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Figure 1: (Left) Instances of a class can appear in many diverse ways, like the pears above. Using one vector (the classname
embedding) to represent the whole class results in disparate performance, particularly for atypical instances. (Middle) To
address this issue, we infer attributes and embed multiple vectors, reducing disparities and enhancing interpretability. (Right)
Our method scales better than prior works as we include more attributes (Section 6.1), enabling us to account for the many
ways in which diversity can arise.

ABSTRACT
Vision-language models enable open-world classification of objects
without the need for any retraining. While this zero-shot para-
digm marks a significant advance, even today’s best models exhibit
skewed performance when objects are dissimilar from their typical
depiction. Real world objects such as pears appear in a variety of
forms — from diced to whole, on a table or in a bowl — yet stan-
dard VLM classifiers map all instances of a class to a single vector
based on the class label. We argue that to represent this rich diver-
sity within a class, zero-shot classification should move beyond a
single vector. We propose a method to encode and account for di-
versity within a class using inferred attributes, still in the zero-shot
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setting without retraining. We find our method consistently outper-
forms standard zero-shot classification over a large suite of datasets
encompassing hierarchies, diverse object states, and real-world ge-
ographic diversity, as well finer-grained datasets where intra-class
diversity may be less prevalent. Importantly, our method is inher-
ently interpretable, offering faithful explanations for each inference
to facilitate model debugging and enhance transparency. We also
find our method scales efficiently to a large number of attributes
to account for diversity—leading to more accurate predictions for
atypical instances. Finally, we characterize a principled trade-off
between overall and worst class accuracy, which can be tuned via
a hyperparameter of our method. We hope this work spurs further
research into the promise of zero-shot classification beyond a sin-
gle class vector for capturing diversity in the world, and building
transparent AI systems without compromising performance.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning.
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1 INTRODUCTION
A pivotal advance in machine learning is the advent of foundation
models. A single foundation model trained on large-scale data can
supplant multiple task-specific models. Vision-Language models
(VLMs) are popular foundation models capable of encoding text and
images in the same representation space. Compared to standard
classifiers which can only classify objects from a predefined list
of classes with examples, VLMs are capable of open-world, zero-
shot classification—meaning, VLMs can classify any object using
text descriptions without any additional training. This zero-shot
paradigm has spurred the development of many VLMs [15, 24, 36]
with impressive classification performance.

Despite their remarkable performance, even today’s best models
exhibit skewed performance for certain groups of images. For ex-
ample, [28] show models such as CLIP have exacerbated the gap in
performance between regions such as Africa and Europe (as well as
the gap across income-levels). We find similar biases arise when an
object is visually dissimilar from its typical depiction. For example,
Figure 1 (left) shows CLIP’s 97.3% accuracy on typical pears drops
dramatically when a pear is peeled (45.2%) or puréed (30.3%). Ad-
dressing such biases is crucial to the reliability of classifiers in the
real world, where instances within a class can vary significantly.

Zero-shot classifiers, like standard models, use a single vector in
deep embedding space to describe an entire class. For standard zero-
shot classification, a vision-language model (i) encodes the image
along with 80 hand-crafted prompts per class name (e.g., “a photo
of a pear” or “a drawing of a pear”), (ii) averages the 80 embeddings
per class to obtain a single vector, (iii) predicts the class whose
vector maximizes cosine similarity to the image embedding [24].
Prompt averaging encourages all instances of a class to be mapped
to the same vector in the model’s embedding, inherently limiting
the model’s ability to infer the innumerable diversity within a class.
A pear can be diced, sliced, whole, in one’s hand, or in a bowl.
In each case, the image of the pear would be markedly different,
and its embedding may not always be well aligned with the single
vector that is supposed to represent the entire class. Thus, there is
a natural tension between the one vector per class paradigm and
performing consistently across a class with high diversity, which
we empirically validate.

While many strategies exist to mitigate performance disparities
when labeled-data is available, these methods do not transfer to
the data-free setting of zero-shot classification. Fortunately, unlike
standard classifiers, the open-world nature of VLMs enables them to
represent any attribute using the text encoder. VLMs can enrich the
single per-class vector with attributes to more faithfully capture the
variety with which a class can appear, pinpointing whether a pear

is peeled or puréed. Thus, we argue that instead of learning one
vector per class that is invariant to diversity, we should leverage the
open-world nature of VLMs to explicitly account for the diversity
within a class (i.e., via multiple vectors).

Recent works offer promising signs that zero-shot classification
can be improved by incorporating attributes beyond the class name,
such as subclasses [21] or visual descriptors [18, 23]. However,
the former is limited to datasets with hierarchical label sets, and
the latter reverts back to the one vector per class paradigm via
simple averaging, limiting the benefits of incorporating more at-
tributes (Section 6.1). Importantly, diversity comes in many forms
that generic descriptors or subclasses alone may not adequately
capture.

In this work, we propose a zero-shot method for enriching classes
with open-ended attributes to boost zero-shot classification. Our
method consists of two steps: (i) an attribute inference step, in
which we use generative language modeling (an inherent, under-
utilized capability of some modern VLMs) to enumerate relevant
attributes along many axes of diversity, and (ii) a prediction con-
solidation step, where we flexibly attend only to subpopulations
(i.e., instances within a class sharing an attribute) that are most
relevant to the image. By enriching and carefully consolidating
attributes to describe diversity within a class, our method more
faithfully encodes atypical instances. Furthermore, by introduc-
ing interpretable intermediate outputs (i.e. the inferred attributes),
our method affords greater transparency, as each inference comes
with the specific list of fine-grained attributes used to predict the
class, and attribute overlaps across classes can help anticipate and
articular potential failures, before they happen.

In experiments over a large suite of datasets encompassing hier-
archies, diverse object states, and real-world geographic diversity,
we observe our method matches and in most cases exceeds the
performance of existing methods, showing that transparency can
be achieved without compromising on performance. Our method
yields consistent gains on a second dataset suite with finer-grained
classes and no labeled diversity, showing that our method still
works well when intra-class diversity may be less present. Encour-
agingly, we find larger improvements occurring for the hardest
classes and subpopulations, where atypical instances are usually
found, resulting in reduced performance disparities. Compared to
existing methods, we find that our approach can effectively scale to
a much larger number of attributes to cover broader axes of diver-
sity, as shown in the right panel of Figure 1. Our method also offers
a principled trade-off between accuracy overall vs. on the worst
classes, all without additional training. In summary, we (i) identify
a limitation of the one-vector-per-class paradigm in adequately
representing classes with diverse subpopulations, (ii) propose to go
beyond one vector per class, leveraging under-utilized abilities of
VLMs to explicitly account for intra-class diversity, and (iii) exten-
sively validate the effectiveness of our method to perform zero-shot
classification in both a more transparent and accurate way, espe-
cially for diverse subpopulations that are often overlooked.

2 REVIEW OF LITERATURE
Despite impressive overall accuracy, modern classifiers still suffer
from biases. That is, they under-perform on some parts of the data,
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Figure 2: We test models on datasets that provide groundtruth attributes (shown in bold) annotating hierarchies, diverse states,
and real-world shifts (e.g., Rojas et al. [29] labels the income level and country of origin of each image, towards promoting
AI models that reduce bias) within a class. We find that standard zero-shot accuracy (‘Base Acc.’ above) drops significantly
when certain attributes are present, namely when the attribute manifests in visual differences from what the model considers
‘typical’ for the class. We design our method to improve performance on these ‘atypical’ instances.

Figure 3: The average precision (AP) of a classname embedding is oftenmuch lower than the average precision of a subpopulation
(i.e. classname with attribute) embedding. Subpopulations that see large increases in AP by including the attribute tend to be
atypical. We design our method to improve accuracy on these diverse subpopulations, by inferring and explicitly accounting
for them.

often due to spurious correlations or data imbalances in the train-
ing set. These biases can result in significant negative real-world
impact. For example, Buolamwini and Gebru [3] exposed signifi-
cant bias along demographic lines for facial recognition systems,
and more recently, Richards et al. [28] demonstrated that despite
steady progress on typical benchmarks, today’s best models still
generalize poorly to images from lower-income households and
certain geographic regions. Namely, VLM-based zero-shot classi-
fiers were shown to have even larger performance disparities across
geographic and economic shifts than their supervised counterparts.

