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ABSTRACT
Previous work has highlighted that existing post-hoc explanation
methods exhibit disparities in explanation fidelity (across “race” and
“gender” as sensitive attributes), and while a large body of work fo-
cuses on mitigating these issues at the explanation metric level, the
role of the data generating process and black box model in relation
to explanation disparities remains largely unexplored. Accordingly,
through both simulations as well as experiments on a real-world
dataset, we specifically assess challenges to explanation disparities
that originate from properties of the data: limited sample size, co-
variate shift, concept shift, omitted variable bias, and challenges
based on model properties: inclusion of the sensitive attribute and
appropriate functional form. Through controlled simulation analy-
ses, our study demonstrates that increased covariate shift, concept
shift, and omission of covariates increase explanation disparities,
with the effect pronounced higher for neural network models that
are better able to capture the underlying functional form in compar-
ison to linear models. We also observe consistent findings regarding
the effect of concept shift and omitted variable bias on explanation
disparities in the Adult income dataset. Overall, results indicate
that disparities in model explanations can also depend on data and
model properties. Based on this systematic investigation, we pro-
vide recommendations for the design of explanation methods that
mitigate undesirable disparities.

CCS CONCEPTS
• Computingmethodologies→Machine learning; Causal rea-
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1 INTRODUCTION
Machine learning models are increasingly being proposed for and
utilized in many societal areas such as healthcare, law, education,
and policy-making [3, 21, 56, 58, 64, 68]. Particularly in their role
as predictive tools, these models often are utilized with a ‘black
box’ nature. This characteristic can obscure the understanding of
the underlying mechanisms driving their predictions [19, 49]. The
lack of transparency raises concerns about the reliability of these
models in situations where safety is a critical factor [4, 11, 25]. For
example, in the context of healthcare, a proposed application of
machine learning models may be to determine patient treatment
plans. However, as these algorithms may sometimes lead to biased
predictions for disadvantaged groups, clear insights into the factors
influencing the machine learning model decisions are needed [13].

To address the lack of transparency in machine learning models,
the field has seen a development towards Explainable AI (XAI),
which focuses on creating methods that can explain the workings
of these black box models [10, 20, 35]. Among the approaches in
Explainable AI, the development of simpler models that emulate
the black box models’ behaviors has widespread adoption in the
field [10]. This approach, known as post hoc explanation, involves
developing a local model that provides explanations for individual
predictions. Such explanation models are proposed for use as stan-
dalone tools, providing global explanations that shed light on the
overall behavior and patterns within the black box model [57], or
to explain individual predictions, offering insights into the decision-
making process of individual instance [37, 46].

Post hoc explanation methods are broadly classified into four
categories: counterfactual [61], rule-based [47], perturbation-based
[37, 45, 46, 53], and gradient-based [51, 54]. Counterfactual explana-
tions are computationally expensive [29] due to the demanding na-
ture of searching for counterfactual instances in high-dimensional
feature spaces. Additionally, some counterfactual suggestions may
not be feasible in real-world contexts, as the changes they pro-
pose might be impractical to achieve [32]. Rule-based methods,
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on the other hand, can sometimes generate complex and hard-
to-understand rules, particularly with high-dimensional data [47].
Further, finding the most effective rule can also be computationally
intensive, especially for complex models. Gradient-based methods
have their limitations too; they are sensitive to noise in the input
space [65], ineffective in detecting spurious correlations [2], are
commonly applied to unstructured data like images, and some-
times produce visually similar explanations for different classes
[1]. Though each type of method has limitations, our focus is on
perturbation-based post hoc explanation methods, especially LIME
(Local Interpretable Model-agnostic Explanations), due to its wide-
spread adoption for tabular data [5] and previous use to highlight
disparities in post hoc explanation methods [6, 17].

Specifically, recent studies have revealed disparities in the fi-
delity of post hoc explanation methods, i.e., how accurately the
post hoc explanation methods replicate the nature of the black box
model, particularly when analyzed across data from different ‘gen-
der’ and ‘race’ groups [6, 17]. To address this disparity in fidelity,
Dai et al. [18] proposed a fairness-preserving approach for LIME,
which includes a fairness constraint in the LIME objective function
to ensure that the fairness properties of the black box model are also
reflected in LIME. This approach builds upon previous studies that
enhanced fairness in machine learning methods through similar
constraints [28, 66] but did not extensively discuss how the fairness
constraint can improve the fidelity of LIME explanations. Concur-
rently, Balagopalan et al. [6] developed a robust LIME explanation
model using the ‘Just train twice’ methodology [36]. However, the
fidelity improvement with this enhancement was demonstrated
only in certain cases; Adult, LSAC, and MIMIC datasets and only
for neural network methods [6].

A key point, however, is that fairness issues in machine learning
models (i.e., prediction models) are a multifaceted problem that
can manifest at the level of the data, the black box models, or their
interpretation (e.g., via explanation methods) [7, 24]. While efforts
to-date in explanation methods have predominantly focused on
improving the post hoc methods [6, 18], this overlooks the role of
data and black box models in generating unfair explanations. Given
the evidence that sample size, covariate shift, concept shift, and
omitted variables can affect model prediction accuracy and lead to
disparities in black box model performance, we investigate how
these characteristics of the data and the model development pro-
cess affect explanation disparities. Indeed, sample size imbalance
has been linked to bias in prediction [30] and calibration models
[48]. Moreover, limited samples of a certain subgroup are known to
affect model performance and the ability to generalize for the spe-
cific subgroup [14, 42]. A related source of algorithmic unfairness
is disparately missing data across subgroups [38, 63], which can
result in both an imbalance and a sample that is not representative
of the true distribution of the target population, resulting in a dis-
tribution shift for some subgroups [43]. Specifically, covariate shift
is known to affect black box model performance across subgroups
disparately [52]. Concept shift in the outcome, that is, where the
conditional distribution of the outcome given the covariates varies
across subgroups, also may have an effect on the quality of black
box prediction and can lead to disparities [42]. Lastly, omitting vari-
ables that have a direct effect on the outcome that is not completely
mediated by other covariates may also lead to disparities in black

box predictions across subgroups [39]. However, there is little evi-
dence of how characteristics of limited sample size, covariate shift,
concept shift, and omitted variable bias will influence the quality
of the explanation methods with respect to the test distribution.
Considering that the four above-mentioned characteristics have the
potential to introduce disparities in black box model predictions,
it is pertinent to investigate if and how these disparities in black
box model predictions can lead to explanation disparities. This is
motivated by the inherent nature of the explanation methods by
which they are expected to mimic the nature of the black box model.
Consider the LIME explanation method where the explanation pro-
duced by LIME at a local point 𝑥 is obtained by the following generic
formula: 𝜉 (𝑥) = argmin𝑔∈𝐺 𝐿(𝑓 , 𝑔, 𝜋𝑥 ) + Ω(𝑔), where 𝑓 is our real
function (the black box model), 𝑔 is a linear surrogate function we
use to approximate 𝑓 in the proximity of 𝑥 , 𝜋𝑥 defines the local-
ity, and Ω represents the model complexity. Data and modeling
characteristics that affect black box model performance may also
have similar effects on the explanation quality as well. In sum, we
explore the following data issues known to affect black box model
performance but relatively unexplored in the case of model expla-
nation disparities, 1) limited samples, 2) covariate shift, 3) concept
shift, and 4) omitted variable bias.

The remainder of this paper is structured as follows: in Section 2,
we discuss related work on post hoc explanation methods and the
fidelity of these approaches. In Section 3, we outline the objectives
and motivate the data-generating process for each objective of
our research. In Section 4, we describe the explanation quality
metrics and experimental setup for the synthetic and real-world
data experiments. In Section 5, we present the results, and finally
we discuss implications of these findings as well as synthesized
recommendations based on them in Section 6.

