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ABSTRACT
Recent advances in artificial intelligence (AI) have underscored the

need for explainable AI (XAI) to support human understanding of

AI systems. Consideration of human factors that impact explana-

tion efficacy, such as mental workload and human understanding,

is central to effective XAI design. Existing work in XAI has demon-

strated a tradeoff between understanding and workload induced

by different types of explanations. Explaining complex concepts

through abstractions (hand-crafted groupings of related problem

features) has been shown to effectively address and balance this

workload-understanding tradeoff. In this work, we characterize the

workload-understanding balance via the Information Bottleneck

method: an information-theoretic approach which automatically

generates abstractions that maximize informativeness and mini-

mize complexity. In particular, we establish empirical connections

between workload and complexity and between understanding

and informativeness through human-subject experiments. This

empirical link between human factors and information-theoretic

concepts provides an important mathematical characterization of

the workload-understanding tradeoff which enables user-tailored

XAI design.

CCS CONCEPTS
• Human-centered computing → User studies; User models;
HCI theory, concepts and models; Empirical studies in HCI;
• Mathematics of computing→ Information theory.
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1 INTRODUCTION
With the rapid development of powerful yet opaque artificial intel-

ligence systems, AI transparency methods that effectively explain

the outputs of these systems to humans are increasingly important.

Recent advances in explainable AI (XAI), defined as “AI systems

that can explain their rationale to a human user, characterize their

strengths and weaknesses, and convey an understanding of how

they will behave in the future" [27], have aimed to address the

problem of AI transparency. Accounting for human factors related

to information processing is at the core of producing effective ex-

planations that support human understanding of these AI systems.

Such explanations require not only computer science expertise, but

also cross-disciplinary efforts with the fields of cognitive science,

human factors, and the social sciences generally [52, 53, 65].

Human-centered explainable AI and intelligibility research has

begun to explore XAI with respect to human factors, both through

proposed frameworks [3, 17, 19, 25, 45–47, 65, 76] and experimental

or interview-based analyses [26, 41, 43, 55, 64, 87]. In particular,

recent experiments have drawn upon validated assessments from

human factors to study the impacts of XAI on human mental work-

load, trust, and conceptual understanding [34, 42, 43, 55, 64] and

have demonstrated tradeoffs between these factors in explanation

design [26, 43, 55, 64]. Such a tradeoff exists between increasing

human workload and supporting human understanding of an AI

system: one study found that explaining an autonomous agent’s

goals through hand-crafted abstractions of key problem features

effectively balanced human workload and understanding as com-

pared with other XAI techniques [64]. Further work has suggested

that humans approach complex problem by using abstractions [32];

this suggests that providing abstract representations of key infor-

mation may be an effective means of providing AI explanations to

humans. However, generating such abstractions automatically and

quantifying how they trade off human workload and understanding

remain open problems.

Concurrent with such XAI and human factors research, recent

cognitive science works have identified the key role of information-

theoretic abstractions in human cognition. For example, in a wide

variety of languages and semantic domains, human naming sys-

tems are near-optimal according to an Information Bottleneck (IB)

tradeoff between maximizing informativeness (how well a listener

can reconstruct a speaker’s meaning) and minimizing complexity

(how many bits about an input are encoded in a word) [54, 84–86].

Our key insight in this work is connecting concepts from IB lit-

erature to analogs in human factors for analyzing and designing

explanations. By connecting notions from human factors, such as
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workload and understanding, to information-theoretic quantities,

such as complexity and informativeness, we may leverage theoreti-

cal models for tradeoffs between these terms, while simultaneously

using existing IB tools for automated explanation-generation.

In this work, we leverage IB to automatically generate abstract

explanations and establish empirical connections between the afore-

mentioned human factors constructs and information-theoretic

quantities through a set of human-subject experiments. In particu-

lar, we consider the relationships between human workload and

explanation complexity and between human understanding and

distortion (a concept closely related to explanation informativeness

that captures how well a feature can be predicted from a given

abstraction). This lays the groundwork for modeling human factors

quantities and their associated tradeoffs using the theoretically-rich

computational IB framework, which will enhance our ability to au-

tomatically generate and analyze user-tailored explanations that

account for differing human informational and workload needs.

