing the targeted fair stationary distribution under the same model-

ing assumptions. This stems from the fact that if the current state

is fair, any alternative approach would still need to address the sta-

tionary equation (3) to maintain that state. This discovery can offer

valuable insights to practitioners, prompting them to explore dif-

ferent perspectives on long-term fairness. For instance, this might

involve revising non-stationary long-term fairness objectives, such

as addressing oscillating long-term behaviors [91]. Alternatively,

practitioners could consider redefining the targeted fair state that

allows for stationary. By shedding light on these possibilities, our

approach contributes to a deeper understanding of the dynamics

and long-term fairness considerations.

B.2 Strengths and Limitations of a Model-based
Approach

Model-based reinforcement learning focuses on scenarios where dy-

namics are known or can be estimated before policy learning, often

requiring fewer samples compared to model-free approaches [42,

50, 55]. This is particularly valuable in delayed feedback scenar-

ios, such as lending [46, 68], recidivism [44], or university admis-

sions [43], where observing feedback may take in the real world

months or years. Estimating societal dynamics from historical tem-

poral data, especially for continuous state spaces, remains a chal-

lenge [18]. The quality of dynamics estimation in model-based ap-

proaches depends on factors like data quantity, quality, coverage,

environmental complexity, and estimation methods. In certain sce-

narios, dynamics may be easier to estimate, especially, if state ac-

tion and spaces are finite [14, 74]. Moreover, the dynamics consid-

ered here, which are driven not by complex human behavior but

by policies such as rules governing changes in credit score groups,

may contribute to a further simplification of the estimation pro-

cess. Our approach represents an initial step in model-based learn-

ing of long-term fair policies, with potential extensions benefiting

from advancements in learning Markov dynamics [75, 84] to ad-

dress more complex scenarios.

B.3 Opportunities and Limitations of
Time-invariant Policies

Our framework yields a single fixed, i.e., time-invariant policy.

When the dynamics are constant, and policy learning and estima-

tion of the dynamics occur simultaneously (as in reinforcement

learning), then the learned policy requires frequent updates as more

data becomes available. Our paper takes a different approach by

separating the estimation problem (of the Markov kernel i.e., the

dynamics) from the policy learning process and therefore does not

require updating the policy. We believe that this holds several ad-

vantages, particularly in terms of predictability and trustworthi-

ness. A fixed policy provides a consistent decision-making frame-

work that stakeholders can anticipate and understand contributing

to trustworthiness. In addition, a fixed policy simplifies operational

processes, such as implementation and maintenance efforts, poten-

tially leading to more efficient and effective outcomes.

When the dynamics vary with time, we can no longer rely on a

single time-invariant policy for an infinite time horizon. If, however,

the changes are slow and the dynamics remain constant within

certain time intervals, our approach remains effective within the

time intervals.Whenever the dynamics change, our approachwould

require re-estimating the dynamics and solving the optimization

problem again to obtain a new policy. In this way, our method

adapts to changing conditions and maintains its effectiveness over

time. However, when dynamics change rapidly, the adaptability of

any method is limited.

B.4 Use of Different Datasets
Our experimental section focuses on a two simulation setups, specif-

ically centered around loan repayment based on FICO [68], which

has been widely used by previous work on long-term fairness [15,

17, 46, 82, 87]. In addition we also show results on the COMPAS [44]

dataset. In § E.5 and § E.4 we provide results for FICO with varying

dynamics and initial distributions, essentially simulating different

datasets of the same generative model. Note also that we provide

an example of how the framework can be applied to a different gen-

erative model in § F.

B.5 Additional Related Work
We present additional related work, positioning our study within

the broader context of prior research on sequential decision-making

and robustness, which pursue different objectives. Our work differs

from research on fair sequential decision learning under feedback

loops, where decisions made at one time step influence the training

data observed at the subsequent step [6, 33, 38, 67]. In this scenario,

decisions introduce a sampling bias but do not affect the underlying

generative process, as in our case. In our case, decisions influence

the underlying data-generating process and consequently shift the

data distribution.
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Ourwork also differs from research focused on developing robust

machine learning models that can perform well under distribution

shifts, where deployment environmentsmay differ from the training

data environment [65]. Unlike the line of research that considers

various Sources of shift [1, 48, 73], our approach leverages policy-

induced data shifts to guide the system towards a state that aligns

with our defined long-term fairness objectives. Rather than viewing

data shifts as obstacles to overcome, we utilize them as a means to

achieve fairness goals in the long term.

C ON LONG-TERM TARGETS
In this section, we offer additional examples and discussions on tar-

geted fair states, exemplified in § 6. We first discuss how our frame-

work allows for the integration of long-term fairness definitions es-

tablished by prior research (C.1). Following that, we provide more

examples of how our framework accommodates various types of

constraints. These include distributional fairness concerning indi-

vidual features (C.2), non-egalitarian fairness objectives (C.3), and

constraints on the policy itself that are independent of the long-

term equilibrium (C.4).

C.1 Definition of Long-term Fairness
We provide an overview of how our work relates to previously

established long-term fairness notions.

Our framework aims to attain a state of long-term fairness. This

entails that fairness formulations should be met in the long term

and, importantly, once achieved, be maintained. Our goal differs

fundamentally from approaches that aim to fulfill fairness at each

time step. In this regard, [17] compare agents optimizing for short-

term goals - e.g., a profit-maximization agent to an equality of

opportunity fair agent and measure the long-term (in)equality of

the initial credit score distribution across groups - without imposing

it on the agents.

Prior work on long-term fairness introduces parity of return [10],

which requires equal (discounted) rewards accumulated by the de-

cision maker over time, where the reward could be defined as the

ratio between true positive and overall positive decisions. [82] de-

fine long-term demographic parity (equal opportunity) as asking

the cumulative expected individual rewards to be on average equal

for (qualified members of) demographic groups. [86] aim to max-

imize the accumulated reward subject to accumulated unfairness

(utility) constraint in a finite time horizon. The reward combines

true positive and true negative rates, while the authors consider

different (un)fairness measures: demographic parity, equal opportu-

nity, and equal qualification rate. [87] formulate a (short-term) fair-

ness metric (e.g., equality of opportunity) as a function of the state

and increase its enforcement over time. Our framework provides

the capability to enforce these fairness and reward considerations,

specifically, we allow for feature complex objective functions (see

§ 6.1) as well as imposing group fairness criteria in the long-term

(see § 6.2) for infinite time-horizons. Note that the formulation of a

fair state is not limited to the possible fairness objectives and con-

straints discussed in § 6. Rather, we exemplify in that section that

our framework can capture fairness objectives well-established in

prior work [19, 25, 46, 91].

Next we provide examples for distributional fairness within our

guiding example, such as equal distribution of credit scores [17], or

equal qualification [66, 91].

C.2 Distributional Fairness
Policymakers may be interested in specific characteristics of a pop-

ulation’s features 𝑋 or qualifications 𝑌 (ground truth) on a group

level [66, 91]. We measure group qualification Q as the group-

conditioned proportion of positive labels assigned to individuals

as Q𝑠 (𝜋 | 𝑠) = ∑
𝑥 ℓ (𝑌 = 1 |𝑥, 𝑠)𝜇𝜋 (𝑥 | 𝑠), where ℓ (𝑌 = 1 |𝑥, 𝑠) is the

positive ground truth distribution, and 𝜇𝜋 (𝑥 | 𝑠) describes the sta-
tionary group-dependent feature distribution. We measure inequity

(of qualifications) as I :=| Q(𝜋 | 𝑆 = 0) − Q(𝜋 | 𝑆 = 1) |.
To promote financial stability, a policymaker like the govern-

ment may pursue two different objectives. Firstly, they may aim to

minimize default rates using the objective 𝐽LT := −∑
𝑠 Q(𝜋 | 𝑠)𝛾 (𝑠).

Alternatively, if the policymaker intends to increase credit opportu-

nities, they may seek to maximize the population’s average credit

score with the objective 𝐽LT := −∑
𝑠

1

|𝑋 |
∑
𝑥 𝜇𝜋 (𝑥 | 𝑠)𝛾 (𝑠), where

|𝑋 | represents the state space size. To achieve more equitable credit

score distributions, the policymaker could impose the constraint

𝐶LT := 𝜖− | 𝜇𝜋 (𝑥 | 𝑆 = 0) − 𝜇𝜋 (𝑥 | 𝑆 = 1) | ∀𝑥 . However, depend-
ing on the generative model, this approach might not eliminate in-

equality in repayment probabilities. In such cases, the policymaker

may aim to ensure that individuals have the same payback ability

using the constraint 𝐶LT := 𝜖 − I. Note that measuring differences

in continuous or high-dimensional distributions requires more so-

phisticated distance measures. However,equal credit score distribu-

tions or repayment probabilities may not guarantee equal access to

credit, which can be imposed using predictive group fairness mea-

sures as introduced in § 6.2.

It is awell-known result in economics that prioritizing egalitarian

distributions may not always align with individual (and societal)

preferences [5, 49]. In such cases, it is sometimes more desirable to

minimize the maximum societal risk to prevent unnecessary harm.

We elaborate on this concept next.

C.3 On Minimax Objectives
While egalitarian allocations can align with societal values, they

are generally considered Pareto inefficient [60]. In certain scenar-

ios, policymakers may be interested in minimizing the maximum

risk within a society [5]. This approach aims to prevent unneces-

sary harm by reducing the risk for one group without increasing

the risk for another [49]. For instance, in the context of hiring, in-

stead of equalizing the group-dependent repayment rates Q(𝜋, 𝑠),
a policymaker may be interested in minimizing the maximum de-

fault risk 1 − Q(𝜋, 𝑠) across groups. In other words, their objective

could be 𝐽LT := min𝑠 −(1 − Q(𝜋, 𝑠)), rather than aiming for equal

default or repayment rates.