2 RELATEDWORK
Challenges in the Use of the Popular Post Hoc Explanation
Method LIME. In the realm of Explainable AI (XAI), a distinction
exists between models designed for inherent interpretability [9, 12,
31], such as decision trees [33] and rule lists [62, 67], and those
employing post hoc explanation methods [46]. Given their higher
accuracy, complex models like deep neural networks are frequently
preferred in real-world settings, necessitating the use of post hoc
methods to elucidate their prediction. Among post hoc explanation
techniques, the Local Interpretable Model-agnostic Explanations
(LIME) method stands out as a widely used method, particularly
for explaining black box models applied to tabular data [5]. LIME
is also valued for its model-agnostic nature, its capacity to provide
local explanations, and its relative simplicity [46].

However, several challenges with the use of LIME have been
noted. This method relies on perturbations, which introduce
computational demands, particularly in models with numerous
features [46]. Additionally, the fidelity of LIME’s explanations is
sensitive to adjustments in hyperparameters, including the number
of perturbed samples, kernel width, and regularization parameters.
Recent research efforts have acknowledged LIME’s limitations
and proposed improvements. For example, S-LIME introduces
frameworks for generating more stable and consistent explanations
across various perturbations [70]. Despite several issues associated
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with LIME, systematic studies exploring performance degradation,
especially concerning disadvantaged groups, are lacking. Our
research aims to be the pioneering effort in investigating why post
hoc explanation methods like LIME exhibit disparate explanations
across different subgroups.

Disparities In Post Hoc Explanation Methods and Efforts
to Mitigate. Recent research has delved into the exploration of
race and gender-based disparities in a range of post hoc explana-
tion methods, including LIME, SHAP, SmoothGrad, IntGrad, Vanil-
laGrad, and Maple [17, 18]. These studies have utilized several
datasets, such as German Credit, Student Performance, Adult, and
COMPAS. Further, Balagopalan et al. [6] conducted a study reveal-
ing explanation disparities among race and gender in both local
explanation methods (LIME and SHAP) and global methods (Gener-
alized Additive Model (GAM) and sparse decision tree (Tree)). Their
research used Adult, LSAC, MIMIC, and Recidivism datasets cover-
ing four critical domains: finance, college admissions, healthcare,
and the justice system. In terms of efforts to improve the fairness of
explanation methods, Balagopalan et al. [6] demonstrated that bal-
anced samples between the subgroups and robust training for local
and global explanation methods can improve the fidelity gap, which
refers to how well an explanation model approximates the behavior
of a black box model [6]. For local explanation methods, the authors
trained a fairer explanation model using the Just Train Twice (JTT)
methodology [36]. Although improvements were noted for neu-
ral network models applied to Adult, LSAC, and MIMIC datasets,
the authors did not see improvements in explanation fairness for
the Recidivism dataset. As the properties of these datasets were
not investigated, it is not yet clear why improvements were seen
in some datasets but not others or under what conditions these
methods may improve explainability. Balagopalan et al. [6] also
observed that fidelity gaps depend on the representation of the
data; they train black box models with features that have no mutual
information with respect to the sensitive attribute and observe that
fidelity gaps decrease. Although this provides insight into one spe-
cific property of data, how much information about the sensitive
attribute is available in the data representation, the authors suggest
further investigation about other data properties, which forms the
focus of this work. In parallel, Dai et al. [17] proposed a method
to generate fairness-preserving explanations by adding a penalty
term to the LIME objective function [18], an approach similar to
creating fair machine learning algorithms [66].

While existing studies effectively highlight disparities and pro-
pose fair post hoc explanation methods, they predominantly con-
centrate on the outputs of the explanation methods. The role of
data and black-box models in these disparities are not carefully ex-
amined though both the data used and the nature of the black-box
models can be significant sources of disparity [7].

3 DATA GENERATING PROCESS AND
OBJECTIVES

3.1 Data Generating Process
Here, we describe the data-generating process (DGP) for assess-
ing the reasons for disparities in model explanations in line with
previous work using simple causal graphs for systematic fairness

assessments [39, 52, 55]. We refer to the outcome as 𝑌 , a binary
variable that takes a value of 0 or 1. We consider a sensitive attribute
𝐴, such as race or gender, for which we represent the disadvantaged
group as 𝐴 = 0 and the advantaged group as 𝐴 = 1. 𝐴 is associated
with the independent covariate 𝐿. Two attributes, 𝐶 , and 𝐿 have
a direct effect on the outcome 𝑌 , where 𝐿 mediates a part of the
effect of 𝐶 on 𝑌 . 𝐶 has a direct effect on 𝑌 (𝐶 → 𝑌 ) and an indirect
effect through 𝐿 (𝐶 → 𝐿 → 𝑌 ). The relationship between these
variables is represented by the causal directed acyclic graph (DAG)
in Figure 1(a). In our causal graph, the covariates and the sensitive
attribute affect the outcome either through other covariates (i.e.,
(𝐴 → 𝐿 → 𝑌 )) or directly (i.e., 𝐶 → 𝑌 ).

We consider two setups; in the first, presented in Figure 1(a),
𝐴 has an effect on 𝑌 only through 𝐿, and in the second, in Figure
1(b) 𝐴 affects the relationship between 𝐿 and 𝑌 . The second setting
allows us to assess non-linear complex functional forms between 𝐴
and 𝑌 . We use these DGPs to represent the underlying relationship
between the variables in the general population, from which we
will draw samples to form training and testing datasets.

3.2 Objective 1: effect of sample size of
disadvantaged group data used for training

In order to investigate the effect of sample size imbalance on dis-
parities, we consider a scenario where we vary the proportion of
the sample size of the disadvantaged group (𝐴 = 0) from 5% to 50%
of the total training sample and accordingly vary the proportion of
the advantaged group (𝐴 = 1) from 95% to 50% of the total training
sample. To isolate this effect from non-random sampling of data
[27], we assume that there is no distribution shift in the predictors
𝐿 and 𝐶 between the training and test distributions. It is important
to note that the probability of the outcome 𝑌 , given the covariates
𝐿 and 𝐶 , 𝑃 (𝑌 = 𝑦 | 𝐿,𝐶), remains independent of the sample size
of 𝐴 = 0 since 𝑌 ⊥⊥ 𝐴 | 𝐿,𝐶 and we vary the proportion of both
advantaged and disadvantaged group to ensure that the training
sample is a perfectly random sample of the population distribution.