Here, we focus on explaining complex functions through abstrac-

tions of these functions, since many AI systems — including large

language models (LLMs), reinforcement learning-based robotic sys-

tems, and machine learning-based recommender systems — are

built on complex functions. Specifically, we study the problem of

explaining reward functions (discussed at length in Section 2.2.1) to

humans, with a focus on reward functions due to their applicability

across many applications [68], such as autonomous agent planning

problems [61, 71] and reinforcement learning from human feedback

(RLHF), which is used to tune LLMs [9, 88].

We performed experiments in two domains — a grid-navigation

domain and a color-based sample-collection domain — and consid-

ered both continuously and discontinuously varying reward func-

tions. Our results indicate significant correlations between complex-

ity and human workload as well as distortion and a feature-based

measure of human understanding across both domains. We also

observed significant correlations between a policy-based measure

of human understanding and distortion within the grid-navigation

domain, but not the color domain, which involved more complex

visualizations of abstract explanations. These findings suggest that

the complexity-distortion balance in IB can be effectively applied

to model the workload-understanding tradeoff in human-centered

XAI design and to generate user-tailored explanations, but that care

must be taken in visualizing such abstract explanations.

2 RELATEDWORK
Here we provide an overview of the literature on the human factors

constructs of workload and human understanding as they apply

to explainable AI as well as existing XAI approaches to explaining

functions (including reward functions) to humans. We also discuss

the Information Bottleneck method, which we leverage to auto-

matically generate abstract explanations of reward functions. In

our experiments, we hypothesize that the information-theoretic

concepts used to generate these abstract explanations correlate

with the human factors constructs of workload and understanding.

2.1 Human Factors and Explainable AI
2.1.1 HumanMentalWorkload. Mental workload is awidely-studied

human factors construct that can be defined as the relationship be-

tween the mental resources demanded by a task and the resources

available to be supplied by the human performing the task [56]. It

has been researched in domains such as aviation [12, 39], health-

care [62, 74], and usability in human-computer interaction [48],

among others [49], and has been shown to correlate with task per-

formance across a variety of settings [14–16, 79]. Various models of

mental workload have been proposed, such as the widely-applied

multiple resource model (MRM) [77], which categorizes human

cognitive resources into different independently-filled “pools” avail-

able for information processing. In the context of XAI, such models

can inform workload considerations, such as only communicating

information that is comprehensible to the explanation recipient.

not process all necessary details. At the same time, explanations

must provide adequate information in order to be useful for the

task at hand. A person’s available mental capacity, therefore, should

inform the choice of the amount of information to present in an ex-

planation [65]. Beyond this, accounting for individual differences in

baseline cognitive capacity between people is critical to supporting

human task performance [80, 81].

The impact of XAI on workload has been widely researched

through both objective and subjective assessments, with some stud-

ies finding that the addition of AI transparency reduces workload

due to increased access to critical information [17, 67, 83], some

finding that additional information provided by XAI systems in-

creases workload [26, 43, 55, 64], and others finding little impact

of XAI on workload [14–16, 79]. Most relevant to our work, one

study indicated that higher-complexity reward explanations were

associate with higher workload and that providing abstract reward

information mitigated increases in workload [64]. In this paper,

we again consider abstract reward function explanations, and we

study how workload relates to an information-theoretic concept of

complexity in explanation design.

2.1.2 Human Understanding. In recent years, XAI researchers have
explored assessments of explanation efficacy, including approaches

that measure user comprehension/understanding of AI decision

making processes [34, 42, 52]. Such measures include scales for

explanation goodness [34, 42] and a user’s ability to simulate an

agent’s optimal behavior [35, 42] (although often such measures

have not been validated in human experiments). One construct from

human factors, situation awareness (SA), provides a three-level

framework for defining human contextual understanding through

the identification of a human’s informational needs given their role

and context [21]. This framework has been applied to the develop-

ment of transparency frameworks within the XAI literature [17, 65],

and it has been operationalized through the validation of associated

assessments of human situational understanding, such as the Situa-

tion Awareness Global Assessment Technique (SAGAT) [21, 22, 24].