At times, a policymaker may be concerned not only with the

final outcome of the policy, as emphasized in the objectives and

constraints introduced in the main paper and in this section above,

but also with the way the policy is constructed. This consideration

may stem from technical reasons or aim to enhance the perception

of fairness in society. We discuss this aspect next.
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C.4 Policy constraints
Our framework also allows to incorporate constraints on the type

of policy being searched for. These constraints can be imposed on

the policy independent of the stationary distribution. We provide

an example here. If the features exhibit a monotonic relationship,

where higher values of 𝑋𝑡 tend to result in a higher probability of a

positive outcome of interest ℓ (𝑌 = 1 |𝑥, 𝑠), the policymaker may be

interested in a monotonous policy. A monotonous policy assigns

higher decision probabilities as 𝑋𝑡 increases. This means that if the

feature increases (or decreases), the policy’s response or outcome

should also consistently increase (or decrease). Establishing pre-

dictability in the decision-making process is crucial for enhancing

perceived fairness. In a lending example, as the risk score improves,

there is a predictable increase in the likelihood of obtaining a loan

approval. This transparency contributes to a clearer understanding

of the decision criteria. In such cases, we can impose the additional

constraint 𝜋 (𝑘, 𝑠) ≥ 𝜋 (𝑥, 𝑠),∀𝑘 ≥ 𝑥, 𝑠 .

D SIMULATION DETAILS
In this section, we present the details of the experiments and simu-

lations that we show in the main paper in § 7 as well as for the ad-

ditional results reported in § E. Specifically, we provide details on:

• The COMPAS dataset, its pre-processing, and assumptions

(D.1)

• Solving the optimization problem for linear state spaces (D.2)

• Assumed underlying dynamics (D.3)

• Offline learning under unknown dynamics (D.4)

• Online learning under unknown dynamics (D.5)

• Computational reSources and run time (D.6)

• Optimization problem for a different fair target (policy 𝜋★QUAL)

with results reported in the following section (D.7).

D.1 COMPAS Dataset
In the main paper, we provided a detailed overview of how our

modeling assumptions for the data generative model over time

manifest in the lending scenario. In this section, we present an

overview of howwe use the COMPAS dataset in the simulations and

how the same assumptions are applied to the recidivism scenario.

D.1.1 Pre-processing of Dataset. For our experiments, we use the

COMPAS dataset from ProPublica [44]. The target variable 𝑌 indi-

cates whether an individual faced rearrest within two years (coded

as 1) or remained without rearrest (coded as 0). Importantly, this

does not indicate whether the individual re-offended but rather

whether the individual re-offended and this was detected or caught

by the police within two years. The sensitive attribute 𝑆 is Race

(African-American 0, Caucasian 1).

We preprocess the dataset provided by ProPublica similar to

the tempeh package [53], this includes features 𝑋 : The age of

defendants (age) in years as well as a categorized age feature

(age_cat) in years (< 25, 25 − 45, > 45), alongside historical

information about prior incidents: counts of prior juvenile mis-

demeanors (juv_misd_count), counts of prior juvenile felonies

(juv_fel_count), counts of other juvenile incidents that are rele-
vant (juv_other_count), count or number of prior offenses or in-

cidents the individual has on their record (priors_count), binary

indicator if the most recent charge prior to the COMPAS score

calculation is a felony or misdemeanor ((c_charge_degree_F),
c_charge_degree_M). We then analyze importance of the features.

For this we first train a decision tree classifier to predict the target

variable with a 20-80 test-training split. Subsequently, we rank the

feature importance from the trained classifier. The results indicate

that age and priors_count are most contributing to the classifiers

predictions.

We categorize priors_count into four subgroups based onwhether
the number of priors is 0, 1, 2 − 3, or, > 3. For the information on

an individual’s age, we depend on the pre-categorized groups pro-

vided by feature age_cat (3 age groups). This results in 12 feature

combinations (subgroups) and thus values of 𝑋 .

D.1.2 Assumptions on Data Generative Model. We assume a data

generative model for a recidivism scenario assuming a data genera-

tive process as in Figure 1)=. The protected attribute 𝑆 is Race, the

non-sensitive feature 𝑋𝑡 (age and priors_count) and an outcome

of interest 𝑌𝑡 refers to arrest for re-offense within 2 years. As above,

we assume the sensitive attribute to remain immutable over time

and drop the attribute’s time subscript. For simplicity, we assume

binary sensitive attribute and outcome of interest (0 - recidivism, 1

- no-recidivism) and a two-dimensional discrete non-sensitive fea-

ture 𝑋age ∈ {0, 1, 2} and 𝑋priors_count ∈ {0, 1, 2, 3}. We assume the

population’s sensitive attribute be distributed as 𝛾 (𝑠) := P(𝑆 =𝑠)
and remain constant over time. We assume𝑋priors_count to depend

on 𝑆 , such that the group-conditional feature distribution at time 𝑡

is 𝜇𝑡 (𝑥 | 𝑠) := P(𝑋𝑡 =𝑥 | 𝑆 =𝑠). For example, different demographic

groups may have different distributions of arrests for prior offenses

due to structural discrimination in society (e.g., predictive policing).

However, we assume that age is independent of Race. This assump-

tion is consistent with the generative model. In this model, the pres-

ence of an edge, such as one from 𝑆 to𝑋 , signifies a potential causal

relationship that might exist but is not guaranteed to manifest.

Outcome of Interest. The outcome of interest 𝑌 is assumed to

depend on 𝑋 and (potentially) on 𝑆 resulting in the label distri-

bution ℓ (𝑦 |𝑥, 𝑠) := P(𝑌𝑡 =𝑦 | 𝑋𝑡 =𝑥, 𝑆 =𝑠). The association between

the features, age and the historical count of criminal offenses, and

the likelihood of rearrest for re-offense, is complex, and establish-

ing direct causation is challenging due to the presence of multiple

contributing factors. Regarding the age, younger individuals may

face challenges such as not fully developed impulse control, being

influenced by peers, and having limited life experience. This can

affect decision-making. Further, the lack of exposure to alternative

career paths can further increase the risk of repeating criminal be-

havior and being caught by police. Regarding the count of prior

offenses, repeated criminal behavior can create lasting patterns, es-

pecially, if rehabilitation is inadequate. Further, social stigma, diffi-

culties in reintegrating into society, and the psychological impact

of criminal histories can push individuals back into criminal ac-

tivities. While the prior count may not directly cause rearrest for

re-offense, we assume in this work that it serves as a significant

indicator of a complex interplay of factors that increase the proba-

bility of individuals returning to criminal behavior. Our empirical

findings from the COMPAS dataset suggest that the likelihood of

arrest for re-offense decreases with advancing age and increases

with a higher count of prior offenses. We explicitly acknowledge
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that the assumptions we make here represent a simplified model

of the world, neglecting the intricate socio-economic contexts of

populations. It is also a valid question, whether incorporating algo-

rithmic recommendations in bail decisions is appropriate at all.

Decision-making Policy. Here, we assume that there exists a pol-

icy that takes binary decisions related to pretrial release (0 - jail, 1 -

bail), i.e., whether an individual should be granted bail or be held

in jail based on 𝑋 and (potentially) 𝑆 and decides with probability

𝜋 (𝑑 | 𝑥, 𝑠) := P(𝐷𝑡 =𝑑 | 𝑋𝑡 =𝑥, 𝑆 =𝑠). In the context of recidivism,

we assume that automated pre-trial bail decisions solely depend on

an individual’s age and prior criminal count. We acknowledge that

other variables might contribute to a more comprehensive under-

standing of an individual’s risk profile.

Dynamical System. We denote the probability of an individual

with 𝑆 = 𝑠 transitioning from features 𝑋𝑡 = 𝑥 to 𝑋𝑡+1 = 𝑘 in the

next step as the dynamics 𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠) := P(𝑋𝑡+1 = 𝑘 |𝑋𝑡 =𝑥, 𝐷𝑡 =

𝑑,𝑌𝑡 =𝑦, 𝑆 =𝑠) Importantly, the next step feature state depends only

on the present feature state, and not on any past states. We assume

that a pre-trail bail decision (𝐷1) directly impacts an individuals’

features age and prior criminal history (𝑋𝑡+1) in the next time step.

Further, the transition from the current feature state (𝑋𝑡 ) to the next

state (𝑋𝑡+1) is influenced not only by the decision and the current

features but also by the outcome of interest (𝑌𝑡 ) and potentially the

sensitive attribute (𝑆). After an individual is released (𝐷 = 1), their

prior criminal count remains the same (𝑋𝑡+1 = 𝑋𝑡 ) if they do not

get arrested for reoffence (𝑌𝑡 = 0) and increases if they do (𝑌 = 1).

If an individual is not released (𝐷 = 0), the prior criminal count

remains the same (one-sided feedback, 𝑋𝑡+1 = 𝑋𝑡 )). We study an

open population, where a small percentage of individuals undergo

a transition from one age category to another at each time step

independently of the specific nature of decisions and recidivism

behavior.

We assume time-independent dynamics 𝑔(𝑘 | 𝑥, 𝑑,𝑦, 𝑠), where
feature changes in response to decisions and individual attributes

remain constant over time (see also B for a general comment on this

assumption). Thus, for the time horizon considered here, we assume

that the influence of bail decisions on an individual’s prior criminal

history does not vary over time. This means we assume no potential

changes arising from societal or legal policies, interventions, or

rehabilitation programs. We also assume that the distribution of

the outcome of interest conditioned on an individual’s features

ℓ (𝑦 |𝑥, 𝑠) remains constant over time. In the context of our example,

this means that the probability of an individual re-offending based

on their age and prior criminal history is assumed to be consistent

across different time periods and not influenced by temporal shifts

or changes.

D.2 Solving the Optimization Problem
Our framework can be thought of as a three-step process. First,

just as previous work on algorithmic fairness empowers users to

choose fairness criteria, our framework allows users to define the

characteristics of a fair distribution applicable in their decision-

making context (see § 6). The second step involves transforming

the definition of fair characteristics into an optimization problem

(OP). The third step consists of solving the OP. Given the nature

of our optimization problem, which is linear and constraint-based,

we can employ any efficient black-box optimization methods for

this class of problems. Note that the OP seeks to find a policy

𝜋 that induces a stationary distribution 𝜇, which adheres to the

previously defined fairness targets. As detailed in § 7, in the search

of 𝜋 , we first compute group-dependent kernel𝑇 𝑠
𝜋 , which is a linear

combination of assumed/estimated dynamics and distributions and

𝜋 . We then compute the group-dependent stationary distribution

𝜇𝑠𝜋 via eigendecomposition.