The DGP for this objective is represented in Figure 1(a). We
assume that, in the general population, attribute𝐴 is generated by a
binomial probability with 𝐴 ∈ {0, 1} ∼ Binomial(1, 0.5), 𝐶 follows
a normal distribution𝐶 ∼ N(0, 1), and 𝑃 (𝐿) is dependent on both𝐴
and𝐶 such that 𝐿 ∼ N(0, 0.5) + 0.7×𝐴 + 0.3×𝐶 . These parameters
were chosen to allow for differences in the distribution of 𝐿 across
𝐴 such that 𝑃 (𝐿 | 𝐶) ≠ 𝑃 (𝐿 | 𝐶,𝐴). We assume that covariates 𝐿
and 𝐶 have a direct effect of a similar magnitude on the outcome,
𝑌 , which follows a binomial distribution 𝑌 ∼ Binomial(1, 𝑌𝑝 ) with

probability of as 𝑌𝑝 : 𝑃 (𝑌 = 1 | 𝐿,𝐶) =
{
0.1 if 𝑖 < 0
0.9 if 𝑖 ≥ 1

, 𝑖 = 0.5 ×

𝐶 − 1.5 × 𝐿 + 0.5.
We also consider both cases, when the black-box machine learn-

ing model includes information on the sensitive attribute 𝐴 during
training and when it does not [40, 60], to assess the fairness prop-
erties of explanation metrics when the population Bayes-optimal
model is not subgroup Bayes-optimal [44].
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3.3 Objective 2: effect of covariate shift in
disadvantaged group data between training
and test distributions

Here, we explore the effect of a covariate shift, where the train-
ing distribution of covariate 𝐿 for 𝐴 = 0 is not representative
of the test distribution (or the population distribution). That is,
𝑃train (𝐿 | 𝐴 = 0) ≠ 𝑃test (𝐿 | 𝐴 = 0), however the conditional prob-
abilities are consistent; 𝑃train (𝑌 | 𝐿,𝐴 = 0) = 𝑃test (𝑌 | 𝐿,𝐴 = 0).
We generate a covariate shift in 𝐿 for 𝐴 = 0 by sampling for the
training distribution depending on both the sensitive attribute 𝐴
and the covariate 𝐿, such that there is missing data for group 𝐴 = 0
for all observations with 𝐿 below a threshold 𝑡 . In this way, we
vary the overlap in the range of 𝐿 between the test set and the
training set from 100% to 20%. It should be noted that the proba-
bility distribution of 𝑌 given 𝐴 = 0 is not the same in the training
and test sets; 𝑃train (𝑌 | 𝐴 = 0) ≠ 𝑃test (𝑌 | 𝐴 = 0). As the overlap
between the training and testing sets is reduced, the model has less
information in the training set to learn about the association be-
tween the variables in the general population for𝐴 = 0. As such, we
hypothesize that less overlap in the training and test distributions
for the disadvantaged group will lead to greater disparities.

The DGP for this objective is also represented in Figure 1(a).
Similar to objective 1, the data-generating process for each variable
is as follows: 𝐴 ∈ {0, 1} ∼ Binomial(1, 0.5), 𝐶 ∼ N(0, 1), 𝐿 =

N(0, 0.5) + 0.7 ×𝑀 + 0.3 ×𝐶 , 𝑌𝑝 = 𝑃 (𝑌 = 1) =
{
0.1 if 𝑖 < 0
0.9 if 𝑖 ≥ 1

, 𝑖 =

0.5 × 𝐶 − 1.5 × 𝐿 + 0.5, 𝑌 ∼ Binomial(1, 𝑌𝑝 ). Note that for both
objectives 1 and 2, we evaluate model performance on a test set
representative of the population. That is, the proportion of 𝐴 = 0
in the test set is 50%, and the full distribution of the values for 𝐿
is represented. As such, 𝑃train (𝐴) ≠ 𝑃test (𝐴). Again, we consider
both cases when 𝐴 is and is not included in the covariates to which
the black-box model has access.

3.4 Objective 3: effect of concept shift
Here we examine concept shift, where 𝑃 (𝑌 | 𝐿,𝐴 = 0) ≠ 𝑃 (𝑌 |
𝐿,𝐴 = 1) [41]. That is the relationship between 𝑌 and 𝐿 changes
depending on 𝐴. Here, we vary the magnitude of concept shift by
increasing the effect of the sensitive attribute on the distribution of
the outcome, that is, by varying the degree of difference between
the distribution of the outcome across groups that results in 𝑃 (𝑌 ) ≠
𝑃 (𝑌 |𝐴).

The DGP for this objective is represented in figure 1(b). We gen-
erate the distribution of variables𝐴 and𝐶 in the general population
following the same procedure outlined in objectives 1 and 2. In
order to capture the impact of 𝐴 on 𝑃 (𝑌 |𝐿), we augment the direct
effect of𝐴 and 𝐿 such that 𝐿 ∼ N(0, 0.1) +0.7×𝐴+0.3×𝐶 . The con-
cept shift is produced by specifying that the probability 𝑌𝑝 depends
on 𝑖 = 0.5×𝐶 +−1×𝐿 + 1.5×𝐴×𝐿 + 𝛽 × (1−𝐴) ×𝐿 − 0.2, through

the step function 𝑌𝑝 =

{
0.1 if 𝑖 < 0
0.9 if 𝑖 ≥ 0

. Note that the relationship

between 𝐿 and 𝑌𝑝 is determined by𝐴 and 𝛽 , where 𝛽 is the strength
of the concept shift. We consider 𝛽 = 1.5 as ‘low’ concept shift,
𝛽 = 0.5 a ‘moderate’ concept shift, and 𝛽 = −0.5 a ‘high’ concept
shift. The coefficients on 𝐶 , 𝐿, and the intercept term were chosen

in order to ensure an equal distribution of 𝑌 = 1 and 𝑌 = 0 in
the training sample to ensure class balance. As before, we consider
the impact of including or not including information on 𝐴 while
training the black box model.

3.5 Objective 4: effect of the magnitude of direct
effect of the omitted covariate

Finally, we test the impact of omitting a covariate, 𝐶 , that has a
direct effect on the outcome in the black box model on explanation
disparities. Following the data-generating process represented in
Figure 1(a), the distribution of 𝐴 and 𝐶 are generated as before,
𝐿 ∼ N(0, 0.5) +0.3×𝐴+0.3×𝐶 , and as before, 𝑌 ∼ Binomial(1, 𝑌𝑝 ).
We vary the direct effect of the attribute, 𝐶 , on the outcome that is
not mediated by other covariates, such that 𝑌𝑝 ∼ 𝛼 ×𝐶 + 𝐿 − 0.2
where 𝛼 ∈ {0, 0.5, 1, 1.5}. We assess the disparities resulting from
not including the variables 𝐶 in model training (or test).

4 METHODS
4.1 Notation
From the underlying population we draw a dataset D =

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), · · · , (𝑥𝑛, 𝑦𝑛)} comprising 𝑛 observations. Each
observation consists of a 𝑑-dimensional feature vector 𝑥𝑖 ∈ R𝑑
for the 𝑖𝑡ℎ data point in D, along with a corresponding binary
class label 𝑦𝑖 ∈ {0, 1}. We consider a machine learning model
𝑓 : R → {0, 1}, such as logistic regression (LR) or a neural net-
work (NN), trained on samples from D. For a given instance 𝑥𝑖 and
machine learning model 𝑓 , a local explanation method is denoted
as 𝐸 : (𝑥𝑖 , 𝑓 ) → 𝜓 ∈ R𝑑 , where 𝜓 represents the output vector of
feature importance. The local model, 𝐸, is designed to mimic the
behavior of 𝑓 in the vicinity of 𝑥𝑖 [17, 69].

4.2 Explanation Quality Metrics
We utilize two metrics to measure the fidelity gap across groups, as
introduced by Balagopalan et al. [6]. Fidelity is the degree to which
an explanation model precisely reflects the predictions of a black
box model. For a black box model 𝑓 and explanation model 𝐸, the
fidelity quantifies how closely 𝐸 approximates the behavior of 𝑓 .
Mathematically, the explanation fidelity for data points (𝑥𝑖 , 𝑦𝑖 )𝑁𝑖=1
is calculated as: 1

𝑁

∑𝑁
𝑖=1𝑄 (𝑓 (𝑥𝑖 ), 𝐸 (𝑥𝑖 )), where𝑄 is a performance

metric such as accuracy. This measure allows for the evaluation of
fairness by illustrating the alignment between themachine-learning
model and the explanation model.

