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ABSTRACT
Machine learning (ML) is widely used to moderate online content.

Despite its scalability relative to human moderation, the use of

ML introduces unique challenges to content moderation. One such

challenge is predictive multiplicity: multiple competing models

for content classification may perform equally well on average,

yet assign conflicting predictions to the same content. This multi-

plicity can result from seemingly innocuous choices made during

training, which do not meaningfully change the accuracy of the ML

model, but can nevertheless change what the model gets wrong. We

experimentally demonstrate how content moderation tools can ar-

bitrarily classify samples as “toxic,” leading to arbitrary restrictions

on speech. We use the principles set by the International Covenant

on Civil and Political Rights (ICCPR), namely freedom of expres-

sion, non-discrimination, and procedural justice to interpret the

effects of these findings in terms of Human Rights. We analyze (i)

the extent of predictive multiplicity among popular state-of-the-art

LLMs used for detecting “toxic” content; (ii) the disparate impact

of this arbitrariness across social groups; and (iii) the magnitude

of model multiplicity on content that is unanimously recognized

as toxic by human annotators. Our findings indicate that the up-

scaled algorithmic moderation risks legitimizing an “algorithmic

leviathan”, where an algorithm disproportionately manages human

rights. To mitigate such risks, our study underscores the need to

identify and increase the transparency of arbitrariness in content

moderation applications. Our findings have implications to content
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moderation and intermediary liability laws being discussed and

passed in many countries, such as the Digital Services Act in the

European Union, the Online Safety Act in the United Kingdom, and

the recent TSE resolutions in Brazil.
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1 INTRODUCTION
Algorithmic content moderation can be defined as the application

of algorithmic systems to classify user-generated content, leading

to governance decisions such as content removal, geoblocking, or

account takedowns [30]. In the past, content moderation protocols

relied on a combination of deterministic rules-based algorithms
1

and human moderators [71].

Recently, various economic, social, and legal factors, such as

COVID-19 disinformation and online extremism, have prompted

substantial legislative changes globally. These changes have ushered

in new regulatory frameworks for online and third-party content

[46, 51] that have increased pressure on companies to expedite con-
tent moderation. Notable legislative shifts include the European

Digital Services Act (DSA) [62], which adopts a risk-based approach

1
An example is an algorithm that auto-removes content that contains words in a

pre-specified list of swear words.
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for Very Large Online Platforms [9], Germany’s NetzDG law [10],

which mandates rapid content removal with minimal human over-

sight, and Brazil’s Electoral Courts, which have implemented a

stringent 1-hour removal window during elections [24]. The topic

is also an ongoing debate in the United States, where states such as

Florida have enacted their own laws regarding content removal [61],

while the Federal laws regarding platforms’ duties on third-party

content have remained under intense debate [36, 42].

A natural consequence of these regulations is that companies

increasingly rely on black-box machine-learning (ML) models as a

scalable alternative to human moderation. This implies that content

moderation algorithms, which ultimately control a user’s right

to freedom of expression, will inherit any limitations intrinsic to

ML models. This implication is a growing concern in the law and

policy literature [50, 56, 64], particularly in scenarios described

as “algorithmic leviathans” [15, 43], where algorithms excessively

control the exercise of freedoms and access to resources. Recent

research showing that ML-based content moderation occurs with

limited accountability and with policies applied indiscriminately

across jurisdictions [30, 71] only adds to these concerns.

In this work, we focus on one critical limitation of ML-based

content moderation: predictive multiplicity [48] and the ensuing

arbitrariness in models that classify toxic content.
2
Predictive mul-

tiplicity is the empirical observation that a collection of ML models

with indistinguishable performance can produce conflicting individ-

ual predictions. Predictive multiplicity captures arbitrariness in ML

model development, where seemingly innocuous choices made dur-

ing training, which do not meaningfully change the accuracy of the

ML model
3
, can nevertheless affect what the algorithm gets wrong.

Predictive multiplicity has been recently documented in a range of

classification and prediction tasks [37, 66] and can lead to disparate

treatment of individual data points [7, 15, 48, 60]. We demonstrate

that predictive multiplicity is rampant in state-of-the-art language

models that have been proposed for toxic text classification: mul-

tiple models can achieve similar average accuracy yet conflict in

classifying individual sentences as toxic. These observations imply

that content moderation decision made using ML models lead to

outcomes that lack consistency, predictability, and adherence to

established principles or logic [16]. To explore the impact of predic-

tive multiplicity in state-of-the-art models for content moderation,

below, we detail the research questions that our work sets out to

answer along with our main contributions and findings.

Research Questions:We explore the role of predictive multi-

plicity in algorithmic content moderation and aim to answer the

following questions.

(RQ1) What is the extent of disagreement in state-of-the-art ML

models fine-tuned to classify toxic content?

(RQ2) What are the disparate impacts of arbitrariness across
toxicity detection models on content targeting different so-

cial groups?

(RQ3) What forms of harm stem from the results of RQ1 and

RQ2?

2
We highlight that there is no single definition of “toxic content” and even the use of

the term “toxic” caries several limitations; see Appendix C.1 for further discussions.

3
An example of such innocuous choices is the random seed used for parameter

initialization

Main findings: We answer our research questions by fine-

tuning several large language models (LLMs) for toxicity detec-

tion
4
in textual content and analyze the rate these models generate

arbitrary decisions.

• We find that arbitrary decisions are rampant in LLMs fine-

tuned for content moderation. In our experiments, approx-

imately 30% of English statements receive moderation de-

cisions that can change by varying the random seed used

to initialize training (i.e., LLM fine-tuning). Our results il-

lustrate how arbitrary decisions in model development in-

fluence prediction outcomes in content moderation (Table

1).

• As a consequence, we conclude that multiplicity in algorith-

mic content moderation can unduly restrict individual and

collective rights to freedom of expression via a random or

unjustified model selection procedure.

• We also find that arbitrary content moderation decisions are

unequally distributed across different demographic groups,

making the incidence of predictive multiplicity potentially

discriminatory (Figure 1).

• We conclude that by producing disparate arbitrary decisions,

predictive multiplicity breaks from a rule-based approach

to moderating speech online and infringes upon procedural

fairness.

• Finally, we also show that models can disagree in examples

where human annotators unanimously agree that it should

(or should not) be moderated, introducing additional arbi-

trariness to content moderation (Figure 2), and indicating

that it might be useful to share the responsibility of content

moderation with humans.

All code and training data used in this work is available upon email

request to the authors.

1.1 Related Work
Predictive Multiplicity: Marx et al. [48] showed the prevalence

of arbitrary decisions in classification problems using tabular data

and argued that it should be measured and reported as we measure

and report test error. Follow-up work has analyzed the source

of such phenomenon [34, 44, 60], and its inevitability [54]. Creel

and Hellman [15] discussed the harms of predictive multiplicity

and arbitrary decisions, leading to the definition of algorithmic
leviathan, initially introduced byKönig [43]. Thework that is closest
to ours is [15], which defines algorithmic arbitrariness and argues

about its harms. Our paper differs from [15] by (i) focusing on

specific harms of arbitrary decisions in content moderation and (ii)

experimentally discovering and analyzing the harms of disparate

arbitrary decisions across content targeting different demographic

groups. Black et al. [5] discuss how predictive multiplicity can have

discriminatory legal outcomes and the need to compare models to

reach less discriminatory outcomes.

Legal and policy aspects of content moderation: The law
and policy literature on algorithmic content moderation has focused

on procedural fairness, inconsistent restrictions of human rights,

and discrimination. Examples include the works of scholars such

4
See appendix C.1 for a discussion on why toxicity detection can be used as a proxy

for legally mandated content moderation.
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as Douek [21], Gillespie [27, 28], Gorwa et al. [30]. We summarize

the main risks below.

Inconsistency in Moderation: Different algorithms might pro-

duce divergent classifications for the same piece of content. Effec-

tively, this means that either legal speech is being taken down or

harmful speech is tolerated. This can happen with regard to indi-

vidual expressions or groups and their specific dialects. Keller [39]

listed a number of studies and resources that indicate the systematic

over-removal of content for various reasons, including copyright

infringement and toxic speech content moderation. Douek [21]

explains that the process for how platforms’ enforce their rules has

shifted from a rule and proportionality-based approach to an algo-

rithmic probability-based evaluation. The policy report produced

by Duarte and Llansó [23] offers a useful summary of the policy

challenges in the field. In particular, the concern that algorithms

have very limited capability of parsing meaning from text to make

content moderation decisions.

Bias Amplification: Content moderation risks having disparate

impacts across social groups. Expanding on the inconsistencies

listed above, biased and discriminatory moderation may occur if

algorithms used to moderate speech are inconsistent across differ-

ent groups. For example, Dias Oliva et al. [20], Gonçalves et al. [29]

describe how certain social groups have been targeted by overmod-

eration due to the dialects they use. Our work demonstrates that

inconsistency and arbitrariness in algorithmic content removal can

vary with social-demographic factors.

Opacity of Policy Enforcement: Predictive multiplicity makes

enforcing a consistent content policy difficult. We can only review

and repair harmful moderation outcomes if we have a clear under-

standing of how these models are classifying statements [27]. In this

scenario, understanding which decisions align with the platform’s

terms of service and the law becomes challenging. The difficulty

in discerning between correct decisions, errors, and arbitrary deci-

sions can make it difficult to determine whether content was overly

restricted or not. Since restrictions to Freedom of Expression need

to be justified, the opacity of arbitrary decisions poses a threat to

fundamental liberties[3].