Through the application of measures like SAGAT, SA has also been

shown to correlate with task-related measures such as performance

and error frequency [23]. Because of such validation, a SAGAT-like

approach can be readily applied to measure understanding in the

context of XAI. One recent study employed human-subject evalua-

tions to validate reward alignment metrics that could be applied
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within assessments of contextual understanding like SAGAT in

order to measure a person’s understanding of a reward function

[66]. We leverage a subset of these metrics in our analysis to study

how a person’s understanding relates to an information-theoretic

concept of informativeness, and how this can be leveraged to design

explanations that effectively trade off workload and understanding

through the proxy measures of complexity and informativeness.

2.2 XAI Approaches to Explaining Functions
Many existing approaches to XAI strive to explain the often-complex

functions that characterize AI models. For example, feature impor-
tance techniques explain the most important features in regression

[50, 60], saliency maps unveil information about the gradients of

the functions of neural networks and related models [1, 36, 51],

analogies provide information about AI decisions by leveraging

causal relationships from familiar common-knowledge domains

[30, 31], and rationalizations summarize agent policies based on

agent reward functions [18, 20], among others.

While some explanation approaches account for human work-

load by providing variable amounts of information in explanations

depending on a user’s cognitive capacity [13, 60, 69] and other

works have discussed the importance of considering the impact of

task complexity on human performance [11, 58, 63], to our knowl-

edge, no other work has formally measured and accounted for the

tradeoff between the human factors constructs of human workload

and understanding in explanation design. Accounting for workload

and understanding separate from performance is critical since there

are many factors which contribute to user performance overall. In

this paper, we empirically demonstrate the links between these con-

structs and mathematically-grounded information-theoretic con-

cepts, which enables the automatic generation of explanations that

trade off workload and understanding differently depending on

user needs and capacities. We focus specifically on explanations of

reward functions, which characterize desired autonomous agent

behaviors in sequential decision-making problems such as rein-

forcement learning.

2.2.1 XAI and Reward Functions. Reward functions are one of the

primary components of Markov decision processes (MDPs), which

are often used to model autonomous agent planning problems [71].

Within an MDP, the reward function characterizes the reward an

agent receives for taking different actions from different states; in

other words, reward functions dictate what optimal agent behavior

(often referred to as the agent’s policy) will look like within a given

domain. Reward functions are often defined as follows:

𝑅(𝑠) = 𝜔𝑇Φ(𝑠) . (1)

Here, Φ(𝑠) is a set of features whose values can be calculated based

on the agent’s state in the world (𝑠), and 𝜔 is a set of weights

indicating the trade-offs between these features.

Within existing XAI literature, reward functions have been ex-

plained through means including policy summaries which demon-

strate roll-outs of optimal agent behavior originating from a variety

of world states [4–6, 29], language-based rationalizations of agent

policies [18, 20], techniques that reconcile a human’s reward func-

tion with that of an agent [72], counterfactual demonstration-based

explanations of key reward features [44], and decompositions of

interpretable reward components provided to human users [7, 38],

among others. One recent study found that explaining reward func-

tions through abstractions of reward features effectively balanced a

workload-understanding tradeoff among different reward explana-

tions [64]. Since the abstraction-based approach proved effective in

that study, we also evaluate abstract explanations of reward features

in this work.