Maximum Fidelity Gap from Average. The Maximum Fidelity
Gap from the Average measures the largest deviation in fidelity
for any group from the average fidelity across all groups. This
metric assesses the extent to which the fidelity of an explanation
model for disadvantaged groups deviates from the overall average
fidelity [6, 16, 36]. The maximum fidelity gap from average, Δ𝑄 is
represented as follows:

Δ𝑄 = max
𝑗


1
𝑁

𝑁∑︁
𝑖=1

𝑄 (𝑓 (𝑥𝑖 ), 𝐸 (𝑥𝑖 )) −
1
𝑁 𝑗

∑︁
𝑖:𝛿𝑖

𝑗
=1

𝑄 (𝑓 (𝑥𝑖 ), 𝐸 (𝑥𝑖 ))

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Figure 1: Causal DAG for the synthetic datasets (a, b) and the Adult dataset (c). In (a) is the causal graph describing the data-
generating process (DGP) for objectives 1, 2, and 4, (b) is the causal graph for the DGP for objective 3 (concept shift). The
concept shift is represented as the arrow showing the effect of 𝐴 on the relationship between 𝐿 and 𝑌 , such that 𝑃 (𝑌 | 𝐿,𝐴 =

0) ≠ 𝑃 (𝑌 | 𝐿,𝐴 = 1). In (c) we consider gender as the sensitive attribute of interest. 𝐴 and𝑀 represent gender and marital status,
respectively. 𝐶 is age and nationality, 𝐿 is the level of education, 𝑅 corresponds to the working class, occupation, and hours per
week, and 𝑌 is the income class.

where 𝑄 represents performance metric such as Accuracy, 𝑁
is the total number of data points, 𝛿𝑖

𝑗
= 1 indicates that point 𝑥𝑖

belongs to the 𝑗-th group, and 𝑁 𝑗 is the number of data points
where 𝛿 𝑗 = 1. We specifically focus on the maximum fidelity gap
from the average for the ‘Accuracy’ performance metric following
the performance metric used by Balagopalan et al. [6], where we
assess the accuracy between the predictions of the black box model
𝑓 (:) and the explanation method 𝐸 (:) and denote it as Δ𝐴𝑐𝑐 .

Mean Fidelity Gap Amongst Subgroups. This metric illustrates
the average difference in fidelity between groups. Within the Mean
Fidelity Gap, performance metrics such as AUROC, Residual Error,
and Accuracymay be used to quantify disparities between black box
model predictions and their explanations. This metric is computed
as follows [6]:

Δ
𝑔𝑟𝑜𝑢𝑝

𝑄
=

2
𝐺 (𝐺 − 1)

𝐺∑︁
𝑝=1

𝐺∑︁
𝑗=𝑝+1

|𝑄𝑝 −𝑄 𝑗 |

with

𝑄𝑝 =
1
𝑁𝑝

∑︁
𝑖:𝛿𝑖𝑝=1

𝑄 (𝑓 (𝑥𝑖 ), 𝐸 (𝑥𝑖 ))

where𝐺 is the total number of groups,𝑄𝑝 and𝑄 𝑗 are the perfor-
mance metrics for the 𝑝𝑡ℎ and 𝑗𝑡ℎ groups respectively, 𝛿𝑝 denotes
the 𝑝-th group, and 𝑁 𝑗 is the number of data-points in 𝛿𝑝 . As de-
scribed above, the 𝑄 metric includes Accuracy, denoted by Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
.

We use Accuracy as the performance metric for both explanation
quality metrics to compare how accurate the explanations for the
disadvantaged group are in comparison to overall and how accurate
the explanations for the disadvantaged group are in comparison to
the advantaged group.

4.3 Experimental Setup
Simulation andReal-world Data. The simulated data, as outlined
in Section 3, is constructed to reflect a specific causal structure. This
dataset comprises 20,000 data points featuring a sensitive attribute
𝐴 (such as gender), covariates 𝐿 and 𝐶 , and a binary outcome 𝑌 .
Specifically, the covariate 𝐿 mediates a part of the effect of 𝐶 on
𝑌 . The process for generating this data is detailed in Section 3. We

assess the quality of the explanations generated with respect to the
sensitive attribute 𝐴.

In addition to the simulated data, we employ the widely used
Adult dataset for real-world analysis [22, 34]. We chose this dataset
due to the importance of the dataset in developing and evaluating
post-hoc explainability methods [26, 50, 59], the general popularity
of the dataset for fairness analysis [6, 8, 17, 23] and the availability
of a well studied causal DAG [15, 39]. This previously used causal
graph is shown in Figure 1(c). For the task using the Adult dataset,
the goal is to predict whether an individual’s income is above or
below $50,000. The data consist of age, working class, education
level, marital status, occupation, relationship, race, gender, capital
gain and loss, working hours, and nationality variables for 48842
individuals. In Adult, disparities in explanation quality (maximum
fidelity gap and mean fidelity gap between groups using accuracy
and error) have been found for both logistic regression and neural
network black box models with respect to gender [6], but the source
of these disparities has not been investigated. Following [39], we
consider the variable ‘hours-per-week’ as one of the predictors with
a direct effect on the outcome of interest, income 𝑌 represented
by 𝐿 in the synthetic experiment. All other covariates that may be
associated with both ‘hours-per-week‘ and income are represented
as 𝐶 in the synthetic experiment, in particular age and nationality.
We consider gender as the sensitive attribute of interest (‘𝐴’ in
the synthetic experiment) as has been done in previous studies on
algorithmic fairness[6, 39], and considering ‘males’ as the disadvan-
taged group since we observe that it is easier to predict the outcome
for the advantaged group ‘females’ than it is to predict the outcome
for the disadvantaged group ‘males.’

Moreover, for this dataset and task, we detect a statistically
significant concept shift (𝑝 ≤ 0.1) of gender (𝐴) on the relation-
ship between ‘hours-per-week’ (𝐿) and the outcome (𝑌 ). The con-
cept shift was tested using logistic regression with an interaction
term, such that logit(income) = 𝛽1× sex + 𝛽2×‘hours-per-week’ +
𝛽3×sex× ‘hours-per-week’. Furthermore, following the proposed
causal graph for the Adult dataset, we use ‘nationality’ as the omit-
ted variable (𝐶 in the synthetic experiment), which has a direct
effect on 𝑌 along with indirect effects on 𝑌 through other covari-
ates. We examine these effects further by performing the following
experiments, which match the experiments we performed with
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synthetic data. We analyze the effect of the sample size of the disad-
vantaged group (objective 1) by further restricting the proportion
of females in the training dataset from 10% to 100% (with a 10%
increment). We also perform experiments examining the effect of
non-overlap between training and test distribution of ‘hours-per-
week‘ (objective 2) by limiting the observations of males in the
training dataset to individuals working less than 100, 80, 60, 40, and
20 hours per week and thus introducing covariate shift in ‘hours-
per-week’ for males. We also check the impact of concept shift
alone by ensuring the training set is 50% females and 50% male
(objective 3). This ensured that we had an equal representation of
both groups in the training set. We examine the effect of omitting
a covariate that has a direct effect on the outcome (objective 4) by
omitting a) gender, b) nationality, and c) both from the black box
model.
Machine Learning Model. Our study examines both logistic re-
gression (LR) and neural network (NN) models as the underlying
functions in the black box model which are implemented using
the PyTorch framework. This selection enables us to compare the
impacts of a simpler, linear model and a more complex, flexible
model on the quality of explanations, aligning with methodologies
used in previous studies [6, 17]. The neural network architecture
consists of four layers linked by ReLU activation functions and
concludes with a final layer with a sigmoid activation function
for output, mirroring the setup used for assessing disparities by
Dai et al. [17]. The layer configurations are as follows: the first
linear layer maps input features to 50 outputs, succeeded by ReLU
activation. The subsequent layers expand the dimensionality (50 to
100, and then 100 to 200), each followed by ReLU activations. The
final linear layer condenses these 200 inputs to a single output, pro-
cessed through a sigmoid activation function. We utilize the Adam
optimizer with a weight decay of 1𝑒−4 and train the model using
Binary Cross-Entropy Loss over 100 epochs. We represent the NN
models that do not include the sensitive attribute in model training
as NN̸A and the NN models that include the sensitive attribute as
NN𝐴 and similar for the LR models as LR̸A, and LR𝐴 , respectively.
Explanation Method. As motivated above, our focus is on LIME
for the explanation model, chosen for its extensive application and
documented disparities in previous studies [5, 6, 17]. LIME operates
by constructing a local surrogate model to interpret specific data
points, thereby shedding light on the prediction of the underly-
ing complex model. LIME generates a dataset of perturbations by
altering the features of a specific instance, creating a range of vari-
ations. The original machine learning model is then used to obtain
predictions for the dataset comprising of the perturbed instances.
The perturbed instances are weighted according to their similarity
to the original instance by comparing the distance to the original
instance from which the perturbations are obtained. Subsequently,
a simpler, interpretable linear model is trained on this weighted,
perturbed dataset [46]. The objective of this simpler model is to
approximate the complex model’s predictions in the vicinity of the
selected instance. The explanation is obtained from the features of
this simpler model, identifying the key covariates influencing the
specific prediction. The implementation of LIME utilizes LimeTab-
ularExplainer from the ‘lime’ package in Python, which operates
on the training data without discretizing continuous features. The

