
Model ChangeLists: Characterizing Updates to ML Models
Sabri Eyuboglu

eyuboglu@stanford.edu

Stanford University

Stanford, California, United States

Karan Goel

Stanford University

Stanford, California, United States

Arjun Desai

Stanford University

Stanford, California, United States

Lingjiao Chen

Stanford University

Stanford, California, United States

Mathew Monfort

Amazon Web Services

Seattle, Washington, United States

Christopher Ré

Stanford University

Stanford, California, United States

James Zou

Stanford University

Stanford, California, United States

ABSTRACT
Updates to Machine Learning as a Service (MLaaS) APIs may affect

downstream systems that depend on their predictions. However,

performance changes introduced by these updates are poorly doc-

umented by providers and seldom studied in the literature. As a

result, API producers and consumers are left wondering: do model
updates introduce performance changes that could adversely affect
users’ system? Ideally, producers and consumers would have access

to a detailed ChangeList specifying the slices of data where model

performance has improved and degraded since the update. But,

producing a ChangeList is challenging because it requires (1) dis-

covering slices in the absence of detailed annotations or metadata,

(2) accurately attributing coherent concepts to the discovered slices,

and (3) communicating them to the user in a digestable manner. In

this work, we demonstrate, discuss, and critique one approach for

building, verifying, and releasing ChangeLists that aims to address

these challenges. Using this approach, we analyze six real-world

MLaaS API updates including GPT-3 and Google Cloud Vision. We

produce a prototype ChangeList for each, identifying over 100

coherent data slices on which the model’s performance changed

significantly. Notably, we find 63 instances where an update im-

proves performance globally, but hurts performance on a coherent

slice – a phenomenon not previously documented at scale in the lit-

erature. Finally, with diverse participants from industry, we conduct

a think-aloud user study that explores the importance of releasing

ChangeLists and highlights the strengths and weaknesses of our

approach. This serves to validate some parts of our approach and

uncover important areas for future work.

ACM Reference Format:
Sabri Eyuboglu, Karan Goel, Arjun Desai, Lingjiao Chen, Mathew Monfort,

Christopher Ré, and James Zou. 2024. Model ChangeLists: Characterizing

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0450-5/24/06

https://doi.org/10.1145/3630106.3659047

Updates to ML Models. In The 2024 ACM Conference on Fairness, Account-
ability, and Transparency (FAccT ’24), June 03–06, 2024, Rio de Janeiro, Brazil.
ACM,NewYork, NY, USA, 22 pages. https://doi.org/10.1145/3630106.3659047

1 INTRODUCTION
Modern software systems often depend on Machine Learning as

a Service (MLaaS) APIs developed by cloud providers (e.g. AWS,

GCP, Azure) or research organizations (e.g. OpenAI, HuggingFace).
The models behind these APIs are periodically updated and new

versions are released. However, to a consumer of an API, how a new

update will affect the workings of their broader system is typically

unclear. Consider, for example, a newspaper that uses an image

tagging API to source archival photos for retrospective stories [30].

Updates to the underlying model could lead to unexpected changes

in the workflow of photo editors and journalists who rely on the

system.

MLaaS producers (e.g. Google, OpenAI) rarely provide transpar-

ent evaluations of their updates, and those that do focus on global

metrics and vague notions of improvement. Release notes from API

producers are terse and provide little information. For example,

Microsoft’s Vision API (Feb ‘22 update) only notes “general per-

formance and AI quality improvements" [52], and OpenAI’s post

on the difference between two versions of GPT-3 cites only two

concrete examples of model outputs [56].

These release notes tell an incomplete story: saying that one

model improves on another obscures the fact that models may

perform very differently on fine-grained slices of data [15, 68]. Re-

turning to the newspaper example described above, image tagging

performance after a model update may improve globally while dete-

riorating on historic photos – the kind of photos commonly found

in the newspaper’s archives. Without more detailed evaluations,

both API producers and consumers are left wondering:

Do model updates introduce changes that adversely affect users’
systems?

While many studies include detailed comparisons of MLaaS

APIs [3, 26, 27, 64, 68], they lack comparisons of the same API

before and after an update. Recent work shows that API updates

can lead to performance drops on benchmarks [4], but the analysis

is limited to simple tasks and global measurements.

https://doi.org/10.1145/3630106.3659047
https://doi.org/10.1145/3630106.3659047

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.2/6/23, 6:53 PM Figure

127.0.0.1:5500/mocha/viz/mic/build/overview_table.html 1/1

API Update Global Metrics Slice Counts Most/Least Improved

Microsoft Computer Vision
Nov 2020 → Feb 2022

Accuracy
µ:

σ:

µ: "Street name signs"

µ: "Bathrooms with visible toilet"

Google Cloud Vision
Nov 2020 → Feb 2022

Accuracy
µ:

σ:

µ: "Motorcycle wheel"

µ: "Beds in hotel rooms"

EveryPixel
Nov 2020 → Feb 2022

Accuracy
µ:

σ:

µ: "Cats near windows and doors"

µ: "Sinks near cats"

OpenAI Text Davinci (GPT-3)
Mar 2022 → Nov 2022

F1-Score
µ:

σ:

µ: "Geography"

µ: "Basketball"

Cohere XLarge
Jun 2022 → Nov 2022

F1-Score
µ:

σ:

µ: "Baseball"

µ: "Geography"

AI21 Jurassic-1 Grande
May 2022 → November 2022

F1-Score
µ:

σ:

µ: "Who question"

µ: "Medicine"

Figure 1: Overview of Updates. We produce ChangeLists for three image tagging API updates (top) [18, 29, 51] and three question
answer API updates (bottom) [11, 45, 56]. From left to right, we provide the dates of the update, the global performance shift
across the dataset (𝜇), the global performance inconsistency (𝜎), the count of slices where performance improved and degraded
(statistically significant improvements and degradations in parentheses), and the slices with the largest improvements and
degradations (95% bootstrap confidence intervals in parentheses).

Answering this question would be easier if producers released

more detailed reports. To formalize this, we introduce the notion

of a ChangeList: an interactive report specifying the slices of data

where model performance has changed. ChangeLists allow users

to explore how the model’s behavior has changed on the slices most

important to their system. For the example above, the newspaper

should be able to draw conclusions like: “the updated API detects

objects in historic photos with 10% lower recall." Such conclusions

would inform decisions around whether or not to integrate the up-

date. However, producing a comprehensive ChangeList is difficult

due to 3 main challenges:

(1) For complex data types like images and natural language,

the set of slices that partition the data is extremely large

and unknown a priori. How can we gather coherent slices that
explain the change?

(2) When interpreting slices, we typically attribute concepts (e.g.
historic) to them. However, if the slice was discovered auto-

matically, it may not align perfectly with a concept, leading

to false conclusions about performance on the concept. How
do we quickly perform accurate attribution?

(3) The number of slices with significant changes can be very

large, and not all changes will be relevant to all users. How
do we help users surface slices most important to their system?

To better understand these challenges, we demonstrate and dis-

cuss one possible approach for building, verifying and releasing

ChangeLists for model updates. Our approach consists of three

phases:

(1) Discovery: First, we gather candidate slices by automati-

cally discovering candidate slices for the ChangeList. We

use contrastively-learned embeddings and a simple mixture

model to identify slices of data where the models differ [65].

Optionally, discovered slices can be refined using natural lan-

guage search powered by contrastively-learned embeddings

and open-source language models [9]. This is a straight-

forward adaptation of a recently proposed slice discovery

method [19]. There are many other methods that could also

be used to automatically discover slices [16, 23, 34, 37, 54, 74].

(2) Attribution: Next, we ascribe concepts to the discovered

slices. Via an interactive process termed micro-labeling, we
verify the accuracy of the attributions and dynamically cor-

rect them. Contrastively-learned embeddings (e.g. CLIP) are
used to guide an importance sampler [58] that surfaces a

small number of examples for labeling. Labeled examples

are then used to estimate the precision and recall of the user

attributions, and to update slices to reflect label feedback.

(3) Release: Finally, to help users understand model updates,

we prototype a simple web interface. The slices in the

ChangeList are indexed by cross-modal embeddings, and

are therefore easily searchable by text or image. Further, if

the ChangeList is missing slices, they can initiate discovery

and attribution to edit the ChangeList.

We apply this approach to study updates to six popular machine

learning APIs: three large language models (e.g. GPT-3) and three

image tagging models (e.g. Google Cloud Vision).

We produce one ChangeList per API update, which together

include over 100 coherent slices on which the model’s performance

changed significantly over time. These slices were not annotated

in the dataset and were discovered using phases 1 and 2 of the

approach described in Section 3. Of these, there are 63 slices in the

ChangeLists on which an API update introduced a statistically

significant degradation in performance. For example, between 2020

and 2022, the accuracy of a model from Google Cloud Vision on

the task of tagging “people" degraded by 17.7%-points for black

and white images. This phenomenon, where an update improves

performance globally but hurts performance on a coherent slice, has

not been documented at this scale in the literature and underscores

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

0.2 0.3 0.4 0.5 0.6 0.7
Mean F1-Score

Basketball (57)

Geography (52)

Long answers (>50 chars) (948)

Baseball (41)

Medicine (63)

Who question (328)

Sl
ice

 N
am

e

-0.05

+0.15

+0.11

+0.06

+0.01

+0.02

+0.09

-0.04

-0.02

+0.12

+0.05

+0.05

+0.03

+0.06

+0.01

-0.01

-0.02

+0.18

OpenAI Text Davinci v1 (Mar 2022)
OpenAI Text Davinci v2 (Nov 2022)

Cohere XLarge v1 (Jun 2022)
Cohere XLarge v2 (Nov 2022)

AI21 Jurassic-1 Grande v1 (May 2022)
AI21 Jurassic-1 Grande v2 (November 2022)

Figure 2: Shifts in QuestionAnswering Performance on Slices.
For six slices, we show the change in F1-score for all three
question answering APIs. The slices with the largest improve-
ment and degradation for each API are shown. The 𝑥-axis
shows the F1-score. The 𝑦-axis shows the name ascribed to
the slice in attribution and its size in parentheses.

the importance of releasing detailed ChangeLists alongside model

updates.

Finally, to better understand the role ChangeLists could play in

practice, we carried out a think-aloud user study with a diverse pool

of participants including engineers, product managers, researchers,

and open source developers working on or with MLaaS APIs. In

the interviews, participants emphasized the need for transparent

evaluations of API updates. They also commented on strengths

of our approach including the discovery and attribution phases,

while also highlighting important areas for improvement. Partic-

ipants suggested that ChangeLists, were they deployed, would

impact day-to-day processes around how people release and use

MLaaS APIs. Altogether, our findings underscore the importance

of releasing slice-based ChangeLists and provides insights for the

development ChangeLists into the future.

1.1 Prior Work
Evaluating MLaaS APIs. A growing number of publications in-

clude evaluations of MLaaS APIs. Some evaluate a single API in

depth [32]. Others compare several different APIs on the same task

[33, 67, 77]. For example, Chen et al. compare APIs from differ-

ent producers and demonstrate that performance varies by class

[6]. In the language modeling community, there have been sev-

eral large-scale efforts to evaluate MLaaS APIs [44, 73]. Several

studies discuss significant racial disparities in the performance of

MLaaS APIs [3, 39, 50]. More generally, evaluation frameworks

like Checklist and RobustnessGym applied to MLaaS APIs [27, 68]

demonstrate an array of vulnerabilities not discernible with stan-

dard evaluations. While some of these studies compare APIs from

different producers, few compare different versions of an API from

the same API. Recently, Chen et al. [4] showed that the accuracy of

ML APIs sometimes changes after an update. This analysis, which

is most similar to our own, is limited to simple classification tasks

and does not consider error consistency or slice-level differences in

performance.

Comparing Machine Learning Models. Prior studies have com-

pared machine learning models by measuring the consistency of the

errors made by different image classifiers [21, 23, 24, 28, 47, 76]. For

example, Mania et al. [47] measure the consistency of errors made

by different ImageNet classifiers with the same accuracy, showing

that error consistency is significantly higher thanwould be expected

if predictions from different models were independent. Building on

this, recent work explores how differences in model initialization

and architecture affect the consistency of errors [21, 28]. Instead of

using a fixed set of test inputs, others generate new inputs where

models disagree [43, 60, 75] or compare outputs of explanation

methods [35]. Finally, recent work proposes comparing the output

of post-hoc explanation methods applied to different models. For

example, Geirhos et al.measure the consistency of predictions using

Cohen’s kappa coefficient. In a study of object recognition models,

they find that the error consistency between convolutional neural

networks (CNN) is higher than the consistency between CNNs and

humans[23]. Similarly, Mania et al. measure the consistency of er-

rors made by different ImageNet classifiers with the same accuracy,

showing that error consistency is significantly higher than would

be expected if predictions from different models were independent

[47]. Fort et al. show that twomodels with the same architecture but

different random initializations exhibit significant inconsistency in

their predictions [21]. Building on this, Gontijo-Lopes et al. show
that the inconsistency in the errors of two models grows as their

training methodologies diverge [28]. While these studies measure

the inconsistency of model predictions, they don’t explore what this

inconsistency means for performance differences on fine-grained

slices.

Model and Dataset Reporting. Our work builds on a recent ef-

forts to standardize and improve the documentation of models and

datasets in the machine learning community [12, 22, 25, 53, 63, 69,

70]. Most similar to ours is the work of Crisnan et al., who develop

interactive design inquiry into interactive model cards [12].