Solving the Optimization Problem for Finite State Spaces. In our

guiding example and the corresponding simulation, we consider a

time-homogeneous Markov chain (Z, 𝑃) with a finite state space

Z (e.g., credit score categories). Consequently, the convergence

constraints 𝐶conv are determined by the irreducibility and aperiod-
icity properties of the corresponding Markov kernel (see § 4). It

has been shown that an 𝑛 × 𝑛 transition matrix 𝑃 constitutes an ir-

reducible and aperiodic Markov chain if and only if all entries of

(𝑃)𝑛 are strictly positive [7]. We can thus impose as convergence

constraint 𝐶conv for finite states

∑𝑛
𝑖=1

(
𝑇 𝑠
𝜋

)𝑛
> 0∀𝑠 , where 𝑛 is the

number of states (𝑛 = |𝑋 |), and 0 denotes the matrix with all entries

equal to zero. Following Theorem 4.3, a sufficient condition for con-

vergence to the unique stationary distribution is the positivity of

the transition matrix 𝑃 , where all elements are greater than zero.

In our experiments, we ensure that the transition matrix 𝑃 is posi-

tive, as we assume that 𝑔(𝑘 | 𝑥, 𝑑,𝑦, 𝑠) > 0 for all 𝑑, 𝑠,𝑦, 𝑥, 𝑘 , while

FICO and COMPAS data already yields ℓ (𝑦 |𝑥, 𝑠) > 0 for all 𝑦, 𝑥, 𝑠 .

We compute the stationary distribution 𝜇 using eigendecompo-

sition. Recall from Definition 3.1 that a stationary distribution of

a time-homogeneous Markov chain (Z, 𝑃) is a probability distri-

bution 𝜇 such that 𝜇 = 𝜇𝑃 . More explicitly, for every 𝑤 ∈ Z, the

following needs to hold: 𝜇 (𝑤) = ∑
𝑧 𝜇 (𝑧) · 𝑃 (𝑧,𝑤). If the transition

matrix 𝑃 is positive, 𝜇 = 𝜇𝑃 implies that 𝜇 is the eigenvector of 𝑃

corresponding to eigenvalue 1. We then solve for the stationary

distribution 𝜇 using linear algebra.

SLSQP Algorithm. We solve optimization problems (5) and (D.7)

using the Sequential Least Squares Programming (SLSQP)

method [41]. SLSQP is a method used to minimize a scalar func-

tion of multiple variables while accommodating bounds, equality

and inequality constraints and can be used for solving both linear

and non-linear constraints. The algorithm iteratively refines the

solution by approximating the objective function and constraints

using quadratic model. Specifically, SLSQP is designed to minimize

scalar functions of one or more variables. In our case we are max-

imizing utility (𝜋★EOP) or qualifications (𝜋
★
QUAL) and searching for

P(𝐷 = 1 | 𝑋 = 𝑥, 𝑆 = 𝑠) for all 𝑥 and 𝑠 , which are with |𝑋 | = 4 and

|𝑆 | = 2, a total of 8 variables. Further, SLSQP can handle optimiza-

tion problems with variable bounds. In our case, we set a minimum

bound of 0 and a maximum bound of 1 as we are seeking for proba-

bilities P(𝐷 = 1 | 𝑋 = 𝑥, 𝑆 = 𝑠) for all 𝑥 and 𝑠 . SLSQP can also han-

dle both linear and non-linear equality and inequality constraints.

In our example, where the state space is finite (i.e., 𝑋 is categor-

ical), all constraints are linear inequality or equality constraints.

Finally, SLSQP uses a sequential approach, which means it itera-

tively improves the solution by solving a sequence of subproblems.
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This approach often converges efficiently, even for non-convex and

non-linear optimization problems.

We use the SLSQP solver from scikit-learn
5
[61] with step size

eps ≈ 1.49×10−10 and a max. number of iterations 200 and initialize

the solver (warm start) with a uniform policy where all decisions

are random, i.e., 𝜋 (𝐷 =1 |𝑥, 𝑠) = 0.5∀𝑥, 𝑠 .

D.3 Assumed Dynamics
We now provide details about the assumed dynamics. Refer to

D.3.1 for FICO dynamics details and D.3.2 for assumed COMPAS

dynamics.

D.3.1 Dynamics for FICO Lending Example. In our guiding exam-

ple, we assume binary 𝑠,𝑦, 𝑑 ∈ {0, 1} and four credit categories, i.e.,

we have 𝑛 = |X| = 4 states. For simplicity, we assume the follow-

ing notation: 𝑇𝑠𝑑𝑦 := 𝑔(𝑘 | 𝑥, 𝑑,𝑦, 𝑠). 𝑇𝑠𝑑𝑦 is a 𝑛 × 𝑛 transition ma-

trix that describes the Markov chain, where the rows and columns

are indexed by the states, and 𝑇𝑠𝑑𝑦 (𝑥, 𝑘), i.e., the number in the

𝑥-th row and 𝑘-th column, gives the probability of going to state

𝑋𝑡+1 = 𝑘 at time 𝑡 + 1, given that it is at state 𝑋𝑡 = 𝑥 at time 𝑡 and

given that 𝑆 = 𝑠 , 𝐷𝑡 = 𝑑 , 𝑌𝑡 = 𝑦.

One-sided Dynamics. For all one-sided dynamics assumed in the

main paper in § 7 and in the supplementary E, we assume:

𝑇000,𝑇001,

𝑇100,𝑇101
=


0.9 0.03333 0.03333 0.03333

0.03333 0.9 0.03333 0.03333

0.03333 0.03333 0.9 0.03333

0.03333 0.03333 0.03333 0.9


𝑇110,𝑇010=


0.9 0.9 0.9 0.9

0.03333 0.03333 0.03333 0.03333

0.03333 0.03333 0.03333 0.03333

0.03333 0.03333 0.03333 0.03333


(34)

One-sided General. For the one-sided dynamics in § 7.1 we ad-

ditionally assume dynamics 𝑇𝑠𝑑𝑦 that depend on the sensitive at-

tribute in addition to (34):

𝑇111 =


0.53333 0.03333 0.03333 0.03333

0.4 0.53333 0.03333 0.03333

0.03333 0.4 0.53333 0.03333

0.03333 0.03333 0.4 0.9


𝑇011 =


0.33333 0.03333 0.03333 0.03333

0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333

0.03333 0.03333 0.6 0.9


Two-sided Fair Recourse. For the two-sided dynamics assumed in

the main paper in § 7.3 we assume dynamics 𝑇𝑠𝑑𝑦 :

5
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html

𝑇000 =


0.2 0.73333 0.03333 0.03333

0.03333 0.2 0.73333 0.03333

0.03333 0.03333 0.2 0.73333

0.03333 0.03333 0.03333 0.9


𝑇001 =


0.1 0.83333 0.03333 0.03333

0.03333 0.1 0.83333 0.03333

0.03333 0.03333 0.1 0.83333

0.03333 0.03333 0.03333 0.9


𝑇100,𝑇101 =


0.5 0.43333 0.03333 0.03333

0.03333 0.5 0.43333 0.03333

0.03333 0.03333 0.5 0.43333

0.03333 0.03333 0.03333 0.9


𝑇010,𝑇110 =


0.9 0.03333 0.03333 0.03333

0.9 0.03333 0.03333 0.03333

0.9 0.03333 0.03333 0.03333

0.9 0.03333 0.03333 0.03333


𝑇011,𝑇111 =


0.33333 0.6 0.03333 0.03333

0.03333 0.33333 0.6 0.03333

0.03333 0.03333 0.33333 0.6

0.03333 0.03333 0.03333 0.9


Two-sided Recourse Dynamics. For recourse dynamics in § E.4,

we assume the following dynamics 𝑇𝑠𝑑𝑦 :

𝑇000,𝑇001 =


0.7 0.03333 0.03333 0.03333

0.23333 0.7 0.03333 0.03333

0.03333 0.23333 0.7 0.03333

0.03333 0.03333 0.23333 0.9


𝑇100,𝑇101 =


0.5 0.03333 0.03333 0.03333

0.43333 0.5 0.03333 0.03333

0.03333 0.43333 0.5 0.03333

0.03333 0.03333 0.43333 0.9


𝑇010,𝑇011 =


0.9 0.9 0.9 0.9

0.03333 0.03333 0.03333 0.03333

0.03333 0.03333 0.03333 0.03333

0.03333 0.03333 0.03333 0.03333


𝑇110,𝑇111 =


0.33333 0.03333 0.03333 0.03333

0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333

0.03333 0.03333 0.6 0.9



https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html
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Two-sided Discouraged Dynamics. For discouraged dynamics

in § E.4, we assume the following dynamics 𝑇𝑠𝑑𝑦 :

𝑇000,𝑇001 =


0.9 0.63333 0.13333 0.03333

0.03333 0.3 0.53333 0.23333

0.03333 0.03333 0.3 0.43333

0.03333 0.03333 0.03333 0.3


𝑇100,𝑇101=


0.9 0.43333 0.13333 0.03333

0.03333 0.5 0.33333 0.23333

0.03333 0.03333 0.5 0.23333

0.03333 0.03333 0.03333 0.5


𝑇010,𝑇011 =


0.9 0.9 0.9 0.9

0.03333 0.03333 0.03333 0.03333

0.03333 0.03333 0.03333 0.03333

0.03333 0.03333 0.03333 0.03333


𝑇110,𝑇111 =


0.33333 0.03333 0.03333 0.03333

0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333

0.03333 0.03333 0.6 0.9


One-sided Slow. For the one-sided slow dynamics with results

presented in E.5, we assume the following group-independent dy-

namics 𝑇𝑠𝑑𝑦 in addition to (34):

𝑇011 = 𝑇111 =


0.53333 0.03333 0.03333 0.03333

0.4 0.53333 0.03333 0.03333

0.03333 0.4 0.53333 0.03333

0.03333 0.03333 0.4 0.9


One-sided Medium. For the one-sided medium dynamics in E.5,

we assume the following group-independent dynamics 𝑇𝑠𝑑𝑦 in ad-

dition to (34):

𝑇011 = 𝑇111 =


0.33333 0.03333 0.03333 0.03333

0.6 0.33333 0.03333 0.03333

0.03333 0.6 0.33333 0.03333

0.03333 0.03333 0.6 0.9


One-sided Fast. For the one-sided fast dynamics with results

presented in E.5, we assume the following group-independent dy-

namics 𝑇𝑠𝑑𝑦 in addition to (34):

𝑇011,𝑇111 =


0.13333 0.03333 0.03333 0.03333

0.8 0.13333 0.03333 0.03333

0.03333 0.8 0.13333 0.03333

0.033335 0.03333 0.8 0.9


D.3.2 Dynamics for COMPAS Recidivism Example. In our guiding

example, we assume binary 𝑠,𝑦, 𝑑 ∈ {0, 1} and 12 credit categories,

i.e., we have 𝑛 = |X| = 12 states. As above, for simplicity we assume

the following notation: 𝑇𝑠𝑑𝑦 := 𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠). As described in D.1,

we assume an open population, where individuals both enter and

exit. Consequently, there are intrinsic dynamics within the system

that impact the distribution of features, beyond the influence of

the policy decisions and individual reactions. As our dynamics

center on population state distributions instead of individuals, we

consequently assume a non-zero probability for “moving down” in

age category or prior count. This assumption is based on population

entries and exits due to births and deaths.