However, the promise of open-world zero-shot classification
rightfully draws much attention to VLMs, which operate by map-
ping images and text to a shared latent space. CLIP [24], a seminal
VLM, achieves this via joint contrastive training of image and text
encoders on 400 million image-caption pairs. Recent models such as
BLIP-2 [15] bootstrap the training of more powerful VLMs by taking
larger pretrained vision and language backbones and fusing their
outputs to a single space, which in turn can even be used to gener-
ate text; that is, some modern VLMs contain a fully functional LLM

with (often under-utilized) generative abilities. To perform zero-
shot classification with VLMs, one computes the class that has the
highest cosine similarity between a test image’s embedding and the
embedding of a class name, often averaged over many (80 for CLIP)
handcrafted prompt templates. While many efforts have improved
VLM-based classification via prompt-tuning [8, 12, 17, 19, 38–40],
nearly all require some labeled data. Other works focus more closely
on the task of debiasing VLM-based classifiers [6, 14, 32, 37], though
they too utilize labeled data, placing them out-of-scope of the true
zero-shot setting.

Compared to previous classifiers, the key novelty of VLMs is
their ability to encode any text. However, standard zero-shot classi-
fiers only embed classnames, either alone or averaged over prompts.
We propose to leverage the open-vocabulary capabilities of VLMs
to improve coverage of intra-class diversity by embedding more
than just the class name. One effort along these lines is Perception-
CLIP [1], which infers contextual attributes per image as generative
factors and does class inference conditioned on them. Other works
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utilize LLM-generated class descriptors, towards creating a concept-
bottleneck [35] or rationales for inference [9], though thesemethods
use data to train a linear layer atop descriptor similarities. DCLIP
[18] show including descriptors can also improve performance in
the zero-shot setting, and Pratt et al. [23] extend the gains using
additional handcrafted queries. WaffleCLIP [30] shows that append-
ing random characters or words can achieve similar performance
to descriptor-based methods like DCLIP, without the need for an
external language model. Importantly, although these works obtain
more than one vector per class, they ultimately average over them.
Thus, decision boundaries remain linear and biases may linger, as
atypical instances are still suboptimally uncovered (see Sections 4.2
and 6.2). In contrast, like us, CHiLS [21] introduces a non-linearity
in three steps: they (i) define subclasses with groundtruth label
hierarchies or by querying GPT-3, (ii) do zero-shot classification
on this extended set of classes (subclasses) and original classes,
(iii) reweight the standard zero-shot score for each class with the
max score from step (ii) over subclasses within the class. However,
CHiLS is designed specifically for hierarchical label sets, which
limits the types of diversity it can capture (see Section 6.1).

3 MOTIVATION
We hypothesize that the standard one-vector-per-class paradigm
poses a tension for highly diverse classes. We investigate this by
measuring classification performance as a function of class diversity.
Indeed, we find classes with higher diversity suffer worse perfor-
mance under the one-vector-per-class classification paradigm. Then
we illustrate how newfound open-vocabulary capabilities of VLMs
can enrich the single class vector to encompass diverse instances
without additional training. That is, we show that incorporating
attribute information can substantially improve VLM recognition
of atypical subpopulations.

3.1 A single vector inadequately represents
diverse classes

A standard VLM classifier is most effective when it aligns all in-
stances of a class to their class vector (and away from vectors for
other classes). Intuitively, aligning instances with high diversity is
challenging as their image embeddings are more dispersed—and
particularly tough for fixed open-vocabulary VLMs that do not
benefit from knowing the specific classes of interest during their
pre-training (see Appendix G.1). We see in Figure 2 for example
the less typical Arctic fox is far harder to recognize than a typical
fox (52.0% versus 84.5% accuracy). We observed similar drops in
accuracy for a deflated balloon versus a regular balloon and an
unpaved street versus a paved one. To systematically quantify this
tension, both for VLMs and for the one vector per class paradigm
generally, we examine class accuracies on ImageNet [7] relative to
the diversity of each class across several models with varying levels
of supervision. To proxy diversity, wemeasure the variance of image
embeddings within a class. In all cases, we observe a strong negative
correlation between class-wise accuracy and diversity (see Table 5
and details in Appendix C). That is, classes with higher diversity
have lower accuracy in the one vector per class paradigm.

3.2 A path forward: VLMs can recognize
diversity with relevant attributes

Although standard VLMs use solely classname in zero-shot clas-
sification, their shared embedding space allows to encode rela-
tions to any other text. In turn we ask: can the open-vocabulary en-
coder of VLMs better situate diverse classes given relevant attributes?
Specifically, we assess whether enriching classes with attributes
can improve zero-shot classification on a suite of datasets with
ground-truth attributes per class (details in Appendix B). We form
a subpopulation by taking instances within a class that share an
attribute. For each subpopulation, we compute the similarity of
image embeddings with the text embedding of (i) the classname
and (ii) the classname with the corresponding attribute, using CLIP
ViT-B/16. We then measure the average precision of the two simi-
larity scores for distinguishing instances within the subpopulation
from instances outside of the class. We find, as shown in Figure 3,
that for the vast majority of cases, incorporating attributes leads
to more precise recognition, and often by large margins: adding
molten to cake improves average precision by over 40 points. Upon
inspection, the highest gains in average precision tend to occur
for atypical subpopulations (see Appendix B). Thus, VLMs can rec-
ognize instances in a class even when they are atypical, but this
ability is restricted under the one vector per class paradigm.

4 METHOD
Wenow propose amethod to better utilize the ability of VLMs to rec-
ognize diverse subpopulations. Our method consists of attribute
inference and prediction consolidation. First, we query a large
language model (LLM) for diverse per-class attributes that span
many (often overlapping) subpopulations. Then, after computing
the similarity of an image to each subpopulation, we non-linearly
consolidate these similarities to obtain one score per class. We
elaborate on these two steps below.

4.1 Attribute Inference Along Many Axes of
Diversity

To better cover the diverse subpopulations that may exist within
a class, we incorporate attribute information. However, diversity
can come in many forms. That is, the way in which two in-
stances of a class differ can itself vary. Consider the examples in
Figure 2. The Arctic fox case shows how a class can contain distinct
finer-grained categories. In a related manner, the state or condition
in which the class instance is in can also substantially change its
appearance: a balloon looks much different when it is deflated.
Further, there exist generic attributes that can lead to substantial
visual differences regardless of the class, such as the region or in-
come level of the country where an image is taken, exemplified by
the two Street View images. Thus, to capture the many ways in
which diversity can arise, we employ multiple distinct queries, in
contrast to prior work. Namely, we infer:

• Class specific attributes, such as the possible states of an
object (e.g., diced or sliced for pear). We also obtain descrip-
tions for and different kinds of each class, as in DCLIP and
CHiLS respectively.
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Figure 4: An Arctic fox can more closely resemble a typical wolf than a typical fox. Standard zero-shot classification using
one vector per class (the classname embedding) is ill suited for this case. We address this issue by nonlinearly consolidating
similarities to multiple vectors per class that explicitly encode the diverse subpopulations within the class. See section 4.2 for
full explanation.

• Class adjacent attributes, like co-occurring objects or back-
grounds, to get useful context.

• Class agnostic attributes that describe how objects vary in
general. For example, towards improving geographic fair-
ness, we list potential choices for the income-level, region
and country of origin of the image. We also introduce a
novel two-step LLM query, where we first ask the LLM to
list generic axes of diversity, and then have it populate those
axes.We name this auto-global as it automatically generates
many global attributes.

Appendix D.2 contains the exact LLM prompts and example
inferred attributes for each query above.

4.2 Nonlinear Prediction Consolidation
Enumerating attributes along various axes of variation results in
descriptions of many diverse subpopulations per class. Since VLMs
have open-vocabulary text encoders, we can directly embed these
subpopulation descriptions, in addition to the class name. Given
a test image, we compute similarities to each of these embeddings.
We then must consolidate them to obtain a single score per class.