2 MEASURING GLOBAL CHANGES IN REAL
API UPDATES

We first introduce change metrics, summary statistics that describe

the effect of a model update on performance. Our metrics measure

(1) the performance shift due to the update and (2) the inconsistency
of this shift across the data. We then apply these metrics to six real

API updates, motivating the need for fine-grained ChangeLists
Section 3.

Preliminaries.Consider a supervised learning setupwhere each
example (𝑋 , 𝑌) is composed of an input 𝑋 ∈ X (e.g. an image) and a

target 𝑌 ∈ Y (e.g. a binary label). Assume we have a loss function

(or point-wise metric) ℓ : Y ×Y → R. Additionally, we have black-
box access to two models trained for this task 𝑣 [1] , 𝑣 [2] : X → Y –

e.g. these models could serve predictions for the sameMLaaS API at

different points in time: 𝑣 [1] before an update and 𝑣 [2] after, or they
can correspond to two different models addressing the same task. To

compare the models, we collect their predictions𝑦
[𝑗]
𝑖

:= 𝑣 [𝑗] (𝑥𝑖) on
a dataset D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1

∼ P(𝑋,𝑌), where 𝑛 is the total number

of examples in the dataset.

Change Metrics. We define two change metrics in terms of

𝐷 = ℓ (𝑣 [1] (𝑋), 𝑌) − ℓ (𝑣 [2] (𝑋), 𝑌), the difference in loss between

the models,

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

(1) Performance Shift (on average, did the model improve as
a result of the update?). This metric estimates the expected

difference in losses,

𝜇ℓ = E[ℓ (𝑣 [1] (𝑋), 𝑌) − ℓ (𝑣 [2] (𝑋), 𝑌)] = E[𝐷] . (1)

Positive values of 𝜇 indicate that the model improved after

the update.

(2) Performance Inconsistency (is the shift in performance
inconsistent across the dataset?). This metric estimates the

standard deviation of the difference between the losses,

𝜎2

ℓ = Var[ℓ (𝑣 [1] (𝑋), 𝑌) − ℓ (𝑣 [2] (𝑋), 𝑌)] = Var[𝐷] . (2)

Larger values of 𝜎ℓ indicate that the models frequently dis-

agree, and the shift is not consistent. This metric is inspired

by prior consistency metrics [23, 28].

Example: zero-one loss. For the special case of the zero-one loss,
ℓ01 : Y ×Y → {0, 1}, we have

𝜇01 =
1

𝑛

𝑛∑︁
𝑖=1

([𝑦 [1]
𝑖

= 𝑦𝑖] − [𝑦 [2]
𝑖

= 𝑦𝑖]), 𝜎2

01
=

1

𝑛

𝑛∑︁
𝑖=1

[𝑦 [2]
𝑖

≠ 𝑦
[1]
𝑖

] − 𝜇2

01
.

Observe that 𝜇01 is simply the difference in accuracy between the

models, while 𝜎2

01
measures the disagreement between the models

that is left over after accounting for some of the performance shift.

The maximum 𝜎01 = 1 occurs when both models have the same

accuracy but disagree everywhere.

Discussion. These metrics allow us to measure when users should

be cautious in using an updated model. With positive performance

shift and no inconsistency, model updates can be integrated by

users safely. However, high performance inconsistency even ab-

sent performance shift is concerning, since the update may dis-

proportionately hurt performance on data important to the user’s

application.

2.1 Global Analysis of API Updates
Next, we use the change metrics we introduced to analyze six real

API updates: three updates on an image tagging task, and three on

a question answering task. We briefly discuss these tasks, with full

details in Appendix C.

Image Tagging. In image tagging, the input 𝑋 is an image and

category (e.g. horse) pair and the target 𝑌 ∈ {0, 1} is a binary label

indicating whether an object of the category is in the image. We

consider updates to three image tagging APIs: Microsoft Computer

Vision API, Google [29] Cloud Vision API, and EveryPixel [18] Image

Keywording Service. The predictions are sourced from History of

APIs [5], a longitudinal database of API predictions that includes

predictions for the LVIS dataset in November 2020 and February

2022. We analyze global performance changes using the point-wise

zero-one loss ℓ01 (𝑦,𝑦 [𝑖]) = 1[𝑦 = 𝑦 [𝑖]], as well as metrics that are

not point-wise: recall, precision, and F1-score.

We measure performance on the Large Vocabulary Instance

Segmentation (LVIS) dataset, a relabeling of the COCO dataset [31,

46] that reflects the breadth of categories output by image tagging

APIs (𝑛 = 1,577,603 across 1,203 categories). We additionally process

the API outputs to map to labels in LVIS (details in Appendix C).

Results. From Nov ’20 to Feb ’22, Google and Microsoft saw shifts

in mean zero-one loss 𝜇01 of +0.007 and +0.012 respectively (+0.04

and +0.059 F1), while EveryPixel saw a small degradation in 𝜇01 of

−0.005 (−0.029 F1). However, these shifts tell only a partial story: all

three exhibit non-zero performance inconsistency (𝜎01 > 0.15). To

put this into context, the predictions of the Google API (𝜎01 = 0.172

and 𝜎01 |𝑌 = 0.326) changed on 10 + % of positive examples.

Question Answering. In question answering, the input 𝑋 is a

natural language question optionally accompanied by context, and

the target 𝑌 is a list of gold answers. We consider updates to three

large language model APIs: OpenAI’s Text DaVinci (a.k.a GPT-3)

[1], Cohere’s X-Large generative model [11], and AI21’s Jurassic-1
Grande [45]. The predictions are sourced from HELM, a database of

API predictions [44]. Following prior work in QA [42, 44, 66], we

measure global performance changes using point-wise F1-score ℓ𝐹1.

This metric awards partial credit for string overlap by computing

the maximum F1-score between the tokens in the predicted text

and any one of the gold answers.

We measure performance on an ensemble of question answer-

ing datasets: NaturalQA [42], NarrativeQA [38], BoolQ [10], and

QUAC [7] (𝑛 = 4,470). This ensemble includes both open-book and

closed-book QA.

Results. All three updates led to increases in mean F1-score, with

𝜇𝐹1 of +0.038, +0.023, and +0.059 for OpenAI, Cohere, and AI21 re-

spectively. Again, these shifts tell a partial story: all updates exhibit

high performance inconsistency (𝜎𝐹1 > 0.3). Indeed, OpenAI’s F1-

score improved on 21.2% of examples after the update, but degraded

on 14%. This highlights that the global change metric, 𝜇𝐹1 = +0.038,

fails to explain the API’s behavior changes between updates.

Summary. Overall, both image tagging and question answer-

ing APIs showed improvements in mean performance metrics, but

these improvements were not uniform across all examples. Instead,

these APIs exhibited non-zero performance inconsistency, indi-

cating changes in performance on a significant portion of inputs

between updates. This highlights the limitations of considering

only global changes in performance when evaluating API updates,

and motivates the introduction of ChangeLists next.

3 CHARACTERIZING MODEL UPDATES IN
DETAIL

These findings highlight the importance of producing a more fine-

grained understanding of updates. This motivates our key proposal:

the introduction of a ChangeList (Section 3.1) to explain the ob-

served performance shift and inconsistency using changes in fine-

grained slices, and an interactive process to build them (Section 3.2).

3.1 The ChangeList: A Fine-Grained
Characterization of Model Updates

For a user, the decision onwhether to use an updatedmodel requires

understanding the data examples that account for performance

shift and inconsistency. Users seek explanations that focus on the

data important to their application. We formalize this relationship

through slices of data important to users, and define ChangeLists
in terms of these slices.

Slices (S). A slice is a subset of data examples that share some-

thing in common e.g. in object recognition, the set of images with

dim lighting would constitute a slice. Formally, we represent a

slice with a random variable 𝑆 ∈ {0, 1} and a set of 𝑘 slices with

S = {𝑆 (𝑗) }𝑘
𝑗=1

∈ {0, 1}𝑘 , with joint distribution 𝑃 (𝑋,𝑌, S) over

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

inputs, targets and slices. Each example has a realization of the

slice random variables {𝑠 (𝑗)
𝑖

}𝑛
𝑖=1

. If 𝑠
(𝑗)
𝑖

= 1, then example (𝑥𝑖 , 𝑦𝑖)
is in slice 𝑆 (𝑗) . In practice, datasets do not include realizations for

all possible slices, e.g. not including annotations for dim lighting.

Intuitively, we would like a ChangeList to present users with slices
alongside human-readable descriptions and metrics quantifying

how their performance has changed. We define these next.

Slice Attributions (A). Define random variable 𝐴(𝑗) ∈ {0, 1}
to represent the presence of a text attribution for slice 𝑆 (𝑗) (e.g.
“dim lighting"), with attributions A = {𝐴(𝑗) }𝑘

𝑗=1
corresponding to

S and example level attribute realizations {𝑎 (𝑗)
𝑖

}𝑛
𝑖=1

. If 𝑎
(𝑗)
𝑖

= 1,

then example (𝑥𝑖 , 𝑦𝑖) satisfies attribution 𝐴(𝑗)
. Typically, these

realizations are unknown, and only the text attribution 𝐴(𝑗)
will

be given.

Slice Change Metrics (M). Given a slice 𝑆 (𝑗) , denote change

metrics 𝜇
(𝑗)
ℓ

, 𝜎
(𝑗)
ℓ

for loss functions ℓ1, . . . , ℓ𝑟 , with the set of change

metrics for S denoted byM = {𝜇 (𝑗)
ℓ1

, 𝜎
(𝑗)
ℓ1

, . . . , 𝜇
(𝑗)
ℓ𝑟

, 𝜎
(𝑗)
ℓ𝑟

}𝑘
𝑗=1

.

We are now ready to define a ChangeList using these concepts.

Definition (ChangeList ℭ). Given dataset D and models
𝑣 [1] , 𝑣 [2] , a ChangeList is a collection of slices S along with their
corresponding descriptions A and change metrics M.

What constitutes a good ChangeList? We discuss six criteria

that we expect will be desired by users of ChangeLists. These
desiderata are not exhaustive, and we expect more to emerge as

ChangeLists are adopted into wider practice.

(1) Diversity (of S).Different users have different slices of inter-
est e.g. decorators may tag images of homes, while doctors

may tag hospital images. ChangeLists should contain a di-

versity of slices to reflect this.

(2) Coverage (of 𝜎ℓ with S). The slices S should together

explain the inconsistency 𝜎ℓ . The explanatory power of S
can be measured by the coefficient of determination 𝑟2 =

1− 1

𝜎2

ℓ

E[(𝐷 − 𝑓 (S))2], where 𝑓 (s) = 𝑎 + b𝑇 s is a function fit

by performing a linear regression of 𝐷 on S.
(3) Alignment (of A with S). Attributions should align with

the examples in each slice, and users should be able to read

these attributions to understand the content of each slice.

(4) Relevance (of M). Change metrics reported in the

ChangeList should be chosen to be relevant to the tasks

for which the models are to be used.

(5) Navigability (of S). Users of ChangeLists should be able to
search over information in the ChangeList, including global
change metrics, slices, and attributions.

(6) Editability (of ℭ). Finally, users would ideally benefit from

the ability to modify a released ChangeList to meet their

needs e.g. by interactively adding new slices of interest.

How should ChangeLists be created to meet these criteria?

What issues arise in their creation? In Section 3.2, we describe an

interactive process for API producers to build ChangeLists.

…

✔

horse

Feb�‘22

API v1
Nov�20 person

field

horse

person

field

Black�and�
white

person

field

ChangeList

Size:�142

42+1.2%

Horse�in�
field

Size:�214

-7.6%

✓
✔
✅
❎
❌
╳
✗
✘

x

Black�and�
white

Horse�in�
field

Horse�in�
field

How�can�we�document�model�updates?

Black�and�
white

✘

✘

Three�phases�for�creating�a�ChangeList�to�characterize�a�model�update

1.�Discovery 2.�Attribution 3.�Release

API v2
Feb�22

Input

Output

Figure 3: Overview of the process for generating ChangeLists.
(left) An MLaaS API update changes predictions for down-
stream users; (right) We study the process of building, verify-
ing and releasing ChangeLists. (1) First, we discover slices of
where performance has changed, (2) next we ascribe concepts
to the slices and verify the attributions with micro-labeling,
and (3) we present the slices in an interactive report.

3.2 An Interactive Approach for Generating
ChangeLists

We prototype a simple process for building ChangeLists is split

into 3 phases:

(1) Discovery (Section 3.2.1). First, we identify slices of in-

terest that explain the performance inconsistency 𝜎ℓ . To

discover coherent slices, we adapt the Domino [19] slice dis-
covery method to our model comparison setting. We also

use Domino to generate text descriptions for each discov-

ered slice 𝑆 (𝑗) , which serve as initial attributions 𝐴(𝑗)
. We

also manually define some slices using interactive tools for

search, filtering and labeling, as well as add slices generated

by any methods or sources, including programmatically.

(2) Attribution (Section 3.2.2). Once slices are discovered, we
update the initial slice attributions using interactive slice

inspection. A key problem is estimating the alignment of

a slice 𝑆 with its attribution 𝐴, while collecting attribute

realizations {𝑎𝑖 }𝑛𝑖=1
on a few informative examples labeled

by the user. To address this challenge, we perform micro-
labeling: an importance sampling procedure driven by CLIP

to find the most relevant examples for estimating alignment,

coupled with an interface to rapidly label their attribution

realizations. Slices with poor attribution alignment can also

be updated to improve alignment using a fast training pro-

cedure.