Conflicting Jurisdictions: Each country has different laws

regarding social media platforms. We list as examples the different

approaches to intermediary liability pointed out by Keller [38],

Machado andAguiar [46], and the different legislative approaches to

algorithmic discrimination outlined by Binns et al. [4],Wachter et al.

[65] when arguing for EU or UK legal frameworks. These laws all

require specific enforcement requirements for content moderation

that arbitrariness may violate.

Based on the concerns above, in Section 2 we conceptualize the

harms of arbitrariness in terms of the human rights principles of

freedom of expression, non-discrimination, and procedural fairness

to based on specific articles of the ICCPR. Then, in Sections 3 and

4, we experimentally investigate arbitrariness in state-of-the-art

models, as outlined in our research questions. Finally, in Section 5,

we interpret the harms of arbitrariness according to the concepts of

freedom of expression, non-discrimination, and procedural justice

laid out in Section 2.

2 JUDGES FLIPPING COINS:
CONCEPTUALIZING HARMS OF
ARBITRARINESS IN CONTENT
MODERATION

This section describes the harms identified in the literature from

content moderation in terms of potential violations to principles

established by the ICCPR. We use the International Covenant on

Civil and Political Rights (ICCPR) because it is a widely ratified

international treaty to which 173 countries are parties [2]. Our anal-

ysis focuses on the impact of arbitrariness on freedom of expression,

non-discrimination, and procedural justice.

We are aware that international human rights laws and their

principles are primarily applicable to states and do not directly

impose obligations on private entities, including internet content

companies. Each state enforces these principles within its own ju-

risdiction, regulating how businesses will respect these rights, and

how companies should govern content in their services. Nonethe-

less companies are directly and indirectly bound to these human

right principles, either by platforms laws such as the DSA or the

UK Online Safety Act, or by international frameworks and recom-

mendations such as the UN Guiding Principles for Businesses on

Human Rights [57].

We intentionally avoid local legislation and the granular matters

of each jurisdiction to observe the overarching legal effects of arbi-

trariness in terms of specific international human rights principles.

International Human Rights Law gives us global rules and com-

mon concepts to discuss the issues related to fundamental rights in

content moderation [22]. Although these laws do not have direct

applicability to national jurisdictions, it allows us to make claims

related to multiplicity for content moderation that are transferable

to local law and policy discussions.

Building on the related work outlined in Section 1.1, we will

discuss harms due to algorithmic arbitrariness as an infringement

of three human rights and principles: Freedom of Expression, Non-

Discrimination, and Procedure (including Procedural Fairness and

Equality Before the Law). To illustrate the role content modera-

tion models play as private proxy adjudicators of speech in online

environments, we use an analogy to discuss the implications. We

compare a model’s decision to that of a judge, where arbitrariness

is the act of flipping coins to decide the outcome of a case. Though

imperfect, we find this comparison makes the harms due to multi-

plicity more palpable, since the analogy emphasizes that the source

of harm is the randomness inherit to ML models. Next, we indicate

and explain the ICCPR Articles that we use as reference.

Freedom of Expression. Freedom of Expression (FoE) is defined

in Article 19 of the ICCPR as:

1. Everyone shall have the right to hold opinions with-

out interference.

2. Everyone shall have the right to freedom of expres-

sion; this right shall include freedom to seek, receive

and impart information and ideas of all kinds, regard-

less of frontiers, either orally, in writing or in print,

in the form of art, or through any other media of his

choice.
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3. The exercise of the rights provided for in paragraph

2 of this article carries with it special duties and re-

sponsibilities. It may therefore be subject to certain

restrictions, but these shall only be such as are pro-

vided by law and are necessary. (a) For respect of the

rights or reputations of others; (b) For the protection

of national security or of public order (order public),

or of public health or morals.

We interpret this rule in light of UN General Comment 34 [13],

which emphasizes that freedom of expression is a broad and fun-

damental human right for realizing other human rights. It encom-

passes all forms of expression, including political discourse, journal-

ism, artistic works, and religious dialogue, across various mediums

like broadcasting, the internet, and public protest. The comment un-

derscores the right to access information and recognizes the critical

role of the internet and digital media in enabling and enhancing the

exercise of freedom of expression, advocating for universal access

to these platforms. This right is expansive but not absolute and can

be subject to certain restrictions. These restrictions must be clearly

defined by law, serve a legitimate aim (such as protecting national

security, public order, or the rights of others), and be necessary, and

proportionate.

In the context of content moderation, the existence of predictive

multiplicity in ML algorithms calls into question their ability to

attend all requisites for a lawful restriction of freedom of expres-

sion. As an example, a ML model trained with random seed 1 could

misapply a restriction to protected speech (e.g. journalistic speech),

whereas the same model trained with random seed 42 would have

correctly tolerated the statement. Such an event would be equiva-

lent to a judge flipping a coin to decide whether the speech should

be protected or taken down. For example, in Section 5 we observe

that varying the random seed causes fine-tuned large language

models to assign conflicting toxic speech predictions to 34% of

statements from a large dataset.

Non-Discrimination. We adopt Article 2(1) and Article 26 of the

ICCPR as our definition of discrimination. They state:

Article 2 (1) Each State Party to the present Covenant
undertakes to respect and to ensure to all individuals

within its territory and subject to its jurisdiction the

rights recognized in the present Covenant, without

distinction of any kind, such as race, colour, sex, lan-

guage, religion, political or other opinion, national or

social origin, property, birth or other status.

Article 26 All persons are equal before the law and

are entitled without any discrimination to the equal

protection of the law. In this respect, the law shall pro-

hibit any discrimination and guarantee to all persons

equal and effective protection against discrimination

on any ground such as race, colour, sex, language,

religion, political or other opinion, national or social

origin, property, birth or other status.

These articles are intended to protect individuals from discrim-

ination based on protected characteristics. We note that content

moderation ML algorithms can illegally discriminate against spe-

cific individuals or groups. A biased moderation occurs when spe-

cific groups have an inferior or higher quality of moderation of toxic

speech depending on their characteristics. This can correlate with

the dialect and content of the statements, as identified by Dias Oliva

et al. [20] with content moderation in LGBTQ discussion spaces.

Our experiments are able to infer the presence of discrimination by

analyzing the targeted group of the statements. In particular, if the

magnitude of predictive multiplicity in ML algorithms is different
across groups, then such an ML algorithm is discriminatory.

In Section 5 we experimentally observe exactly this phenomena:

varying the random seed causes fine-tuned large language models

to assign conflicting toxic speech predictions to 38% of racial-based

statements from a large scale dataset compared compared to 20%

of misogynistic/misandrist statements.

Procedural Justice. The UN Guiding Principles on Business and

Human Rights [57] emphasize that businesses should identify, pre-

vent, and mitigate human rights abuses. The human right to due

process is established by Article 14(1) of the ICCPR. We will focus

on the first part of the Section, which is most relevant to our work:

Article 14
(1) All persons shall be equal before the courts and

tribunals. In the determination of any criminal charge

against him, or of his rights and obligations in a suit

at law, everyone shall be entitled to a fair and public

hearing by a competent, independent and impartial

tribunal established by law. [...]

We interpret Articles 14 and 19 (aforementioned) as jointly demand-

ing that a restriction of a fundamental right be impartial, fair, and
prescribed by law. This means providing remedies through oper-

ational grievance mechanisms when harm occurs, and ensuring

processes are transparent and accountable. When we translate this

to ML models for content moderation, moderation needs to be ex-
plainable, accountable5, and have a rule-based approach for limiting

free speech. In this regard, the outcomes of ML models must attend

to these legal requirements. This interpretation includes, for exam-

ple, respecting the requirements from General Comment 34 [13](i.e.

legality, necessity, proportionality, and pursuit of a legitimate aim)

for restricting speech. This joint interpretation establishes the obli-

gation of common procedural guidelines for removing speech.

The existence of predictive multiplicity in ML algorithms calls

into question their ability to satisfy values of procedural justice. The

“decision-making process” used by ML algorithms is fundamentally

probabilistic and random. In this case, the "judges" of online speech

are making random decisions (flipping coins) to determine whether

to restrict speech or not, and flipping coins more often when it

comes to speech from certain social groups. This violates proce-

dural justice for three reasons. First, it does not respect a rule-based

approach to restricting speech, as it is fundamentally random. Sec-

ond, it is not impartial, as it is disparate across groups. Third, it is

not accountable because this decision-making process is concealed,

meaning we cannot know if a given prediction is an instance of

5
We define an accountable model as a model that can be understood, challenged,

scrutinized, and revised.
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predictive multiplicity.
6
We emphasize that, because the source

of the violation is randomness, this violation is independent of the
final outcome being legally correct.

Experimentally Measuring Harm. To study multiplicity using

the framework of legal harms we outlined above, we designed

experiments to measure multiplicity and its potential harms quan-

titatively. We fine-tuned various state-of-the-art models for toxic

speech detection, tested them across different datasets of toxic and

non-toxic statements, and observed the incidence of predictive mul-

tiplicity across models. We also compared disagreement in models

to disagreement in human annotation.