Figure 4 illustrates the simple case of fox vs wolf classification,
where solid/dotted lines correspond to classname/subpopulation
embeddings on the hypersphere (shown here in 2D). The left-most
panel shows examples from the two classes near where their image
embeddings would lie. Text embeddings for the subpopulations
(dotted lines) are close to corresponding image embeddings, as
VLMs are capable of recognizing even diverse subpopulations (see
Section 3.2). Standard zero-shot inference maps a test-time image
to the class of the nearest classname text embedding. Since there
is only one vector per class (the classname-based embedding), the
decision boundary is linear, as shown in the middle panel. The
edge of the hypersphere is colored (orange for wolf, blue for fox) to
indicate the predicted class for an image embedding at that location.
Notably, the Arctic fox is misclassified as wolf, as its appearance
more closely resembles a typical wolf than a typical fox, and so, the
embeddings of Arctic fox images fall closer to the text embedding

of “wolf” (and vice-versa for the red wolf). Methods like DCLIP
and WaffleCLIP embed more than just the classname, but they
consolidate similarities via averaging, again resulting in a linear
decision boundary. Even if atypical subpopulations are included
at first, averaging can narrow the initial diverse coverage, as most
embeddings for a class may better describe a typical instance.

In contrast, we propose the following nonlinear consolidation:
we compute the single score per class for a given test image as the
average of the similarities of the image embedding to only the 𝑘
closest subpopulations embeddings for the class, where 𝑘 is typically
small (we use 𝑘 = 16). This way, an image can have a high class
score even if it is only similar to a small subset of subpopulations, as
is the case for atypical instances. Thus, the Arctic fox and red wolf
can be correctly classified despite being far from the classname
and most subpopulation embeddings for their respective classes,
as shown on the right panel of Figure 4, where we use 𝑘 = 1 for
simplicity (i.e. images are mapped to the class of the closest dotted
or solid line, leading to a non-linear boundary). We shed insight on
the effect of varying the hyperparameter 𝑘 in Section 6.2, revealing
a tunable accuracy-fairness trade-off.

5 ANALYSIS
We now empirically validate our method’s effectiveness and en-
hanced interpretability over two dataset suites. Our method per-
forms on par with (and usually surpasses) existing approaches in
overall accuracy. Notably, we see larger gains for the hardest classes
and subpopulations, which are likely more diverse and atypical re-
spectively (precisely the samples on which our method is intended
to improve performance). Furthermore, while matching or exceeds
the performance of existing, we offer unique interpretability bene-
fits, such as fine-grained and faithful explanations, as well as the
potential for error anticipation; we detail these below.
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Accuracy Avg Worst Worst 20% of Worst 20% of
Dataset Type Subpop Classes Subpops

States Vanilla 66.71 40.66 35.46 21.73
DCLIP 63.65 39.41 34.26 20.98
Waffle 66.68 40.71 35.49 22.05
CHiLS 66.56 40.41 36.16 22.45
Ours 67.92 41.53 38.16 23.64

Hierarchical Vanilla 78.15 48.36 50.72 35.89
DCLIP 77.80 48.48 51.05 34.36
Waffle 78.52 49.42 49.78 35.22
CHiLS 79.44 52.65 51.80 38.44
Ours 79.50 51.23 52.59 38.57

Table 1: Zero-shot classification on datasets with known variation types for CLIP with a ViT-B/16 encoder. States averages
results over the two categorizations of MIT States data, while Hierarchical averages results over four Breeds datasets. We
observe similar results for BLIP-2 (Table 8).

5.1 Consistent Gains Across Diverse Datasets,
Particularly for the Hardest Classes and
Subpopulations

5.1.1 Baselines and Metrics. We measure performance of zero-
shot classifiers using the popular CLIP ViT-B/16 and BLIP-2 VLMs
[15, 24]. To infer attributes, we utilize the open source Vicuna-13b-
v1.5 language model [5], which notably is already contained in the
BLIP-2 model we use. We report accuracy overall as well as aver-
aged over the worst 20% of classes and subpopulations. Note that
we only use groundtruth attributes when computing metrics; our
method exclusively uses attributes inferred via the queries listed
in Section 4.1. We also compute the lowest subpopulation accu-
racy per class and average that, so to obtain the metric denoted as
‘Avg Worst Subpop’. For the real-world shifts, we also report worst
region and worst income group accuracy. Our baselines include:
standard zero-shot (only one vector per class, corresponding to the
classname embedding) which we call Vanilla, DCLIP (averages over
class descriptors), WaffleCLIP (averages over random descriptors
sampled over ten trials), and CHiLS (reweights standard zero-shot
class score with max probability of different kinds of the class). No-
tably, we average all text embeddings over the 80 prompts crafted
for CLIP, so to report best possible baseline results.

5.1.2 Datasets. We curate a suite of eight attributed (so to have
groundtruth subpopulations) datasets spanning different axes of
diversity. We use the four Breeds datasets [31] for their hierarchical
label sets, as used in the CHiLS paper; in fact, the Breeds datasets
were the ones where CHiLS was most effective. Next, we devise two
classification tasks (coarse and fine grained) from the MIT States
dataset [13] to track performance over labeled states (e.g., sliced
or diced for pear). Importantly, we also include the datasets Dol-
larstreet [29] and GeoDE [26], which contain images from varied
geographic regions and income levels. As the diversity in these
datasets is occurs naturally, they can encompass many axes of vari-
ation, as opposed to our other datasets that only varying along
known axes, like object state or kind.

We also incorporate a second suite of the following 9 datasets
without attributes: ImageNet [7], ImageNet variants (v2, -R, -A,

-Sketch) [10, 11, 27, 34], Food-101 [2], Flowers-102 [20], FGVC-
Aircraft [16], and Oxford Pets [22]. These datasets are all somewhat
fine-grained1, and as such, are less likely to have intra-class diver-
sity than our original datasets. Thus, this dataset suite provides
insight on if embracing diversity is only effective when diversity is
to be expected.

We note that we strived to minimally fit our method to the eval-
uation suite. That is, we do not optimize our query set to maximize
performance on the datasets we selected, which can be challenging
for zero-shot classification methods. One specific measure we took
toward this end was fixing our method completely before evalu-
ating on the second dataset suite. Thus, the second dataset suite
serves as a held-out challenge set, intended to test the generalizabil-
ity our method to settings where intra-class diversity may not be
present. See Appendix D.1 for complete details on our dataset suite.

5.1.3 Results. Table 1 shows results for datasets with diversity
along hierarchical and states axes, and table 2 shows results for
geographic diversity. Our method consistently matches (and even
improves) accuracy of existing methods, even over CHiLS in the
hierarchical setting it was specifically designed for. Notably, CHiLS
becomes less effective for other datasets, while our method remains
strong. We observe larger gains for worst class and subpopulation
metrics, especially over baselines that consolidate via averaging
(Vanilla, DCLIP, Waffle), supporting the claim that our method
improves coverage of the most atypical instances, and that moving
beyond the one vector per class paradigm helps in this regard. For
example, compared to baselines that consolidate via averaging to
obtain one vector per class, our method improves accuracy for
the worst classes and subpopulations by 2 − 3% in most cases. For
Dollarstreet, these gains manifest in a 9% average relative gain over
baselines for the accuracy over worst income group metric (and
an even larger gain for the worst 20% of subpopulations), showing
that our methodology can facilitate progress on real-world fairness
indicators.