(3) Release (Section 3.2.3). Finally, once the set of slices (along
with their attributions) is finalized, we compile them into

a ChangeList. We prototype an interactive web application
where users can search and sort the ChangeList by the at-

tributions and change metrics. They can also discover and

attribute new slices andd add them to the ChangeList. The
ChangeList also provides semantic text search over slices,

using CLIP to find slices with similar image prototype or

text attribution embeddings.

3.2.1 Discovery. Slices are often sourced from metadata or ex-

tracted programmatically from the inputs [27]. When working with

complex data types (e.g. images, natural language), many important

slices are not annotated in metadata and cannot easily be extracted

programmatically. The limited slices available are insufficient to

explain the performance inconsistency, and we must turn to slice
discovery.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

Figure 4: A ChangeList for an image tagging service. (a) ChangeList View shows data slices where model performance has
improved and degraded. Users can navigate the slices either by issuing search queries or by sorting on size and performance
shift. (b) Slice Focus View shows examples in the currently selected slice (people skiing and engaging in other winter activities).
During the attribution of discovered slices, it also provides rapid labeling tools needed for labeling importance weighted
samples (see Section 3.2.2). The implementation of the GUI and back-end is written in Python using a data-wrangling library
and is released at: https://github.com/HazyResearch/meerkat.

Slice discovery for model comparison is the task of mining un-

structured inputs 𝑋 for coherent slices that explain the shift in-

consistency 𝜎ℓ . There are many methods that could be used to

automatically discover slices [16, 23, 34, 37, 54, 71, 72, 74, 78].

Our objective in this work is not to advocate for one particular

slice discovery method, but rather to demonstrate how the dis-

covery phase fits into the process of generating ChangeLists.
For readers interested in a comparison of these methods, sev-

eral works have focused specifically on the problem of bench-

marking and evaluating these slice discovery methods [19, 36, 61].

Based on the results from this evaluation, we choose to adapt the

Domino framework [19] to our new task of explaining model differ-

ences in terms of unknown, unlabeled slices. However, we expect

many of these other methods could be adapted as well. Domino
takes as input trained models 𝑣 [1] , 𝑣 [2] : X → Y and a labeled

dataset D = {(𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1
∼ P(𝑋,𝑌), and outputs slicing functions

Ψ = {𝜓 (𝑗)
: X×Y → [0, 1]}𝑘

𝑗=1
that partition the data into 𝑘 slices

Ŝ := Ψ(𝑋,𝑌) ∈ [0, 1]𝑘 . Domino proceeds in 3 steps: (1) embed the

dataset, (2) slice the resulting representation space, and (3) describe
the discovered slices with natural language.

Embed.We embed the datasetD using an encoder 𝑔input : X →
Z (Z ⊆ R𝑑), which yields embeddings 𝑍 = {𝑧𝑖 := 𝑔input (𝑥𝑖)}𝑛𝑖=1

for each example. Following Eyuboglu et al. [19], we use CLIP [65]

as our encoder when working with images and OpenAI’s Ada

embeddings when working with text [55].

Slice.We discover slices by fitting a 𝑘-component mixture model

to the embeddings 𝑍 and model losses ℓ [1] , ℓ [2] . For mixture 𝑆 (𝑗) ,
we assume 𝑍 |𝑆 (𝑗) varies as multivariate Normal with diagonal

covariance. The distribution of losses depends on the loss function

ℓ . In the zero-one loss case, we assume ℓ
[1]
01

|𝑆 (𝑗) , ℓ [2]
01

|𝑆 (𝑗) vary as

categoricals. We then optimize the log-likelihood with expectation

maximization. Like Domino, we use a hyperparameter 𝛾 to balance

the contribution of the embeddings and losses to the log-likelihood

– higher 𝛾 trades-off coherence for explanatory power.

Describe. Finally, to help users interpret discovered slices, we

describe slices in natural language. We source candidate natural

language phrases using a large, generative language model. We then

identify descriptions 𝑎 (𝑗) which are closest in embedding space to

the centroid of the each slice 𝑆 (𝑗) . For additional details, refer to
Eyuboglu et al. [19].

Users can also complement or refine discovered slices using

natural language filtering. In the image tagging setting, this is

done using inner-product search in CLIP embedding space. In the

question answering setting, we feed few-shot prompts to the Flan-

T5 open source language model [9]. For details on this approach

see Appendix B.1.2.

Once the discovery phase is complete, the ChangeList inter-

face (Fig. 4) displays all discovered and user-specified slices (see

Appendix B.3 for manual slicing), along with identified attributions

and change metrics.

https://github.com/HazyResearch/meerkat

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

3.2.2 Attribution. The goal of the attribution phase is to help users

verify and edit discovered slices, while communicating the contents

of each slice accurately. It proceeds in three steps: (1) edit machine

attributions by inspecting examples, to align them with the slice; (2)

estimate alignment between the slice and its attribution; (3) update
problematic slices that are poorly aligned with their attributions.

Edit Descriptions.When users interpret discovered slices, they

typically attribute succinct concepts to slices e.g. “subjects wear-

ing sunglasses" if most images in a slice show a person wearing

sunglasses. This attribution allows them to draw conclusions such

as “the model update improved by x% accuracy on subjects wearing

sunglasses”. The prototype interactive components (Fig. 4; discussed

in Section 3.2.3) to quickly inspect slices in order to edit machine-

generated descriptions. After editing, each slice has a single, textual

attribution.

Estimate Alignment. Next, we want to determine the align-

ment of the slice 𝑆 with its attribution 𝐴 using precision P and

recall R. Measuring alignment lets users decide if a slice should be

kept in the ChangeList, updated to improve alignment, or simply

deleted. High precision implies that most slice examples satisfy

the attribution i.e. 𝐴 = 1, while with high recall, most examples

that satisfy the attribution in the dataset are in the slice. Unfortu-

nately, calculating P, R requires exhaustively labeling the unknown

attribute realizations {𝑎𝑖 }𝑛𝑖=1
for each example (i.e. labeling whether

each example satisfies the slice, See 3.1), which is intractable to do

for every slice.

Under a small labeling budget, we can only sample a few exam-

ples for labeling to estimate P̂, R̂. While we can estimate P̂ using

simple random sampling (see Appendix B.2), naively estimating

recall can have high variance [40, 58], since the number of false

negatives (examples with𝐴 = 1 outside the slice) is frequently small

relative to the dataset size 𝑛.

The key problem is how to construct a proposal distribution 𝑞

that upweights and samples “enough" false negatives to perform

estimation via a procedure such as importance sampling [58]. Our

insight is to use a cross-modal model like CLIP to construct one

or more proposal distributions 𝑞𝑖 , by ranking examples in terms of

their similarity to the text attribution 𝐴. CLIP has the advantage of

providing an informative ordering of the examples in response to

the wide range of (arbitrarily written) user attributions. A descrip-

tion of our estimation procedure is provided in Appendix B.2. Once

the precision and recall are estimated, the user can apply a decision

rule (e.g. a minimum threshold on lower confidence bounds) to

decide if the slice is satisfactory. If not satisfactory, the user can

update it, which we discuss next.

Update Slices. For a slice 𝑆 = 𝜓 (𝑋,𝑌) with poor alignment with

its attribution 𝐴, we can update the slice by training a new slicing

function
˜𝜓 (𝑋,𝑌), using logistic regression on CLIP embeddings.

Ideally, to improve alignment with 𝐴, ˜𝜓 should be aligned with

𝐴 on the dataset D, i.e.
˜𝜓 is a good classifier of the attribution

realizations {𝑎𝑖 }𝑛𝑖=1
.

The main challenge is specifying labels for training
ˆ𝜓 , as the

{𝑎𝑖 } are either unknown, or partially known for previously la-

beled examples. We use a simple procedure to address this: use

attribution labels if available (optionally with additional labeling),

otherwise use the original slice labels {𝜓 (𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1
. This updates

ˆ𝜓 conservatively by matching𝜓 where necessary, and allows us to

systematically improve the slice attribution alignment when a slice

is updated. Note that for statistical validity we ensure no overlap

between examples used for training or alignment estimation.

3.2.3 Interaction with ChangeLists. Finally, we discuss a proto-
type web interface that allows provide an overview of how pro-

ducers and users to interact with the ChangeList (Fig. 4). The

prototype contains several components which our highlighted in

the appendix figures:

(1) ChangeList View. (Fig. 8) The left panel 1○ shows the cur-

rent ChangeList. The ChangeList is displayed as a barplot

against a chosen change metric, with the slice title and size

annotated (1○c). The user can select any slice for drilldown in

the Slice Focus View. Users can sort slices in the ChangeList
with change metrics (1○b), or using semantic search to order

slices with the most similar image prototype or slice name

embedding first (1○a).

(2) Slice Focus View. (Fig. 9) The right panel 2○ displays infor-

mation about the slice selected in the ChangeList, including
tools for performing attribution and navigating the slice.

Slice summary statistics are shown along with the ability

to edit its name and description (2○a). The gallery (2○f) en-

ables quick inspection of slice examples, including example

selection to display additional metadata. The gallery can be

configured to view more or less examples at a glance, and

can be sorted and filtered by slice, user and task labels, or any

metadata (2○d,e). They can also be sorted by semantic simi-

larity to a text search, implemented using CLIP (2○c). During

attribution, the corresponding component (2○b) guides the

user through slice updates via training, and attribute quality

estimation. The user first passes through an (optional) slice

update where the slicing function is retrained using user pro-

vided labels. Then, for precision (and recall) estimation, the

gallery displays the samples to be labeled for the estimation

procedure of Section 3.2.2, and provides keyboard and mouse

shortcuts for rapidly selecting and labeling examples. Once

calculated, estimates are displayed in the same attribution

component.

4 CHANGELISTS ON REAL-WORLD API UPDATES
In this section, we discuss our takeaways from applying the ap-

proach described above to six recent API updates and generating a

ChangeList for each. First, we provide overview statistics summa-

rizing the changes documented in the ChangeLists. Next, we dive
into each API in detail, highlighting noteworthy changes, focusing

on those where slice performance goes in the opposite direction as

it does globally.

4.1 Task: Image Tagging
Overview of ChangeLists. Using the process described in Sec-

tion 3, we identified over 113 slices across three real image-tagging

API updates. For each discovered slice 𝑆 (𝑗) , we compute the accu-

racy shift 𝜇
(𝑗)
01

≈ E[𝐷] and test the null-hypothesis that the differ-

ence in accuracy 𝐷 is symmetric about zero using the Wilcoxon

signed-rank test. On 103 slices, we find that at least one of the API’s

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

performance changed significantly (using the Bonferonni correc-

tion for multiple hypothesis testing, 𝛼 = 0.05

𝑘
). Among these, 63

instances of an API’s performance degraded significantly and on 52,

the performance degraded by more than 5%-points. This phenom-

enon, where an update improves performance globally, but hurts

performance on a coherent slice, has not been documented at this

scale in the literature. The largest performance shifts are shown

in Figure 5. We perform formal attribution for a subset of these

discovered slices and provide the estimated recall and precision in

Table 4.

In Section 2, we motivate the need for ChangeLists by showing
that our updates introduced inconsistency that was not captured by

the performance shift. We can quantify how much of the inconsis-

tency is “explained" by our slices with the coefficient of determina-

tion 𝑟2
. Our ChangeLists achieve quite different 𝑟2

on each update:

16.7% on EveryPixel, 12.4% on Google, and 5.3% onMicrosoft. These

low 𝑟2
values highlight the difficulty of collecting a comprehensive

set of slices and the importance of interactive ChangeLists that

allow users to find additional slices. These statistics are summarized

in Figure 1.

ChangeList (Google Cloud Vision). Google’s API is used in

diverse settings ranging from historic photos classification in news-

paper archives [30] to managing visual assets in cloud storage [41].

Even though the API improved on average after the update, it is
important to identify fine-grained slices where performance has de-

graded. In Figure 5, we show 10 slices where performance degraded.

Notably, the API’s accuracy in detecting stop signs decreased by

over 60%-points, a finding with potential safety implications. Post

update, the accuracy of the API’s “person" tag drops by 20.8%-points

if the person is skiing or snowboarding. If they are playing baseball,

accuracy drops by 40.9%-points, and if the photo is in black and

white it drops by 17.7%-points. This last slice may be of particular

interest to a newspaper using the API on archival photos.

ChangeList (Microsoft Computer Vision). Like Google, Mi-

crosoft’s API is used in diverse settings and backs mobile appli-

cations and intelligent software systems [52]. Across the entire

dataset, Microsoft’s API improved significantly (+4.0% and +5.9%

F1). However, our ChangeList includes 14 slices on which the per-

formance drops significantly. For example, accuracy in tagging

“horses" degrades by more than 10%-points in old, black and white

photos.

ChangeList (EveryPixel Image Recognition). Unlike the

other APIs, the average model performance degraded slightly be-

tween updates (−0.5% accuracy and −2.9% F1). Still, we were able to

find data slices where the API improved. Notably, after the update,

its “cat" detection improved across a broad set of contexts: near

windows and doors, in the bathroom, and on or near keyboards.

In contrast, the Microsoft API, which improved globally, exhibited

significantly degraded performance on “cat" detection after the

update.

4.2 Task: Question Answering
Overview of ChangeLists. Using the process described in Sec-

tion 3, we discover 31 slices across the 4, 470 questions in our QA

datasets. For each discovered slice 𝑆 (𝑗) , we compute the accuracy

shift 𝜇
(𝑗)
𝐹1

≈ E[𝐷] and compute a 𝑝-value with theWilcoxon signed-

rank test. Note we do not include formal attribution results for these

slices (i.e. labeling for recall estimates). Authors manually inspected

the slices to check for high precision. On 26 slices, we find that at

least one of the API’s performance changed significantly (using the

Bonferonni correction for multiple hypothesis testing, 𝛼 = 0.05

𝑘
).