To quantify the extent of predictive multiplicity (RQ1), we

compute arbitrariness (Definition 1) and pairwise disagreement (Def-
inition 2) on our competing fine-tuned models and show the preva-

lence of arbitrary decisions in SOTA toxicity detectors (Table 1).

Aiming to assess how arbitrary decisions are spread across
demographic groups (RQ2) we compute arbitrariness and pair-

wise disagreement in sentences targeting specific social groups

(Figure 1). Next, we provide the necessary theoretical background

on predictive multiplicity (Section 3) and define the setup for the

described experiments (Section 4). Finally, in Section 5, we display

and analyze our experimental results.

3 BACKGROUND ON PREDICTIVE
MULTIPLICITY

In this section, we discuss setup and notation, mathematically de-

fine the set of all competing models, which in the ML and statistics

literature is called the Rashomon set, and define the multiplicity

metrics of interest in this paper — pairwise disagreement and arbi-

trariness.

Preliminaries. We focus on the task of binary classification of

toxic speech. Consider a dataset with𝑛 ∈ N examplesD ≜ {x𝑖 , y𝑖 }𝑛𝑖=1
where x𝑖 is a sentence (e.g., “I love you” and “I hate you”) and

y𝑖 ∈ {0, 1} is a binary label that is 1 when the sentence is “Toxic”

and 0 when it is “Not Toxic”. In the open-source datasets used in

this work, labels were generated by multiple human annotators

(see appendix C.2 for details).

We use error to measure the quality of a model. Formally, the

error of a model ℎ ∈ H over a dataset S ⊆ D is

ErrS (ℎ) =
1

|S|
∑︁

x,y∈S
1 [ℎ(x) ≠ y] , (1)

where 1 [condition ] is the indicator function that outputs 1 if con-
dition is true and 0 otherwise. The error in training data is defined

as Errtrain (ℎ), and similarly for testing error.

Competing Models and the Rashomon Effect. We call a fixed (e.g.,

deployed) model for flagging toxic content a reference model and
denote it by ℎref — we chose ℎref to be a language model freely

available on HuggingFace. The reference model can be, for exam-

ple, the empirical risk minimizer over a training set or an already

deployed model. The set of all models with less than 1 + 𝜖 times

the training error from ℎref is the Rashomon set [8, 26] denoted by

6
In fact, this information is impossible to obtain even if we analyze the model alone,

as multiplicity can only be identified when we compare predictions across multiple

models.

R(𝜖, ℎref).7 The Rashomon set can intuitively be viewed as a “dis-

agreement set” of equally-accurate models. Formally, the Rashomon

set is given by:

R(𝜖, ℎref) ≜ {ℎ ∈ H | Errtrain (ℎ) ≤ (1 + 𝜖) Errtrain (ℎref)} , (2)

where 𝜖 is the Rashomon parameter and measures how close the per-

formance of themodels is to the performance of the referencemodel,

see [7, 26, 37, 48] for related definitions. For the LLMs considered in

this work, the Rashomon set is theoretically and computationally

challenging to characterize. We resort to empirically estimating the

Rashomon set via re-running the same fine-tuning pipeline with

different random seeds. Each fine-tuned model gives us a sample

from the Rashomon set if the model is close in performance to the

reference model. We denote these Rashomon set model samples by
R̂ (𝜖) when ℎref is clear from the context. In practice, to explore

the Rashomon set, we fix a dataset Dtrain and model architecture

H , and fine-tune as many models on Dtrain as our computational

resources allow, each time varying the random seed. We discard

any models that are not within 𝜖 of ℎref.

There is no standard Rashomon parameter selection method (𝜖).

Most papers on predictivemultiplicity resort to showing how results

vary when the Rashomon parameter is changed [6, 37, 44, 48, 60].

Recently, Paes et al. [54] proposed a principled manner of choosing

the Rashomon parameter based on Clopper-Pearson confidence

intervals. This approach — which we refer to as the CP method

— selects 𝜖 based on a confidence parameter, dataset size, and the

error of the reference model. We follow their approach using a

confidence parameter of 95% for a conservative analysis. We also

explore different confidence values in appendix D.

Measuring Predictive Multiplicity. A classification problem ex-

hibits predictive multiplicity when models in the Rashomon set as-

sign conflicting predictions to the same data point, formally defined

in Marx et al. [48, Definition 2]. To measure predictive multiplicity,

we use the following two metrics: arbitrariness, which is a general-

ization of ambiguity Marx et al. [48], and pairwise disagreement

[7, 18].

While ambiguity computes the fraction of points that at least

one model in the Rashomon set disagrees with the reference model

(ℎref), arbitrariness measures the percentage of points in the dataset

that receive conflicting predictions from any two models in the

Rashomon set (competing models) and it is formally defined next.

Definition 1 (Arbitrariness). The arbitrariness on a set of in-
puts S = {x1, ..., x𝑛} ⊆ D over the Rashomon set model samples
R̂ (𝜖, ℎref) is the proportion of inputs in the set S that receive con-
flicting predictions from any two models in the Rashomon set model
samples:

Â(𝜖) ≜ 1

𝑛

𝑛∑︁
𝑖=1

1[∃ℎ1, ℎ2 ∈ R̂(𝜖) |ℎ1 (x𝑖 ) ≠ ℎ2 (x𝑖 )] . (3)

Pairwise disagreement is a per-sample measure that approxi-

mates the fraction of models in the Rashomon set that disagree on a

prediction. Here, we analyze average pairwise disagreement, which

7
Reference [26] defines the Rashomon set with any arbitrary loss function evaluated

on the training data.
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averages out pairwise disagreement across samples in a dataset,

formally defined as follows.

Definition 2 (Average Pairwise Disagreement [7, 18]). The
average pairwise disagreement is the average over all input x ∈ D of
the proportion of pairs of models in the Rashomon set R̂ (𝜖, ℎref) that
disagree on their prediction:

PD(𝜖) ≜ 1

𝑛

𝑛∑︁
𝑖=1

1

𝑀 (𝑀 − 1)
∑︁

ℎ,ℎ′∈R̂ (𝜖 )

1[ℎ(x) ≠ ℎ′ (x)], (4)

where 𝑀 = |R̂ (𝜖) |, i.e., 𝑀 is the number of models we sample from
the Rashomon set via retraining and 𝑛 the number of examples in D.

We select the above metrics because they quantify two important

aspects of predictive multiplicity: (i) the fraction of samples in

a dataset for which predictions are arbitrary (Defn. 1), in that a

competing model would have assigned a different prediction, and

(ii) the extent to which models disagree on individual (Defn. 2).

Given a set of models sampled from the Rashomon Set (e.g., by

varying random seeds), we quantify predictive multiplicity in two

steps. First, we measure the number of arbitrary decisions (arbitrari-

ness) made by competing models. Here, arbitrariness captures how
manymoderation decisions were not rule-based but just a consequence
of random seed selection. As discussed in Section 2, such random

decisions go against procedural fairness because they violate due

process, are not accountable, and, if the magnitude of arbitrariness

is different across groups, then the impact of randomness is also

disparate. Second, we compute pairwise disagreement to estimate

the number of models that disagree on their predictions. If the

number of conflicting predictions was, on average, negligible, one

might argue that ignoring this conflicting minority is acceptable [6].

However, our experimental results show that such disagreement is

high (Table 1), especially in specific targeted demographic groups

(Figure 1). In the next section, we apply this measurement pipeline

to state-of-the-art toxic text detectors.

4 EXPERIMENTAL SETUP
This section outlines the datasets, ML models, and methodology

used for evaluating predictive multiplicity in content moderation.

Our goal is to describe our overall experimental approach and

provide a rationale for the choice of datasets and base LLMs.

Our experiments involve fine-tuning state-of-the-art language

models on large-scale datasets. Fine-tuning refers to the act of

taking a general-purpose LLM trained on a large corpus of text, e.g.

RoBERTa [45], and further training it on a specific objective, such
as toxicity classification. Typically, this training is shorter (fewer

epochs) and less intense (smaller learning rate, less updated layers)

than the original training (commonly called pre-training) — which

is what motivates the term fine-tuning. All languagemodels referred

to in this section have been fine-tuned for toxicity classification,

meaning they take as input a piece of text and output either 0,

denoting a non-toxic, or a 1, denoting a toxic.

On state-of-the-art model selection. We identify widely used
8

state-of-the-art open-source language models that have been fine-

tuned for toxicity detection.We test all thesemodels in four different

datasets and choose to analyze the models tomh TR[33] and s-nlp
RTC[17] that are, respectively, the first and second best-performing

models — check Appendix C.3 for more details on model selection

and Table 3 for the considered models accuracy. Throughout this

paper we will refer to tomh TR[33] as ToxiGen-RoBERTa and s-nlp
RTC[17] as RoBERTa-Toxicity-Classifier.

On state-of-the-art model reproduction via fine-tuning. We repro-

duce the fine-tuning procedure from ToxiGen-RoBERTa [33] 40

times with different random seeds, leading to 40 different models.