1ImageNet (and its variants) contains 120 out of 1000 categories dedicated only to
various dog breeds; Flowers-102 has many highly similar classes; Oxford Pets only has
different breeds of dogs and cats; the FG in FGVC-Aircraft stands for fine-grained.
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DollarStreet Accuracy Worst Worst Avg Worst Worst 20% of Worst 20% of
Method Region Income Subpop Classes Subpops

Vanilla 51.51 42.43 34.76 37.60 18.33 11.01
DCLIP 49.78 41.08 32.91 36.37 19.07 11.19
Waffle 51.37 42.71 34.97 37.69 18.12 10.74
CHiLS 51.68 42.20 33.90 37.60 20.51 12.72
Ours 52.70 44.04 37.21 40.31 20.88 15.05

GeoDE

Vanilla 90.15 86.63 - 82.57 72.24 69.95
DCLIP 91.31 88.14 - 84.21 74.44 71.90
Waffle 91.59 89.06 - 85.44 75.85 74.37
CHiLS 90.96 87.90 - 84.48 73.27 71.64
Ours 91.75 89.12 - 85.40 76.13 74.64

Table 2: Zero-shot classification performance on geographically diverse images from DollarStreet and GeoDE using CLIP with a
ViT-B/16 encoder. We observe similar results for BLIP-2 (Table 9).

ImageNet v2 -A -R Sketch Food Flowers Aircraft Pets Average

Overall Accuracy

Vanilla 68.48 61.98 30.16 59.24 48.37 88.35 66.09 31.26 92.72 60.74
DClip 68.85 62.37 31.35 60.04 48.54 88.05 70.69 32.67 92.23 61.64
Waffle 68.44 62.15 31.09 61.17 48.58 88.09 66.87 31.05 92.03 61.05
CHiLS 0.11 0.10 0.00 0.00 0.11 88.59 67.49 34.20 92.12 31.41
Ours 69.94 63.32 32.19 61.49 49.38 89.06 70.69 34.62 92.26 62.55

Accuracy on Worst 20% of Classes

Vanilla 34.42 25.75 7.47 29.27 9.19 73.58 2.08 0.00 78.84 28.96
DClip 34.58 25.65 6.24 28.90 8.99 72.92 3.44 0.00 77.50 28.69
Waffle 32.62 23.00 5.79 28.18 8.93 73.36 2.14 0.00 75.65 27.74
CHiLS 0.00 0.00 0.00 0.00 0.00 75.36 2.09 0.00 76.92 17.15
Ours 37.30 27.60 7.98 33.74 9.33 76.18 4.40 0.25 77.40 30.46

Table 3: Zero-shot classification performance on finer-grained held-out datasets without attributes, using CLIP with a ViT-B/16
encoder. We observe similar results for BLIP-2 (Table 10). We discuss reasons for the failure of CHiLS on ImageNet-scale tasks
in Appendix F. Our method effectively generalizes to new settings without tuning the set of queries for attribute inference.

Turning our attention to the held-out challenge datasets, Table 3
shows our method can generalize effectively to finer-grained classi-
fication tasks where intra-class diversity is not explicitly known to
be present. Our method improves accuracy on the hardest classes by
an average of 1.5% over the closest baseline. Similarly, our method
exceeds all baselines by about 1% in overall accuracy in nearly all
cases, suggesting that embracing diversity does not come at a cost
of overall performance. Moreover, the effectiveness of our method
in these new settings show that the queries we select (for inferring
attributes) generalize beyond our original dataset suite. That is, we
do not need to tune the LLM queries for each new classification
task of interest. Nonetheless, the ability to add and remove LLM
queries can be seen as a strength, as a practitioner is provided more
control than in standard zero-shot classification.

5.2 Enhanced Interpretability at No Cost to
Performance

5.2.1 Faithful Fine-grained Interpretations For Free. Having shown
that our method is equally (and usually more) performant than ex-
isting approaches, we now discuss the enhanced interpretability of
our method. Namely, each inference comes with a list of the 𝑘 sub-
populations specifically relevant to the test image for free. Figure 5
shows a few example where our method corrects misclassifications
from the standard approach (see Appendix A for more). These inter-
pretations are faithful, as they are exactly the subpopulations used
to compute the class score. Also, since we include attributes along
various axes of diversity, our interpretations are finer-grained than
prior work: DCLIP yields the same set general descriptors for any
image predicted to a given class, and WaffleCLIP offers no inter-
pretability at all. This interpretability can enable model debugging,
as erroneous predictions can be traced back to attributes that either
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Figure 5: Instances where our method corrects mistakes of the standard approach. The attributes used in inference also serve as
faithful fine-grained explanations. Notably, these samples are atypical, suggesting that inspecting samples where our method
and standard classification disagree can enable automatic surfacing of atypical cases, towards better understanding the task at
hand.

do not match the intended class (i.e. LLM mistake) or cannot be
recognized well (i.e. VLM mistake). At a high level, while standard
zero-shot classification is a complete black box, the LLM-inferred
attributes of our method provide interpretable intermediate outputs,
increasing the transparency of the system overall. Moreover, our

inference strategy results in concise explanations, which have more
utility than explanations that are too long for a human to digest
[25].

5.2.2 Anticipating and Articulating Potential Failures. In addition
to explaining each inference, the interpretable intermediate outputs
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Figure 6: Accuracy, overall and for the worst classes, as new types of attributes are added. Performance for our consolidation
scheme continuously improves, while it saturates or deteriorates for others. Figure 11 shows similar trends for accuracy on the
worst 20% of classes and subpopulations.

Figure 7: Right: As 𝑘 decreases, first, accuracy overall and on the worst classes both increase. Then, overall accuracy begins
to decrease while accuracy on the worst classes continues to improve. Thus, we can control this trade-off via 𝑘 . Left: 𝜆, the
continuous analog of 𝑘 , allows for greater control.

of our pipeline also allow for error anticipation. Namely, by com-
paring the inferred attributes for each class, one can anticipate and
describe similar subpopulations from different classes, which may
correspond to inputs where the model is less effective. For example,
for the Living-17 task in the Breeds datasets, the LLM lists gibbon
as a kind of both the ape and monkey classes. While gibbons are
apes, they are smaller than most apes, which makes them resemble
monkeys. Indeed, standard zero-shot accuracy for gibbons is only
14%, where as other apes are classified at an accuracy of 93.5% 2. In
another case, rug is listed as a co-occuring object for the bed class,
when rug itself is another class in the dataset. While anticipating
potential failure modes is intuitive for humans, it is challenging
to do so at scale. By incorporating an auxiliary model (LLM) with
interpretable intermediate outputs (inferred attributes), practioners

2We can compute this because gibbon happened to be a groundtruth subpopulation
for the ape class, which does not occur in the bed and rug case.

can both more easily audit and verify the zero-shot classification
pipeline, and better understand potential challenges with the task
of interest. We hope that the greater transparency of our system
(importantly, achieved without compromising on overall accuracy)
can result in increased trust and more responsible use.

6 ABLATIONS
We now detail additional ablation studies to shed insight on the
source of our method’s improvements over existing art and how a
practitioner can apply our method with greater control. First, we
study how performance varies for both our method and baselines
as the number of attributes grows, so to demonstrate the value
of our flexible consolidation strategy, specifically for inputs from
the hardest classes. Then, we identify a principled trade-off be-
tween accuracy overall and on the worst classes using our method,
controlled by the hyperparameter 𝑘 .
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6.1 Scaling with the Many Axes of Diversity
One source of gains for our method is that we infer attributes of
many types, while prior works only include one. We argue that our
flexible consolidation (of subpopulation similarities to a single class
score) also provides improvements over naive averaging or the non-
linear consolidation of CHiLS. To test this, we sequentially add each
type of attribute, and inspect performance using the three methods.
Figure 6 shows our consolidation scales best as more attributes are
added, with sizable gains for accuracy over the worst classes. In
contrast, performance saturates with averaging, and actually dete-
riorates with CHiLS. The latter occurs since CHiLS assumes that
subpopulations are mutually exclusive, as is the case in hierarchical
label sets. When adding attributes along the many axes of diversity,
resultant subpopulations overlap, making a zero-shot classification
over all subpopulations (as done in CHiLS) unreliable. Averaging
is also suboptimal, as the impact of each attribute diminishes as
the number of attributes added increases: we see this in the left
plot, as accuracy barely increases for the final three added attribute
types. Also, samples that are close to only a few subpopulations
but far from most (i.e., atypical instances) ultimately receive a low
score when all scores are averaged. Thus, while averaging over
subpopulations can improve accuracy (to an extent), it is less suited
to improving performance on atypical instances than our method.
We explore this further in the next section.