One-sided Dynamics. For all one-sided dynamics presented with

COMPAS (in § 7.2, E.6.2 and E.7), we assume the following dynamics

𝑇𝑠𝑑𝑦 . Note, here we are reporting for simplicity values rounded to

two digits after the comma.

𝑇000,𝑇001,𝑇100,𝑇101,𝑇011,𝑇111 =

0.8 0.01 0.01 0.01 0.19 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.11 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9


𝑇110,𝑇010 =

0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.8 0.01 0.01 0.01 0.1

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.9


D.4 Offline Learning Under UnknownDynamics
In this section, we provide details of the offline learning approach

(see COMPAS results in § 7.2). Firstly, use all samples from the

dataset to estimate 𝜇0 (𝑥 | 𝑠) and 𝛾 (𝑠). Since COMPAS is a static

dataset, we simulate a temporal dataset by assuming a suboptimal

historical data collection policy, represented by 𝜋0, which could,

for instance, be the result of decisions made by a human decision

maker. We assume partially observed labels and observe 𝑌𝑡 , but

only for individuals with 𝐷 = 1, as we only observe commited

crime upon release. Next, we estimate ℓ (𝑦 |𝑥, 𝑠) by computing the

label distribution within the subset of individuals with observed

outcomes.

Subsequent we simulate the updated features 𝑋𝑡+1 of the next
time step assuming one-sided dynamics 𝑔(𝑘 | 𝑥, 𝑑,𝑦, 𝑠). For more

details on the dynamics, see § D.3.2. Consequently, we estimate

𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠) from the obtained samples by estimating the condi-

tional distribution. Here, we assume that the policy maker is aware

that dynamics are one sided and consequently only need to esti-

mate the dynamics for individuals who received 𝐷 = 1. Given our

results serves as a proof of concept, we defer deploying sophisti-

cated estimation methods to future work and literature addressing

selective labeling and corresponding estimation errors.



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Rateike, et al.

D.5 Online Learning Under Unknown Dynamics
We now provide details on the two different online learning ap-

proaches (see § 7.2): online learning with a cold start and online

learning with a warm start.

To compare with the offline approach, we assume that the on-

line cold start approach has access to the same base information.

However, it collects data iteratively through policy learning and

deployment. This is different from the offline approach where data

is collected with a different unknown suboptimal policy in the past

and provided at once. In our assumed cold start online learning, the

learner samples 500 random datapoints (without replacement) at

each time step until all data is collected (with less than 500 in the

last step). This results in 11 policy updates. By the last time step,

the learner shares the same base information as the offline learner,

differing only in the collected decisions and the resulting implica-

tions for learning from partially observed labels.

In the online warm start approach, we assume the learner has

access to the historical dataset and can interact with the environ-

ment. Initially, it learns probabilities using the available historical

data and subsequently collects new data periodically by applying

the policy to the entire population, observing the next time steps’

data. Our results show the policy learned through these iterative

updates after 10 steps.

D.6 Computational ReSources and Run Time
Computational ReSources. All experiments were conducted on

a MacBook Pro (Apple M1 Max chip). Since we can efficiently

solve the optimization problem, these experiments are executed on

standard hardware, eliminating the necessity for using GPUs.

Run Time. The optimization problems to find long-term policies

in all experiments within this paper were consistently solved in

under 10 seconds. Regarding the training of short-term fair poli-

cies on 5000 samples, the run times were approximately 20-23 min-

utes: 1245.92 seconds for short-EOP (𝜆 = 1), 1244.25 seconds for

short-EOP (𝜆 = 2), and 1380.50 seconds for short-MAXUTIL.

D.7 Maximum Qualification Policy under
Two-sided Dynamics

MaximumQualifications. In the following section (§ E), we present
results not only for the policy introduced in the main paper, which

seeks to maximize utility subject to EOP-fairness, but also intro-

duce another example of a fair policy. This alternative policy aims

to maximize qualifications while maintaining non-negative utility.

Maximum Qualifications. Inspired by [91], assume a non-profit

organization offering loans. Their goal is to optimize the overall

payback ability (Q) of the population to promote societal well-being.

Additionally, they aim to sustain their lending program by prevent

non-negative profits (U) in the long-term. We thus seek for:

𝜋★QUAL := arg𝜋 maxQ(𝜋) subj. to U(𝜋) ≥ 0; 𝐶conv (𝑇𝜋 )

Two-sided Dynamics. In addition to one-sided dynamics, where

only positive decisions impact the future, we also consider two-

sided dynamics [91], where both positive and negative decisions

lead to feature changes. We investigate two types of two-sided

dynamics. Under recourse dynamics, individuals receiving un-

favorable lending decisions take actions to improve their credit

scores, facilitated through recourse [35] or social learning [27]. In

discouraged dynamics, unfavorable lending decisions demotivate

individuals, causing a decline in their credit scores. This may hap-

pen when individuals cannot access loans for necessary education,

limiting their financial opportunities.

E ADDITIONAL RESULTS
In this section, we provide additional results related to the results

discussed in § 7. Our analysis centers around our guiding example,

employing the data distributions Sourced from FICO [68] unless

otherwise specified. The structure of this section is as follows:

• In § E.1 we provide additional results for different starting

distributions.

• In § E.2 we provide additional results the comparison to

short-term policies.

• In § E.3 we provide additional results for varying the fairness

threshold 𝜖 for our policy.

• In § E.4 we provide additional results for the different dy-

namic types (one- and two-sided).

• In § E.5 we provide additional results for varying the speed

at which feature changes occur (slow, medium, fast).
• In § E.6 we provide additional results for offline learning

under unknown dynamics.

• In § E.6 we provide additional results for online learning

under unknown dynamics.

• In § E.7 we provide additional results for short-term and

long-term interventions during policy deployment.

E.1 Different Starting Distributions
We provide additional results for the results shown § 7.1. Here We

run simulations on 10 randomly sampled initial feature distributions

𝜇0 (𝑥 | 𝑠), setting 𝜖 = 0.01, 𝑐 = 0.8. In addition to the results shown in

the main paper, we here display in Figure 4 the resulting trajectories

of all feature distributions.

E.2 Comparison to Static Policies
We provide additional results comparing our long-term policy to

short-term policies.

Static Policy Training. The short-term policies are logistic regres-

sion models implemented using PyTorch. The forward method com-

putes the logistic sigmoid of a linear combination of the input fea-

tures, while the prediction method applies a threshold of 0.5 to the

output probability to make binary predictions. The training process

is carried out via gradient descent, with the train function optimiz-

ing a specified loss function. The short-MAXUTIL policy is trained

using a binary cross-entropy loss. The fairness is enforced using a

Lagrangian approach (𝜆 = 2). The short-EOP policy is trained us-

ing a binary cross-entropy loss and regularization terms measuring

equal opportunity unfairness with 𝜆 as hyperparameters control-

ling the trade-off between predictive accuracy and fairness. Train-

ing is performed for 2000 epochs with a learning rate of 0.05. We

display results over 10 random initializations. The experiments in
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Figure 4: Convergence of feature distributions for 𝜋★EOP for different random starting distributions (colors) to unique stationary
distributions 𝜇=★. Trajectories over 200 time steps. 𝑐 =0.8, 𝜖 =0.01.

the main paper are shown for short-EOP with 𝜆 = 2. We show in

the following results for different 𝜆.

Feature and Outcome Trajectories. Figure 5 presents the trajecto-
ries of our long-term long-EOP (𝜋★EOP) and the static policies (un-

fair: short-MAXUTIL, fair: short-EOP (𝜆 = 2)) over 200 time steps

for a single short-term policy seed. We observe that our long-term

policy converges to a stationary distribution and remains there

once it has found it. In contrast, the trajectories of the short-term

policies display non-stationarity, covering a wide range of distribu-

tions, as evidenced by the overlapping region. This indicates that

the short-term policies exhibit a high variance and do not stabilize

into a stationary distribution.

Utility, Fairness and Loan and Repayment Probabilities. Figure 6
(top left) displaysU and EOPUnf over the first 100 time steps. We

observe that short-term policies, which are updated at each time

step, tend to exhibit greater variance compared to the long-term pol-

icy, which remains fixed at 𝑡 = 0 - even as the underlying data dis-

tribution evolves in response to decision-making. Among the two

short-term fair policies, the fairer one (𝜆 = 2) approaches nearly

zero unfairness, whereas the less fair one (𝜆 = 1) displays a higher

level of unfairness. Specifically, the more fair policy (𝜆 = 2) reaches

a low (negative) utility, while the less fair one (𝜆 = 1) maintains

a higher (though still negative) utility. The unfair short-term pol-

icy (UTILMAX) achieves positive utility but does so at the cost of a

high level of unfairness. This highlights the trade-off between fair-

ness and utility that short-term policies encounter. Conversely, our

long-term fair policy maintains a level of unfairness close to zero

while experiencing only a modest reduction in utility compared to

the unfair short-term policy. This underscores our policy’s capacity

to attain long-term fairness while ensuring a higher level of util-

ity, leveraging the long-term perspective to effectively shape the

population distribution.