2.3 Information Bottleneck
We leverage methods from Information Bottleneck (IB) literature

to formalize a tradeoff between complexity and reward distortion,

which we then connect to human factors. In canonical IB settings,

one seeks to generate (lossy) representations, 𝑍 , of inputs,𝑋 , which

are used to predict a downstream quantity, 𝑌 [2, 73]. In this work,

we only consider predicting a reward, 𝑌 , from features, 𝑋 , but the

IB framework is more widely applicable. The IB maximization prob-

lem is formulated as a tradeoff between two information-theoretic

terms:

maximize 𝐼 (𝑌 ;𝑍 ) − 𝛽𝐼 (𝑋 ;𝑍 ) (2)

where 𝛽 is a scalar parameter, 𝐼 (𝑌 ;𝑍 ) is the informativeness (mea-

sured as the number of bits about the reward 𝑌 retained in 𝑍 ), and

𝐼 (𝑋 ;𝑍 ) is the complexity (measured as the number of bits about the

features𝑋 in 𝑍 ). The IB formulation seeks to maximize informative-

ness while minimizing complexity. Notably, there is a theoretical

limit for the maximum informativeness for a given complexity, but

this limit shifts as a function of 𝛽 . In our work explaining reward

functions, 𝑋 is the features of the reward function, Φ(𝑠), 𝑌 is the

reward value, and 𝑍 are the abstract representations grouping 𝑋 to

predict 𝑌 . Therefore, as 𝛽 increases and complexity decreases, the

above optimization will group features with similar rewards in the

same abstraction. Lastly, we note that IB work is closely related to

rate distortion theory where, rather than computing informative-

ness (𝐼 (𝑌 ;𝑍 )), one measures the distortion, or error, in predicting 𝑌

from 𝑍 [84]. In our work, we measure the distortion in predicting

a reward value, which we dub reward distortion.
Beyond a purely mathematical formulation, several works in

the fields of cognitive science, psychology, and behavioral econom-

ics have investigated aspects of IB tradeoffs in human cognition.

Across domains and languages, naming systems (e.g., words for

colors, family relatives, pronouns, etc.) are nearly perfectly efficient

in the IB sense: maximizing the ability of listeners to reconstruct

a speaker’s meaning at a given complexity level [54, 84–86]. In

vision-based domains, people similarly create compressed repre-

sentations of images via sketches that capture functionally useful

details at the expense of visual fidelity [37]; this type of behavior

is consistent with an IB system under complexity constraints. In

economics, recent research points to the importance of information

constraints in human behavior [8]. Even within XAI, Bang et al. [10]

briefly explored the role of penalizing complexity to create more

“interpretable” AI models for humans to understand, but they only

used a fixed complexity in experiments. This evidence, collected

across multiple fields, suggests that IB tradeoffs play an important

role in human cognition; in our work, we connect notions from IB

to human factors measures of explanation understanding.



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Sanneman and Tucker, et al.

3 RESEARCH AIMS
In this paper, we aim to establish an empirical link between hu-

man factors concepts relevant to the design of effective explain-

able AI systems and information-theoretic concepts. This enables a

mathematical characterization of tradeoffs between relevant human

factors in XAI design and provides tools to automatically gener-

ate abstraction-based explanations which trade off these factors,

which is useful for meeting the varying informational and workload

needs of individual users of AI systems. Specifically, we perform

human-subject experiments in order to validate an information-

theoretic measure of explanation complexity as an indicator of

human workload and an information-theoretic measure of reward

distortion as an indicator of human understanding. Next, we detail

the human factors concepts and information-theoretic metrics we

studied in greater detail, along with the hypotheses assessed in our

experiments.

3.1 Measures of Human Workload and Human
Understanding from the Field of Human
Factors

3.1.1 Workload. As discussed in Section 2.1.1, multiple measures

of human workload have been applied within the field of human

factors. One of the measures most commonly applied within the

literature is the NASA Task Load Index (TLX) scale [28], which

asks respondents to answer a set of Likert scale-based questions

about their workload after completing a task. NASA TLX has also

been applied to the study of various techniques for explainable AI

[26, 43, 55, 64, 82]. We therefore used the NASA TLX scale to assess

workload in our own set of experiments.