We only considered 35 out of the 40 models because they have indis-

tinguishable performance from the reference model with 95% con-

fidence using the method from [54] —- the Rashomon parameter is

𝜖 = 0.016. We repeat the same procedure for the RoBERTa-Toxicity-

Classifier using the fine-tuning method from [17] and retaining

18/20 models with statistically indistinguishable performance with

95% confidence. Appendix C.4 shows hyperparameters and C.5 the

performance of fine-tuned models.

On dataset selection. We use the publicly available datasets: Tox-

iGen [33], DynaHate [63], SBF (Social Bias Frames) [59], HateEx-

plain [49], MHS (Measuring Hate Speech) [40], and WikiDetox [70].

These datasets were chosen for two main reasons. First, they were

purposefully designed to challenge ML-based toxic text classifica-

tion. For example, ToxiGen and SocialBiasFrames (SBF) contain

mostly “implicit” toxic speech [33, 59]. Second, these datasets have

labels for demographic groups targeted by the text. We use this

information to quantify and compare Arbitrariness and Pairwise

Disagreement across different targeted groups (Figure 1). We use

the Measuring Hate speech (MHS) [40] and the WikiDetox [70]

datasets because they add one additional dimension to our analysis:

the labels of multiple human annotators who detected toxicity for

the sentences in the dataset. This enablels us to compare human

annotators’ disagreement with model disagreement (Figure 2).

Dataset Content. In total, each row in each dataset in this work

contains: a sentence, a list of binary yes/no votes from human anno-

tators regarding the toxicity of the sentence, and the target group

for the sentence. See Appendix C.2 for further details, including

how many human annotators are in each dataset.

Having fine-tuned ourmodels, in the next section, wewill present

how these models exhibit predictive multiplicity in accordance with

the mathematical formulation in Section 3. For each of our find-

ings, we also draw connections between our experimental results

and their impact on principles of procedural justice, freedom of

expression, and non-discrimination, based on the legal framework

outlined in Section 2.

5 DATA ANALYSIS
In this section, we present our experimental results and discuss

their meaning in terms of the principles defined in Section 2. As we

did in Section 2, we will often refer to the illustration of a judges

flipping coins.

8
We consider widely used all toxicity detectors with more than 3000 downloads in the

Hugging Face [69] platform.
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5.1 Procedural Justice, Freedom of Expression,
and Judges Flipping Coins

Technical Analysis. Our first experimental result regards the ex-

tent of arbitrariness (RQ1) (defined in (1)) and disagreement (defined

in (2)) in our fine-tuned state-of-the-art toxicity detectors. Table 1

shows the prevalence of arbitrariness for the fine-tuned Toxigen

and Jigsaw models across all tested datasets. We also observe that

for the fine-tuned Toxigen, more than 34% of all decisions made by

the models at the test time are arbitrary, i.e., there exists another

competing model with a conflicting prediction. For the fine-tuned

Jigsaw models, this number decreases to closer to 23%. Moreover,

both the fine-tuned Toxigen and Jigsaw models achieved a high

number of conflicting predictions in the SBF dataset that contains

implicit toxic content — which may indicate that when the toxicity

is implicit, arbitrary decisions are more common.

Table 1 also shows a high percentage of pairwise disagreement

for the fine-tuned Toxigen and Jigsaw models across all tested

datasets. Our experiments show that using the fine-tuned Toxigen

models, on average, 8.3% of the pair of models disagree in their

prediction — i.e., 8.3% of total pairwise disagreement. While 6.9% of

the pair of models disagree for the fine-tuned Jigsaw models. This

implies that, on average, for each point that models disagree, 14%

of the fine-tuned Toxigen models made a prediction about sentence

toxicity, and 86% of the models predicted the opposite. This high

pairwise disagreement is especially relevant for methods that aim

to decrease arbitrary decisions by taking a majority vote across

fine-tuned competing models such as [6].

A Violation of Procedure and Freedom of Expression. Using our

analogy, each ML model is an adjudicator, deciding whether to

strike down an online post or not. Recall that the models we devel-

oped and tested are part of a Rashomon set, meaning they all have

very similar accuracy and are, therefore, equally good. On aver-

age, all judges make the same number of correct rulings. However,

in 34% of court cases, at least two judges disagree on the ruling

(arbitrariness). These conflicting rulings are not a result of judges
having different interpretations of the law or or having different

ideologies (e.g., more or less punitive). These conflicts stem from

purely random events, e.g., in 34% of court cases the judge flips a

coin to decide whether to take down the online post or not. Per

Section 2, such decisions are entirely detached from notions of due

process, legality, and impartiality, and hence constitute a violation

of procedure and freedom of expression. The fact that we measure

a 34% arbitrariness value due solely to random events means these

ML models, if deployed in the real world, would blatantly violate

procedure and FoE (as defined in Section 2 ). We emphasize that if

the 34% arbitrariness value could be attributed to clear and explain-
able differences in decision-making, then this value would not be

a violation of procedure and FoE. The randomness is the source of
the violation, not the magnitude of the value.

5.2 Disparate Arbitrariness: Different Content
Gets Different Coin Flips

Technical Analysis. Figure 1 indicates that the incidence of ar-
bitrariness is not the same across all targeted groups (RQ2). We

observe that anti-LGBTQ speech consistently receives more arbi-

trary decisions relative to misogynist /misandrist speech for both

Toxigen and Jigsaw fine-tuned models. Across the Toxigen fine-

tuned models, anti-LGBTQ speech receives arbitrary decisions 35%

of the time, while misogynist/misandrist speech receives arbitrary

decisions around 30% of the time. These differences are even greater

on Jigsaw fine-tuned models. Moreover, racist speech has more than

twice the arbitrariness of misogynist/misandrist speech on Jigsaw

fine-tuned models. We also note that Toxigen was created to be a

balanced dataset, i.e., all target groups have about the same number

of examples — Figure 1 shows that a balanced dataset may make

arbitrary decisions more evenly distributed.

A Violation of Non-discrimination. Returning to the judge anal-

ogy, our experimental results indicate that decisions based on coin

flips occur more frequently in certain marginalized groups than in

others. An example would be that in 35% of court cases concern-

ing LGBTQ content, the judge flips a coin to decide the outcome,

whereas the judge does this only 30% of the time for misogynist

and misandrist content. The fact that we measure a difference in

arbitrariness values across different groups due solely to random
events means these ML models, if deployed in the real world, would

violate non-discrimination. Unlike Section 5.1, even if this effect

could be attributed to clear and explainable differences in model

decision-making, it would still constitute a violation of the principle

of non-discrimination. People are entitled to a rule-based and equal

evaluation on whether their speech should be restricted.

Table 1: Average pairwise disagreement and arbitrariness in testing time for the Toxigen fine-tuned and Jigsaw fine-tuned
models in different datasets. The confidence in the CP method from [54] was chosen to be 95% for a more conservative analysis.
95% confidence intervals are shown using the standard error from the mean.

Toxigen Fine-Tuned Jigsaw Fine-Tuned

Dataset Pairwise Disagreement Arbitrariness Pairwise Disagreement Arbitrariness

Toxigen 6.8% ± 0.9% 28.6% ± 3.2% 4.3% ± 0.8% 15.4% ± 2.5%

DynaHate 8.4% ± 0.6% 34.1% ± 1.6% 6.0% ± 0.4% 21.8% ± 1.4%

SBF 8.7% ± 0.3% 35.7% ± 1.1% 7.2% ± 0.3% 24.4% ± 1.0%

HateExplain 8.0% ± 0.6% 31.9% ± 2.0% 8.5% ± 0.6% 29.6% ± 2.0%

Total 8.4% ± 0.2% 34.2% ± 0.8% 6.9% ± 0.2% 23.9% ± 0.7%
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Figure 1: Average pairwise disagreement and arbitrariness in different target groups for the fine-tuned Toxigen and Jigsaw
models. The results show the pairwise disagreement in percentage (x-axis) for the union of four different datasets: DynaHate,
SBF, Toxigen, and HateExplain. The results are shown for training and test partitions of each dataset. The confidence in the CP
methods was chosen to be 95%.
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Figure 2: Average pairwise disagreement and arbitrariness for Unambiguous and Ambiguous sentences using the Toxigen
fine-tuned and Jigsaw fine-tuned models. The figure shows the pairwise disagreement estimated values along with the 95%
confidence intervals using the standard error from the mean. We consider a sentence Ambiguous when at least one annotator
labeled the sentence differently than others and Unambiguous otherwise. The confidence in the CP methods was chosen to be
95%.

5.3 Comparing Human and Machine
Arbitrariness: Who is Flipping Coins?

Finally, we compare the arbitrariness across competing ML models

in the Rashomon set and across human annotators. Our goal is to

verify if disagreements in predictions between fine-tuned LLMs

match the disagreement observed in human annotators, in which

case ML models would be replicating disagreement already present

in the training data. As we see next, that is not the case.

Technical Analysis. From Figure 2, we observe two results. First,
model disagreement tends to be higher in sentences where humans

do not agree (i.e., ambiguous statements). This is an interesting

finding because themodels only saw themajority vote across the an-

notators. Effectively, this implies that models, as humans, struggle

with classifying certain statements. Our second finding is that mod-

els in the Rashomon set can display a high level of disagreement and,

hence, arbitrariness in sentences in which humans unanimously
agreed on the toxicity (i.e., unambiguous statements). In these cases,

models output conflicting predictions when faced with evaluations

that would be obvious to human annotators. Note that WikiDetox is

part of the training data for the fine-tuned Jigsaw models, which is

why the arbitrariness and disagreement values are noticeably small.