result from this implementation is 1000 perturbed samples for gen-
erating the explanation of each instance, considering all dataset
features for generating explanations for each test instance.
Settings and Implementation Procedures. The datasets D are
divided into training Dtrain and testing Dtest sets, comprising 70%
and 30% of the data, respectively. The black box model 𝑓 is trained
using Dtrain. The test dataset Dtest is further segmented into two
groups D𝐴=1

test for group 1 and D𝐴=0
test for group 0. We generate

explanations using LIME for both groups. The fidelity of these ex-
planations is assessed by comparing the predictions from the black
box model 𝑓 and the explanation model 𝐸, using the fidelity metrics
defined in Section 4. To evaluate the consistency of predictions
between the black box model 𝑓 and the explanation model 𝐸, we
conduct five trials, each with different random seeds1.

5 RESULTS
5.1 Explanation Disparities in Synthetic

Simulations
Overall findings on model complexity and inclusion of sen-
sitive attributes. We observe similar characteristics across all
objectives between simpler linear models (LR) and complex neural
network models (NN). In general, higher disparities in explana-
tion metrics (Maximum Fidelity Gap, Δ𝐴𝑐𝑐 and Mean Fidelity Gap,
Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
) are found for models that use higher complexity for the

functional form (NN), in comparison to simpler models (LR). More-
over, if the inclusion of the sensitive attribute (𝐴) in training the
black box model aligns with the causal structure (𝑌𝐴 | 𝐶, 𝐿) then 𝐴

needs to be included in model training, and explanation disparities
are smaller than if the inclusion of group information does not
align with the causal structure, (if 𝐴 is not included in the black
box model training even though 𝑌𝐴 | 𝐶, 𝐿). Specifically for objec-
tives 1 and 2, excluding the sensitive information aligns with the
causal structure, and accordingly, models that include the sensitive
attribute LR𝐴 and NN𝐴 have higher disparities when compared
with models that exclude the sensitive attribute, i.e., LR̸A and NN̸A,
respectively as reflected in Figures 2(a), 2(b). Moreover, we observe
that the highest magnitude of Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
and Δ𝐴𝑐𝑐 is for NN and is

much larger under conditions of covariate shift (4.52%, 2.25%) and
concept shift (27.63%, 14.12%) than either sample size differences
(1.6%, 0.82%) or omitted variables (1.6%,0.89%). While we specifically
report Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
here, we observed similar behavior across

Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑈𝑅𝑂𝐶
, Δ𝑔𝑟𝑜𝑢𝑝

𝐸𝑟𝑟𝑜𝑟
, not reported here for brevity.

Objective 1: Observations with respect to variation in sample
size of disadvantaged group.
As the proportion of disadvantaged group samples increases, mak-
ing their representation in the training set closer to the test set,
explanation disparity metrics for NN ̸A and LR ̸A remain approxi-
mately consistent, illustrated in Figure 2(a) and Appendix Figure
A1(a). For a proportion of 0.05 of the disadvantaged group in the
training sample, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN̸A and LR̸A are 0.19% and 0.23%, re-

spectively while for a proportion of 0.5 of the disadvantaged group
in the training sample, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
corresponds to 0.19% and 0.21%, re-

spectively. However, when the sensitive attribute is used for model

1Code to replicate experiments is available at https://github.com/ChunaraLab/
Disparities-Posthoc_Explanations

https://github.com/ChunaraLab/Disparities-Posthoc_Explanations
https://github.com/ChunaraLab/Disparities-Posthoc_Explanations
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training in the case of NN𝐴 and LR𝐴 , larger model explanation dis-
parities result. Specifically, for 0.05 proportion of the disadvantaged
group, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN𝐴 and LR𝐴 is 0.52% and 1.60%, respectively, an

increase of 0.33% and 1.37% from NN̸A and LR̸A. At 0.5 proportion
of the disadvantaged group, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN𝐴 and LR𝐴 drop to 1.1%

and 0.21%, respectively. Figure 2(a) and Appendix Figure A1(a) show
these findings. Thus, disparities decrease for models that include
the sensitive attribute but remain consistent for models that exclude
the sensitive attribute. It also should be noted that the difference
in black box model performance (accuracy) for the disadvantaged
and advantaged groups is consistent for NN̸A and LR ̸A, but the
difference decreases for NN𝐴 and LR𝐴 as the proportion of the
disadvantaged group increases in the training sample, as illustrated
in Appendix Figure A2(a).
Objective 2: Variation in covariate shift for the disadvantaged
group
Introducing a covariate shift in 𝐿, specifically for the disadvantaged
group, results in the training distribution of the disadvantaged
group not being representative of the test distribution of the dis-
advantaged group. As the overlap between the training and test
distributions of the disadvantaged group increases, overall dispari-
ties in the explanationmetrics go down. Specifically, for 20% overlap,
Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN̸A and LR̸A are 0.84% and 0.05%, respectively, while

for 100% overlap of the disadvantaged group between the training
and test distributions, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
corresponds to 0.18% and 0.08%, re-

spectively. However, when the sensitive attribute is used for model
training, explanation disparity in Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
and Δ𝐴𝑐𝑐 is higher in com-

parison to when the sensitive attribute is excluded inmodel training,
where there is incomplete overlap. At 20% overlap, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN𝐴

is 4.46% and for LR𝐴 is 2.2%, an increase of 3.62% and 2.15% from
NN ̸A and LR̸A, respectively. However, at 100% overlap explanation
disparities for NN𝐴 and LR𝐴 reduce considerably with Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
as