6.2 Tunable Trade-off between Accuracy
Overall and On Worst Classes

Recall that our method consists of computing the similarity of a
given test image’s embedding to the embedding of numerous (on
the order of hundreds) subpopulations per class, before averaging
over only the top 𝑘 similarities, where 𝑘 is small. Note that when
𝑘 = ∞, our consolidation reduces to simple averaging over all vec-
tors per class. To shed insight on how our consolidation differs from
averaging, we sweep 𝑘 , while keeping our attribute inference fixed.
Additionally, we explore linearly interpolating class scores using
our consolidation (top-𝑘) and full averaging via a second hyperpa-
rameter 𝜆, so that 𝜆 = 0 results in our method and 𝜆 = 1 is averaging.
We jointly sweep 𝜆 from 0 to 1 and 𝑘 from 1 to 128 to pinpoint the
way in which our consolidation improves upon averaging.

Figure 7 shows overall accuracy vs. accuracy on the worst 5% of
classes3 for both 𝑘 and 𝜆. The trend is identical for the two parame-
ters: first, both accuracy metrics increase as wemove away from full
averaging, with much larger gains occurring for the worst classes.
Then, accuracy begins to drop, while accuracy on the worst classes
continues to improve. To understand this trade-off, consider an
instance that has high similarity to one subpopulation embedding
for a class, and low similarity to all others. In the 𝑘 = 1 case, this
instance is given a high score for the class. This can benefit atypical
instances of the class, as they may be visually dissimilar from most
other instances (recall the Arctic fox). However, this can introduce
errors, as the correct prediction for an instance mostly close to em-
beddings from its true class can be flipped with the presence of just
one highly similar (perhaps unreliable) subpopulation embedding
from a different class. Thus, lower choices of 𝑘 may benefit more

3We observe the same trade-off when inspecting the worst 10% and 20% of classes.
See Appendix 11.

atypical instances, leading to improved accuracy on worst classes
(which are most diverse; see 3.1), potentially at the cost of overall
accuracy. With this insight, practitioners can choose how to tune
our method based on their end goals. Also, since 𝜆 is continuous, it
offers closer control of this tradeoff: indeed, accuracy on the worst
classes can be improved by a larger margin when varying 𝜆, and
varying 𝑘 and 𝜆 together can lead to best numbers for both metrics.4

7 LIMITATIONS
On utilizing auxiliary models. Our method adds an LLM into
the zero-shot classification pipeline, which can increase computa-
tional cost and introduce a source of error. We note that the added
compute for inferring attributes is only done once per task, so the
asymptotic cost per inference only differs marginally (due to com-
puting similarities to more vectors per class, which is a very fast
operation) compared to the standard approach. To inspect the relia-
bility of LLM outputs, we manually verify 300 randomly selected
LLM outputs. We find only 2.7% of responses are uninformative5,
and none of the 300 to be inaccurate. Moreover, our flexible consoli-
dation scheme offers a kind of robustness to irrelevant LLM outputs:
Recall, only the similarity to a small number of subpopulations per
class contribute to each logit. Thus, irrelevant (i.e. not appearing in
the data) subpopulations are effectively ignored and do not affect
the logit. However, we still know that LLMs are capable of providing
inaccurate outputs, and even detected one such instance (the gibbon
example from section 5.2.2). We find the automatic detection of
unreliable LLM outputs to be an interesting avenue for future work,
both to improve accuracy and gain insight of potential complexities
in the given task.

VLMs are not always reliable. Our work assumes that VLMs
are capable of recognizing subpopulations within a class when
named. While this is often true, VLMs can still fail, especially for
composite concepts. We aim to keep our subpopulations simple,
ascribing only one attribute to each. Nonetheless, it is currently not
possible to know apriori whether a VLM can recognize a subpopu-
lation in a zero-shot manner. We hope more work on uncertainty
estimation can enrich our method, by way of automatically flag-
ging and removing subpopulations that the VLM will not be able
to reliably detect.

8 CONCLUSION
To represent classes with diverse instances, which can come in
many forms, one vector per class may not be enough. Moreover,
VLMs have amazing abilities that are restricted when we only use
one vector per class. Thus, instead of ignoring intra-class diversity,
we embrace it, by explicitly inferring and encoding as much of it
as we can. We propose a simple nonlinear consolidation scheme
that flexibly attends to subpopulations present in an image while
ignoring those that are irrelevant. We find that our method con-
sistently matches or improves over strong baselines, and careful
ablations indicate that our method’s gains come from improving

4To be true to the zero-shot setting, no tuning was done to obtain the results in 5.1.
We tried two reasonably small values for 𝑘 (8 and 16), observed similar results, and
went with 𝑘 = 16, which was marginally better.
5All of these were found in responses to the ‘descriptors’ query, with responses like
‘size’ or ‘shape’ for the class dog.
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performance on the hardest classes and subpopulations. Thus, em-
bracing diversity can help reduce performance disparities, including
on real-world fairness benchmarks, towards models that work well
for all. Our approach allows powerful models to work together in a
transparent way via intermediate interpretable outputs, facilitating
inferences with explanations, as well as greater tools to understand
and debug potential failures. We hope our work spurs further cu-
riosity around how existing paradigms may limit the capabilities of
our modern models, towards the development of new AI systems
that overcome the fairness and transparency limitations of today.
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A EXAMPLE INTERPRETABLE INFERENCES
We show additional examples of interpretable inferences in figure
8.

B CASES WHERE ATTRIBUTES HELP MOST
We now provide more examples of instances where the prevailing
paradigm for zero-shot classification results in disparate perfor-
mance, and consequently, where our method yields largest im-
provements. The crux of the issue with existing paradigm is that
the classname embedding struggles to be close to embeddings for
images from all subpopulations of the class, particularly when the
class contains many visually diverse subpopulations. For example,
a penguin looks very different than most birds, so embeddings of
penguin images will be some distance away from embeddings of
most birds. Similarly, the penguin images may not reside close to
the text embedding of the caption ‘a photo of a bird’. Indeed, we find
standard zero-shot classification accuracy for King Penguin birds
is only 46%, while accuracy for the class is 96%. Figure 9 shows this
example along with other instances where standard zero-shot clas-
sification leads to biased performance. We highlight examples that
our method leads to improvements. Notice that the subpopulations
tend to be atypical.

How then does our method result in improvements? We leverage
the fact that despite poor standard zero-shot accuracy on subpop-
ulations that lie far from their classname embedding, VLMs are
still capable of recognizing these atypcial subpopulations. That is,
penguin images may be far from the ‘bird’ text embedding, but they
are actually quite close to the ‘penguin’ text embedding. That is,
standard zero-shot classification does not take advantage of the
ability of VLMs to recognize objects at a deeper level than that of
the classification task. Thus, by including the right attributes, we
can enable accurate recognition of atypical subpopulations.

Figure 10 shows more examples of subpopulations where includ-
ing the groundtruth attribute results in significant gains in average
precision, indicating that including the attribute allows for recogni-
tion of atypical subpopulations. In this figure, AP corresponds to
the average precision score obtained when using the similarity of
an image to (a) the classname embedding or (b) the embedding of

Axis Attributes

size small medium large tiny
age young mature ancient old
cleanliness dirty clean spotless grimy
color white black red blue
texture rough smooth soft hard
material plastic metal wood fabric
shape round square rectangular triangular
position upright horizontal vertical diagonal
reflection bright dull shiny matte
transparency clear opaque translucent transparent
shine glossy matte shiny dull
pattern striped polka-dotted plaid solid
markings spotted striped checked speckled
surface rough smooth bumpy even
appearance appealing unappealing attractive unattractive

Table 4: Attributes and axes of diversity inferred via the auto-
global query. See D.3 for more information.