Figure 6 (top right, bottom left) presents the loan probability

P(𝐷 = 1 | 𝑆 = 𝑠) and payback probability P(𝑌 = 1 | 𝑆 = 𝑠) for
non-privileged (𝑆 = 0) and privileged (𝑆 = 1) groups. In addition to

the results presented in the main paper (Figure 2a), we observe a

difference between the two short-term fair policies in our analysis in

this appendix. Themore equitable policy (𝜆 = 2) achieves a low level

of unfairness by granting loans with a probability of 1 to individuals

across all social groups. The less equitable policy (𝜆 = 1) provides

loans to the underprivileged group with an average probability of

approximately 0.85, while the privileged group receives loans at an

average probability of around 0.9.

Crucially, the less equitable policy (𝜆 = 1) exhibits a much higher

variability in loan approval probabilities for the underprivileged

group across different time steps compared to the privileged group.

This highlights that unfairness does not solely manifest at the

mean level but also in the variability across time. Both policies

tend to grant loans at probabilities exceeding the actual repayment

probabilities within the population. This suggests an "over-serving"

phenomenon, implying that the policies on average extend loans

to individuals who may not meet the necessary qualifications for

borrowing.

In contrast, our policy maintains stability and converges to a low

difference in loan approval probabilities between groups without

significant temporal variance. Importantly, our loan approval prob-

abilities remain below the loan repayment (as for the short-term

unfair policy (UTILMAX)) probabilities, indicating that, on average,

the policies are extending loans to individuals who are indeed eligi-

ble for them. In addition, for our policy, the gap between loan provi-

sion and repayment probabilities is similar across sensitive groups.

Effective Utility, Inequity and Unfairness. Figure 7 illustrates ef-
fective (accumulated) measures of utility, inequity, and (EOP) un-

fairness over time for the different policies, where results for static

policies are reported over 10 random initializations. We observe

that the short-term unfair policy (short-UITLMAX consistently ac-

cumulates the highest utility across all dynamics, while simultane-

ously maintaining a high level of effective unfairness and inequal-

ity. Conversely, the short-term fair policies (short-EOP(𝜆 = 1) and

(𝜆 = 2)) exhibit negative effective utility, but they do achieve lower

levels of effective fairness and inequity.

For our long-term policy (long-EOP), we find that it accumulates

positive utility over time. Although its utility remains below that of

the short-term unfair policy, our policy exhibits very low levels of

effective unfairness. Importantly, it also yieldsminimal accumulated

inequity, even though it was not specifically optimized for this.

Analyzing the cumulative effects of policies is essential for eval-

uating the long-term impact of each policy choice. This analysis

can, for instance, help determine whether investing in fairness pays

off in the long-term and whether sacrificing short-term fairness in

the initial stages ultimately benefits society in the long run.
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Figure 5: Convergence of feature distributions for our long-term long-EOP (𝜋★EOP) and the static policies (unfair: short-MAXUTIL,
fair: short-EOP (𝜆 = 2). Trajectories over 200 time steps. 𝑐 = 0.8, 𝜖 = 0.026. Last distribution values are marked with ★.

Figure 6: Results for our long-term long-EOP (𝜋★EOP) and the static policies (unfair: short-MAXUTIL, fair: short-EOP (𝜆 = 1 and
𝜆 = 2). Top Left: Utility (solid, ↑) with 𝑐 = 0.8 and EOP-Unfairness (dashed, ↓). Top right / Bottom left: Loan (solid) and payback
probability (dashed) per policy and sensitive 𝑆 . Colors indicate policies as in Figure 5.

Figure 7: Results for our long-term long-EOP (𝜋★EOP) and the static policies (unfair: short-MAXUTIL, fair: short-EOP (𝜆 = 2). Effective
(cumulative) utilityU, inequity I, and (EOP) unfairness EOPUnf for different policies.

E.3 Different Fairness Levels
We provide additional results, where we use the initial distribution

𝜇0 (𝑥 | 𝑠) from FICO and solve the optimization problem provided

in the main paper for four different fairness levels 𝜖 . This results in

four policies 𝜋★EOP.

Feature and Outcome Trajectories. Figure 8 presents the trajecto-
ries of 𝜋★EOP over 200 time steps for different fairness thresholds 𝜖 .

We observe that although the convergence process, time, and final

stationary distribution (★) are very similar for different targeted

fairness levels.

Utility and Loan and Repayment Probabilities. Figure 9 (top left)

displays U and EOPUnf over the first 50 time steps (until conver-

gence). We observe that all policies converge to a similar utility

level while maintaining their respective 𝜖 level, confirming the ef-

fectiveness of our optimization problem. Figure 9 (top right, bot-

tom left) presents the loan probability P(𝐷 = 1 | 𝑆 = 𝑠) and pay-

back probability P(𝑌 = 1 | 𝑆 = 𝑠) for non-privileged (𝑆 = 0) and

privileged (𝑆 = 1) groups. While the probabilities across sensitive

groups ultimately stabilize close together in the long term, the ini-

tial 20 steps exhibit a large difference in loan and payback probabil-

ities. Optimizing for long-term goals may thus lead to unfairness

in the short term, and it is important to carefully evaluate the po-

tential impact of this on public trust in the policy.

E.4 Different Dynamic Types
Results in this subsection are for different dynamic types: one-sided,
recourse, and discouraged. See D.3 for more details on these spe-

cific dynamics. We solve both optimization problems for each of

the three dynamics, where solving the problem introduced in the

main paper provides 𝜋★EOP and solving the optimization problem

provided in § D.7 provides 𝜋★QUAL.

Feature and Outcome Trajectories. Figure 10 presents the trajec-
tories of 𝜋★EOP and 𝜋★QUAL over 200 time steps for different types of

dynamics. We observe that although the initial distribution remains
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Figure 8: Convergence of feature distributions for 𝜋★EOP for different fairness thresholds 𝜖 to unique stationary distributions
𝜇 = ★. Trajectories over 200 time steps. 𝑐 = 0.8.

Figure 9: Results for different 𝜖-EOP-fair 𝜋★EOP. Top Left: Utility (solid, ↑) with 𝑐 = 0.8 and EOP-Unfairness (dashed, ↓). Top right /
Bottom left: Loan (solid) and payback probability (dashed) per policy and sensitive 𝑆 .

unchanged, the convergence process, time, and final stationary dis-

tribution (★) differ depending on the dynamics. Notably, the station-

ary distribution of 𝜋★QUAL appears to be similar for one-sided and

discouraged dynamics. On the other hand, the results for all other

dynamics and policies demonstrate distinct but relatively close out-

comes.

Utility, Fairness and Loan and Repayment Probabilities. Figure 11
showcases the group-dependent probabilities of receiving a loan,

P(𝐷𝑡 = 1 | 𝑆 = 𝑠), and repayment, P(𝑌𝑡 = 1 | 𝑆 = 𝑠), for both the

non-privileged (𝑆 = 0) and privileged (𝑆 = 1) groups. The probabili-

ties are displayed for the convergence phase (first 50 time steps) for

policies 𝜋★EOP and 𝜋
★
QUAL across dynamics types. When the payback

probabilities are higher compared to the loan probabilities, it sug-

gests an underserved community where fewer credits are granted

than would be repaid. In the case of one-sided dynamics, we find

that for 𝜋★EOP, the loan and repayment probabilities are relatively

close to each other at each time step. However, for 𝜋★QUAL, the gap be-

tween repayment and loan probabilities widens as time progresses.

At convergence, both sensitive groups exhibit a repayment rate of

approximately 0.8, while the loan-granting probability is around 0.4.

This suggests that, in the one-sided dynamics, for 𝜋★QUAL the repay-

ment rate is higher compared to the loan granting rate, indicating

that a significant number of individuals who would repay their loan

are not being granted one. In the case of one-sided dynamics, sim-

ilar to the discouraged dynamics, we observe different short-term

and long-term effects. Specifically, for 𝜋★EOP, the probability of re-

ceiving a loan initially differs between the sensitive groups within

the first 20 time steps. However, as time progresses, these probabili-

ties tend to become closer to each other. This suggests a potential re-

duction in the disparity of loan access between the sensitive groups

over time under the influence of the 𝜋★EOP policy. In the case of

recourse dynamics, we observe that the loan granting and repay-

ment probabilities tend to stabilize closely together in the long term

across sensitive groups and under both policies—except for 𝜋★QUAL
when 𝑆 = 1. In this particular case, the 𝜋★QUAL policy sets 𝜋 (𝐷 = 1 |
𝑋 = 𝑥, 𝑆 = 1) = 0 for all values of 𝑥 . This scenario serves as an exam-

ple where optimizing for long-term distributional goals without en-

forcing predictive fairness constraints can lead to individuals with

a high probability of repayment being consistently denied loans.

E.5 Different Dynamic Speeds
We begin by assuming one-sided dynamics and then introduce vari-

ation in the speed of transitioning between different credit classes.

This variation encompasses three levels: slow, medium, and fast,
each representing the rate at which borrowers’ credit scores evolve

in response to decisions. Additional information about these spe-

cific dynamics can be found in § D.3. For each of the three dynam-

ics, we solve both introduced optimization problems to obtain 𝜋★EOP
as presented in the main paper and 𝜋★QUAL introduced in § D.7.

Feature and Outcome Trajectories. Figure 12 depicts the trajecto-
ries over 200 time steps for 𝜋★EOP and 𝜋

★
QUAL under different speeds of

one-sided dynamics. While the initial distribution remains the same

for all runs, the convergence process, time, and final stationary dis-

tribution (★) vary depending on the dynamics speed. Regarding the

group-dependent distribution of𝑌 , we observe that 𝜋★QUAL achieves a

higher distribution (which in addition is closer to the equal outcome
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Figure 10: Convergence of 𝜋★EOP and 𝜋★QUAL for different type of dynamics towards different unique stationary distributions 𝜇 = ★.
Trajectories over 200 time steps. Top four plots: feature distribution 𝜇𝑡 . Bottom left: distribution of the outcome of interest.
Equal feature/outcome distribution dashed. Initial distribution 𝜇0 =FICO, 𝑐 = 0.8, 𝜖 = 0.01.