0.18% and 0.08%, respectively. At 100% overlap, explanation dis-
parities for NN̸A and LR ̸A are same as NN𝐴 and LR𝐴 , respectively.
This is illustrated in Figure 2(b) for Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
and a similar trend is

observed in other metric, Δ𝐴𝑐𝑐 as shown in Appendix Figure A1(b).
The difference in black box model performance metric (accuracy)
between the disadvantaged and advantaged groups is consistent
for NN ̸A and LR ̸A, but the difference decreases for NN𝐴 and LR𝐴 as
the proportion of the disadvantaged group increases in the training
sample as illustrated in Appendix Figure A2(b).
Objective 3: Variation in the magnitude of concept shift
As the magnitude of the concept shift is increased for the disad-
vantaged group from low to moderate to high, disparities in model
explanations for Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
increase as presented in Figure 2(c). As

the concept shift increases from moderate to high, Δ𝑔𝑟𝑜𝑢𝑝
𝐴𝑐𝑐

for LR𝐴
varies from 0.17% to 0.55% (an increase of 0.38%) while that for LR ̸A
varies from 0.09% to 0.04% (a decrease of 0.05%) . For NN𝐴 , Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
increases from 1.47% to 5.92% (an increase of 4.45%). However, in
the case of NN̸A, Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
increases from 3.70% to 27.63% (an increase

of 23.93%) as the concept shift increases from moderate to high.
Similar trend is observed across Δ𝐴𝑐𝑐 as shown in Appendix Figure
A1(c). Thus, as concept shift increases, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
and Δ𝐴𝑐𝑐 increase

for NN̸A considerably in comparison to NN𝐴 , LR̸A, and LR𝐴 . As

concept shift increases, the difference in black box model perfor-
mance between the advantaged and disadvantaged groups for LR𝐴 ,
LR ̸A, NN𝐴 , NN ̸A also increases as illustrated in Appendix Figure
A2(c).
Objective 4: Variation in the direct effect of the omitted vari-
able on the outcome
As the direct effect of the omitted variable 𝐶 on the outcome in-
creases (from 0 to 1.5), excluding 𝐶 from model training increases
disparities in Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
when compared to models that include 𝐶

in model training as shown in Figure 2(d). For a direct effect of
magnitude 0.5, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN that includes 𝐶 in model training,

represented as NN𝐶 , is 0.13% while that of NN excluding 𝐶 , rep-
resented as NN𝐶̸ is 0.27%. While for LR that includes 𝐶 in model
training, LR𝐶 , Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
is 0.05% for a direct effect of magnitude 0.5,

and for LR that excludes 𝐶 in model training, LR𝐶̸ , Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
is 0.03.

On the contrary, for a direct effect of magnitude 1.5, Δ𝑔𝑟𝑜𝑢𝑝
𝐴𝑐𝑐

for
NN𝐶 , is 0.09% while that of NN̸𝐶 is 1.55%, a decrease of 0.04% and
an increase of 1.28% in comparison to a direct effect of magnitude
0.5, respectively. While for LR𝐶 , Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
is 0.07% for a direct effect

of magnitude 1.5, and for LR𝐶̸ , Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
is 0.06, an increase of 0.02%

and 0.03% from a direct effect of magnitude 0.5, respectively. Thus,
Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN̸𝐶 increases as the direct effect of 𝐶 on 𝑌 increases.

This characteristic is also observed across Δ𝐴𝑐𝑐 as shown in Appen-
dix Figure A1(d). The difference in black box model performance
of NN̸𝐶 is higher than that of NN𝐶 , when the direct effect of 𝐶
on 𝑌 is non-zero, precisely for values, 0.5,1.0, and 1.5, as shown in
Appendix Figure A2(d).

5.2 Explanation Disparities in Real-World
Dataset

In the case of the Adult dataset, increasing the percentage of the dis-
advantaged group (males) in the training sample shows a decrease
in Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for LR̸A and LR𝐴 while it remains consistent for NN𝐴 and

shows a very slight decrease in case of NN ̸A. This is illustrated in
Appendix Figure A3(b). Similar characteristics can be seen for Δ𝐴𝑐𝑐
in Appendix Figure A3(a). Specifically, for 5% of the disadvantaged
group in the training sample, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for LR̸A and LR𝐴 is 3.77% and

2.11% respectively that decreases to 1.40% and 1.13% for 50% of
the disadvantaged group in the training sample. This corresponds
to a decrease of 2.37% for LR𝐴 and 0.98 for LR̸A. While for NN𝐴 ,
this decrease corresponds to 0.03%, and for NN̸A, it is 0.91% as the
percentage of the disadvantaged group (males) increases from 5% to
50%. This differs from the simulation, where explanation disparities
in Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
remain consistent for LR ̸A and NN ̸A decrease for LR𝐴

and NN𝐴 whereas in case of Adult, Δ𝑔𝑟𝑜𝑢𝑝
𝐴𝑐𝑐

for LR ̸A, LR𝐴 , and NN ̸A
decrease.

Introducing a covariate shift in 𝐿 ‘hours-per-week,’ for the disad-
vantaged group (males), results in the training distribution of the
disadvantaged group not being representative of the test distribu-
tion of the disadvantaged group. Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
increases from 0.46% to

0.53% for LR𝐴 , 0.50% to 2.93% for NN𝐴 as percent overlap increases
from 20 to 100. On the contrary, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for LR ̸A decreases from

2.14% to 0.41%, and for NN ̸A it decreases from 4.61% to 2.94% as
the percent overlap increases from 20 to 100. This can be seen in
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Figure 2: Percent Mean Fidelity Gap (Accuracy) of LIME with 95% confidence intervals applied to models built on the synthetic
datasets generated for (a) objective 1 - sample size, (b) objective 2 - covariate shift, (c) objective 3 - concept shift, and (d) objective
4 - omitted variables. In (a), we vary the proportion of the disadvantaged group in the training set sample. In (b), we introduce a
covariate shift for the disadvantaged group, shifting the overlap between the train and test distributions; and in (c), we vary the
magnitude of the concept shift. In (d), we adjust the strength of the direct effect of the omitted variable 𝐶. The models that are
considered are LR with 𝐴, LR𝐴 in blue, LR without 𝐴, LR̸A in green, NN with 𝐴, NN𝐴 in red, and NN without 𝐴, NN̸A in violet,
LR without 𝐶, LR̸𝐶 in yellow, and NN without 𝐶, NN̸𝐶 in plum. Circles represent linear models, and triangles represent neural
network models. Notice that the magnitude of the mean fidelity gap is much larger under conditions of (b) covariate shift and
(c) concept shift than either (a) sample size differences or (d) omitted variables.

Model Δ𝐴𝑐𝑐 Δ
𝑔𝑟𝑜𝑢𝑝

Accuracy

LR𝐴 0.021 (0.020, 0.021) 0.063 (0.062, 0.064)
LR ̸A 0.015 (0.015, 0.015) 0.046 (0.045, 0.047)
NN𝐴 0.025 (0.025, 0.026) 0.078 (0.077, 0.079)
NN̸A 0.022 (0.022, 0.022) 0.067 (0.066, 0.068)

Table 1: Maximum Fidelity Gap (Δ𝐴𝑐𝑐 ) and Mean Fidelity Gap
in Accuracy (Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
) with (95% Confidence interval) for Adult

dataset for LR𝐴, LR̸A, NN𝐴, NN̸A for concept shift between
‘hours-per-week’ and ‘income’ for male group for Adult (ob-
jective 3).

Appendix Figure A4(b). This differs from simulation, where increas-
ing overlap decreases Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for LR𝐴 NN𝐴 but Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
remains

consistent for LR ̸A and NN̸A while in case of Adult, Δ𝑔𝑟𝑜𝑢𝑝
𝐴𝑐𝑐

in-
creases for LR𝐴 , NN𝐴 but decreases for LR̸A and NN̸A. In the case
of concept shift, excluding the sensitive attribute, ‘gender,’ 𝐴 for
model training results in a 1.5% explanation disparity Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for

LR ̸A and 2.2% Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for NN ̸A. Including the sensitive attribute

results in an explanation disparity of 2.1% for LR𝐴 (an increase of
0.6% from LR̸A and 2.5% for NN𝐴 (an increase of 0.3% for NN𝐴).