Classifier CLIP DINO Sup.
Encoder

CLIP -0.28 -0.51 -0.43
DINO -0.37 -0.54 -0.48
Sup. -0.47 -0.72 -0.65

Table 5: Correlation between diversity and accuracy by class
on ImageNet. We study three models: vision transformers
trained with CLIP, DINO, or traditional label supervision.
Diversity refers to variance of image embeddings within a
class, with embeddings obtained with the ‘encoder’ model.

the classname with the attribute (e.g. ‘bird’ vs. ‘King Penguin bird’)
to detect images belonging to that subpopulation. Again, these sub-
populations generally appear differently than a typical instance
from their class, making the classname embedding an imprecise
probe for that subpopulation. However, evidently, when given the
attribute, VLMs are still capable of recognizing the subpopulation.

C DETAILS ON CORRELATION BETWEEN
DIVERSITY AND ACCURACY PER CLASS

We compute ImageNet accuracy per class using three models: CLIP
ViT-B/16 via standard zero-shot classification, DINO ViT-S/16 with
a linear classification head fit to ImageNet over fixed features [4],
and a ViT-S/16 trained with traditional class-label supervision on
ImageNet [33]. Notably, all these models utilize a linear classifi-
cation head. That is, they operate under a one vector one class
paradigm. To proxy diversity, we measure the variance of embed-
dings per class. That is, per class, we compute the average squared
distance between the mean embedding and the embedding of each
class instance. Note that our measure of diversity depends on the
image encoder; we explore using each of the three aforementioned
models. Table 5 shows the results. All correlations are strongly neg-
ative, indicating that across classifiers and using various measures
of diversity, classes with higher diversity are predicted at lower
accuracies. This supports the intuitive hypothesis that consistently
representing an entire class with one vector is made challenging
when the class contains diverse instances.

D ADDITIONAL EXPERIMENTAL DETAILS
Note that we will provide all code, so that further details are easily
accessible.

D.1 Datasets
The four hierarchical datasets we utilize are subsets of ImageNet [7]
curated by [31]. We also utilize the attributed dataset of MIT States
[13], deriving two classification tasks from their annotations. Fi-
nally, we utilize the geographic fairness benchmarks of Dollarstreet
[29] and GeoDE [26]. When reporting subpopulation accuracies, we
use income level as the ground truth attribute for Dollarstreet. Note
that for MIT States and Dollarstreet, we conduct a filtering of class-
names. Namely, we compute cosine similarity of CLIP embeddings
for each pair of classnames. For any pair exceeding a threshold, we
remove one classname from consideration. We do this because MIT
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Figure 8: Our method yields faithful, fine-grained interpretations, for free. Top 4 shown for brevity.

Query Prompt Examples

Kinds List 16 different kinds of pear Bartlett, Bosc, D’Anjou
States List 10 different ways in which a pear may appear in an image Whole pear, Pear slices, Pear chunks
Descriptors List useful features for distinguishing a pear in an image Round shape, Glossy skin, Green or brown color
Co-occurring Objects In an image of a pear, list 10 other objects that may also appear Leaves, Stem, Branches
Backgrounds List ten different locations in which a pear may appear in an image Fruit basket, Still life painting, Candy dish

Table 6: Example LLM prompts and outputs for class-specific and class-adjacent queries.

States was not originally intended to be a classification dataset, and
we observed highly similar classnames in Dollarstreet (e.g. ‘toilet’
and ‘bathroom/toilet’). We use a threshold of 0.8 and 0.9 to generate
the coarse and fine-grained MIT States datasets respectively, and
use a threshold of 0.9 for Dollarstreet.

D.2 Inferring Attributes
We now provide details on our exact LLM queries. First, for class-
specific and class-adjacent queries, table 6 shows the precise prompt
shown to the LLM along with example outputs, both for the class
pear. For all queries, we append Only use up to three words
per list item so that the LLM does not drone on. We sample from

the LLM (Vicuna-13b-v1.5) with a temperature of 0.7, repetition
penalty of 1, and a max number of new tokens of 512.

We now provide more information on class-agnostic queries. We
use continents as regions, and the five most populous countries per
continent as our list of countries. These can both be obtained via
prompting an LLM or searching the internet.

D.3 Auto Global
We now show more details for the auto-global query, which we
found quite impressive. It consistently was amongst the attribute
type that provided the most accuracy gains across datasets. The
first prompt to the LLM was:
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Figure 9: Example subpopulations where our method exhibits sizable accuracy gains compared to standard zero-shot classifica-
tion (i.e. classname embedding only).

List 16 common general ways in which two instances of
the same object may look different. For example, size,
age, or cleanliness. Only use one word per list item.

The next prompt was:
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Figure 10: Example subpopulations where the classname embedding is imprecise, but including the attribute leads to large
boosts in average precision. Notably, these subpopulations reflect instances atypical to the class.

For each of those items, list up to four different
general adjectives related to the time. Please use
common words..

Then, finally, out of laziness, we included a third prompt of:
Thanks. Please organize your output as a python

dictionary.
The resultant axes of variation and attributes per axis can be

found in Table 4.

E ADDITIONAL RESULTS
In the main text, we presented results using CLIP. Results for BLIP-2
can be found in Tables 8 and 9. Trends are consistent with results
CLIP. For a global picture, we present results averaged over both
VLMs and all datasets in table 7. Our method performs best over all
metrics, again with largest gains occurring over the worst classes
and subpopulations.

We also show results for each dataset individually in table 11.
We find it encouraging that our results are consistent across both
VLMs and for each of our eight datasets.

Further, for the analysis in Section 6.1, we show performance
using the similar metrics of accuracy over the worst 20% of classes
and subpopulations, as shown in most tables. See figure 11. Trends
are the same as in the main text, though slightly less pronounced.
To be clear, our consolidation yields best performance, while others
either saturate or deteriorate.

Lastly, we also show additional plots for the analysis in Section
6.2. In the main text, we plotted accuracy overall vs. over the worst
5% of classes. We choose to show accuracy over the worst 5% be-
cause it most clearly conveys the tradeoff we observe. Figure 12
shows this tradeoff still exists when looking at other percentiles,
though it is less pronounced, which is expected.

F WHY DID CHILS FAIL ON IMAGENET FOR
CLIP?

In Table 3, we observe CHiLS to fail catastrophically for ImageNet
using a CLIP. We conjecture the issue arises due to the high number
of classes (1𝑘), and even larger set of subclasses (about 10𝑘). Each
logit in CHiLS is the product of a softmax output over 1𝑘 options
and a softmax output over about 11k options. Furthermore, because

CLIP similarities usually fall within a small range (about 0.1 −
0.3), the difference in final logits may be so small that noise from
rounding errors dominates the signal. Notably, CHiLS does not
fail on ImageNet when using BLIP-2 and our other results
on CHiLS (i.e. on hierarchical datasets) closely match the
results reported in the original CHiLS paper, suggesting that
our implementation is correct, and that the problem arises due
to small differences in CLIP similarities. On BLIP-2, while CHiLS
does not fail catastrophically, it still underperforms compared to
our method, with accuracy about 1% lower.

One could likely fix this problem by changing the temperature
of the softmax, but we opt to faithfully follow the original method.
Indeed, a modified version of CHiLS without the softmax (which
amounts to our method using only the Kinds query (see table 6
and with 𝑘 = 1) does not fail catastrophically on ImageNet, though
the overall accuracy and accuracy on worst classes for this ‘fixed’
CHiLS does not exceed our method’s results.

While this change seems small, we believe it encapsulates a
difference in philosophy between CHiLS and our method. CHiLS
is designed for datasets with clear hierarchy, where each input
can fit neatly into one of many mutually exclusive subpopulations.
In contrast, we argue that diversity emerges in many ways, with
overlapping subpopulations arising from attributes drawn along
various axes. By taking a softmax, CHiLS requires that an input is
not only similar to one subpopulation within a class, but that it is
also dissimilar from the other subpopulations. In our method, in-
stead of seeking to explicitly name all subpopulations in a mutually
exclusive way, we enumerate many potential attributes, and create
a flexible consolidation that only requires an input to be close to a
few subpopulations within its class for it to be classified correctly.

G WHEN CANWE CRAM AN ENTIRE CLASS
IN ONE VECTOR, ANDWHEN CANWE
NOT?