Even in this extreme, our first observation holds. This is further

evidence that there are certain statements in these datasets that

both humans and models struggle to correctly classify.

A violation of rule-based approach. This point is where our anal-
ogy (un)fortunately reaches a limitation. In real life, judges will

make similar decisions on most easy cases. The lawfulness of the
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social media post stating “Hello world” is hardly controversial. How-

ever, our findings indicate that ML models struggle over certain

statements that would be obvious to any human judge. In their de
facto roles of proxy adjudicators, we need to interrogate in which

situations ML can effectively deliver high quality classification.

6 ON THE CONSEQUENCES OF
ARBITRARINESS

In this section, we discuss how selecting and deploying content

moderation models at a large scale, under predictive multiplicity,

resembles the moral dilemma of the trolley problem (RQ3). We

make this comparison to discuss the relevance of our work for law

and policy decision-makers and scholars. Finally, we offer insights

into the path forward.

The inscrutable trolley problem. The harms of arbitrariness reflect

a fundamental problem for the use of ML in content moderation.

We argued in Section 2 under Procedural Justice that content moder-

ation algorithms must follow a rule-based decision-making process.
ML models, however, make statistical predictions that do not follow

a clear rule-based process. Adjudicating free speech through sta-

tistical models to control the exercise of a right is only tolerable if

these models deliver similar expected outcomes and operate on the

same explainable, rule-based criteria, with due process safeguards.

We have empirically shown that is not the case. The criteria used

are often random and these stochastic effects are often concealed

from the end user.

Our work also identifies the harms stemming from arbitrary

model selection (e.g., which model of the Rashomon set is chosen

and deployed). When there is no clear reason for choosing one

model over the other, an artificial “lottery” is created on which

data points will draw the fate of being subjected to random treat-

ment. Our results indicate that this “lottery” is not fair: different

population groups targeted by the text have different likelihoods

of arbitrary treatment.

If we can draw a final analogy, this creates a troubling scenario

where choosing ML models is an inscrutable trolley problem. The

trolley problem is a famous thought experiment in ethics and psy-

chology involving a moral dilemma where a person must choose

between actively diverting a runaway trolley to harm one person or

passively allowing it to continue on its path and harm five people.

Here, we do not know why and how companies choose between

equally good models, but each one of them will cause the undue

harm of different individuals. This must be discussed from a law

and policy point of view in local jurisdictions.

Impact on ongoing law and policy debates on content moderation.
One important debate in the platform regulation field is directly

affected by these findings. It is the ongoing discussion of laws af-

fecting content moderation, such as platform liability rules [9, 46].

Legal responsibilities imposed on service providers push companies

to perform more content moderation focused on particular types

of expression. Striking the right balance between free speech and

expedited response, considering the volume and plurality of online

communication, is a hard, legal and technical task. Adding to these

challenges, copyright claims, scientific disinformation, electoral in-

tegrity, and online extremism are all topics that have fuelled heated

discussions on the need to prevent online harms while balancing

international human rights - or even questioning if international

human rights are sufficient to tackle this issue [22]. Our findings

shed light on the legal complexities intrinsic to these models.

Several statutes require companies to publish assessment reports

that include quantitative measurements such as expected accuracy

and error in algorithmic content moderation. Examples include DSA

(Article 15, Section 1(e))[62], the UK Online Safety Act (Section 22

(4) and (6))[52], and statutes currently in discussion, such as the

Brazilian AI Bill (Articles 19 - 24) and the Platform Regulation

Bill (Article 23). Our findings demonstrate that arbitrariness in

algorithmic content moderation carries non-negligible potential

for harm. Moreover, content moderation tasks are also becoming

increasingly complex, which may further increase arbitrariness.

For instance, in 2022 the Brazilian Electoral Courts [24] ordered

the removal of content that was “similar” to content that had a

previously been appreciated with a removal order. The time-frame

for companies to respond, in the election periods, varied between 3

hours and 1 hour. To attend to these stringent legal requirements,

companies might rely on other ML models to appreciate “similarity”

at scale (whatever that might mean).

As a way forward, reports produced by companies should also in-

clude measurements of algorithmic arbitrariness in content moder-

ation. Reporting accuracy alone is not enough, as our work demon-

strated: equally accurate models can produce conflicting moder-

ation decisions. Our paper provides a methodology on how such

measurements can be done: in Section 3, we give two precise met-

rics for quantifying arbitrariness, in Figures 1 and 2, we compute

and visualize these quantities, and in the “Technical Analysis” of

Section 5, we provide an example of what a quantitative assessment

could look like in these reports.

We encourage the ML community to develop mitigation strate-

gies to reduce algorithmic arbitrariness in content moderation. The

work of Black et al. [6] is an excellent starting point, which sug-

gests taking the majority vote across the set of essentially equally

performing models. However, we note that the first step in dealing

with arbitrariness is discovering, measuring, and reporting this

phenomenon.

7 FINAL DISCUSSION
Conclusion. In this paper, we show the prevalence of arbitrary

decisions in algorithmic content moderation and discuss its im-

pact on law and policy — particularly on freedom of expression,

non-discrimination, and procedural justice. Moreover, we show

that arbitrary decisions are not uniformly spread across all texts

and that they are more frequent in content that targets specific

demographic groups (e.g., anti-LGTBQ posts). Then, we discuss the

implications of the disparate arbitrary decisions in terms of the

principle of non-discrimination and procedural fairness. Finally,

we also show that models produce arbitrary predictions even in

content that human annotators unanimously classify as toxic or

non-toxic, signaling that it might be useful to share the responsibil-

ity of content moderation with human annotators.

Path forward. Our results reinforce that ML models are far from

perfect proxies for humans when classifying and evaluating speech.
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The use of algorithmic tools in moderation must be nuanced, ac-

countable, and transparent. First, decisions made during model

development – even as simple as the choice of random seed! – must

be scrutinized, and their impact on ensuing moderation decisions

quantified, reported, and analyzed in light of company policies and

regulations. Second, developers of moderation tools should mea-

sure how arbitrariness disparately affects subsets of the population

and develop techniques to mitigate this impact. Finally, caution is

required when delegating decisions to algorithms. A more nuanced

approach to content moderation, where certain variables (e.g., the-

matic content, socio-demographic factors, type of illegal or harmful

speech) prompt human revision and control, is a promising way

forward.

Limitations. We only measured multiplicity across binary toxic-

ity detection. However, models that predict beyond binary toxicity

(e.g., models that predict the level of toxicity) could potentially

display different levels of arbitrariness than reported here. We also

did not investigate the possibility of a statement fulfilling multi-

ple categories of toxic speech; different categories may prompt

different governance decisions other than simply content removal

(e.g., reducing reach and labeling). Finally, there is an emerging

application of generative language models to produce moderation

decisions [53]; however, this approach uses GPT-4, which we have

no access to model architecture, weights, or even training data,

making finding equally good models in the same hypothesis class

impossible.

8 RESEARCH POSITIONALITY
This positionality statement aims to transparently communicate

our ethical considerations, the influence of our backgrounds on

our research, and our proactive steps to mitigate the risks of our

research.

Ethical considerations: In conducting our research, we ad-

dressed ethical concerns related to the collection and analysis of

potentially harmful content. We took precautions to mitigate risks

associated with exposure to toxic speech by redacting sensitive

language and analyzing data at an aggregate level. This approach

minimized the direct exposure of our research team to potentially

disturbing content. Furthermore, to ensure the integrity of our re-

search practices and maintain a clear ethical stance, our research

center operates independently, without direct funding from compa-

nies that might be influenced by policy discussions stemming from

our findings. This independence allows us to conduct our research

without potential conflicts of interest, adhering strictly to academic

and ethical standards.

Positionality: As a team linked to an American university, our

diverse backgrounds and experiences inform and shape our re-

search. The policy discussions we engage with are prominent in

Europe and North and South America. We have limited knowledge

of the state of the discussion in other continents. One of our re-

searchers is actively involved in a civil society organization focused

on tech policy in Brazil, which informs our understanding of the

implications of technology governance and views on the legislation

mentioned. In our view, the diversity of disciplinary views pro-

vides valuable insights into the socio-political dynamics that frame

technology use and regulation in different regions, particularly in

emerging markets.

Adverse Impact Reflection: While we believe our research

does not directly have adverse unintended impacts on individu-

als, we remain cautious about the potential misuse of our findings.

Specifically, the models trained to identify toxic speech have the

inherent potential to be misused to restrict the freedom of expres-

sion of certain demographic groups. Acknowledging this possibility,

we have decided to restrict access to the code, making it available

only upon request. This measure is intended to prevent misuse and

ensure that the models are used in line with ethical guidelines and

for purposes that align with our intent to promote positive social

outcomes. We continue to reflect on the broader implications of

our research and remain committed to monitoring and addressing

any negative impacts that may arise post-publication.
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A PRELIMINARIES
In this supplementary material, we provide the following informa-

tion:

• Section B contains Figure 3, which summarizes the main

technical arguments presented in the paper along with the

policy implications.