Figure 11: Loan probability P(𝐷 = 1 | 𝑆 = 𝑠) (solid) and repayment probability P(𝑌 = 1 | 𝑆 = 𝑠) (dashed) for different type of
dynamics (one-sided, recourse, discouraged) and policies 𝜋★EOP, 𝜋

★
QUAL per sensitive attribute 𝑠 ∈ {0, 1}. Initial distribution 𝜇0 =

FICO, 𝑐 = 0.8, 𝜖 = 0.01.

distribution) compared to𝜋★EOP. This can be attributed to the fact that

𝜋★QUAL explicitly optimizes for maximizing the total distribution of𝑌 .

Additionally, we notice that for both policies slower dynamics result

in lower stationary distributions of 𝑌 compared to faster dynamics.

Utility, Fairness and Loan and Repayment Probabilities. Figure 13
depicts the group-dependent probabilities of receiving a loan, P(𝐷 =

1 | 𝑆 = 𝑠), and repayment, P(𝑌 = 1 | 𝑆 = 𝑠), for both non-privileged

(𝑆 = 0) and privileged (𝑆 = 1) groups. The probabilities are shown

for the convergence phase (initial 50 time steps) of policies 𝜋★EOP
and 𝜋★QUAL across different speeds of one-sided dynamics. Higher

payback probabilities compared to loan probabilities can indicate

an underserved community where fewer credits are granted than

would be repaid. Across all dynamics, we observe small differences

in the repayment distributions for each policy. The repayment prob-

abilities are consistently higher for the non-protected group com-

pared to the protected group. Moreover, in general, 𝜋★QUAL yields

higher repayment rates than 𝜋★EOP. However, the loan probabilities—

which indicate a group’s access to credit—exhibit differences across

dynamics and policies. As expected, the utility-maximizing 𝜋★EOP
generally provides higher loan rates compared to 𝜋★QUAL. While the

loan rates remain similar across dynamics for 𝜋★EOP, they vary for

𝜋★QUAL. Under slow dynamics, 𝜋★QUAL yields low loan probabilities

for the protected group, which then increases for medium and fast
dynamics. Furthermore for 𝜋★QUAL, the discrepancy between accep-

tance rates for sensitive groups is greatest at slow dynamics, and

decreases significantly at medium dynamics - at the expense of the

non-protected group. Finally, for fast dynamics, the acceptance

rates for sensitive groups are approximately equal.

These observations emphasize the importance of conducting fur-

ther investigations into the formulation of long-term goals, taking

into account their dependence on dynamics and the short-term con-

sequences. This includes not only considering the type of dynamics

(one-sided or two-sided), but also the speed at which individuals’

feature changes in response to a decision.

Effective Utility, Inequity and Unfairness. Figure 14 illustrates ef-
fective (accumulated) measures of utility, inequity, and (EOP) un-

fairness over time. For all dynamics, the policies align with their

respective targets. 𝜋★EOP accumulates the highest utility across all

dynamics while maintaining a low effective unfairness after an ini-

tial convergence period. On the other hand, 𝜋★QUAL exhibits a small

negative effective utility due to the imposed zero-utility constraint,

but achieves lower effective inequity by maximizing the total distri-

bution of the outcome of interest. We observe that the speed of dy-

namics does not significantly affect effective utility for both policies

and effective unfairness for the 𝜋★EOP policy. However the speed of

dynamics does have an impact effective inequity, although its effect

varies for each policy. Among the 𝜋★EOP policies, we find that the

medium dynamics result in the lowest effective inequity, whereas

among the 𝜋★QUAL policies, the fast dynamics exhibit the lowest ef-

fective inequity. While the effective utility is minimally affected

by the speed of dynamics in the case of 𝜋★EOP, we observe different

results for effective inequity. Among the 𝜋★EOP policies, the medium
dynamics result in the lowest effective inequity. Conversely, among
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Figure 12: Convergence of 𝜋★EOP and 𝜋★QUAL for different speeds of dynamics towards different unique stationary distributions
𝜇 = ★. Trajectories over 200 time steps. Left four plots: feature distribution 𝜇𝑡 . Right: distribution of the outcome of interest.
Equal feature/outcome distribution dashed. Initial distribution 𝜇0 =FICO, 𝑐 = 0.8, 𝜖 = 0.01.

Figure 13: Loan probability P(𝐷 = 1 | 𝑆 = 𝑠) (solid) and repayment probability P(𝑌 = 1 | 𝑆 = 𝑠) (dashed) for different speed of
one-sided dynamics (slow, medium, fast) and policies 𝜋★EOP, 𝜋

★
QUAL per sensitive attribute 𝑠 ∈ {0, 1}. Initial distribution 𝜇0 = FICO,

𝑐 = 0.8, 𝜖 = 0.01.

the 𝜋★QUAL policies, the fast dynamics exhibit the lowest effective

inequity. These observations highlight that the final outcomes of

decision policies are not only influenced by the type of dynamics

(one-sided and two-sided), but also by the speed of dynamics. It is

thus crucial to also consider the rate at which individuals are able

to change features within one time step. This consideration can

for example be important in the context of recourse, where not all

individuals may have the ability to implement the minimum rec-

ommended actions, potentially due to individual limitations. Con-

sequently, only a fraction of individuals would be able to move up

in their credit class in response to a negative decision.

E.6 Offline Learning Under Unknown Dynamics
We conduct additional experiments to investigate the impact of

estimation errors in the underlying distributions on the quality of

results on FICO (§ E.6.1) and COMPAS (§ E.6.2). Throughout we

assume partially observed outcomes of interests (labels) 𝑌 .

E.6.1 FICO Lending Example. We investigate the sensitivity of our

derived policy to the estimation of 𝑌 for different decision policies

compared to access to the true distribution of 𝑌 . In a pracical loan

example, label 𝑌 might be partially observed (i.e., observed only for

individuals who received a positive loan decision). In this case, the

estimate of𝑌 may no longer be as accurate for one sensitive group as

for another. Thereby, different policies reveal different amounts of

labels for different subgroups. We first generate a temporal dataset

comprising two time steps. These samples were drawn from the

FICO base distribution, and we assumed the dynamics of One-sided

General (as described in § D.3). The dataset is comprised of 50,000

samples aligning with the dataset scales employed in the fairness

literature, such as the Adult dataset [40]. We deploy two different

policies that influence the data observed at 𝑡 = 1, random and

biased, with the following formulations:

• random is defined by P(𝐷 = 1 | 𝑋, 𝑆) = 0.5 for all 𝑋, 𝑆 ;

• bias is defined for all 𝑆 by P(𝐷 = 1 | 𝑋, 𝑆) = 0.1 if 𝑋 <= 2

and for 𝑆 = 0 as P(𝐷 = 1 | 𝑋, 𝑆) = 0.3 if 𝑋 > 2 and for 𝑆 = 1

as P(𝐷 = 1 | 𝑋, 𝑆) = 0.9.

The true distribution of features and label at 𝑡 = 0 are shown

in Figure 15a. The distributions of decisions and observed labels

under the different policies are shown in Figures 15b - 15c.

We then estimate both ℓ (𝑦 |𝑥, 𝑠) and 𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠) from the ob-

served samples, with the latter being dependent on the former. Sub-

sequently, we solve the optimization problem (𝑐 = 0.9, 𝜖 = 0.00005)

using these estimated distributions yielding two different policies

(one per estimation). Consequently, we simulate the performance of

the discovered policies under the true distributions and 𝜇0 =FICO. In

the evaluation, we compare the results to the policy obtained under

the true probability estimate ℓ (𝑦 |𝑥, 𝑠) as supplied by FICO (true).

Feature and Outcome Trajectories. Figure 16 displays the trajecto-
ries of 𝜋★EOP for 200 time steps for the optimal policies obtained un-

der both the true and estimated distributions and dynamics. Notably,

the initial distribution remains the same, and the policies slightly

vary in their convergence process to the stationary distribution (★),

while staying close to each other. It is important to emphasize that

all policies successfully achieve a stationary distribution. This is due
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Figure 14: Effective (cumulative) utilityU, inequityI, and (EOP) unfairness EOPUnf for different policies (𝜋★EOP solid, 𝜋
★
QUAL dashed).

(a) True distributions of features and labels. (b) Distribution of decisions and observed la-
bels for random.

(c) Distribution of decisions and observed la-
bels for bias.

Figure 15: Data distributions for different temporal datasets based on FICO used to estimate label distributions and dynamics.

to the fact that even thoughwe employ estimated distributions as in-

puts for the optimization problem, we are still solving the optimiza-

tion problem for a policy that induces a stationary distribution that

satisfies the fairness criteria. We showcase this in the next results.

Utility, Fairness and Loan and Repayment Probabilities. Figure 17
(left) displays U and EOPUnf over the first 50 time steps (until con-

vergence). We observe that the policies exhibit a different level of

unfairness, while still achieving low unfairness. The policy derived

from the true probabilities and dynamics achieves lowest unfairness,

the policy derived from probabilities and dynamics collected under

a random policy has slightly higher unfairness, and the policy de-

rived from probabilities and dynamics collected under a biased pol-

icy has the highest unfairness. In terms of utility, where we aim for

maximization without imposing a strict constraint, we observe that

all policies exhibit a similar utility level. Figure 9 (middle, right) dis-

plays the loan probability P(𝐷 = 1 | 𝑆 = 𝑠) and payback probability
P(𝑌 = 1 | 𝑆 = 𝑠) for non-privileged (𝑆 = 0) and privileged (𝑆 = 1)

groups. While there is no difference in loan and payback proba-

bilities for the privileged group (𝑆 = 1) between the policies, we

observe a small difference for the unprivileged group (𝑆 = 0). The

policy derived from true probabilities and dynamics provides fewer

loans to the unprivileged group compared to the policy derived

from probabilities and dynamics collected under the random policy.