There were 11 instances where an API’s performance degraded and

in three, the performance degraded by more than 3%-points. (Note

that, due to small sample size, these degradations are not statisti-

cally significant. See Figure 1 for 95% confidence intervals.) The

largest performance shifts are shown in Figure 2.

ChangeList (OpenAI Text DaVinci).We study two versions

of Text DaVinci, OpenAI’s largest GPT-3 model available. The main

difference between the versions is that version 003 is fine-tuned

with reinforcement-learning from human feedback (RLHF), while

version 002 is not [8, 57]. The new version outperforms the old by

𝜇𝐹1 = +0.038 in mean F1-score. However, this gain is not evenly

distributed across data slices. OnGeography related questions, there

was a large improvement of +0.15 in mean F1-score, while on sports

and basketball related questions performance degraded by −0.02

and −0.05, respectively. In the safety-critical setting of Biology,

RLHF did not improve performance −0.01.

ChangeList (AI21 Jurassic-1 Grande). Like the Text DaVinci
update above, the update to AI-21’s Jurassic-1 involved instruction

fine-tuning, and it led to significant gains in averperformance 𝜇𝐹1 =

+0.059. But again there were still slices with degradations, notably

on Medicinee-related questions −0.02.

ChangeList (Cohere XLarge).Of the three language model, the

update to Cohere’s XLarge language model led to a smallest average

improvement (+0.023), but it had the highest inconsistency in pre-

dictions (0.428). On Geography and “where" questions, performance

degraded by −0.01 and −0.04, respectively.

5 DISCUSSING CHANGELISTSWITH API
PRODUCERS AND CONSUMERS

To better understand the role ChangeLists could play in practice,

we performed a semi-structured user study with MLaaS API pro-

ducers and consumers, modeled on prior work [12, 63, 69, 70].

5.1 Study Procedures
We recruited a diverse pool of 𝑛 = 8 participants that includes 𝑛 = 2

engineers, 𝑛 = 2 product managers, 𝑛 = 2 data scientists, and 𝑛 = 2

open source developers. They work at organizations ranging from

a few employees to over 5,000. Of the participants, 𝑛 = 5 work

primarily as API producers, that is they develop machine learning

models that are released outside of their team (e.g. via an API or

model hub). These producers work on different parts of the machine

learning lifecycle including data collection, model validation and

model training. The remaining 𝑛 = 3 participants are API consumers,
that is they work on software that consumes machine learning

predictions via an API or model hub. The participants and their

backgrounds are summarized in Table 1. The particpants did not

receive compensation for their participation. They were recruited

using emails to team leads at organizations producing or consuming

MLaaS APIs. We conducted a 45-minute semi-structured interview

with each participant, split into two parts. The full script for the

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

ID Role Industry Org. Size Consumer Producer ML Task
P01 Data Scientist Cloud Computing 5,000+ ✗ ✓ Face Recognition

P02 Data Scientist Cloud Computing 5,000+ ✗ ✓ Face Recognition

P03 Product Manager Internet 5,000+ ✗ ✓ Recommender Systems

P04 Software Engineer ML Services 10 - 100 ✓ ✗ Generative Text

P05 Open-source Developer SaaS < 10 ✓ ✗ Text Embeddings

P06 Software Engineer ML Services 10 - 100 ✗ ✓ Search

P07 Open-source Developer SaaS < 10 ✓ ✗ Generative Text

P08 Product Manager Cloud Computing 5,000+ ✗ ✓ Object Detection

Table 1: Background and experience of study participants. API consumers are professionals who use machine learning model
predictions served through an API or model hub. API producers are professionals that develop machine learning models that
are publicly released (e.g. via an API or a model hub.)

interview can be found in Appendix A.4. After the interviews,

the authors manually grouped and synthesized quotations from

participants. These groups are provided in Tables 2 and 3.

(1) Pre-interview. Participants answered a series a questions

about their role(s) as producers and/or consumers of MLaaS APIs.

Producers answered additional questions about internal processes

around model updates and consumers answered additional ques-

tions about their experience with model updates.

(2) Think-aloud ChangeList demonstration. Participants
were informed that theywould be shown a demonstration of a proto-

type ChangeList and asked to share their thoughts about it. Partici-
pants then followed along in a demonstration of a ChangeList con-
ducted by the authors. In the demonstration, we evaluated changes

in performance of the Google Cloud Vision API on a subset of the

LVIS dataset containing images of people. They were instructed to

think-aloud about the challenges ChangeList addresses and also

highlight limitations with the ChangeList or information that is

missing from the ChangeList. At the end of the demonstration, par-

ticipants were given time to describe any initial reactions they had

to using the ChangeList. Then they answered a series of targeted

questions.

5.2 Findings
We summarize three key findings that emerged from our interviews,

centering on attitudes towards the role of notifications in informing

API consumers, the part that ChangeLists can play in this process,

and the emphasis placed on interactivity and personalization by

participants. In Appendix A.1 and Tables 2 and 3, we codify and

group additional comments from the participants by theme.

(1) Existing API update notifications are insufficient. All
the model producers we spoke to said that they typically notify

users (𝑛 = 5/5), but consumers said that they found existing updates

vague and lacking in requisite detail. An open-source developer

using a languagemodel API for a project complained, "when [blinded
model] was upgraded version X to version Y, I was annoyed that
I didn’t get the email. Communication about updates could be a
bit better...the only guidance they give is vague recommendations."
[P07] This is consistent with comments from API producers: that

they primarily aim to highlight new capabilities of models, rarely

including detailed metrics or degradations in performance. This is

concerning given the degradation in slice performance we observed

across the six updates evaluated in Section 4.

Some participants suggested that vague notifications were tolera-

ble, as long as consumers ran evaluations on internal data. However,

running these evaluations is costly and there is disagreement on

how common internal test sets actually are in practice. One engi-

neer at a small company using large language model APIs explained,

"the ideal thing that we should be doing is benchmarking the tasks we
care about and rerun every time the model is updated. That being said,
it implies a large cost, especially if our benchmark is large." [P04] And
while some claimed that "any serious team would be managing their
own [evaluation] data" [P05], others thought that organizations are
increasingly building on top of these APIs without internal test

sets. "Our project definitely does not have an internal test set. People
are probably overestimating how good the internal test sets are at
company at projects."[P07] If more organizations and individuals

start using APIs without robust evaluation data, the importance of

detailed notifications will grow.

(2) Interactive, slice-based ChangeLists communicate miss-
ing information. Producers need to notify a broad range of cus-

tomers, surfacing changes specific to each, but struggle with the

labeling effort required to identify and validate slices. "If we only
had one user, it would be easy because we could talk about the specific
changes relevant for them, since we know their use cases. But, we have
a wide range of customers. So the challenge is, how do we satisfy the
customers broadly?" [P02] One user described accurate slice attribu-
tion as being the main hurdle in providing slices tailored for each

user, "One challenge for identifying performance on a fine-grained
slice is, how do you select data that conforms to the concept. Say you
have a very specific subclass, for example "woman with gray hair and
big eyes." [P01]

Nearly all participants voiced that the ChangeList’s focus on
slice-based performance (as opposed to aggregate performance or

errors on individual examples) is effective for communicatingmodel

differences (𝑛 = 6/8). ""Makes a lot of sense to report performance
on groups of images. If they are individual images – wouldn’t make
sense to show change in performance. [P01] A software engineer at

a small company said, "I like this slice based evaluation, so that we
get some of the finer-grained differences and I like the interface so we
can go in and see what each slice is made of." [P04]

(3) Access to ChangeLists would influence decision-
making in practice. Both producers and consumers felt that

ChangeLists would meaningfully change the quality of decision-

making in their organizations. Most producers commented that a

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

ChangeList could facilitate communication between stakeholders

at their organization (𝑛 = 4/5). One highlighted that it would enable

communication regardless of technical expertise, facilitating collab-

oration between data scientists, engineers, and project managers

for informed decision-making. "You can really easily show or make
your point without needing to dive into code...then the leadership
would be able to look at it and make a plan for action." [P03]

All participants agree that using a ChangeList could influence

them to not use the updated model as a user (𝑛 = 8/8). In particular,

several highlighted that it was specifically the slicing that could

influence their decisions, "Yeah that’s possible. If there are certain
slices of data that I care about the most that have regressed, I would be
worried." [P02] But, they also highlighted doubts about the willing-

ness of producers to host old API versions. "Yeah it would [influence
me to not update the model]... but I don’t know if this would be feasible
[for the producer] to offer." [P03]

In summary, our interviews confirmed the need for improved

documentation around API updates. ChangeLists could help by

providing details on fine-grained performance changes. Participants

suggested that ChangeLists, were they deployed, would impact

day-to-day processes around how people release and use MLaaS

APIs. In addition to the findings discussed above, we codified other

takeaways in Appendix A.

6 CONCLUSION
In this work, we demonstrate and discuss one approach for produc-

ing ChangeLists – detailed reports that highlight changes in perfor-
mance on fine-grained slices of data. We produce a ChangeList for
six updates to popular machine learning APIs and find 63 data slices

where the update introduced a statistically significant degradation

in performance. These results highlight the importance of including

fine-grained reporting alongsidemodel updates. TheAPI consumers

we spoke with suggested that this increased transparency in model

updates would influence their decisions around updating the model.

Our discussion with API producers also highlighted some of the

present challenges that limit an organizations ability to release

ChangeLists.
There are several limitations with this study, which point to di-

rections for future work. As mentioned by a user study participants,

discovering slices is challenging and ChangeLists are only as good
as their slices. The 140 slices of data identified in this study only

explain a tiny fraction of performance inconsistency observed in

the updates. Future work in slice discovery could help bridge this

gap. Further, since real-world benchmarks often include predefined

slices, real-world ChangeLists should include a mix of discovered

slices and predefined slices and benchmarks. However, our work

only studied discovered slices. Additionally, our question answer-

ing dataset was comparatively smaller and we were limited by the

cost of language model inference. Working with API producers

to provide low-cost inference for evaluation will be important for

future ChangeLists. Finally, in our user study participants did not

perform the attribution phase. Future work should further validate

this step of the process.

Our work highlights the need for improved transparency in

updates to MLaaS APIs. It does so in two ways: (1) documenting

real-world instances where a model update degrades performance

on an important data slice, but the API producer failed to report

it, and (2) discussing the need for improved transparency with

API consumers in a think-aloud user study. Towards addressing

this need, we demonstrate and analyze one potential approach for

improving the transparency of model updates. Our study builds on

related work in the literature on transparency of machine learning

systems [13, 53, 63]. Given that the use of MLaaS API has grown

rapidly in recent years and that model updates are frequent, our

work presents an important addition to this line of work on the

transparency of deployed machine learning systems.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of NIH under No.

U54EB020405 (Mobilize), NSF under Nos. CCF2247015 (Hardware-

Aware), CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to

Velocity), and 1937301 (RTML); US DEVCOM ARL under Nos.

W911NF-23-2-0184 (Long-context) and W911NF-21-2-0251 (Inter-

active Human-AI Teaming); ONR under Nos. N000142312633 (Deep

Signal Processing); Stanford HAI under No. 247183; NXP, Xil-

inx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM,

Hitachi, BASF, Accenture, Ericsson, Qualcomm, Analog Devices,

Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for

Research program, the Stanford Data Science Initiative (SDSI), Na-

tional Science Foundation Graduate Research Fellowship, and mem-

bers of the Stanford DAWN project: Meta, Google, and VMWare.

The U.S. Government is authorized to reproduce and distribute

reprints for Governmental purposes notwithstanding any copy-

right notation thereon. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views, policies, or en-

dorsements, either expressed or implied, of NIH, ONR, or the U.S.

Government.

REFERENCES
[1] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[2] Monica F Bugallo, Victor Elvira, Luca Martino, David Luengo, Joaquin Miguez,

and Petar M Djuric. 2017. Adaptive importance sampling: The past, the present,

and the future. IEEE Signal Processing Magazine 34, 4 (2017), 60–79.
[3] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-

racy disparities in commercial gender classification. In Conference on fairness,
accountability and transparency. PMLR, 77–91.

[4] Lingjiao Chen, Tracy Cai, Matei Zaharia, and James Zou. 2021. Did the Model

Change? Efficiently Assessing Machine Learning API Shifts. arXiv preprint
arXiv:2107.14203 (2021).

[5] Lingjiao Chen, Zhihua Jin, Sabri Eyuboglu, Christopher Re, Matei Zaharia, and

James Y Zou. [n. d.]. HAPI: A Large-scale Longitudinal Dataset of Commercial

ML API Predictions. Advances in Neural Information Processing Systems Datasets
and Benchmarks ([n. d.]).

[6] Lingjiao Chen, Matei Zaharia, and James Y Zou. 2020. Frugalml: How to use ml

prediction apis more accurately and cheaply. Advances in Neural Information
Processing Systems 33 (2020), 10685–10696.

[7] Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-tau Yih, Yejin Choi, Percy

Liang, and Luke Zettlemoyer. 2018. QuAC: Question answering in context. arXiv
preprint arXiv:1808.07036 (2018).

[8] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario

Amodei. 2017. Deep reinforcement learning from human preferences. Advances
in neural information processing systems 30 (2017).

[9] HyungWon Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus,

Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 2022. Scaling

instruction-finetuned language models. arXiv preprint arXiv:2210.11416 (2022).
[10] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael

Collins, and Kristina Toutanova. 2019. BoolQ: Exploring the surprising difficulty

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

of natural yes/no questions. arXiv preprint arXiv:1905.10044 (2019).
[11] Cohere. [n. d.]. Generation Model Card. https://docs.cohere.ai/docs/generation-

card.