• Section C provides further details on the datasets, Hugging

Face models evaluation, fine-tuning procedures, and fine-

tuned model performance.

• Section D provides a further exploration of our experiment.

Particularly, it shows (i) multiplicity metrics across different

dataset partitions, (ii) pairwise disagreement and arbitrari-

ness values across different datasets, and (iii) multiplicity

metrics across demographics for different confidence values

from the CP method.

B SUMMARY OF KEY ARGUMENTS
The connection between the technical aspects of ML and law, along

with the associated policy implications is illustrated in Figure 3.

C EXPERIMENT DESIGN DETAILS
In this section, we providemore details on i) whywe explore toxicity

detection, ii) the datasets used, iii) the search for state-of-the-art

models, iv) the used hyperparameter tuning procedure, and v) the

fine-tuned models.

C.1 Toxicity Detection as a Proxy for Content
Moderation

The object of analysis of this paper is centered around the effects

stemming from ML models used for classification. The definition of

what speech should be taken down is dependent on jurisdiction and

policy. We acknowledge that “toxic” does not correspond perfectly

to legal notions of illegal speech, such as hate speech. However,

we interpret our experimental results in Section 5 as evidence that

models deployed to classify illegal speech (e.g. spam, hate, copy-

right) will exhibit multiplicity. We do not expect our datasets to

be perfectly translatable from Toxic to Illegal Speech classification

based on the definitions of the dataset. Similarly, we do not make

claims to other languages since our study was conducted using the

English language.

Moreover, many of our experimental results (e.g. Table 1) are

based on training an ML model to detect toxic speech as defined by

either Toxigen [33] or Jigsaw [41], then using this model to detect

toxic speech in other datasets, which use different definitions of

toxic. We observed higher values of arbitrariness and pairwise-

disagreement when this was done. This is evidence that we should

not expect models trained to enforce specific policies and juris-

dictions to translate perfectly to other jurisdictions. As such, this

secondary deployment offers a risk to Human Rights, since it will

not be correctly applying local rules.

C.2 Further Dataset Information
We analyze the performance of text classification models across

four datasets: ToxiGen [33], DynaHate [63], SocialBiasFrames [59],
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Examples of legal provisions on 
algorithmic content moderation

Mitigating systems risks 
through algorithmic 
systems and content 
moderation 
(DSA, Section 35, c and 
d) 
Duty of care of 
moderating, preventing, 
and minimizing exposure 
of illegal content through 
content moderation (UK 
Online Safety Act, 
Section 10, (2)(3)(4))
Immediately removing 
contents with AI-
manipulated 
disinformation during 
elections 
(Res. 23.732/2024, TSE– 
Brasil) 

Regulation

Effects of arbitrariness in 
ML models used for content 

moderation models

Predictive 
multiplicity: 
conflicting 
predictions across 
equally good models

Departure from 
rule-based 
decisions: 
predictive outcomes 
are arbitrary or 
random

Disparate Impact: 
The incidence of 
arbitrary decisions 
varies across 
different social 
groups.

Impacts of arbitrariness in 
terms of Human Rights

Freedom of 
Expression: content 
can be unduly 
removed or upheld 
depending on 
unjustified model 
selection

Procedure: content 
moderation decisions 
introduce 
randomness in the 
application process.

Discrimination: 
different social 
groups are subject to 
different degrees of 
arbitrary decisions

Implications for Platform 
Regulation laws, policy 

debate, and path forward

Technical community 
should develop forms 
of measuring and 
mitigating 
arbitrariness (e.g. 
majority vote, model 
ensembles)

Auditing and 
reporting should go 
beyond accuracy and 
include the effects of 
arbitrariness

Platform regulation 
should consider legal 
effects of arbitrary 
decision made 
during pre-
deployment stages

Measured Phenomena Legal Effects Implications

Implications of Algorithmic Arbitrariness in Content Moderation on Platform 
Regulation

Figure 3: Summary of the key arguments presented in this work.

and HateExplain [49]. These datasets were chosen for several rea-

sons. First, these are datasets purposefully designed to challenge

ML-based toxic text classification. For example, ToxiGen and So-

cialBiasFrames contain mostly “implicit” toxic speech devoid of ex-

plicit profanity, slurs, or swearwords which could be easily flagged

[33, 59]. DynaHate uses a human-and-model-in-the-loop process

to generate a dataset designed to fool ML models. Second, these

datasets have labels for demographic groups targeted by the text.

This information enables us to quantify and compare Arbitrariness

and Pairwise Disagreement across different target groups and re-

port disparities in Section 5. In addition to these datasets, we also

use the Measuring Hate speech (MHS) [40] and the WikiDetox [70]

datasets. We chose these datasets because they add an additional

dimension to our analysis: the labels of multiple human annotators

who detected toxicity in each statement in the dataset. This infor-

mation enables us to compare human annotators’ disagreement

with model disagreement in Section 5.3.

See Table 2 for a summary of all datasets used in this work.

Here, the “Unique Samples” column refers to the number of unique

sentences that appear in the corresponding datasets across train,

test, and validation. The “Human Annotators per Sample” column

refers to the number of independent human annotators that saw

each sample. For example, an entry such as “1-5” means between

1 and 5 human annotators saw every sample in the dataset. We

made a modest attempt at (i) removing non-English sentences from

each dataset, (ii) removing repeated sentences and (iii) asserting

that sentences in the training set were not in the test or validation

set. As such, the numbers reported in Table 2 will not reflect the

numbers reported in each dataset’s respective paper.

We summarize the different definitions of toxicity used by these

datasets. For Toxigen [33], the definition of toxicity is not explicitly

defined, instead they asked the human annotators “whether the

statement would be harmful to anyone if an AI system wrote
it (HARMFULIFAI), as well as if a human wrote it (HARM-
FULIFHUMAN)”. The annotators were asked to rate each sentence
between 1-5, with 1 meaning “not at all” harmful, 3 meaning am-

biguous, and 5 meaning “very much so”. The toxic label for this

dataset was generated by taking the max of HARMFULIFAI and

HARMFULIFHUMAN and mapping the scores into three class: non-

toxic if < 3, ambiguous if 3, and toxic if > 3. Finally, the majority

vote was taken across the three human reviewers. Note that, ac-

cording to the Toxgien paper [33], there is no significant difference

in toxicity when using either HARMFULIFAI or HARMFULIFHU-

MAN. For our work, we map any score less than or equal to 3 to

non-toxic and any score above 3 to toxic.

In DynaHate [63], the definition of toxicity (which they refer to

as hate) is defined as “abusive speech targeting specific group
characteristics, such as ethnic origin, religion, gender, or
sexual orientation”. This dataset already has binary labels for

toxicity, so the only post processing we do is remove the sentences

whose target label was one of ’notgiven’, ’notargetrecorded’, ’wc’,

or ’NA’.

In SocialBiasFrames, [59], toxicity (which they refer to as “of-

fensiveness”) is not explicitly defined. Human annotators were ask

“Could this post be considered offensive, disrespectful, or
toxic to anyone/someone?”. The answer options were “Yes, this
could be offensive”, “Maybe, I’m not sure”, “No, this is harmless”,

and “I don’t understand the post”. We drop any sentences where any

annotator answered “I don’t understand the post”. Any sentence

where the majority of annotators answered “Yes” was labelled toxic,

else the sentence was labelled non-toxic. In particular, we assigned

the values 1, 0.5, and 0 to “Yes”, “Maybe”, and “No”, respectively.

For each sentence, the toxic label was generated by averaging the

scores across humans, and checking if the value was above 0.5.
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In HateExplain [49], they cite [19] for their definition of toxic

speech (which they call hate speech). Davidson defines hate speech

as: “language that is used to expresses hatred towards a tar-
geted group or is intended to be derogatory, to humiliate, or
to insult the members of the group”. This paper distinguishes
between hate speech and offensive speech, and each sentence in

this dataset is labelled as either HATEFUL (which is assigned the

value 0), NORMAL (assigned the value 1), or OFFENSIVE (assigned

the value 2). For the purposes of this work, we label both hateful

and offensive speech as toxic, and normal speech as non-toxic, and

take the majority vote across annotators to get the toxic label.

In Measuring Hate speech (MHS) [40, 58], toxic/hate speech is

modelled as a spectrum, and faceted Rasch measurement theory

(RMT) was used to map human responses into a continuous score

that ranges between 0 and 1. For the purposes of this work, we use

this continuous score, and sentences with a hate speech score > 0.5

was labelled as toxic, and anything else was labelled non-toxic. We

then take the majority vote across annotators to get the toxiicity

label for a given sentence. The authors of MHS have eight different

forms of hate speech, where each definition denotes hate speech of

increasing severity. We list each definition, with the understanding

that all of these definitions together form the definition of toxicity

used in our experiments:

• Genocide: Support for or intention of systematically
killing all or a large number of a protected identity
group

• Violence: Threat or support of physical force or emo-
tional abuse intended to hurt or kill members of a
protected identity group

• Dehumanization:Depriving a protected group of human-
like qualities, such as comparison to an animal, insect,
or disease

• Hostility: Unfriendliness or opposition to a protected
identity group, such as through slurs, profantiy, or
insults

WikiDetox [70] contains three different datasets for personal

attacks, aggression, and toxicity. “Personal attacks” are defined as

in the Wikipedia guidelines [67], and broadly include abuse based
on protected classes, ad hominem attacks on affiliations, ha-
rassment, threats of legal action, etc. “Toxicity” in WikiDetox is

defined as in the Wikipedia Online Harassment Guide [68], which

points to various U.S. centered studies and legal documents. The

most relevant is [47], which defines hate speech in Section V as

“speech that carries no meaning other than hatred towards
a particular minority, typically a historically disadvantaged
minority”. “Aggression”, as far as we can tell, is not defined in

WikiDetox, however, we found that all aggressive sentences were

also either in the attack or toxicity dataset, so we chose to ignore

the aggressive dataset all together, which did not cost us any data.