3.1.2 Human Understanding. While a number of approaches have

been proposed for assessing human understanding in the context

of XAI [34, 35, 42], as discussed in Section 2.1.2, few have been

validated through human-subject experiments. One recent set of

experiments validated reward alignment metrics which capture

the similarity between a human’s reward function and that of an

autonomous agent [66]; these metrics can be applied to study ei-

ther how aligned an agent’s reward function is with a human’s

after a reward-learning process on the one hand, or how aligned a

human’s understanding of an agent’s reward function is with the

agent’s true reward after an explanation of the reward is provided

on the other. As our aim is to study human understanding of reward

functions resulting from the provision of reward explanations at

different levels of abstraction, we consider the latter application

in this work. Note that we consider scenarios in which reward

information constitutes part of the human’s overall SA, and assess-

ing reward understanding is therefore a crucial component of an

overall SAGAT-based analysis, as discussed in Section 2.1.2.

Sanneman and Shah [66] identified two categories of alignment

in their experiments: feature alignment, which captures how aligned

human and agent reward features and weights are; and policy align-

ment, which captures how aligned human and agent policies cor-

responding to these reward functions are. We leverage one of the

validated metrics from each of these categories in our assessments

of human understanding.

We apply a similarity metric called feature ranking to evaluate

feature understanding, defined as follows:

𝐹𝑅 =
(𝑊𝐻 ∩𝑊𝐺𝑇 )
(𝑊𝐻 ∪𝑊𝐺𝑇 )

(3)

Here,𝑊𝐺𝑇 is the set of pairwise comparisons of the magnitudes

of the weights 𝑤 of a set of reward features, Φ(𝑠), as in Equation

1 (e.g., one of these comparisons could be𝑤𝐴 > 𝑤𝐵 , where𝑤𝐴 is

the weight of feature 𝐴, which is higher than 𝑤𝐵 , the weight of

feature 𝐵).𝑊𝐺𝑇 specifically captures the pairwise rankings of the

feature weights in the ground truth reward function, and𝑊𝐻 is

the set of pairwise rankings from the human’s reward function.

In our experiments, we assessed the human’s reward function by

asking the human participants to rank a set of features in order of

importance according to their understanding of the reward function

upon receiving an abstract explanation of this reward. (We include

examples of this assessment in Appendix D.) The feature ranking
metric is the intersection over union of the ground truth rankings

and the human’s rankings, and thus captures the similarity between

how important the human believes a set of reward features are

relative to each other versus the ground truth relative importance

of each feature.

The policy understanding metric we apply is a regret-based

metric called best demonstration, defined as follows:

𝐵𝐷 = 1 − 𝑅(𝜉∗) − 𝑅(𝜉𝐻 )
𝑅(𝜉∗) − 𝑅(𝜉−) (4)

Here, 𝜉∗ is the optimal demonstration (i.e., a set of state-actions

pairs) of a given task according to a ground truth reward function —

which, in our case, is the reward function being explained. 𝜉𝐻 is the

human’s best demonstration according to the reward function they

understood from the explanation. Finally, 𝜉− is the worst possible

demonstration in terms of the ground truth reward, which we as-

sume to be calculable for a finite-horizon task. 𝑅(·) evaluates each
of these trajectories according to the ground truth reward func-

tion. To evaluate this metric in our experiments, we asked human

participants to provide an optimal demonstration of a task given

their understanding of the explained reward function (examples

depicted in Appendix D). The best demonstration metric essentially

captures how close the human’s reward function is to the ground

truth reward in terms of the policies that result from these rewards

for a given task.

3.2 Information-Theoretic Measures of
Explanation Complexity and Reward
Distortion

3.2.1 Complexity. Drawing upon prior literature, we define com-
plexity as the mutual information between an input, 𝑋 , and an ab-

straction,𝑍 [75, 84]. Thismeasure is defined via the Kullback–Leibler

divergence of the conditional distribution of 𝑍 given 𝑋 from the

prior over 𝑍 :

𝐼 (𝑋 ;𝑍 ) = 𝐷KL [P(𝑍 |𝑋 )∥P(𝑍 )] . (5)

Complexity is minimized at 0 if all𝑋 are represented via the same𝑍 ;

beyond such uninformative representations, more complex repre-

sentations include additional information about𝑋 in𝑍 . For example,
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more complex color naming systems use more distinct words: nam-

ing systems using the word “crimson” convey more information

about a precise color than naming systems that only use less specific

words like “red” [84]. More generally, in IB literature, by penalizing

the complexity of representations, one imposes a bottleneck on

how much information is stored in 𝑍 , which in turn induces lossy

representations that do not enable perfect reconstructions of 𝑋

from 𝑍 [2, 73]. In our work, we both use existing IB methods to

generate representations across a spectrum of complexity, as well

as calculate complexity as a metric which we then relate to human

workload.