[12] Anamaria Crisan, Margaret Drouhard, Jesse Vig, and Nazneen Rajani. 2022.

Interactive Model Cards: A Human-Centered Approach to Model Documentation.

In 2022 ACM Conference on Fairness, Accountability, and Transparency (Seoul,

Republic of Korea) (FAccT ’22). Association for Computing Machinery, New York,

NY, USA, 427–439. https://doi.org/10.1145/3531146.3533108

[13] Anamaria Crisan, Margaret Drouhard, Jesse Vig, and Nazneen Rajani. 2022. In-

teractive Model Cards: A Human-Centered Approach to Model Documentation.

In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Trans-
parency (<conf-loc>, <city>Seoul</city>, <country>Republic of Korea</country>,
</conf-loc>) (FAccT ’22). Association for Computing Machinery, New York, NY,

USA, 427–439. https://doi.org/10.1145/3531146.3533108

[14] James H Martin Daniel Jurafsky. 2021. Word Senses and WordNet. In Speech and
Language Processing. 10.

[15] Terrance de Vries, Ishan Misra, Changhan Wang, and Laurens van der Maaten.

2019. Does Object RecognitionWork for Everyone?. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops.

[16] Greg d’Eon, Jason d’Eon, James R Wright, and Kevin Leyton-Brown. 2022. The

Spotlight: A General Method for Discovering Systematic Errors in Deep Learning

Models. AAAI (July 2022).

[17] Bradley Efron and Robert J Tibshirani. 1994. An introduction to the bootstrap.
CRC press.

[18] EveryPixel. [n. d.]. Everypixel (EPixel) Image Tagging API. https://labs.everypixel.

com/api.

[19] Sabri Eyuboglu, Maya Varma, Khaled Saab, Jean-Benoit Delbrouck, Christopher

Lee-Messer, Jared Dunnmon, James Zou, and Christopher Ré. 2022. Domino:

Discovering Systematic Errors with Cross-Modal Embeddings. In International
Conference on Learning Representations.

[20] Christiane Fellbaum. 1998. WordNet: An Electronic Lexical Database. Bradford
Books.

[21] Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. 2019. Deep ensembles:

A loss landscape perspective. arXiv preprint arXiv:1912.02757 (2019).

[22] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,

Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets for datasets.

Commun. ACM 64, 12 (2021), 86–92.

[23] Robert Geirhos, Kristof Meding, and Felix A Wichmann. 2020. Beyond accuracy:

quantifying trial-by-trial behaviour of CNNs and humans by measuring error

consistency. Advances in Neural Information Processing Systems 33 (2020), 13890–
13902.

[24] Robert Geirhos, Kantharaju Narayanappa, Benjamin Mitzkus, Tizian Thieringer,

Matthias Bethge, Felix A Wichmann, and Wieland Brendel. 2021. Partial success

in closing the gap between human and machine vision. Advances in Neural
Information Processing Systems 34 (2021).

[25] Thomas Krendl Gilbert, Nathan Lambert, Sarah Dean, Tom Zick, Aaron Snoswell,

and Soham Mehta. 2023. Reward reports for reinforcement learning. In Proceed-
ings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society. 84–130.

[26] Karan Goel, Laurel Orr, Nazneen Fatema Rajani, Jesse Vig, and Christopher Ré.

2021. Goodwill hunting: Analyzing and repurposing off-the-shelf named entity

linking systems. In Proceedings of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies:
Industry Papers. 205–213.

[27] Karan Goel, Nazneen Fatema Rajani, Jesse Vig, Zachary Taschdjian, Mohit Bansal,

and Christopher Ré. 2021. Robustness Gym: Unifying the NLP Evaluation Land-

scape. In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies:
Demonstrations. 42–55.

[28] Raphael Gontijo-Lopes, Yann Dauphin, and Ekin D Cubuk. [n. d.]. No One

Representation to Rule Them All: Overlapping Features of Training Methods.

International Conference on Learning Representations ([n. d.]).
[29] Google. [n. d.]. Google Vision API. https://cloud.google.com/vision.

[30] Sam Greenfield. 2018. Picture what the cloud can do: How the New York

Times is using Google Cloud to find untold stories in millions of archived

photos. https://cloud.google.com/blog/products/ai-machine-learning/how-the-

new-york-times-is-using-google-cloud-to-find-untold-stories-in-millions-of-

archived-photos.

[31] Agrim Gupta, Piotr Dollar, and Ross Girshick. 2019. Lvis: A dataset for large

vocabulary instance segmentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 5356–5364.

[32] Hossein Hosseini, Baicen Xiao, and Radha Poovendran. 2017. Google’s Cloud

Vision API is Not Robust to Noise. In 16th IEEE International Conference on
Machine Learning and Applications, ICMLA 2017, Cancun, Mexico, December 18-21,
2017, Xuewen Chen, Bo Luo, Feng Luo, Vasile Palade, and M. Arif Wani (Eds.).

IEEE, 101–105. https://doi.org/10.1109/ICMLA.2017.0-172

[33] Hossein Hosseini, Baicen Xiao, and Radha Poovendran. 2019. Studying the Live

Cross-Platform Circulation of ImagesWith Computer Vision API: An Experiment

Based on a Sports Media Event. International Journal of Communication 13 (2019),

1825–1845.

[34] Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. 2022. Dis-

tilling model failures as directions in latent space. arXiv preprint arXiv:2206.14754
(2022).

[35] Hengrui Jia, Hongyu Chen, Jonas Guan, Ali Shahin Shamsabadi, and Nicolas

Papernot. 2021. A Zest of LIME: Towards Architecture-Independent Model

Distances. In International Conference on Learning Representations.
[36] Nari Johnson, Ángel Alexander Cabrera, Gregory Plumb, and Ameet Talwalkar.

2023. Where Does My Model Underperform? A Human Evaluation of Slice Dis-

covery Algorithms. Proceedings of the AAAI Conference on Human Computation
and Crowdsourcing 11, 1 (Nov. 2023), 65–76. https://doi.org/10.1609/hcomp.v11i1.

27548

[37] Michael P Kim, Amirata Ghorbani, and James Zou. [n. d.]. Multiaccuracy: Black-

box post-processing for fairness in classification. In AIES 2019.
[38] Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Her-

mann, Gábor Melis, and Edward Grefenstette. 2018. The NarrativeQA Reading

Comprehension Challenge. Transactions of the Association for Computational
Linguistics 6 (2018), 317–328. https://doi.org/10.1162/tacl_a_00023

[39] Allison Koenecke, Andrew Nam, Emily Lake, Joe Nudell, Minnie Quartey, Zion

Mengesha, Connor Toups, John R Rickford, Dan Jurafsky, and Sharad Goel. 2020.

Racial disparities in automated speech recognition. Proceedings of the National
Academy of Sciences 117, 14 (2020), 7684–7689.

[40] Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. 2021. Active

testing: Sample-efficient model evaluation. In International Conference on Machine
Learning. PMLR, 5753–5763.

[41] Ben Kus. 2017. Box: Bringing image recognition and OCR to cloud content

management.

[42] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton

Lee, et al. 2019. Natural questions: a benchmark for question answering research.

Transactions of the Association for Computational Linguistics 7 (2019), 453–466.
[43] Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. 2021. Mod-

elDiff: testing-based DNN similarity comparison for model reuse detection. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing
and Analysis. 139–151.

[44] Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, Michi-

hiro Yasunaga, Yian Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Kumar, et al.

2022. Holistic evaluation of language models. arXiv preprint arXiv:2211.09110
(2022).

[45] Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. 2021. Jurassic-1: Technical

details and evaluation. White Paper. AI21 Labs 1 (2021).
[46] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. 2014. Microsoft COCO: Common

Objects in Context. In Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V (Lecture Notes in
Computer Science, Vol. 8693), David J. Fleet, Tomás Pajdla, Bernt Schiele, and

Tinne Tuytelaars (Eds.). Springer, 740–755. https://doi.org/10.1007/978-3-319-

10602-1_48

[47] Horia Mania, John Miller, Ludwig Schmidt, Moritz Hardt, and Benjamin Recht.

2019. Model similarity mitigates test set overuse. Advances in Neural Information
Processing Systems 32 (2019).

[48] Neil G Marchant and Benjamin IP Rubinstein. 2021. Needle in a Haystack: Label-

Efficient Evaluation under Extreme Class Imbalance. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1180–1190.

[49] GA McIntyre. 1952. A method for unbiased selective sampling, using ranked sets.

Australian journal of agricultural research 3, 4 (1952), 385–390.

[50] Katelyn Mei, Sonia Fereidooni, and Aylin Caliskan. 2023. Bias Against 93 Stigma-

tized Groups in Masked Language Models and Downstream Sentiment Classifica-

tion Tasks. In Proceedings of the 2023 ACM Conference on Fairness, Accountability,
and Transparency (<conf-loc>, <city>Chicago</city>, <state>IL</state>, <coun-

try>USA</country>, </conf-loc>) (FAccT ’23). Association for ComputingMachin-

ery, New York, NY, USA, 1699–1710. https://doi.org/10.1145/3593013.3594109

[51] Microsoft. [n. d.]. Microsoft computer vision API. https://azure.microsoft.com/en-

us/services/cognitive-services/computer-vision. [Accessed Oct-2020].

[52] Microsoft. 2024. Microsoft Release Notes.

[53] Margaret Mitchell, SimoneWu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman,

Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019.

Model cards for model reporting. In Proceedings of the conference on fairness,
accountability, and transparency. 220–229.

[54] Rahul Nair, Massimiliano Mattetti, Elizabeth Daly, Dennis Wei, Oznur Alkan,

and Yunfeng Zhang. 2021. What Changed? Interpretable Model Comparison.. In

IJCAI. 2855–2861.
[55] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry

Tworek, Qiming Yuan, Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.

2022. Text and code embeddings by contrastive pre-training. arXiv preprint
arXiv:2201.10005 (2022).

https://docs.cohere.ai/docs/generation-card
https://docs.cohere.ai/docs/generation-card
https://doi.org/10.1145/3531146.3533108
https://doi.org/10.1145/3531146.3533108
https://labs.everypixel.com/api
https://labs.everypixel.com/api
https://cloud.google.com/vision
https://cloud.google.com/blog/products/ai-machine-learning/how-the-new-york-times-is-using-google-cloud-to-find-untold-stories-in-millions-of-archived-photos
https://cloud.google.com/blog/products/ai-machine-learning/how-the-new-york-times-is-using-google-cloud-to-find-untold-stories-in-millions-of-archived-photos
https://cloud.google.com/blog/products/ai-machine-learning/how-the-new-york-times-is-using-google-cloud-to-find-untold-stories-in-millions-of-archived-photos
https://doi.org/10.1109/ICMLA.2017.0-172
https://doi.org/10.1609/hcomp.v11i1.27548
https://doi.org/10.1609/hcomp.v11i1.27548
https://doi.org/10.1162/tacl_a_00023
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1145/3593013.3594109
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision
https://azure.microsoft.com/en-us/services/cognitive-services/computer-vision

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

[56] OpenAI. [n. d.]. How do text-davinci-002 and text-davinci-003 dif-

fer? https://help.openai.com/en/articles/6779149-how-do-text-davinci-002-and-

text-davinci-003-differ.

[57] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 2022.

Training language models to follow instructions with human feedback. arXiv
preprint arXiv:2203.02155 (2022).

[58] Art B. Owen. 2013. Monte Carlo theory, methods and examples.
[59] Van L Parsons. 2014. Stratified sampling. Wiley StatsRef: Statistics Reference

Online (2014), 1–11.
[60] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. 2017. Deepxplore: Au-

tomated whitebox testing of deep learning systems. In proceedings of the 26th
Symposium on Operating Systems Principles. 1–18.

[61] Gregory Plumb, Nari Johnson, Ángel Alexander Cabrera, and Ameet Talwalkar.

2022. Towards a More Rigorous Science of Blindspot Discovery in Image Classi-

fication Models. arXiv preprint arXiv:2207.04104 (2022).
[62] Fait Poms, Vishnu Sarukkai, Ravi Teja Mullapudi, Nimit S Sohoni, William R

Mark, Deva Ramanan, and Kayvon Fatahalian. 2021. Low-Shot Validation: Active

Importance Sampling for Estimating Classifier Performance on Rare Categories.

In Proceedings of the IEEE/CVF International Conference on Computer Vision. 10705–
10714.

[63] Mahima Pushkarna, Andrew Zaldivar, and Oddur Kjartansson. 2022. Data Cards:

Purposeful and Transparent Dataset Documentation for Responsible AI. In 2022
ACM Conference on Fairness, Accountability, and Transparency (Seoul, Republic of

Korea) (FAccT ’22). Association for Computing Machinery, New York, NY, USA,

1776–1826. https://doi.org/10.1145/3531146.3533231

[64] Haode Qi, Lin Pan, Atin Sood, Abhishek Shah, Ladislav Kunc, Mo Yu, and Saloni

Potdar. 2020. Benchmarking commercial intent detection services with practice-

driven evaluations. arXiv preprint arXiv:2012.03929 (2020).
[65] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,

Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,

et al. 2021. Learning transferable visual models from natural language supervision.

In International Conference on Machine Learning. PMLR, 8748–8763.

[66] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.

Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[67] Arsénio Reis, Dennis Paulino, Vítor Filipe, and João Barroso. 2018. Using Online

Artificial Vision Services to Assist the Blind - an Assessment of Microsoft Cogni-

tive Services and Google Cloud Vision. In Trends and Advances in Information
Systems and Technologies - Volume 2 [WorldCIST’18, Naples, Italy, March 27-29,
2018] (Advances in Intelligent Systems and Computing, Vol. 746), Álvaro Rocha,

Hojjat Adeli, Luís Paulo Reis, and Sandra Costanzo (Eds.). Springer, 174–184.

https://doi.org/10.1007/978-3-319-77712-2_17

[68] Marco Tulio Ribeiro, Tongshuang Wu, Carlos Guestrin, and Sameer Singh. 2020.

Beyond accuracy: Behavioral testing of NLP models with CheckList. arXiv
preprint arXiv:2005.04118 (2020).

[69] Negar Rostamzadeh, Diana Mincu, Subhrajit Roy, Andrew Smart, Lauren Wilcox,

Mahima Pushkarna, Jessica Schrouff, Razvan Amironesei, Nyalleng Moorosi,

and Katherine Heller. 2022. Healthsheet: development of a transparency artifact

for health datasets. In 2022 ACM Conference on Fairness, Accountability, and
Transparency. 1943–1961.

[70] Hong Shen, Leijie Wang, Wesley H Deng, Ciell Brusse, Ronald Velgersdijk, and

Haiyi Zhu. 2022. The model card authoring toolkit: Toward community-centered,

deliberation-driven AI design. In 2022 ACM Conference on Fairness, Accountability,
and Transparency. 440–451.

[71] Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. 2021.

Understanding failures of deep networks via robust feature extraction. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12853–12862.

[72] Nimit Sohoni, Jared Dunnmon, Geoffrey Angus, Albert Gu, and Christopher

Ré. 2020. No Subclass Left Behind: Fine-Grained Robustness in Coarse-Grained

Classification Problems. In Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33.

Curran Associates, Inc., 19339–19352. https://proceedings.neurips.cc/paper/

2020/file/e0688d13958a19e087e123148555e4b4-Paper.pdf

[73] Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb,

Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta,

Adrià Garriga-Alonso, et al. 2022. Beyond the imitation game: Quantifying and

extrapolating the capabilities of language models. arXiv preprint arXiv:2206.04615
(2022).

[74] Dennis Wei, Rahul Nair, Amit Dhurandhar, Kush R Varshney, Elizabeth Daly,

and Moninder Singh. 2022. On the Safety of Interpretable Machine Learning:

A Maximum Deviation Approach. Advances in Neural Information Processing
Systems 35 (2022), 9866–9880.

[75] Xiaofei Xie, Lei Ma, Haijun Wang, Yuekang Li, Yang Liu, and Xiaohong Li. 2019.

DiffChaser: Detecting Disagreements for Deep Neural Networks.. In IJCAI. 5772–
5778.

[76] Sijie Yan, Yuanjun Xiong, Kaustav Kundu, Shuo Yang, Siqi Deng, MengWang,Wei

Xia, and Stefano Soatto. 2021. Positive-congruent training: Towards regression-

free model updates. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 14299–14308.

[77] Yuanshun Yao, Zhujun Xiao, Bolun Wang, Bimal Viswanath, Haitao Zheng, and

Ben Y. Zhao. 2017. Complexity vs. performance: empirical analysis of machine

learning as a service. In Proceedings of the 2017 Internet Measurement Conference,
IMC 2017, London, United Kingdom, November 1-3, 2017, Steve Uhlig and Olaf

Maennel (Eds.). ACM, 384–397. https://doi.org/10.1145/3131365.3131372

[78] Chih-Kuan Yeh, Been Kim, Sercan Arik, Chun-Liang Li, Tomas Pfister, and

Pradeep Ravikumar. 2020. On completeness-aware concept-based explanations

in deep neural networks. Advances in Neural Information Processing Systems 33
(2020), 20554–20565.

https://help.openai.com/en/articles/6779149-how-do-text-davinci-002-and-text-davinci-003-differ
https://help.openai.com/en/articles/6779149-how-do-text-davinci-002-and-text-davinci-003-differ
https://doi.org/10.1145/3531146.3533231
https://doi.org/10.1007/978-3-319-77712-2_17
https://proceedings.neurips.cc/paper/2020/file/e0688d13958a19e087e123148555e4b4-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/e0688d13958a19e087e123148555e4b4-Paper.pdf
https://doi.org/10.1145/3131365.3131372

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

0.0 0.2 0.4 0.6 0.8 1.0
Mean Accuracy

Bathrooms with visible
toilet (135)

Street name signs (277)

Beds in hotel rooms (164)

Motorcycle wheel (134)

Sinks near cats (97)

Cats near windows and
doors (87)

Sl
ice

 N
am

e

-0.39

+0.55

-0.08

+0.08

+0.07

-0.12

+0.08

-0.55

-0.67

+0.86

+0.09

-0.03

+0.01

+0.00

+0.03

+0.01

-0.16

+0.92

Microsoft Computer Vision v1 (Nov 2020)
Microsoft Computer Vision v2 (Feb 2022)

Google Cloud Vision v1 (Nov 2020)
Google Cloud Vision v2 (Feb 2022)

EveryPixel v1 (Nov 2020)
EveryPixel v2 (Feb 2022)

Figure 5: Shifts in Image Tagging Performance on Slices. For
six slices, we show the change accuracy for all three question
answering APIs. The slices with the largest improvement
and degradation for each API are shown. The 𝑥-axis shows
the accuracy. The 𝑦-axis shows the name ascribed to the slice
in attribution and its size in parentheses.

A EXTENDED DESCRIPTION OF USER STUDY
A.1 Findings from pre-interviews.
In our interviews with industry professionals, we found that there

is mismatch between the kinds of notifications API consumers

need and the notifications API producers are currently releasing. In

this section, we discuss common themes from our interviews and

connect them to our empirical findings from the Section 4. First we

discuss responses from model producers, then model consumers.

For a breakdown of the participant’s comments, see Table 2.

API producers on existing update notifications. All the
model producers we spoke to said that they typically notify users

(𝑛 = 5/5), but a couple also suggested that in some circumstances

models are changed without notification (𝑛 = 2/5). "If it was a small
optimization of an internal metric, then there may be less of a notifi-
cation to the user. But if the model starts working on a new category
of data or it has a new capability, then we’ll give an update." [P03]
Additionally, when producers do notify users, they primarily aim

to highlight new capabilities of models, rarely including detailed

metrics or degradations in performance. This is concerning given

that in all six evaluated in Section 4 we saw at least one slice of

data where model performance degraded.

API producers on what makes notification challenging.
Producers need to notify a broad range of customers, surfacing

changes specific to each, but struggle with the labeling effort re-

quired to identify and validate slices. "If we only had one user, it
would be easy because we could talk about the specific changes rel-
evant for them, since we know their use cases. But, we have a wide
range of customers. So the challenge is, how do we satisfy the cus-
tomers broadly?"[P02] One user described accurate slice attribution

as being the main hurdle in providing slices tailored for each user,

"One challenge for identifying performance on a fine-grained slice is,
how do you select data that conforms to the concept. Say you have a
very specific subclass, for example "woman with gray hair and big
eyes." [P01]

API producers on the importance of notifications. Produc-
ers recognize the importance of detailed notifications for customers’

applications. All of the producer we interviewed said that notifica-

tions were important for (𝑛 = 5/5). "Its super important. There’s a

real need, and the notification actually needs to depend on the cus-
tomer. We don’t know what the customer does with API downstream."
[P02]

API consumers on existing update notifications. Though
producers typically notify users, consumers find that existing up-

dates are vague and lack requisite detail. An open-source developer

using a languagemodel API for a project complained, "when [blinded
model] was upgraded version X to version Y, I was annoyed that I
didn’t get the email. Communication about updates could be a bit
better...the only guidance they give is vague recommendations." [P07]
This is consistent with what API producers explained: that they

rarely include metrics or degradations.

API consumers on the ideal update notification. Consumers

who apply APIs in narrow use cases want fine-grained metrics in

updates from producers. "If there were better metrics that could say
this model does this and this model does this. Some way of evaluating
how well the model does on your distribution and on your data...
consumer reports for language models."[P07] Though some that use

APIs in more general settings said that they were okay trusting the

general improvements reported by the producer.

API consumers on internal evaluations. Several mentioned

that running evaluations on internal data is important, but run-

ning these evaluations is costly and there is disagreement on how

common internal test sets actually are in practice. One engineer

at a small company using large language model APIs explained,

"the ideal thing that we should be doing is benchmarking the tasks

we care about and rerun every time the model is updated. That

being said, it implies a large cost, especially if our benchmark is

large." [P04] And while some claimed that "any erious team owuld be
managing their own [evaluation] data" [P05], others think that folks
are increasingly building on top of these APIs without internal test

sets. "Our project definitely does not have an internal test set. People
are probably overestimating how good the internal test sets are at
company at projects."[P07]

A.2 Findings from think-aloud demonstration.
Through their comments during our think-aloud demonstration,

participants expressed that the slice-based design of ChangeLists
make them useful for understanding differences between models

and give them the potential to influence producer and consumer

decision-making. In this section, we discuss common themes from

the comments and feedback provided by participants. to our em-

pirical findings from the Section 4. First we discuss responses from

model producers, then model consumers. For a breakdown of the

participant’s comments, see Table 2.

On the utility of the ChangeLists for understandingmodel
updates. Participants expressed interest in using the ChangeList,

though some voiced that its utility hinges on the quality of the

groupings and the context in which its used. Without being explic-

itly prompted to say so, over half of the participants (𝑛 = 5/8) said

they would want to use ChangeLists to understand differences

between models. A product manager who works on data sourcing

for ML APIs at a cloud provider said, "First impression, this is really
awesome if I can use it ... [coming from the perspective] of doing data
work." [P08] A software engineer at a small company said, "I’m
impressed...I like this slice based evaluation, so that we get some of

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

the finer-grained differences and I like the interface so we can go in
and see what each slice is made of."[P04] Others expressed interest,

but said its ultimate utility would depend on the quality of the

slices, "This is really interesting. But it really depends on how good
the automatic grouping is."[P07]

On the importance of the slicing functionality. Nearly all

participants voiced that reporting slice performance (as opposed to

aggregate performance or errors on individual examples) is effective

for communicating model differences (𝑛 = 6/8). ""Makes a lot of
sense to report performance on groups of images. If they are individual
images – wouldn’t make sense to show change in performance.[P01]

On the importance of personalization. Participants com-

mented on the importance of personalizing the ChangeList, high-
lighting the value of a data upload feature in the ChangeList
(𝑛 = 7/8). "Every company has their own definitional data, its critical
to upload your own data." [P08] In addition, several participants sug-

gested a "playground" feature where users could craft new inputs

to the model and explore differences in the predictions.

On potential of ChangeLists to influence producer
decision-making.Most of the producers commented that the tool

could facilitate communication between stakeholders at their orga-

nization (𝑛 = 4/5). One highlighted that it enables communication

regardless of scientific background, allowing for easy presentation

of data and facilitating collaboration between data scientists, engi-

neers, and project managers for informed decision-making. "You
can really easy show or make your point without needing to dive into
code...Then the leadership would be able to look at it and make a plan
for action."[P03]

On the potential of ChangeLists to influence consumer
decision-making. Participants agree that using a ChangeList could
influence them to not use the updated model as a user (𝑛 = 8/8).

In particular, several highlighted that it was specifically the slicing

that could influence their decisions, "Yeah that’s possible. If there are
certain slices of data that I care about the most that have regressed, I
would be worried."[P02] But, they also highlight doubts about the

willingness of producers to host old API versions. "Yeah it would
[influence me to not update the model]... but I don’t know if this would
be feasible [for the producer] to offer."[P03]

A.3 Study Procedures
Recruitment. The API producers were recruited by reaching out

to relevant teams at cloud providers and smaller companies. The

API consumers were recruited by reaching out to small companies

and leaders of open-source projects that use ML APIs.

Transcription. If participants agreed, the interview was

recorded, transcribed and de-identified. Otherwise, the interviewer

noted their answers by hand. After the session, the notes were

edited for clarity and sent back to the participant for review.

A.4 Interview Script
Thank you for participating in our user study on model updates.

This is a think-aloud user study. You will be asked to use a software
tool and share your thoughts and experiences while using it. During
the session, we will record your interactions with the tool as well as
your verbal and written comments. The interviews will be conducted
over Zoom and recorded using Zoom software. The recordings will

be transcribed and de-identified, then discarded after the session.
Your comments may be used in qualitative analyses and de-identified
quotations from your comments may be included in any resulting
publications.

A.4.1 Part 1: Pre-interview. Question: In your work, do you de-

velop machine learning models that are publicly released (e.g. via an
API or a model hub)? This includes data collection, model validation,

model training, hyperparameter tuning?

If yes,

• Question: What kind of models do you deploy (i.e. what is
the input modality, the prediction target, the intended use

case)?

• Question:Who are the intended users of your models?

• Question:How frequently do you update the models (e.g. re-
train, change the architecture, recalibrate, change the output

schema)?

• Question: Do you notify users when you update a model?

• Question: What information do you include in the update?

• Question: What challenges do you encounter when com-

municating model updates to users?

• Question: Do you think users should be notified when the

model is updated?

• Question: Ignoring the feasibility of collecting the data,

what information do you think users should have after a

model update?

• Question:What software packages or tools do you use to

understand changes in model performance between updates?

• Question: Do you report changes in fine-grained slices? If

so, how do you find them. What challenges are associated

with this.

Question: In your work, do you use machine learning model

predictions served through an API or model hub (e.g.GPT-3, Google
Cloud Vision, HuggingFace, TorchVision)?