Arguably, diversity within classes is unavoidable, as two instances
can vary in numerous ways (discussed further in Section 4.1). How
then, have classifiers enjoyed success under the one-vector-per-
class paradigm, despite its tension with intra-class diversity? First,



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Moayeri, Rabbat, Ibrahim*, and Bouchacourt*.

Accuracy Avg Worst Worst 20% of Worst 20% of Worst 10% of Worst 10% of
Method Subpop Classes Subpops Classes Subpops

Vanilla 73.22 50.17 44.90 33.10 36.66 22.05
DCLIP 72.65 49.72 45.35 32.72 37.16 21.92
Waffle 73.36 50.23 44.97 33.34 36.66 22.43
CHiLS 74.13 51.84 46.00 34.80 37.07 23.24
Ours 74.75 52.04 47.52 35.77 39.21 24.40

Table 7: Average performance over eight datasets and two VLMs.

Accuracy Avg Worst Worst 20% of Worst 20% of
Dataset Type Subpop Classes Subpops

States Vanilla 70.60 42.65 43.44 26.28
DCLIP 69.80 41.42 41.54 24.25
Waffle 70.10 42.18 41.99 25.76
CHiLS 70.83 42.51 44.31 26.75
Ours 71.30 42.84 43.92 27.21

Hierarchical Vanilla 75.29 50.33 44.30 32.18
DCLIP 75.60 49.41 46.35 32.25
Waffle 75.25 48.84 44.48 31.67
CHiLS 77.17 52.00 45.86 34.59
Ours 77.95 52.47 48.66 35.46

Table 8: Zero-shot classification on datasets with known variation types for BLIP-2. Hierarchical datasets from Novack et al.
[21] and States are the average of coarse and fine-grained categorizations of MIT States. See table 1 for results using CLIP
ViT-B/16.

DollarStreet Worst Worst Avg Worst Worst 20% of Worst 20% of
Method Accuracy Region Income Subpop Classes Subpops

Vanilla 50.91 39.76 31.89 36.76 18.87 11.33
DCLIP 49.81 39.05 32.03 37.01 18.22 12.14
Waffle 51.07 41.00 33.05 36.67 19.43 12.53
CHiLS 51.56 40.26 32.37 38.35 19.56 12.45
Ours 51.96 40.63 32.78 37.91 21.04 13.61

GeoDE

Vanilla 90.48 87.95 - 84.41 71.01 69.06
DCLIP 90.98 88.19 - 84.78 72.71 71.32
Waffle 91.10 88.85 - 84.97 74.11 72.56
CHiLS 90.75 87.99 - 84.63 71.11 69.46
Ours 91.40 89.07 - 85.44 73.08 71.22

Table 9: Zero-shot classification performance on geographically diverse household object from DollarStreet and GeoDE using
BLIP-2. See table 2 for results with CLIP ViT-B/16.

we note these performance disparities are often obfuscated in met-
rics like overall accuracy; indeed, the supervised classifiers studied
above each achieve impressive overall accuracies. Nonetheless, the
tension can be somewhat resolved if (i) one learns embeddings that
reduce the diversity that is present in input space, and/or (ii) the
single vector learned per class contains features that are unique
to the class and present across class instances, despite intra-class

variance that persists in the embedding space. We expand on these
below.

G.1 Ideal conditions for the
one-vector-one-class paradigm

Most modern vision classifiers consist of a deep feature encoder,
mapping images to a rich embedding space, followed by a linear
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ImageNet v2 -A -R Sketch Food Flowers Aircraft Pets avg

Overall Accuracy

Vanilla 55.68 51.26 26.53 63.06 55.35 83.73 53.05 25.65 65.33 53.29
DClip 56.15 51.44 26.60 62.53 54.79 84.02 54.12 26.43 62.36 53.16
Waffle 57.10 52.11 26.83 64.78 55.88 83.61 52.03 27.00 62.78 53.57
CHiLS 56.26 51.56 25.63 63.43 55.54 84.29 53.55 26.94 64.95 53.57
Ours 57.28 52.27 26.25 65.13 56.21 84.79 54.03 25.23 63.42 53.85

Accuracy on Worst 20% of Classes

Vanilla 6.74 5.40 3.39 24.12 3.99 57.36 0.00 0.00 27.52 14.28
DClip 7.62 6.55 2.80 22.83 4.20 58.52 0.00 0.00 17.34 13.32
Waffle 8.22 5.98 3.25 24.16 5.14 57.21 0.00 0.00 25.84 14.42
CHiLS 8.05 6.25 2.90 24.02 4.87 60.90 0.00 0.00 27.13 14.90
Ours 8.19 6.90 2.87 25.65 4.53 61.44 0.00 0.00 25.28 14.98

Table 10: Accuracy on extra datasets for BLIP-2.

Figure 11: Accuracy for the worst 20% of classes and subpops, averaged over our dataset suite as we sequentially add new types
of attributes using different consolidation schemes. See figure 6 in the main text for accuracy overall and over the worst 10% of
classes, along with more discussion. As shown in the main text, our method scales the best as attributes are added sequentially.

classification head, mapping embeddings to class logits. The linear
classification head consists of a single vector (and a scalar bias) per
class. A linear classification head is accurate if, for any instance
from the 𝑖𝑡ℎ class, the activation on the 𝑖𝑡ℎ class vector must be
higher than the activation for any other class vector.We express this
mathematically below, with x denoting the embedding of an image
from class 𝑖 , and ci, cj denoting vectors in the classification head.

∀x ∈ C𝑖 ,∀𝑗 ≠ 𝑖, we require that x · ci − x · cj > 0 (1)
Note that x · ci − x = x · (ci − cj) = ∥x∥∥ci − cj∥ cos(x, ci − cj)

(2)
Thus, ∀x ∈ C𝑖 ,∀𝑗 ≠ 𝑖, we require that cos(x, ci − cj) > 0 (3)

The last step arises because norm is always non-negative. Now,
let us focus on different components of this required condition (by
definition) for an accurate one-vector-per-class classification head.
First, the single vector ci must contain contain a set of features
that are unique to that class. That is, these features remain when
considering the residual ci − cj for any 𝑖 ≠ 𝑗 . Secondly, the unique

features that discriminate the class from all others must also be
alignedwith every instance of the class. In other terms, these unique
features must be invariant to any diversity within the class. Also,
note that the quantity we expand upon above is simply the margin
for classification. In the ideal case, this margin would be maximized.

G.2 Class-supervised training is well suited for
the one vector per class paradigm, but VLM
pretraining is not

In traditional class-label supervised training, the feature encoder is
jointly optimized with the classification head to minimize a clas-
sification loss. Let us consider how this effects the linear classifi-
cation head and the feature encoder individually. First, fixing the
classification head, we see the supervised objective encourages all
embeddings from one class to be drawn close to their respective sin-
gle vector, and consequently, close to one another. In other words,
invariance of embeddings within a class is promoted. Next, with
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Geographic (MIT) States Hierarchical
Method Dollarstreet Geode Coarse Fine Entity13 Entity30 Nonliving26 Living17

Accuracy

Vanilla 51.21 90.34 78.24 59.07 68.22 68.43 77.27 92.96
DCLIP 49.80 91.14 77.80 55.65 68.64 68.49 76.32 93.35
Waffle 51.22 91.34 78.31 58.47 68.95 68.66 77.13 92.80
CHiLS 51.62 90.85 78.83 58.55 69.33 70.69 79.55 93.65
Ours 52.33 91.58 79.33 59.90 71.47 70.59 79.25 93.59

Average Worst Subpopulation Accuracy

Vanilla 37.18 83.49 53.83 29.49 21.77 36.27 57.12 82.24
DCLIP 36.69 84.50 53.01 27.81 22.54 36.87 54.54 81.82
Waffle 37.18 85.20 53.94 28.96 21.88 36.87 56.37 81.41
CHiLS 37.98 84.56 53.69 29.22 23.77 42.50 59.50 83.53
Ours 39.11 85.42 54.26 30.10 25.31 39.03 59.54 83.53