In this work, we combine all the toxicity and attack datasets into

one large dataset. We note that the toxicity and attack datasets have

overlapping sentences but are not identical. Any sentence that was

considered either as an “attack” or as “toxicity” were labelled as

toxic, else it was labelled not toxic. The majority vote was then

taken over human annotators to get the toxic label for each sen-

tence. All special newline and tab tokens were removed to avoid

confusing our ML models.

Finally, we discuss the Jigsaw dataset, which is a concatenation

from the Jigsaw 2018 competition [12] and Jigsaw 2019 competition

[11] training datasets. Note that there was a Jigsaw 2020 compe-

tition [41], but this competition had the same training data as in

previous competitions, though the goal was different. Toxicity in

the Jigsaw datasets is defined as “rude, disrespectful or other-
wise likely to make someone leave a discussion”. Since this
dataset is already heavily curated, no other post processed was

needed. We note here that WikiDetox is a subset of the Jigsaw

dataset.

C.3 Model Search On HuggingFace
Models Considered in Study. We include a screen shot of the Hug-

gingFace platform listing the most downloaded language models

for toxicity detection as of January 1st, 2024. The purpose of this

screenshot is to keep historical proof that we tested all models

with more than 3000 downloads as of the time of writing. Note that

s-nlp/russian_toxicity_classifier and

cointegrated/rubert-tiny-toxicity are Russian languagemod-

els and hence outside the scope of this paper. For the same reason,

naot97/vietnamese-toxicity-detection_1, a Vietnamese lan-

guage model, was not considered. Moreover,

rungalileo/toxic-bert-quantized-traced is a distilled / quan-
tized version of unitary/toxic-bert, hence we opted to use only
unitary/toxic-bert. See Table 4 for the full list of selectedmodels

along with their reference.

On state-of-the-art model selection. Our first goal is to identify

the state-of-the-art open-source language models that have been

fine-tuned for toxicity detection. We begin by evaluating the perfor-

mance of all Hugging Face [69] toxicity-detection language models

with more than 3000 downloads. As of January 1st, 2024, this results

in 8 models (see Appendix C.3). The best-performing model (see Ta-

ble 3) was tomh TR[33], which wewill refer to as ToxiGen-RoBERTa.
This model is the ToxDectRoBERTa [72] model fine-tuned on the

ToxiGen dataset [33]. We fix ToxiGen-RoBERTa as our reference

model. Our second goal is to create competing models to ToxiGen-

RoBERTa, which we did by taking the base model architecture

(ToxDectRoBERTa) and fine-tuning the model 40 times on the Tox-

iGen dataset while only varying the random seed between each

run.
9
See Appendix C.4 for details on the fine-tuning procedure. We

then discard the models that are worse than the reference model

using the CP method from [54] outlined in Section 3, using a confi-

dence of 95%. This choice enables a conservative estimate of the size

of the Rashomon set and, therefore, of multiplicity across datasets.

This results in a Rashomon parameter of 𝜖 = 0.016, and us keeping

35 of the 40 models as Rashomon set samples (R̂ (𝜖)). 10

9
The random seed determines the weight initialization of the classification head of the

language model and the shuffling of the training data, both of which lead to a different

model after fine-tuning.

10
We repeat this experiment with the second-best-performing model from Hugging-

Face to guarantee that our experimental results are not a mere artifact of model

architecture or training data selection. This model is s-nlp RTC[17], which we will

refer to as RoBERTa-Toxicity-Classifier from here on.



Algorithmic Arbitrariness in Content Moderation FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Table 2: Summary of all datasets used.

Dataset % Toxic Unique Samples # human annotators per sample

ToxiGen 42.5 6,514 3

Jigsaw 8.1 2,223,061 (130,320 used) 1-3,563

DynaHate 43.7 33,677 1-5

SocialBiasFrames 46.8 45,223 1-20

HateExplain 59.4 19,229 3

MeasuringHateSpeech 20.5 39,555 1-815

WikiDetox 7.7 197,578 8-46

Table 3: Test accuracy for all Hugging Face toxicity detection models with more than 3k downloads and ToxiGen across different
datasets. The best-performing model accuracy is shown in green and the second best in blue. See Table 4 for the full list of
selected models along with their references.

Models Toxigen DynaHate SBF HateExplain

martin-ha TCM [55] 56.2% ± 3.5% 52.9% ± 1.6% 56.5% ± 1.4% 55.5 ± 2.2%

unitary TB [32] 62.5% ± 3.4% 55.2% ± 1.6% 58.2% ± 1.4% 64.1 ± 2.2%

s-nlp RTC [17] 66.9% ± 3.3% 56.9% ± 1.6% 62.4% ± 1.3% 65.9 ± 2.1%

mohsenfayyaz TC [25] 63.2% ± 3.4% 56.1% ± 1.6% 68.5% ± 1.3% 63.8 ± 2.1%

unitary UTR [32] 64.5% ± 3.3% 54.6% ± 1.6% 58.4% ± 1.4% 65.8 ± 2.1%

nicholasKluge TM [14] 58.5% ± 3.5% 55.2% ± 1.6% 56.3% ± 2.2% 62.4 ± 2.1%

unitary MTXR [32] 63.1% ± 3.3% 54.6% ± 1.6% 60.1% ± 1.4% 64.3 ± 2.1%

tomh TR [33] 83.4% ± 2.6% 58.1% ± 1.6% 64.1% ± 1.3% 67.8 ± 2.0%

C.4 Hyperparameters
The accuracy of fine-tuned language models depends heavily on a

multitude of hyperparameters. In the main body, we retrain two

different model types multiple times: the ToxiGen-RoBERTa [33]

and the RoBERTa-Toxicity-Classifier [17]. In this section, we detail

the hyperparameters used in the main body.

ToxiGen-RoBERTa: Retraining the ToxiGen-RoBERTa model was

done by fine-tuning the ToxDectRoBERTa model [72] (∼ 355 million

trainable parameters) on 4,601 training examples from the human

annotated subset of the ToxiGen dataset [33]. In particular, we

trained on a subset of the ToxiGen data used by [35] that removed

prompts for which 3 annotators disagreed on the target group.More-

over, no quantization was done on the ToxDectRoBERTa model,

and all training runs were performed on a 80Gb A100 GPU. We

fixed the number of epochs to 10 and performed an extensive hyper-

parameter sweep over:

• learning rate: Logarithmically spaced values from 10
−6

and

10
−4
.

• batchsize: Three values ∈ {8, 16, 32}.
• Weight decay: Linearly spaced values from 0 and 0.1 with a

0.01 spacing.

• Warmup Steps: Linearly spaced values from 0 to 30% of an

epoch with a 5% spacing.

All other hyperparameters were set to the default that Hugging-

face’s sequence classification routine uses. In particular, this means

a Linear learning rate schedule with the AdamW optimzer. The

sweep was done via the Trainer API from HuggingFace Transform-

ers with the Optuna [1] backend, which used evaluation accuracy

to prune unpromising trails early in training. In total, Optuna made

60 complete training runs (the average run took an hour and 20

minutes on an A100 GPU 80Gb). The optimal parameters were

found to be: learning rate: 1e-5, batch size: 32, weight decay: 0.09,

and warmup ratio: 0.1. The random seed used for the best run was

6. All ToxiGen fine tuned models (i.e., those used in the multiplicity

experiments) used these hyperparameters, except for random seed.

The seeds used for the ToxiGen fine tuned models were randomly

generated 3 and 4 digit integers sampled using [31]. See Figure 5

for a plot of the training trajectories of 10 of the random seeds.

RoBERTa-Toxicity-Classifier. Retraining the RoBERTa-Toxicity-
Classifier was done by fine-tuning the base RoBERTa model [45]

(∼ 124 million trainable parameters) on 100,000 training examples

sampled uniformly from the concatenated Jigsaw dataset [11, 12].

Moreover, no quantization was done on the RoBERTa model, and

all training runs were performed on a 80Gb A100 GPU. In practice,

the significantly larger dataset size meant that fine-tuning this

RoBERTa model was approximately 3 times slower than fine-tuning

the Toxigen models. Due to the increased computational cost of

training these models compared to the ToxiGen models, we did

not as extensive of a hyperparameter sweep. We set the batch size

to 8 (for faster training time), and did a grid search for 4 epochs

over four learning rates {10−6, 10−5, 2 × 10
−5, 10−4}. The best was

found to be 2 × 10
−5
. Then, we increased the batch size to as large

as our memory allowed (32), and kept all other hyperparameters

set to the default in Huggingface’s sequence classification routine

(notably: weight decay:0 and no warmup steps). All Jigsaw fine

tuned models used these hyperparameters. The seeds used for the

Jigsaw models were randomly generated 3 and 4 digit integers



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Gomez et al.