Model Δ𝐴𝑐𝑐 Δ
𝑔𝑟𝑜𝑢𝑝

Accuracy

LR𝐶 0.006 (0.005, 0.006) 0.017 (0.014, 0.020)
LR̸𝐶 0.004 (0.004, 0.005) 0.013 (0.011, 0.015)
NN𝐶 0.027 (0.027, 0.028) 0.083 (0.081, 0.084)
NN̸𝐶 0.023 (0.022, 0.024) 0.070 (0.068, 0.072)

Table 2: Maximum Fidelity Gap (Δ𝐴𝑐𝑐 ) and Mean Fidelity Gap
in Accuracy (Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
) with (95% Confidence interval) for Adult

dataset for LR with ‘Nationality’ included LR𝐶 , LR with ‘Na-
tionality’ excluded LR̸𝐶 , NN with ‘Nationality’ included NN𝐶

and NN with ‘Nationality’ excluded NN𝐶̸ for Adult (objective
4).

This is illustrated in Table 1. In the case of simulations, exclud-
ing 𝐴 results in higher disparities for LR ̸Aand NN̸A in comparison
to including 𝐴, an opposite trend compared to Adult. Regarding
omitted variable bias, excluding ‘Nationality’ 𝐶 , which has a direct
effect on ‘income’ 𝑌 , results in an explanation disparity in Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
of 2.29% in comparison to including 𝐶 in model training, with an
explanation disparity of 2.7% (a difference of 0.49%) for NN. While
for LR excluding ‘Nationality’ results in 0.52% explanation disparity,
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Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
in comparison to including it with an explanation disparity,

Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
of 0.55% (lower by 0.03%). This result is illustrated in Table

2. Excluding 𝐶 results in lower disparities for Adult but higher dis-
parities in the case of simulation. Specifically, in the simulations,
excluding 𝐶 results in an explanation disparity in Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
of 1.55%

in comparison to including it 0.09% (a decrease of 1.46%) for NN
and 0.06% in explanation disparity in Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
for excluding in LR

in comparison to 0.06% while including 𝐶 . Since we cannot vary
concept shift and the direct effect of ‘Nationality’ on the outcome
‘Income,’ as opposed to the variations in the case of simulations, we
only report one value for Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
, and Δ𝐴𝑐𝑐 for all the models for

Adult in Tables 1 and 2 but present multiple values for the simu-
lations in Figures 2(c) and 2(d) for objectives 3 and 4, respectively.
Black box model performance for Adult is presented in Appendix
Figures A5(a) and A5(b) for objectives 1 and 2, and Appendix Tables
A1 and A2 for objectives 3 and 4. These results show that there is a
larger difference in the accuracy of black box model performance
between groups of the sensitive attribute (males and females) for
Adult, 13% for NN, and 13.8% for LR in comparison to the simulated
data, with 0.10% for NN and 0.18% for LR.

6 DISCUSSION
Our study is the first to examine disparities in LIME explanation
method, focusing on the properties of the data and black box model.
We examine sample size, covariate shift, concept shift, and omitted
variable bias, along with the inclusion of the sensitive attribute in
the black box model training and the complexity of the black box
model. Our findings show that explanation disparities for both ex-
planation fidelity metrics tested: Maximum Fidelity Gap in accuracy
Δ𝐴𝑐𝑐 and Mean Fidelity Gap in accuracy Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
can be based on the

characteristics of the data as well as the modeling method. In sys-
tematic simulation results, we found no change in Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
with increasing disadvantaged samples for models that exclude the
sensitive attribute if the exclusion of the sensitive attribute aligns
with the causal graph. If the inclusion of the sensitive attribute does
not align with the causal graph, Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
may depend on

the proportion of the disadvantaged group in the training sample.
Here, the black box model is likely to learn spurious correlations
between the sensitive attribute and outcome, which can affect Δ𝐴𝑐𝑐
and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
. For limited overlap in the distribution of the disadvan-

taged sample between the training and test distributions, explana-
tion disparities are higher compared to complete overlap. With a
lower overlap, the black box model may not generalize well for the
disadvantaged group in the test distribution, resulting in higher
disparities in model explanations for Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
. Moreover,

as the concept shift increases, resulting in a nonlinear relationship
between the sensitive attribute and the outcome, linear models
that are unable to capture this non-linearity actually have lower
Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
compared to complex neural network models. If

the sensitive attribute is excluded from the training of the complex
black-box model, not aligning with the causal structure, Δ𝐴𝑐𝑐 and
Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
are higher than if the sensitive attribute is included in the

model training for concept shift. Excluding the sensitive attribute
may mask its importance in the predictions of the black box model,
resulting in higher explanation disparities. Omitting a variable that
has a direct effect on the outcome may lead to a higher Δ𝐴𝑐𝑐 and

Δ
𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
as the magnitude of the direct effect increases, especially for

complex models. As the variable has a direct effect on the outcome,
excluding it may mask the importance of the variable in predic-
tions of the black box model, resulting in an increase in explanation
disparities.

We find that disparities in model explanations for the Adult
dataset reflect the issue of 𝑃 (𝑌 | 𝐿,𝐶,𝐴)! = 𝑃 (𝑌 | 𝐿,𝐶) in real-
world datasets, where it is easier to predict the outcome for the
advantaged group rather than the disadvantaged group. Meanwhile,
for the synthetic simulations presented here, it is equally easy to
predict across the disadvantaged and advantaged groups.

In general, in simulations, explanation disparities are higher for
models that include the sensitive attribute in comparison to mod-
els that exclude the sensitive attribute for objectives 1 and 2. An
opposite trend is observed in the case of Adults, where explanation
disparities are higher when the sensitive attribute is excluded com-
pared to when it is included. Including the sensitive attribute aligns
with the causal graph for Adult but not for simulations which may
explain the differences in the observed behavior between simula-
tions and Adult. Specifically, as the simpler linear models are not
able to capture the nonlinear relationship in Adult, their overall
performance increases with an increased proportion of disadvan-
taged group samples, resulting in a decrease in Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
,

irrespective of whether the sensitive attribute is included or not.
This differs from simulations where Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
only decrease

for the models that include the sensitive attribute. We posit that
as our simulations comprised linear functional forms, explanation
disparities had a similar trend between linear and neural network
models; however, in the case of Adults, since the functional form is
nonlinear, explanation disparities for the linear models follow a dif-
ferent trend than neural networks. For concept shift, including the
sensitive attribute in the black box model training for Adults has a
higher Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
than excluding it in the case of neural net-

works for concept shift. On the contrary, in simulations, excluding
the sensitive attribute resulted in higher Δ𝐴𝑐𝑐 and Δ

𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
. Exclud-

ing the sensitive attribute may result in inaccurate explanations
of the black box predictions, especially for complex models such
as neural networks. A similar characteristic is observed in Adult
when ‘Nationality’ is excluded to assess omitted variable bias, as
excluding it can result in inaccurate explanations, especially for
the disadvantaged group similar to the simulations. For mitigating
disparities in the explanations in the case of datasets like Adult, our
analyses reinforce the need to focus on improving the quality of
the data and ensure that the complexity in the data is adequately
captured by the black box model.
Need for benchmark datasets for developing fair explanation
methods
Given the importance of data, benchmark datasets for assessing
explanation disparity metrics would help but currently do not exist.
For developing such benchmark datasets, knowledge of the causal
graph can aid in understanding if including sensitive information
is relevant to the task and can also highlight which variables can be
omitted in the model training to ensure explanations are accurate,
especially those that do not directly affect the outcome. Further,
systematically designed benchmark datasets that allow for vary-
ing complexities in the functional form between the covariates
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and the outcome will be useful in order to assess the explanation
disparities of black box models with varying complexity. Finally,
benchmark datasets can be used to assess how different the test
distributions can be from the training distributions to ensure that
explanation disparities are within the desired range. For example,
in the simulations, around 60% overlap results in a considerable
drop in explanation disparities in comparison to 20% overlap. These
types of examinations can help demonstrate how well a particular
explanation method generalizes based on the overlap between train
and test distributions.
Limitations of the study
While we highlight the potential factors in the data-generating pro-
cess and model training that can result in explanation disparities,
our study concentrates on the LIME explanation method. Although
LIME has widespread use, and previous research focuses on dis-
parities in LIME explanations, other explanation methods, such
as SHAP, may also exhibit disparity challenges that depend on
the properties of the data and the black box model. Future work
should extend our investigation to other explanation methods, such
as SHAP. Moreover, LIME explanations have inherent limitations,
such as uncertainty in perturbation processes. Additionally, the
computational cost of LIME and the selection of hyperparameters
like kernel width and regularization parameters are crucial to LIME
and can influence explanations. Prior methods developed for ad-
dressing these challenges also need to be audited with respect to
data andmodel properties.While we restrict to simple causal graphs
without unmeasured confounding between the sensitive attribute
and the outcome, further efforts to include unmeasured confound-
ing can provide additional insights. However, in considering the
properties of the data and models, this work takes an important ini-
tial step towards incorporating broader aspects into the assessment
of explanation disparities.
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A APPENDIX
A.1 Additional Performance Metric Results for

Simulation
Results for Δ𝐴𝑐𝑐 for all 4 objectives are presented in Appendix
Figure A1. We also provide detailed results for the simulation per-
taining to the black box model performance for all 4 objectives in
Appendix Figure A2.

A.2 Detailed Results for Adult
Here, we present results for Explanation Fidelity Metrics, Δ𝑔𝑟𝑜𝑢𝑝

𝐴𝑐𝑐
and Δ𝐴𝑐𝑐 for objective 1 (varying percentage of the disadvantaged
group, males in the training distribution) and objective 2 (varying
overlap in the distribution of ‘hours-per-week,’ 𝐿 for the disadvan-
taged group, males between the training and test distributions in
Appendix Figures A3 and A4, respectively. Moreover, we provide
additional results for the Adult dataset for the black box model
performance, a disparity in the prediction accuracy of the black box
model between the advantaged and disadvantaged groups across
all 4 objectives. We present these prediction disparities in Appendix
Figures A5(a), A5(b) for objectives 1, 2 and in Tables A1 and A2 for
3, and 4, respectively.



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Mhasawade et al.

0.1 0.2 0.3 0.4 0.5
Proportion of Disadvantaged Sample

0.0

0.2

0.4

0.6

0.8

1.0

M
ax

im
um

 F
id

el
ity

 G
ap

 (%
)

LRA

LRA
NNA

NNA

(a)

20 40 60 80 100
Percent Overlap

0.0

0.5

1.0

1.5

2.0

2.5

M
ax

im
um

 F
id

el
ity

 G
ap

 (%
)

LRA

LRA
NNA

NNA

(b)

Low Moderate High
Magnitude of Concept Shift

0

2

4

6

8

10

12

14

M
ax

im
um

 F
id

el
ity

 G
ap

 (%
)

LRA

LRA
NNA

NNA

(c)

0.0 0.5 1.0 1.5
Direct Effect of Omitted Variable

0.0

0.2

0.4

0.6

0.8

M
ax

im
um

 F
id

el
ity

 G
ap

 (%
)

LR
LRA
LRC

NN
NNA
NNC

(d)

Figure A1: Percent Maximum Fidelity Gap of LIME applied to models built on the synthetic datasets generated for (a) objective
1 - sample size, (b) objective 2 - covariate shift, (c) objective 3 - concept shift, and (d) objective 4 - omitted variables for LR with
𝐴, LR𝐴 in blue, LR without 𝐴, LR ̸A in green, NN with 𝐴, NN𝐴 in red, and NN without 𝐴, NN̸A in violet, LR without 𝐶, LR𝐶̸ in
yellow, and NN without 𝐶, NN̸𝐶 in plum. Circles represent linear models, and triangles represent neural network models.
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Figure A2: Performance disparity of 𝑓 () calculated as Accuracy for A = 1 - Accuracy for A = 0 on the synthetic datasets generated
with an increasing (a) proportion of the disadvantaged sample (objective 1), (b) overlap between the distribution of 𝐿 for 𝐴 = 0
between training and test distributions, (c) concept shift, and (d) direct effect of omitted variable 𝐶 for LR with 𝐴, LR𝐴 in blue,
LR without 𝐴, LR ̸A in green, NN with 𝐴, NN𝐴 in red, and NN without 𝐴, NN ̸A in violet. Circles represent linear models, and
triangles represent neural network models.
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Figure A3: (a) Percent Maximum Fidelity Gap, Δ𝐴𝑐𝑐 , (b) mean fidelity gap in accuracy, Δ𝑔𝑟𝑜𝑢𝑝
𝐴𝑐𝑐

of LIME on Adult dataset with
variation in the proportion of the ‘males’ (𝐴) in the training sample (objective 1) for LR with 𝐴, LR𝐴 in blue, LR without 𝐴, LR ̸A
in green, NN with 𝐴, NN𝐴 in red, and NN without 𝐴, NN̸A in violet. Circles represent linear models, and triangles represent
neural network models.
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Figure A4: (a) Percent Maximum Fidelity Gap, Δ𝐴𝑐𝑐 , (b) mean fidelity gap in accuracy, Δ𝑔𝑟𝑜𝑢𝑝
𝐴𝑐𝑐

of LIME on the Adult dataset with
variation in the overlap (covariate shift) in the distribution of the ‘males’ (𝐴) in the training sample and the test set (objective
2) for LR with 𝐴, LR𝐴 in blue, LR without 𝐴, LR ̸A in green, NN with 𝐴, NN𝐴 in red, and NN without 𝐴, NN̸A in violet. Circles
represent linear models, and triangles represent neural network models.
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Figure A5: Performance disparity of 𝑓 (), black box model, calculated as Accuracy for A = 1 - Accuracy for A = 0 for Adult
(a) with varying proportion of ‘male’ group (objective 1), and (b) with varying overlap (covariate shift in ‘hours-per-week,’ 𝐿)
between train and test distribution for disadvantaged ‘male’ group (objective 2). Circles represent linear models, and triangles
represent neural network models.
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Model Acc𝐴=0 Acc𝐴=1 | Acc𝐴=1 − Acc𝐴=1 |
LR𝐶 76.36 90.69 14.33
LR̸𝐶 76.64 90.87 14.23
NN𝐶 78.78 91.33 12.55
NN̸𝐶 79.00 91.92 12.92

Table A2: Black box model performance with respect to per-
centage accuracy for disadvantaged (𝐴 = 0) and advantaged
(𝐴 = 1) groups with the difference in accuracy across groups
for LR with ‘Nationality’ included LR𝐶 , LR with ‘Nationality’
excluded LR𝐶̸ , NN with ‘Nationality’ included NN𝐶 , and NN
with ‘Nationality’ excluded NN̸𝐶 for Adult (objective 4).

Model Acc𝐴=0 Acc𝐴=1 | Acc𝐴=1 − Acc𝐴=1 |
LR𝐴 76.41 90.21 13.80
LR̸A 76.30 90.50 14.21
NN𝐴 78.10 91.10 13.01
NN̸A 78.30 91.50 13.22

Table A1: Black box model performance with respect to per-
centage accuracy for disadvantaged (𝐴 = 0) and advantaged
(𝐴 = 1) groups with the difference in accuracy across groups
for LR𝐴, LR̸A, NN𝐴, NN ̸A for concept shift between ‘hours-
per-week’ and ‘income’ for male group for Adult (objective
3)
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