If yes,

• Question: What models and services do you use in your

work and what role do they play?

• Question: Are you made aware of updates to the APIs you

are using? If so, how does the provider make you aware?

• Question: When the model is updated, what information

would be important for you to be made aware of?

• Question: Has a model update ever had adverse affects on

your system or use case?

• Question: How did you measure the degradation?

• Question: Outside of the information given to you by the

provider, what tools (if any) do you use to understand

changes in model performance between updates?

• Question: Would you contribute to a public, crowdsourced

changelist for a model that you are using?

A.4.2 Part 2: ChangeList Demonstration. We’ll be demonstrating

a ChangeList, a prototype of an interactive tool we’ve developed

that helps users analyze changes in model performance. Before,

during and after using the tool we’ll ask you some questions.

Instruction. As we use the tool, please “think-aloud” about:

(1) What parts of the ChangeList are easy to use/intuitive?

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

MLaaS API Producers
Synthesis Quote Participant

"If it was a small optimization of an internal metric, then there may be less of a

notification to the user. But if the model starts working on a new category of data

or it has a new capability, then we’ll give an update."

P03

"For example, maybe previously the model could only do indoor images, but now

we can support outdoor performance as well. On the other hand, if there certain

distributions that we haven’t looked into, we don’t report those."

P02

Topic: On existing update notifications.
Synthesis: Producers aim to highlight new capabilities of
models, but rarely include metrics or regressions.

"If they are paying for the service, there may be an NDA version of the update that

will include more detailed metrics. But that’s not going to be released publicly."

P03

"One challenge for identifying performance on a fine-grained slice is, how do you

select data that conforms to the concept. Say you have a very specific subclass, for

example ’woman with gray hair and big eyes’. So this would be more difficult than,

say, the coarse gained demographic slices."

P01

"Here we can use existing labels or dispatch a labeling effort. So its going to depend

a bit on how good the human annotation team is."

P03

Topic: On what makes notification challenging.
Synthesis: Producers need to notify a broad range of cus-
tomers, surfacing changes specific to each, but struggle
with the labeling effort required to identify and validate
subgroups.

"If we only had one user, it would be easy because we could talk about the specific

changes relevant for them, since we know their use cases. But, we have a wide

range of customers. So the challenge is, how do we satisfy the customers broadly?"

P02

"Its super important. There’s a real need, and the notification actually needs to

depend on the customer. We don’t know what the customer does with API down-

stream."

P02

Topic: On the importance of notifications.
Synthesis: Producers recognize the importance of detailed
notifications for customers’ applications. "Do you think users should be notified when the model is updated? In this case,

absolutely."

P03

MLaaS API Consumers
Synthesis Quote Participant

"We don’t really know what’s updated under the hood. [It] just says that its better

in practice. We don’t have a sense of what has changed."

P04

"The update was pretty vague. There was some box on the website that said ... our

embeddings stuff has changed....there was certainly no multi-dimensional analysis

of where it was better and where it was worse."

P05

Topic: On existing update notifications.
Synthesis: Consumers agree that updates are vague and
lack detail.

"When [blinded model] was upgraded version 2 to version 3, I was annoyed that I

didn’t get the email. Communication about updates could be a bit better...The only

guidance they give is vague recommendations."

P07

"If there were better metrics that could say this model does this and this model does

this. Some way of evaluating how well the model does on your distribution and on

your data... consumer reports for language models."

P07

Topic: On the ideal update notification.
Synthesis: Consumers who use APIs in narrow use cases
want fine-grained metrics in updates from producers. "If I were relying on a very specific case of the model, then you could imagine a case

where the model performs a lot worse on one particular case. But since I was using

it in a more general setting, I trust that the general improvement is representative

of what I’m going to see."

P04

"Ideal thing that we should be doing is benchmarking the tasks we care about and

rerun every time the model is updated. That being said, it implies a large cost,

especially if our benchmark is large."

P04

"Probably, any serious team would be managing their own data. But there are

certainly a lot of young projects being built that don’t have rigorous validation."

P05

Topic: On internal evaluations.
Synthesis: Several mentioned that running evaluations
on internal is important, but running these evaluations is
costly and there is disagreement on how common internal
test sets actually are in practice. "Our project definitely does not have an internal test set. People are probably

overestimating how good the internal test sets are at company at projects, but this

is just a gut feeling."

P07

Table 2: Quotes from pre-interviews with study participants. Participant comments were manually grouped by topic. Then
each group of comments was synthesized for common themes.

(2) What parts of the ChangeList are difficult to

use/unintuitive?

(3) What challenges does ChangeList address?
(4) What challenges does ChangeList not address?

• Demo. Show the discover button and a set of previously

discovered slices. Explain that each bar corresponds to a

slice of data and the change in performance on that slice.

• Demo. Click on one of the slices. Show how you can explore

examples of that slice on the right.

• Demo. Name the slice and provide a description. Use the

search functionality to ensure that the name is representative

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

Synthesis Quote Participant
Topic: On the utility of the ChangeList for under-
standing model updates.
Synthesis: Participants expressed interest in using
the ChangeList, with some voicing that its utility
hinges on the quality of the groupings and the con-
text in which its used.

"This interface is really cool. I would definitely use it." P01

"First impression this is really awesome ... [coming from the perspective]

of doing data work."

P08

"I’m impressed...I like this slice based evaluation, so that we get some of

the finer-grained differences and I like the interface so we can go in and

see what each slice is made of."

P04

"How helpful this would be would depend on the skillset of the user. For

someone who is familiar with the task and looking at the data on regular

basis, I can see this being helpful. But for someone who is just introduced

to the task and not looking at the data, I don’t think they can make a

conclusion."

P02

"This is really interesting. But it really depends on how good the automatic

grouping is. "

P07

"I can absolutely imagine using it to compare different APIs. I less so

imagine using it if the model API changed. In most cases the simplest

thing to do is to try it out on internal and then just go back to the other

one."

P05

Topic: On the importance of the slicing functional-
ity.
Synthesis: Participants agree that reporting sub-
group performance is important for identifying and
communicating regressions.

"With a tool like this, it would be very easy for the customer to prove that

the subgroup that they are interested in has regressed.

P03

"I think the table on the left is pretty clear [in informing the differences

between the models]. It calls out which groups show the biggest variance"

P08

"Makes a lot of sense to report performance on groups of images. If they are

individual images – wouldnt make sense to show change in performance."

P01

"The nice thing with this tool is its like, here are the groups we do well

with and here are the groups that we don’t do well on."

P03

Topic: On personalization.
Synthesis: Participants highlighted the importance
of users being able to upload their own data to the
ChangeList.

"It would be really really helpful if it was contextualized within the previ-

ous queries. I would like to be able to look at my previous data."

P06

"Every company has their own definitional data, its critical to upload your

own data."

P08

Topic: On communication between stakeholders.

Synthesis: Participants agree that the tool effec-

tively facilitates communication between stake-

holders, regardless of scientific background.

"The nice thing about a tool like this is it bridges everybody without regard

for scientific background. You can really easy show or make your point

without needing to dive into code...Then the leadership would be able to

look at it and make a plan for action."

P03

"It would definitely be useful...its healthy to have the data scientists and

engineers work alongside the PMs."

P02

Topic: On the potential impact of ChangeLists.
Synthesis: Participants note that using a ChangeList
could influence them to not use the updated model
as a user.

"Yeah it would [influence me to not update the model]... but I don’t know

if this would be feasible to offer."

P03

"Yeah I think ideally yes I would want to stick with the old model. But

in reality, idk how often it can be done, it may not make sense for the

company delivering the API."

P04

Topic: On areas for improvement.
Synthesis: Participants made suggestions for im-
provements in layout and design.

"First impression is there are a lot of buttons." P08

"I think i’m definitely more informed. But, I also feel overwhelemed by so

many pictures. I think some sort of summarization would be useful."

P01

Table 3: Quotes from think-aloud ChangeList demonstration. Participant comments were manually grouped by topic. Then
each group of comments was synthesized for common themes.

of the slice. Explain how we also support attribution, which

uses statistical methods to rapidly estimate the validity of a

name.

• Demo. Search for slices that are relevant to the user using

the slice search.

• Demo. Suppose we have some internal data that is specific

to some internal application. Show that we can upload that

data to the CL using the upload button.

• Question. Do you have any initial reactions to the tool?

• Question.After exploring the ChangeList, do you feel more

informed about the differences between the two models?

Please explain.

• Question. As a model user, do you feel that a ChangeList
could influence you to not update the model, and continue

using the old version?

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

• Question. As a model user, would you interact with a

ChangeList before updating a model?

• Question. As a model user, how important is the feature

that allows users to upload their own data? Would you use

it? Do you expect others would?

• Question. As a model user, how important is the feature

that allows users to discover and identify new slices, and

share them with the community?

• Question.What role could ChangeLists play in your work

and at your organization? Would this be valuable tool for

sharing updates with stakeholders in the organization?

• Question. What other information would you have liked to

have seen?

B EXTENDED DESCRIPTION OF
METHODOLOGY

B.1 Discovery
B.1.1 Discovery with Domino. In this section, we provide details

on the slice discovery techniques used in this work. In general, we

follow closely the approach [19].

We discover slices by fitting a 𝑘-component mixture model to

the embeddings 𝑍 and model losses ℓ [1] , ℓ [2] . For mixture 𝑆 (𝑗) ,
we assume 𝑍 |𝑆 (𝑗) varies as multivariate Normal with diagonal

covariance. The distribution of losses depends on the loss function

ℓ . In the zero-one loss case, we assume ℓ
[1]
01

|𝑆 (𝑗) , ℓ [2]
01

|𝑆 (𝑗) vary as

categoricals. The log-likelihood over the validation dataset is given

as follows and mazimied using expectation-maximization:

ℓ =

𝑛∑︁
𝑖=1

log

¯𝑘∑︁
𝑗=1

𝑃 (𝑆 (𝑗) =1)𝑃 (𝑍 =𝑧𝑖 |𝑆 (𝑗) =1)𝑃 (ℓ [1] =𝑦𝑖 |𝑆 (𝑗) =1)𝛾𝑃 (ℓ [2] |𝑆 (𝑗) =1)𝛾 ,

(3)

Like Domino, we use a hyperparameter 𝛾 to balance the contri-

bution of the embeddings and losses to the log-likelihood – higher

𝛾 trades-off coherence for explanatory power. A slice is coherent if
the examples in it share something common. A set of slices have

explanatory power if membership in those slices can explain the

shift inconsistency.

B.1.2 Slice Discovery with Natural Language Filters. Whenworking

with the Question Answering datasets, the slices discovered by

Domino were useful for slice ideation, but were poorly aligned with

attributed concepts. So, we used Domino to seed ideas for slices

and then used a few-shot prompting strategy with Flan T5 to more

accurately filter the dataset.

For example, to filter the dataset down to the slice containing

questions about biology, we used the following prompt:

Are the sentences below about biology?
"What was the city of beijing previously known as?"
Answer: Not Biology

"Has a country won the world cup at home?"
Answer: Not Biology

"Where is fe best absorbed in the body?"
Answer: Biology

"What is the function of the pericardial sac?"
Answer: Biology

"Where are antibodies made and by what type of lymphocyte?"
Answer: Biology

"{question}"
Answer:

We ran this prompt through the language model (with temper-

ature 0.1) for each question in the dataset substituting it in the

template. The dataset was filtered to the set the questions for which

the model output "Biology".

These slices can be verified in the attribution phase just like the

ones discovered with Domino alone.

B.2 Attribution: Alignment Estimation
We would like to estimate the precision and recall with only a small

amount of labeling effort:

P =

∑𝑛
𝑖=1

𝑠𝑖𝑎𝑖∑𝑛
𝑖=1

𝑠𝑖
R =

∑𝑛
𝑖=1

𝑠𝑖𝑎𝑖∑𝑛
𝑖=1

𝑎𝑖

Consider one of the slices 𝑆 that was discovered in the first

phase of our process (Section 3.2.1). Because 𝑆 = 𝜓 (𝑋,𝑌), we can
compute the realizations of the slice variable {𝑠𝑖 = 𝜓 (𝑥𝑖 , 𝑦𝑖)}𝑛𝑖=1

across our full dataset. On the other hand, we cannot access any of

the realizations of the attributions {𝑎𝑖 }, since they are unknown.

Estimating Precision.We estimate precision directly using the

standard approach of Monte Carlo estimation with simple random

sampling (SRS). To estimate precision P̂, we first sample 𝑛P exam-

ples to label with their attribution realizations {𝑎𝑖 }, and then com-

pute the estimator P̂ =

∑𝑛
P

𝑖=1
1[𝑎𝑖=1]
𝑛P

. We use a standard bootstrap

procedure to compute a confidence interval around the estimated

precision [17].

Estimating Recall. Unfortunately, estimating recall efficiently

is difficult since the number of false negatives (i.e. examples with

𝐴 = 1 that lie outside the slice) can be small relative to the size of the

dataset, making SRS an inefficient method with high variance in this

setting. Beyond SRS, there are many approaches to sampling and es-

timation with a small sample size including stratified sampling [59],

importance sampling [58], ranked set sampling [49] and others, as

well as adaptive variants [2]. Estimating recall with limited labels

has also recently received more attention in the machine learning

community, particularly with adaptive approaches [40, 48, 62].