Figure 4: Screenshot of the HuggingFace platform’s most popular toxic detection models as of the writing of this paper

(a) Toxigen Fine-Tuned (b) Jigsaw Fine-Tuned

Figure 5: Training trajectories for the fine-tuned ToxiGen and Jigsaw models over 10 randomly chosen seeds.

sampled using [31]. The average Jigsaw model took approximately

3 hours and 15 minutes to fine tune. See Figure 5 for a plot of the

training trajectories of 10 of the random seeds.

C.5 Fine-Tuned Models Performance
In Table C.5, we show the performance of the models we fine-tuned

and compare it against the reference models. The line Reference in

Table C.5 shows the accuracy of the reference ToxiGen-RoBERTa

Table 4: All considered Hugging face models.

Model Name and Link Reference

martin-ha/toxic-comment-model Pan [55]

unitary/toxic-bert Hanu and Unitary team [32]

s-nlp/roberta_toxicity_classifier Dale et al. [17]

mohsenfayyaz/toxicity-classifier Fayyaz [25]

unitary/unbiased-toxic-roberta Hanu and Unitary team [32]

nicholasKluge/ToxicityModel Corrêa [14]

unitary/multilingual-toxic-xlm-roberta Hanu and Unitary team [32]

tomh/toxigen_roberta Hartvigsen et al. [33]

https://huggingface.co/martin-ha/toxic-comment-model
https://huggingface.co/unitary/toxic-bert
https://huggingface.co/s-nlp/roberta_toxicity_classifier
https://huggingface.co/mohsenfayyaz/toxicity-classifier
https://huggingface.co/unitary/unbiased-toxic-roberta
https://huggingface.co/nicholasKluge/ToxicityModel
https://huggingface.co/unitary/multilingual-toxic-xlm-roberta
https://huggingface.co/tomh/toxigen_roberta
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Table 5: Accuracy of the reference models from Hugging Face and our Fine-tuned models. The column Toxigen represents the
accuracy of the models fine-tuned in the Toxigen dataset. The column Jigsaw represents the accuracy of the models fine-tuned
in the Jigsaw dataset. The reference line shows the accuracy from the models deployed in Hugging Face. The lines Minimum,
Mean, and Maximum show the minimum, average, and maximum accuracies across all our fine-tuned models.

Accuracy Data Split Toxigen Jigsaw

Reference

Train 96.0% 95.7%

Test 83.4% 95.3%

Minimum

Train 94.6% 93.6%

Test 83.4% 92.8%

Mean

Train 98.2% 96.6%

Test 85.0% 94.1%

Maximum

Train 99.8% 100%

Test 86.8% 100%

model [33] and RoBERTa-Toxicity-Classifier [17] train and test ac-

curacies. The lines Minimum, Mean, and Maximum show the mini-

mum, average, and maximum accuracies across all our fine-tuned

models. We observe that both the train and test performance of our

models approximates the reference models deployed in Hugging-

Face. Surprisingly, the fine-tuned Jigsaw models perform as well

as its reference model that was trained in 10 times more data from

the same dataset.

D FURTHER EXPERIMENTAL RESULTS
In this section, we show the main results in the paper for difference

values for the Rashomon parameter given by the selection of confi-

dence values for the CP method [54]. Additionally, we also show

arbitrariness and pairwise disagreement across demographics for

datasets.

D.1 Arbitrariness with Different Confidences
We start by showing the pairwise disagreement and arbitrariness

values for the testing partition of Toxigen, DynaHate, SBF, and

HateExplain. We show these results for two different confidence

levels in the CP method: 50% and 1%. When confidence is smaller,

more models are considered to be in the Rahsomon set but with a

higher probability of wrong model inclusion in the set.

Table 6 shows pairwise disagreement and arbitrariness for a

confidence level in the CP method equal to 50% and Table 7 shows

results with confidence 1%. We observe that, compared with Table

1, the disagreement and arbitrariness values of Tables 6 and 7 are

higher as a consequence of models with higher error being included

as samples of the Rashomon set.

D.2 Multiplicity Across Demographics
Here, we also show how arbitrariness and pairwise disagreement

vary across different targeted demographic groups. Figures 6 and

7 indicate that even under higher confidence values, arbitrariness

and disagreement are still non-uniformly distributed as showed in

Figure 1, leading to disparate algorithmic treatment.

D.3 Human vs. Model arbitrariness
We also display the arbitrariness and pairwise disagreement values

across unambiguous and ambiguous toxic content. Recall that we

consider unambiguous sentences the ones that all human annotators

agreed upon its toxicity and ambiguous when not all annotators

classified the sentence toxicity equally.

Figures 8 and 9 present the same pattern of higher arbitrariness

and pairwise disagreement in ambiguous sentences while also hav-

ing a high arbitrariness and pairwise disagreement in unambiguous

sentences — and we discuss in Section 5.
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Table 6: Average pairwise disagreement and arbitrariness in testing time for the Toxigen fine-tuned and Jigsaw fine-tuned
models in different datasets. The confidence in the CP methods was chosen to be 50% for a more conservative analysis. 95%
confidence intervals are shown using the standard error from the mean.

Toxigen Fine-Tuned Jigsaw Fine-Tuned

Dataset Pairwise Disagreement Arbitrariness Pairwise Disagreement Arbitrariness

Toxigen 6.8% ± 0.9% 28.8% ± 3.2% 4.5% ± 0.8% 16.2% ± 2.6%

DynaHate 8.4% ± 0.5% 34.3% ± 1.6% 6.1% ± 0.4% 22.7% ± 1.4%

SBF 8.6% ± 0.4% 35.4% ± 1.3% 7.3% ± 0.3% 25.1% ± 1.0%

HateExplain 8.0% ± 0.6% 32.3% ± 2.0% 8.8% ± 0.2% 30.7% ± 2.0%

Total 8.3% ± 0.2% 34.0% ± 0.8% 7.1% ± 0.2% 24.8% ± 0.7%

Table 7: Average pairwise disagreement and arbitrariness for the Toxigen fine-tuned and Jigsaw fine-tuned models in different
datasets. The confidence in the CP methods was chosen to be 1%, including all fine-tuned models.

Dataset Toxigen Fine-Tuned Jigsaw Fine-Tuned

Pairwise Disagreement Arbitrariness Pairwise Disagreement Arbitrariness

Toxigen 6.9% ± 0.9% 29.6% ± 3.2% 4.7% ± 0.8% 16.7% ± 2.6%

DynaHate 8.6% ± 0.5% 35.1% ± 1.6% 6.3% ± 0.4% 23.6% ± 1.4%

SBF 8.7% ± 0.4% 35.9% ± 1.3% 7.5% ± 0.3% 25.6% ± 1.0%

HateExplain 8.1% ± 0.6% 32.8% ± 2.0% 9.0% ± 0.6% 31.6% ± 2.0%

WikiDetox 6.3% ± 0.1% 26.5% ± 0.4% 1.3% ± 0.1% 4.7% ± 0.2%

Total 7.2% ± 0.2% 25.4% ± 0.7% 8.4% ± 0.2% 34.6% ± 0.3%
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Figure 6: Average pairwise disagreement and arbitrariness in different target groups for the fine-tuned Toxigen and Jigsaw
models. The results show the pairwise disagreement in percentage (x-axis) for the union of four different datasets: DynaHate,
SBF, Toxigen, and HateExplain. The results are shown for training and test partitions of each dataset. The confidence in the CP
methods was chosen to be 50% containing all fine-tuned models, leading to the selection of 38 out of 40 Roberta models in the
Rashomon set fine-tuned in the Toxigen dataset and 17 out of 20 Jigsaw fine-tuned models.
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Figure 7: Average pairwise disagreement and arbitrariness in different target groups for the fine-tuned Toxigen and Jigsaw
models. The results show the pairwise disagreement in percentage (x-axis) for the union of four different datasets: DynaHate,
SBF, Toxigen, and HateExplain. The results are shown for training and test partitions of each dataset. The confidence in the CP
methods was chosen to be 1% containing all fine-tuned models, leading to the selection of 40 out of 40 Roberta models in the
Rashomon set fine-tuned in the Toxigen dataset and 20 out of 20 Jigsaw fine-tuned models.
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Figure 8: Average pairwise disagreement and arbitrariness for Unambiguous and Ambiguous sentences using the Toxigen
fine-tuned and Jigsaw fine-tuned models. The table shows the pairwise disagreement estimated values along with the 95%

confidence intervals using the standard error from the mean. We consider a sentence Ambiguous when at least one annotator
labeled the sentence differently than others and Unambiguous otherwise. The confidence in the CP methods was chosen to be
1%, including all fine-tuned models in the above analysis.
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Figure 9: Average pairwise disagreement and arbitrariness for Unambiguous and Ambiguous sentences using the Toxigen
fine-tuned and Jigsaw fine-tuned models. The table shows the pairwise disagreement estimated values along with the 95%

confidence intervals using the standard error from the mean. We consider a sentence Ambiguous when at least one annotator
labeled the sentence differently than others and Unambiguous otherwise. The confidence in the CP methods was chosen to be
50%, including all fine-tuned models in the above analysis.
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