Interestingly, the policy derived from probabilities and dynamics

collected under a biased policy grants the most loans to the unprivi-

leged group. Note, that our unfairness metric in the left plot is equal

opportunity [25], not demographic parity [19]. Consequently, this

observation may be explained by the policy obtained from biased

estimation providing loans to a higher number of individuals from

the unprivileged group who may not be able to repay them. Thus,

while we do achieve a stationary distribution using estimated proba-

bilities, it is important to note that convergence to the intended fair

state is not guaranteed when estimation errors are present. How-

ever, if the estimations closely approximate the true distribution,

the resulting stationary distribution achieves similar utility and

fairness properties as the stationary distribution that would have

been achieved had the policy found under the true probabilities.

E.6.2 COMPAS Recidivism Example. We first generate a temporal

dataset comprising two time steps. For this, we use the samples

provided by the COMPAS dataset, and assume the dynamics of One-

sided General (as described in § D.3). The dataset is comprised of

5278 samples. We deploy two different policies that influence the

data observed, random, and bias, with the following formulations:

• random is defined by P(𝐷 = 1 | 𝑋 = 𝑥, 𝑆 = 𝑠) = 0.5 for all 𝑥, 𝑠 ;

• bias decides with the following probabilities

P(𝐷 = 1 | 𝑋 = 𝑥, 𝑆 = 𝑠) :=

(X1, X2) (0,0)(0,1)(0,2)(0,3)(1,0)(1,1)(1,2)(1,3)(2,0)(2,1)(2,2)(2,3)

S = 0 0.3 0.2 0.1 0.1 0.3 0.3 0.1 0.1 0.1 0.1 0.1 0.1

S = 1 0.5 0.4 0.3 0.2 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2

The true distribution of features and label at 𝑡 = 0 are shown

in Figure 18a. The distributions of decisions and observed labels

under the different policies are shown in Figures 18b and 18c.

We then estimate 𝛾 (𝑠), ℓ (𝑦 |𝑥, 𝑠) and one-sided 𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠) (for
𝑑 = 1) from the observed samples. Subsequently, we solve the op-

timization problem (5) with 𝑐 = 0.65, 𝜖 = 0.001, using these esti-

mated distributions. This gives us two different policies (one per

estimation), random and bias. For comparison, we also show the

performance of a policy learned under optimal conditions, i.e., from

known dynamics true. Consequently, we simulate the performance

of the discovered policies under the true distributions and 𝜇0 esti-

mated from COMPAS.
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Figure 16: Convergence of 𝜋★EOP under true and estimations of ℓ (𝑦 |𝑥, 𝑠) and 𝑔(𝑘 | 𝑥, 𝑑,𝑦, 𝑠) and under different type of initial
policies (random, threshold, bias). 200 time steps, last time step marked ★. Top four plots: feature distribution 𝜇𝑡 . Bottom left:
distribution of the outcome of interest. Equal feature/outcome distribution dashed.

Figure 17: Results for our 𝜋★EOP under true and estimations of ℓ (𝑦 |𝑥, 𝑠) under different type of initial policies (random, threshold,
bias). Top Left: Utility (solid, ↑) and EOP-Unfairness (dashed, ↓) over first 50 time steps. Remaining: Loan (solid) and payback
probability (dashed) per policy and sensitive 𝑆 .

(a) True distributions of features and labels. (b) Distribution of decisions and observed la-
bels for random.

(c) Distribution of decisions and observed la-
bels for bias.

Figure 18: Data distributions for different temporal datasets based on COMPAS.

Feature and Outcome Trajectories. Figure 19 displays the trajecto-
ries of 𝜋★EOP for 200 time steps for the optimal policies obtained un-

der both the true and estimated distributions and dynamics. Note,

the initial distribution remains the same. As above for the results

from the FICO dataset, the policies slightly vary in their conver-

gence process to a stationary distribution (★), while staying close

to each other. As above, we emphasize that all policies successfully

achieve a stationary distribution. This is due to the fact that even

though we employ estimated distributions as inputs for the opti-

mization problem, we are still solving the optimization problem for

a policy that induces a stationary distribution that satisfies the fair-

ness criteria. We showcase this in the next results.

Long-term Utility and Fairness. Figure 20 illustrates the equilib-
rium values ofU (left side of each subplot) and 𝜖−EOPUnf (right side
of each subplot). For 𝜖 − EOPUnf, the dashed line represents 𝜖 = 0,

while the gray shaded area depicts the range where 𝜖−EOPUnf is sat-
isfied. Each subplot reports results for a different policy 𝜋★EOP learned

under different unfairness relaxations 𝜖 and costs 𝑐 . We present re-

sults for learning policies from unknown dynamics and estimate the

dynamics using historical data collected a random policy and with a

bias (which grants less bail for the underprivileged). These results

are then compared to policies learned from known dynamics, true.
We observe that policies learned from unknown dynamics con-

sistently yield a lower level of utility compared to true across the

values of 𝜖 and 𝑐 considered here. This difference can be attributed

to the fact that true has learned to maximize utility while ensuring

𝜖-EOPUnf. Policies under unknown dynamics, however, experience

sub-optimal utility due to misestimation of the system’s dynamics.

The impact of this misestimation on fairness varies. When 𝑐 =

0.6, policies learned under unknown dynamics result in more fair

equilibria (closer to the dashed line) compared to the equilibrium

of the true policy, which is located on the outer edge of the 𝜖-

boundary. Conversely, for 𝑐 = 0.75, the resulting equilibria for poli-

cies under unknown dynamics are slightly more unfair and located

outside of the 𝜖 boundary. Additionally, these equilibria exhibit a
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Figure 19: Convergence of 𝜋★EOP under offline estimations of ℓ (𝑦 |𝑥, 𝑠) and 𝑔(𝑘 |𝑥, 𝑑,𝑦, 𝑠) from historical datasets collected under
different type of policies (random, bias) compared to known dynamics (true). 200 time steps, stationary distribution ★. Plots
show the feature distribution 𝜇𝑡 for 𝑥 = 1, . . . , 12, and distribution of the outcome of interest. Equal feature/outcome distribution
dashed. Results are for 𝜋★EOP reported in the main paper with 𝑐 = 0.65, 𝜖 = 0.01

lower total acceptance rate among qualified individuals compared

to true. This suggests that policies learned from unknown dynam-

icsmay suffer from reduced utility at equilibrium. Their outcomes in

terms of fairness and acceptance rates at equilibrium appear highly

dependent on the specific scenario and parameters considered.

Between bias and random, we observe a small difference in

utility, with the biased policy yielding slightly less utility than the

random one. Fairness differences are marginal. Acknowledging that

this observation might not extend to other setups, in our specific

scenario, it implies that the policy responsible for dataset collection

has a minimal impact on the estimation error. It rather seems that

the crucial factor for dataset quality is the amount of data and the

coverage of the feature space. We proceed to explore an online

learning setup under unknown dynamics, where the quantity of

data and coverage play a crucial role in the early steps.

E.7 Short- and Long-term Interventions During
Policy Deployment

We briefly describe additional experiments concerning short- and

long-term interventions. We run simulations on 3 randomly sam-

pled feature distributions 𝜇0 (𝑥 | 𝑠), setting 𝜖 = 0.01, 𝑐 = 0.8.

In Figure 21, the top two plots (21a) and (21b) reveal that a change

in the feature distribution (four plots from the left) leads to a shift in

the distribution of decisions, influencing the group fairness criteria

(EOP-fairness, right plot) considered here.

In (21c) and (21d), we observe cumulative measures for different

approaches. While short-term interventions do not seem to signifi-

cantly alter the accumulated utility, their impact on fairness varies

depending on the scenario. Unfairness sometimes decreases (for

blue and green populations) and other times increases (for the or-

ange population).

The long-term intervention exemplified in the paper suggested

implementing a recourse policy. Interestingly, the deployment of

such a policy increases cumulative utility and decreases cumulative

EOP-unfairness for all setups.

F EXAMPLE SCENARIOS
In this section, we discuss assumptions underlying the generative

model presented in the main paper (which assumes a causal rela-

tionship 𝑋 → 𝑌 ) in F.1. Then, we illustrate how our model can be

applied to a different generative model (which assumes causal di-

rection 𝑌 → 𝑋 ) in F.2.

F.1 Assumptions of the Guiding Data
Generative Model

In this section, we discuss the assumptions taken in the data gener-

ative model introduced in § 2.



Designing Long-term Group Fair Policies in Dynamical Systems FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

(a) 𝑐 = 0.6, 𝜖 = 0.01 (b) 𝑐 = 0.75, 𝜖 = 0.01

(c) 𝑐 = 0.6, 𝜖 = 0.01 (d) 𝑐 = 0.75, 𝜖 = 0.01

Figure 20: Long-termutility and fairness leaning under unknowndynamics fromhistorical data collected under different policies
(random, bias) compared to known dynamics (true). Results on COMPAS for different cost 𝑐 and fairness relaxations 𝜖 at 𝑡 = 200.

Assumptions F.1. 𝑆 is a root node and 𝑋𝑡 , 𝑌𝑡 and 𝐷𝑡 (potentially)
depend on 𝑆 .

It is commonly assumed in the causality and fairness literature

that sensitive features are root nodes in the graphical representation

of the data generative model [11, 37, 43], although there is some

debate on this topic [30, 52]. The assumption that the sensitive

attribute 𝑆 influences𝑋𝑡 is based on the observation that in practical

scenarios, nearly every (human) characteristic is causally influenced

by the sensitive attribute [11, 43]. In some cases, it is also assumed

that 𝑆 influences𝑌𝑡 [11], while in other cases, this assumption is not

made [46]. The extent to which the decision𝐷𝑡 is directly influenced

by the sensitive attribute 𝑆 depends on the decision policy being

employed. Policies that strive for (statistical) fairness often require

explicit consideration of the protected attribute in their decision-

making process [13, 19, 25].

Assumptions F.2. The outcome of interest 𝑌𝑡 depends on features
𝑋𝑡 .