Accuracy for Worst 20% of Classes

Vanilla 18.60 71.63 52.12 26.79 34.38 32.50 49.15 74.00
DCLIP 18.64 73.57 51.35 24.46 36.48 33.21 46.60 78.50
Waffle 18.78 74.98 52.31 25.17 31.41 33.46 48.40 75.24
CHiLS 20.04 72.19 53.65 26.82 36.07 31.71 52.05 75.50
Ours 20.96 74.61 54.03 28.05 37.55 34.94 53.10 76.92

Accuracy for Worst 10% of Classes

Vanilla 11.92 59.30 41.63 18.09 29.75 21.75 40.58 70.25
DCLIP 11.82 64.22 41.16 15.90 26.80 22.71 38.08 76.62
Waffle 10.69 64.74 42.00 16.68 23.03 23.79 39.78 72.59
CHiLS 13.64 58.82 44.74 18.41 25.60 21.04 42.92 71.38
Ours 14.35 62.61 44.24 19.29 31.10 25.33 43.50 73.25

Accuracy for Worst 20% of Subpopulations

Vanilla 11.17 69.50 36.23 11.78 14.54 15.62 33.90 72.07
DCLIP 11.67 71.61 35.08 10.16 14.54 14.92 30.19 73.57
Waffle 11.64 73.47 36.89 10.93 13.24 16.27 32.77 71.49
CHiLS 12.58 70.55 37.44 11.76 15.23 16.88 39.67 74.29
Ours 14.33 72.93 38.21 12.64 17.33 16.94 38.86 74.93

Accuracy for Worst 10% of Subpopulations

Vanilla 6.10 57.47 23.27 4.95 5.35 5.67 18.90 54.71
DCLIP 6.08 61.38 21.71 3.74 5.77 5.04 15.20 56.43
Waffle 5.82 63.27 23.27 4.26 4.96 6.56 17.00 54.30
CHiLS 7.40 57.62 24.93 4.88 5.96 6.21 21.50 57.43
Ours 8.62 61.26 24.72 5.53 6.88 6.88 22.00 59.29

Table 11: Metrics for each dataset. Results are averaged over CLIP and BLIP-2. Our method’s gains are consistent over the eight
dataset suite.

the feature encoder fixed, classification head vectors align with em-
beddings within their class and de-align with embeddings from out-
side their class. Thus, the classification head vectors are optimized
to solely contain the features unique to their class embeddings.
Therefore, training with traditional class-label supervision directly
promotes the invariance and uniqueness properties required for
the success of the one-vector-per-class paradigm.

On the other hand, VLMs are optimized with markedly different
objectives. Many VLMs employ contrastive image-text matching, in
which negative examples are far weaker and classes are no longer
defined; in some ways, the training is analogous to optimizing a
classification task with an infinite number of classes. Indeed, two
instances that belong to the same class in a downstream task may
have embeddings pushed apart during VLM pretraining, directly
going against the aforementioned notion of class-wise invariance.
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Figure 12: We replicate figure 7 using metrics that look at a larger portion of the worst classes. A similar tradeoff emerges,
though in a slightly less pronounced way. We note that this is expected, as increasing the number of classes considered likely
also increases the number of less diverse classes included.

Other common VLM objectives like captioning or question answer-
ing promote the descriptiveness of the embedding. Thus, instead
of honing in on unique features, embeddings are likely to describe
as much as possible. We note that having maximally descriptive
embeddings is typically a good thing, as it allows for re-use of the
same feature encoder for many downstream tasks, as is done in
linear probing with self-supervised encoders. The key caveat is
that in those cases, the linear classification head is still exposed to
instances from all classes, and thus, each classification head vector
can learn to align only with the unique features for its class. In
contrast, in the zero-shot setting, the classification head vectors are
obtained independently of one another via embedding the names of
classes via the text encoder, and thus, it is unreasonable to expect
that these vectors satisfy the uniqueness condition.

G.3 Arctic Fox Case Study: Bias can be amplified
when using one vector per class paradigm
for zero-shot classification

Staying in the one-vector-per-class setting, we now compare class
vectors obtained directly in a zero-shot manner to those obtained
with supervision. Specifically, we focus on the Arctic Fox bias,
shown in Figure 2. We train a linear classification head over fixed
CLIP embeddings used a skewed training set that under-represents
Arctic foxes in the training set. We find that the bias of the
zero-shot vector is on par with having only 3% of the training
images in the fox class be Arctic foxes in the supervised setting,
suggesting that limitations of the one vector per class paradigm
may be exacerbated in the zero-shot setting.

Figure 13: Arctic Fox bias is amplified in zero-shot classifier
vs. to supervised linear probes.

H ONE FINAL TRADE-OFF
In section 6.2, we should two hyperparameters that could trade over-
all accuracy for accuracy over the worst classes. We now present
one more, along with a theoretical explanation. Throughout the
paper, we consider ‘averaging’ to mean computing similarities to
multiple vectors and then averaging those similarities; this is how
DCLIP and WaffleCLIP average, and will refer to this as Average
Sims. However, averaging over prompts as done in originally in
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Figure 14: Averaging subpopulation vectors before comput-
ing similarity to an image embedding proves to be another
way to trade overall accuracy for accuracy on the worst
classes. That is, when we first compute similarity to each
subpopulation and then average, we obtain higher overall
accuracy but lower accuracy on the worst classes, compared
to when we first average subpopulation vectors and then
compute the similarity to the average vector.

CLIP consists of averaging vectors first and then computing similar-
ity to one average vector; we call thisAverage Vecs. The difference
is subtle: in the latter case, an additional normalization occurs when
cosine similarity is taken.

We now show theoretically that when all embeddings are nor-
malized (i.e. for CLIP),Average Vecs simply rescales the class score
yielded by Average Sims by a factor that measures how diffuse
the vectors for the class are. Let 𝑥 be an image embedding and
{𝑣1, 𝑣2, . . . , 𝑣𝑘 } be subpopulation vectors for a given class. We as-
sume all vectors are normalized to the hypersphere, as is the case

for CLIP. That is, ∥𝑣𝑖 ∥ = 1 for all 𝑖 and ∥𝑥 ∥ = 1. Let 𝑣 := 1
𝑘

∑𝑘
𝑖=1 𝑣𝑖

denote the average vector. We compute the class score for Average
Vecs below.

Average Vecs = cos (𝑥, 𝑣) = 𝑥 · 𝑣
∥𝑥 ∥∥𝑣 ∥ =

𝑥 · 1
𝑘

∑𝑘
𝑖=1 𝑣𝑖

∥𝑣 ∥ =

1
𝑘

∑𝑘
𝑖=1 𝑥 · 𝑣𝑖
∥𝑣 ∥

=

1
𝑘

∑𝑘
𝑖=1 cos(𝑥, 𝑣𝑖 )

∥𝑣 ∥ =
Average Sims

∥𝑣 ∥
To get from line 1 to 2, we utilize the fact that cosine similarity is

equivalent to the dot product when both arguments are unit norm.
Let us now consider what this result entails. The denominator is
the norm of the average vector. This quantity is always between
0 and 1. It is lowest when the vectors are most diffuse. Thus, the
class score obtained by Average Sims is scaled up to obtain the
score for Average Vecs by more when the vectors are diffuse. In
other words, averaging the vectors first implicitly upweights vectors
corresponding to diverse subpopulations.

Based on this simple theory, we would expect the most classes
with high diversity to have higher accuracy under Average Vecs
compared to Average Sims, as their class scores are inflated more
than the less diverse classes. The effect on overall accuracy, however,
is not perfectly clear. To inspect this, we perform the same sweep
over 𝑘 and 𝜆 as in section 6.2, except now we additionally try
replacing all similarity averaging with vector averaging. Figure 14
shows the results. We average away 𝑘 for clarity. Indeed, averaging
over vectors improves accuracy on the worst classes. For high
values of 𝜆 = 1, we see averaging vectors also slightly improves
overall accuracy. However, in the vast majority of values for 𝜆,
overall accuracy is hurt by averaging vectors instead of similarities.
We hope this analysis provides insight as to the precise effect of
averaging similarities or vectors, which may be relevant to others
who wish to explore going beyond one vector per class.
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