Among these approaches, importance sampling is a strong and

reliable baseline, and we leave the exploration of adaptive methods

to future work. For simplicity, we reduce recall estimation to a

two step process: (1) using mixture importance sampling [58] to

estimate the proportion Q of examples with the attribution 𝐴 = 1

in the complement of the slice; and (2) using a plug-in estimator for

recall with the estimates for precision P̂ and proportion Q̂. Formally,

we define Q,

Q =

∑𝑛
𝑖=1

(1 − 𝑠𝑖)𝑎𝑖∑𝑛
𝑖=1

(1 − 𝑠𝑖)
In the first step, we use mixture importance sampling i.e. a simple

variant of the Horvitz–Thompson estimator that is unbiased [58].

Key to this method is the choice of the proposal distributions 𝑞𝑖 ,

which upweight samples that are likely to be useful for estima-

tion [58]. Indeed, the key problem is how to construct proposal

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

distributions that sample “enough" false negatives for estimation

via importance sampling [58]. Good choices for the 𝑞𝑖 (i.e. those

that lead to low variance estimates) would put higher weight on

the less prevalent samples with 𝐴 = 1, and lower weight on those

with𝐴 = 0. At first glance, this appears impossible without labeling

the attribute realizations {𝑎𝑖 }. While prior work has studied the

estimation of classifier recall with limited labels [40, 48, 62], these

all reuse the classifier being evaluated to construct a proposal distri-

bution. We do not have a classifier for arbitrary (user constructed)

text attributions 𝐴 in our setting.

Instead, we propose a procedure that relies on a flexible method

to construct proposal distributions. Our insight is to use CLIP

(or any cross-modal foundation model) to construct one or more

proposal distributions 𝑞𝑖 , by ranking examples in terms of their

similarity to the text attribution 𝐴. The advantage of using CLIP

in this way is that it can provide an informative ordering of the

examples in response to the wide range of (arbitrarily written) user

attributions. This in turn leads to proposal distributions that are

more likely to appropriately upweight samples that correspond to

the concept 𝐴, which may have been arbitrarily selected by the

user.

In detail, each example 𝑥 𝑗 in the population is assigned a score

𝜆𝑖 𝑗 based on inner-product search with respect to text queries

𝑖 ∈ [𝑑] written by the user. Here, the user will write text queries

that they think align with the attribution 𝐴. The similarity score

𝜆𝑖 𝑗 serves as a useful proxy for whether the example satisfies the

attribution 𝐴, and the ranking of examples by 𝜆𝑖 𝑗 should correlate

with the attribution realizations. Then, we construct a proposal

distribution 𝑞𝑖 from each set of scores by first min-max scaling the

scores, and then powering them in order to skew the distribution

i.e. 𝑞𝑖 (𝑥 𝑗) ∝
((𝜆𝑖 𝑗−min𝑘 𝜆𝑖𝑘)
(max𝑘 𝜆𝑖𝑘−min𝑘 𝜆𝑖𝑘)

)𝑟
for an exponent 𝑟 . This serves

to create a proposal distribution that assigns very low probability

to examples that have the lowest scores.

Once the proposal distributions 𝑞𝑖 are created, we construct a

mixture distribution 𝑞𝛼 =
∑
𝑖 𝛼𝑖𝑞𝑖 with

∑
𝑖 𝛼𝑖 = 1 (by default, we

use the uniform mixture 𝛼𝑖 =
1

𝑑
). We sample 𝑛Q examples from the

mixture distribution with corresponding weights 𝑤 𝑗 (with 𝑤 𝑗 =∑
𝑖 𝛼𝑖𝑤𝑖 𝑗) and user provided attribution realizations 𝑎 𝑗 . We can then

estimate the proportion of examples Q̂ in the slice complement with

𝐴 = 1, as well as the recall R̂ using an (unbiased) plug-in estimator,

Q̂ =

∑𝑛Q

𝑗=1

1[𝑎 𝑗=1]
𝑤𝑗

· 1

𝑛−∑𝑛
𝑖=1

𝑠𝑖

𝑛Q

, R̂ =
(𝑛 − 𝑛𝑠) · P̂

(𝑛 − 𝑛𝑠) · P̂ + 𝑛 · Q̂

We provide confidence intervals for recall by running a standard

bootstrap procedure independently for both P̂ and Q̂, and combine

these independent estimates to get bootstrapped estimates for recall.

We then output the appropriate quantiles corresponding to the

required confidence level.

Once the precision and recall are estimated, the user can apply a

consistent decision rule (e.g. a minimum threshold on lower confi-

dence bounds) in order to decide if the slice is satisfactory. If not

satisfactory, the user can update it, as discussed in Section 3.2.2.

B.3 Manually Gathering Slices
Manually gathering slices is a critical process for refining outputs of

slice discovery methods (SDMs) and for creating slices that were not

automatically discovered. However, a manual step requires scalable

data exploration, which is difficult to do with large datasets. In the

ChangeList prototype, users can rapidly scrub through data in the

gallery and label examples to assign them to the appropriate slice

(Fig. 10). Users can also create their own slices and label examples

that are part of that slice.

We also leverage image-text foundation models, like CLIP, to

perform similarity search between image examples and text queries

(Fig. 11). Similarity search can reduce the burden of having to

scrub through large datasets when the attributes of interest are not

labeled. Similarity searches can also be used to find semantically

meaningful groups of images, which can expedite manual slice

discovery workflows.

C EXTENDED DESCRIPTION OF THE
LONGITUDINAL DATABASE OF API
PREDICTIONS

C.1 Task: Image Tagging
In image tagging, the input 𝑋 is an image and category (e.g. horse)
pair and the target𝑌 ∈ {0, 1} is a binary label indicating whether an
object in the category is in the image. We consider the point-wise

zero-one loss ℓ (𝑦,𝑦 [𝑖]) = 1[𝑦 = 𝑦 [𝑖]]. We also report other metrics

that are not point-wise: recall, precision, and F1-score.

Dataset.We use the Large Vocabulary Instance Segmentation

(LVIS) dataset, a relabeling of the original Common Objects in

Context (COCO) images [31, 46]. The dataset has 𝑛 = 1,577,603

examples. LVIS labels have two advantages over the original COCO

labels. (1) LVIS includes over 1,203 categories (compared to the 80

in COCO), which better reflects the breadth of categories output

by modern image tagging APIs. (2) LVIS provides negative sets, a
set of images for each category where no instance of the category

appears. This allows us to measure both the precision and F1-score

of the APIs, while still using a long-tail set of categories.

APIs.We consider three object detection APIs: Google’s AutoML

Vision Object Detection API [29], EveryPixel’s Image Keywording

Service [18], and Microsoft Computer Vision Image Understanding

API [51]. The predictions are sourced from History of APIs (HAPI),
a longitudinal database of API predictions [5]. We use the raw

outputs of the APIs and perform our own preprocessing that maps

the labels output by the APIs to those in LVIS (see Section C for

details).

Reconciling labels. The label set output by image recognition

APIs will not necessarily match that of the evaluation dataset. For

example, LVIS includes labels for 1,723 different object categories,

while the 2020 version of the Google API output over 7,462 different

object categories [31]. In order to evaluate an API’s performance

on a dataset, we must first reconcile the two category sets. If an API

outputs a category not in the LVIS vocabulary (e.g. “toboggan"), we
want to map it to a more general category in the LVIS vocabulary

(e.g. “sled"). To do so, we leverage the WordNet lexical database

[20], collecting for each category in LVIS all words with a more

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

name count recall precision

Snowboard airborne 257 0.971 (0.94, 1.00) 0.995 (0.98, 1.00)

Stop signs 103 0.631 (0.54, 0.76) 0.947 (0.89, 0.99)

Street name signs 277 0.789 (0.73, 0.85) 0.986 (0.97, 1.00)

Cats in the bathroom 119 0.889 (0.83, 0.95) 1.000 (1.00, 1.00)

Dogs in the house 561 0.801 (0.75, 0.85) 0.980 (0.97, 0.99)

Horses in old photos 101 0.974 (0.92, 1.00) 1.000 (1.00, 1.00)

Horses in rural settings 446 0.913 (0.87, 0.96) 0.930 (0.91, 0.96)

Surfboards on lakes and rivers 35 1.000 (1.00, 1.00) 1.000 (1.00, 1.00)

Surfboards in the ocean 614 0.859 (0.82, 0.92) 1.000 (1.00, 1.00)

Surfboards away from water 173 0.959 (0.89, 1.00) 1.000 (1.00, 1.00)

Motorcycle wheel 134 0.795 (0.73, 0.86) 1.000 (1.00, 1.00)

Train and bus wheel 349 0.936 (0.89, 0.98) 1.000 (1.00, 1.00)

Airplane wheel 187 0.981 (0.96, 1.00) 1.000 (1.00, 1.00)

Skateboard wheel 186 0.663 (0.62, 0.72) 1.000 (1.00, 1.00)

Skiing person 135 0.957 (0.91, 0.99) 0.981 (0.95, 1.00)

Table 4: Estimates of precision and recall for measuring attribution alignment with slices found across three image tagging API
updates. Slices such as “stop signs" and “skateboard wheel" have low recall, so they may be rejected for inclusion in a final
ChangeList, while all other slices have both precision and recall above 0.7.

A

B

Figure 6: Slice Refinement and Coherence Statistics. The attribution panel (A) provides an fast zero-one data labeling interface,
which allows users to efficiently refine slices, bootstrap refiner models, and compute coherence metrics (e.g. precision, recall)
on the chosen slice. Users batch select examples in the gallery (B) and select one of three options to label: 1) positive, 2) negative,
3) unlabeled (i.e. erase).

specific meaning (i.e. its hyponyms). We find the hyponyms of a

category using the following procedure:

(1) For each category in evaluation dataset, get the correspond-

ing WordNet synsets. (LVIS categories are already based on

WordNet synsets.)

(2) For each synset compute all (direct and indirect) hy-
ponyms.

(3) For each hyponym collect all of its lemmas and filter them
to down only include those whose most common noun word

sense (based on WordNet sense ordering, see [14]) is the

hyponym. This gives us a mapping from each lemma to a

list of categories.

• Note: This serves to filter out improbable mappings. For ex-

ample, the synset “mouse.n.02" is defined as "a person who

is quiet or timid" and is a hyponym of “person". However,

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

A

B

Figure 7: Searching for Examples. Our ChangeList prototype supports semantic similarity search between images and unstruc-
tured text using image-text foundation models, like CLIP. Based on the user search query (A), images in the selected slice (or, if
no slice is selected, entire dataset) are sorted by their similarity to the query (B).

1A

1B

1C

Figure 8: ChangeList View. The ChangeList panel consolidates information about the current ChangeList. Users can search for
slices using text-based semantic queries, which match slices with the most similar image prototype or slice name (component
1A). Slices can also be ordered by associated metadata, such as change in performance or number of examples in the slice
(component 1B). The barplot summarizes changes in a user-selected metric across the different slices (component 1C).

this leads to an odd mapping: a prediction of “mouse" is

mapped to the category “person". To avoid this, we only

consider the most common noun word sense of a lemma,

which for “mouse" describes a rodent.

(4) For each lemma select the category with the highest path

similarity between its synset and the lemma’s hyponym. This

gives us a mapping from each lemma to a single category.

Using the resulting mapping, we can then "translate" the set of

categories predicted by the API to the set of categories used in the

dataset. If a predicted category is not in the mapping, we ignore it.

Model ChangeLists: Characterizing Updates to ML Models FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

2A

2F

2C

2B

2D

2E

Figure 9: Slice Focus View. The slice focus vie enables granular inspection of different examples in the slice. Users can visualize
characteristics of the selected (active) slice (component 2A) and manually label different attributes in the dataset (component
2B). Users can also search for examples that match unstructured text queries (component 2C) and filter and sort examples
by existing or generated metadata (components 2D,2E). All examples are ordered in the gallery, which enables efficient data
scrubbing.

This means that each predicted category is mapped to at most one
dataset category. If the object belongs in both specific and more

general categories (e.g. “canoe" and “boat") the API is expected

to output both the specific and general categories. This is based

on the recommended evaluation approach provided by the LVIS

authors [31].

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Eyuboglu et al.

A

B

Figure 10: Slice Refinement and Coherence Statistics. The attribution panel (A) provides an fast zero-one data labeling interface,
which allows users to efficiently refine slices, bootstrap refiner models, and compute coherence metrics (e.g. precision, recall)
on the chosen slice. Users batch select examples in the gallery (B) and select one of three options to label: 1) positive, 2) negative,
3) unlabeled (i.e. erase).

A

B

Figure 11: Searching for Examples. The ChangeList supports semantic similarity search between images and unstructured text
using image-text foundation models, like CLIP. Based on the user search query (A), images in the selected slice (or, if no slice is
selected, entire dataset) are sorted by their similarity to the query (B).

	Abstract
	1 Introduction
	1.1 Prior Work

	2 Measuring Global Changes in Real API Updates
	2.1 Global Analysis of API Updates

	3 Characterizing Model Updates in Detail
	3.1 The ChangeList: A Fine-Grained Characterization of Model Updates
	3.2 An Interactive Approach for Generating ChangeLists

	4 ChangeLists on Real-World API Updates
	4.1 Task: Image Tagging
	4.2 Task: Question Answering

	5 Discussing ChangeLists with API producers and consumers
	5.1 Study Procedures
	5.2 Findings

	6 Conclusion
	Acknowledgments
	References
	A Extended Description of User Study
	A.1 Findings from pre-interviews.
	A.2 Findings from think-aloud demonstration.
	A.3 Study Procedures
	A.4 Interview Script

	B Extended Description of Methodology
	B.1 Discovery
	B.2 Attribution: Alignment Estimation
	B.3 Manually Gathering Slices

	C Extended Description of the Longitudinal Database of API Predictions
	C.1 Task: Image Tagging