The assumption that changes in𝑋𝑡 lead to changes in𝑌𝑡 is preva-

lent in scenarios involving lending [15, 17, 31, 46]. This assumption

is also implicit in problems where individuals seek recourse, e.g.,

via minimal consequential recommendations [34] or social learn-

ing [27].

Assumptions F.3. Decision 𝐷𝑡 depends on features 𝑋𝑡 .

In algorithmic decision-making, the primary objective of a policy

is typically to predict the unobserved label or outcome of interest,

denoted as 𝑌 , based on the observable features, denoted as 𝑋 [72].

We make the assumption that an individual’s observed features

at a particular point in time are sufficient to make a decision and

conditioned on these features, the decision is independent of past

features, labels, and decisions. This assumption aligns with prior

work in the field [15, 34, 91].

Assumptions F.4. An individual’s sensitive attribute 𝑆 is im-
mutable over time.

For simplicity, we assume that individuals do not change their

sensitive attribute. This assumption aligns with previous works that

consider a closed population [15, 17, 46, 76]. A closed population

refers to a group of individuals that remains constant throughout

the study or analysis. It implies that there are no additions or re-

movals from the population of interest. Other work considers that

individuals join and leave the population over time, leading to a

changing distribution of the sensitive attribute [26]. The assumption

that individuals do not change their sensitive attribute is controver-

sial because, on the one hand, social categories are often ontologi-

cally unstable [4, 30], and as such their boundaries are not clearly

defined and dynamic. On the other hand, it ignores that individu-

als may be assigned identities at birth which they have the agency

to correct at a given time. For example, an individual assigned one

religion at birth may have a different religion at a later stage in life.

Assumptions F.5. An individual’s next step’s features𝑋𝑡+1 depend
on its current step’s feature 𝑋𝑡 , decision 𝐷𝑡 , outcome of interest 𝑌𝑡 ,
and sensitive 𝑆 .
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(a) Short-term interventions on feature distribution 𝜇𝑡 at 𝑡 =3.

(b) Long-term interventions on dynamics 𝑔 (𝑘 |𝑥,𝑑, 𝑦, 𝑠 ) (fair recourse policy).

(c) Cumulative utility/fairness. Short-term interventions. (d) Cumulative utility/fairness. Long-term interventions.

Figure 21: Distribution shifts due to short-term (a) and long-term (b) interventions. Left four plots: Distributions of features 𝑋 .
Right plots: EOP-fairness dashed, 𝜖-EOP-fair gray (𝜖 = 0.01). 200 time steps, 𝑐 =0.8. Colors: random initial feature distributions.

This assumption, as discussed in previous literature, can be attrib-

uted to either bureaucratic policies [46] or changes in individual be-

havior, in response to recommendations [35] or social learning [27].

In the lending context, it is commonly assumed that the higher the

credit score the better. Then the assumption is: individuals approved

for a loan (𝐷 = 1) experience a positive score change upon success-

ful repayment (𝑌 = 1) and a negative score change in case of default

(𝑌 = 0), while individuals rejected for a loan (𝐷 = 0) are assumed

to have no score change [15, 17, 46]. In scenarios where individuals

who are not granted a loan (𝐷 = 0) seek recourse, it would be as-

sumed that a negative decision leads to an increase in credit score,

to elicit a positive decision change in subsequent time steps [27, 35].

For the transition probabilities to be time-homogeneous, we take

the following assumptions:

Assumptions F.6. Dynamics 𝑔(𝑘 | 𝑥, 𝑑,𝑦, 𝑠) remain fixed over
time.

This is a common assumption in the literature [15, 17, 31, 91]. Al-

though real-world data often exhibits temporal changes, we make

the simplifying assumption of static dynamics. We can treat the dy-

namics as constant for specific durations. This is reasonable in situ-

ations where changes are based on policies involving bureaucratic

adjustments [46] or algorithmic recourse recommendations [34],

and where it is desirable for these policies to remain unchanged or

not be retrained at every time step [62]. In practical applications,

MDPs with time-varying transition probabilities present challenges,

and the literature addresses this through online learning algorithms

(e.g., [45, 88]).

Assumptions F.7. Label distribution ℓ (𝑦 |𝑥, 𝑠) remains fixed over
time.

This assumption is widely recognized in the literature [15, 17,

27, 31, 35, 91]. However, in real-world scenarios, the relationship

between input data 𝑋𝑡 and the target output 𝑌𝑡 may change over

time, resulting in changes in the conditional distribution ℓ (𝑦 |𝑥, 𝑠).
This phenomenon is commonly referred to as concept drift [23, 47].
In the lending scenario, concept drift may arise from changes in

individuals’ repayment behavior or alterations in the process of
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Figure 22: Data generative model: qualifications over time.
Time steps (subscript) 𝑡 = {0, 1, 2}.

generating credit scores based on underlying features like income,

assets, etc.

F.2 Additional Example: Qualifications over
Time

In this section, we provide an additional example, which could

also be covered by our framework. The example was provided

by [91] with their data generative model displayed in Figure 22.

The primary distinction from the example presented in Section 2

lies in the assumption that 𝑌𝑡 → 𝑋𝑡 . [91] employ their model

to replicate lending and recidivism scenarios over time in their

experiments, using FICO and COMPAS data, respectively. However,

most prior work has modeled the (FICO) lending examples as𝑋𝑡 →
𝑌𝑡 [15, 17, 46]. The same holds for recidivism (COMPAS) [70]. We,

therefore, frame the example as a repeated admission example

where 𝑌𝑡 denotes a (presumably hidden) qualification state at time

𝑡 , following [43, 67].

Data Generative Model. Let an individual with protected attribute
𝑆 (e.g., gender) at time 𝑡 be described by a qualification𝑌𝑡 and a non-

sensitive feature 𝑋𝑡 (e.g., grade or recommendations levels). We as-

sume the sensitive attribute to remain fixed over time, and drop the

attributes time subscript. For simplicity, we assume binary sensitive

attribute and qualification, i.e., 𝑆,𝑌𝑡 ∈ {0, 1} and a one-dimensional

discrete non-sensitive feature𝑋𝑡 ∈ Z. Let the population’s sensitive
attributes be distributed as 𝛾 (𝑠) := P(𝑆 = 𝑠) and assume them to re-

main constant over time.We assume𝑌𝑡 to depend on 𝑆 , such that the

group-conditional qualification distribution at time 𝑡 is 𝜇𝑡 (𝑦 | 𝑠) :=
P(𝑌𝑡 = 𝑦 | 𝑆 = 𝑠). For example, different demographic groups may

have different qualification distributions due to structural discrimi-

nation in society. We assume that the non-sensitive features 𝑋𝑡 are

influenced by the qualification 𝑌𝑡 and, possibly (e.g., due to struc-

tural discrimination), the sensitive attribute 𝑆 . This leads to the fea-

ture distribution 𝑓 (𝑥 |𝑦, 𝑠) := P(𝑋𝑡 = 𝑥 | 𝑌𝑡 = 𝑦, 𝑆 = 𝑠), We assume

that there exists a policy that takes at each time step 𝑡 binary deci-

sions𝐷𝑡 (e.g., whether to admit) based on𝑋𝑡 and (potentially) 𝑆 and

decides with probability 𝜋 (𝑑 | 𝑥, 𝑠) := P(𝐷𝑡 = 𝑑 | 𝑋𝑡 = 𝑥, 𝑆 = 𝑠).
Consider now dynamics in which the decision 𝐷𝑡 made at one

time step 𝑡 , directly impacts an individual’s qualifications at the next

step,𝑌𝑡+1. Assume the transition from the current qualification state

𝑌𝑡 to the next state 𝑌𝑡+1 is determined by the current qualification

state𝑌𝑡 , decision𝐷𝑡 and (potentially) sensitive attribute 𝑆 . For exam-

ple, upon receiving a positive admission decision, an individual may

be very motivated and increase their qualifications. However, due to

structural discrimination, the extent of the qualification changemay

be influenced by the individual’s sensitive attribute. We denote the

probability of an individual with 𝑆 = 𝑠 changing from qualification

𝑌𝑡 = 𝑦 to 𝑌𝑡+1 = 𝑘 in the next step in response to decision 𝐷𝑡 = 𝑑

as dynamics 𝑔(𝑘 | 𝑦,𝑑, 𝑠) := P(𝑌𝑡+1 = 𝑘 | 𝑌𝑡 = 𝑦, 𝐷𝑡 = 𝑑, 𝑆 = 𝑠). Cru-
cially, the next step qualification state (conditioned on the sensitive

attribute) depends only on the present state qualification and deci-

sion, and not on any past states.

Dynamical System. We can now describe the evolution of the

group-conditional qualification distribution 𝜇𝑡 (𝑦 | 𝑠) over time 𝑡 .

The probability of a qualification change from𝑦 to 𝑘 in the next step

given 𝑠 is obtained by marginalizing out decision 𝐷𝑡 , resulting in

P(𝑌𝑡+1 = 𝑘 | 𝑌𝑡 = 𝑦, 𝑆 = 𝑠)

=
∑︁
𝑥𝑑

𝑔(𝑘 | 𝑦,𝑑, 𝑠)𝜋 (𝑑 | 𝑥, 𝑠) 𝑓 (𝑥 |𝑦, 𝑠) . (35)

These transition probabilities together with the initial distribution

over states 𝜇0 (𝑦 | 𝑠) define the behavior of the dynamical system.

In our model, we assume that the dynamics 𝑔(𝑘 | 𝑦,𝑑, 𝑠) are time-

independent, meaning that the qualification changes in response to

the decision, the previous qualification and the sensitive attribute

remain constant over time. We also assume that the distribution of

the non-sensitive features conditioned on an individual’s qualifi-

cation and sensitive attribute 𝑓 (𝑥 |𝑦, 𝑠) does not change over time

(e.g., individuals need a certain qualification to generate certain

non-sensitive features). Additionally, we assume that the policy

𝜋 (𝑑 | 𝑥, 𝑠) can be chosen by a policymaker and may depend on time.

Under these assumptions, the probability of a feature change de-

pends solely on the policy 𝜋 and sensitive feature 𝑆 .
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