3.2.2 Reward Distortion. We define reward distortion as a measure

for how well one can predict a reward value, 𝑌 , from an abstract

representation, 𝑍 . Formally, we measure reward distortion as the

minimum mean squared error (MSE) for predictions of 𝑌 from 𝑍 :

𝐷 (𝑍 ;𝑌 ) = 1

|𝑌 |
∑︁
(𝑋,𝑌 )

| |𝑌 (𝑍 (𝑋 )) − 𝑌 | |2 (6)

where, assuming access to a dataset of reward features (𝑋 ) and re-

wards (𝑌 ), 𝑍 (𝑋 ) represents the abstraction generated from 𝑋 , and

𝑌 (𝑍 (𝑋 )) represents the optimal prediction of 𝑌 given 𝑍 (𝑋 ). With

a small set of discrete representations, 𝑍 , computing an optimal pre-

dictor is equivalent to traditional methods for MSE regression. We

note that reward distortion is similar to notions of informativeness

(𝐼 (𝑌 ;𝑍 )) from traditional IB literature, and rate distortion theory

directly considers tradeoffs between distortion and complexity (e.g.,

see Zaslavsky et al. [84]). Given the continuous nature of reward

values, we therefore use reward distortion as our preferred metric.

In our paper, we seek to connect reward distortion to feature rank
(FR) and best demonstration (BD) metrics of human understanding.

Given that we always measure the distortion in predicting reward,

we at times refer to reward distortion simply as distortion.

3.3 Hypotheses
We investigated the impact of varying the complexity and distortion

of abstract explanations of reward functions on human workload

and human reward understanding by evaluating the following hy-

potheses:

Hypothesis 1. The distortion of the explanations will be nega-
tively correlated with human reward understanding, including both
feature and policy understanding.

Hypothesis 2. The complexity of the explanations will be posi-
tively correlated with human mental workload.

Jointly, these hypotheses state that decreasing distortion will

improve human understanding (H1), but increasing the complex-

ity of abstractions will result in greater workload (H2). In other

words, we aim to evaluate whether (the inverse of) distortion is a

suitable proxy for human understanding and whether complexity is

a suitable proxy for human workload in explanation design. Given

theoretical bounds from IB literature showing a minimum distor-

tion for a given complexity, this suggests optimal explanations will

also trade off these two competing factors: minimizing distortion

to achieve a desired level of understanding, subject to bounds on

workload (and therefore complexity).

4 METHODOLOGY
4.1 Domains
We leveraged two domains in our experiments: a grid-based naviga-

tion domain and a color domain. Participants could optimally solve

associated tasks across both (determined through pilot studies),

eliminating a “solve-ability" confound.

4.1.1 Grid Navigation Domain. In the grid-navigation domain, dif-

ferent reward values between -1 and +1 were assigned to squares

in a 5x5 grid, as depicted in Figure 1. The task was to navigate

between a start square and goal square while maximizing the re-

ward accumulated along the path. In this set of experiments, we

considered two different reward functions: the first, the “Manhattan

grid” depicted in Figure 1 (a), had a maximal reward value of +1 at

one of the grid squares, with the reward values of other squares in

the grid decreasing according to the Manhattan distance from that

square. In the second, the “random grid” depicted in Figure 1 (b),

the reward for each location was sampled uniformly at random

within the range [−1, 1]. We studied these two reward functions

as examples of: (1) a continuously varying reward function where

adjacent grid regions have similar reward values (the Manhattan

grid); and (2) a discontinuously varying reward function, where

adjacent grid regions do not necessarily form natural abstraction

groups (the random grid). All abstract representations of the grid

regions were provided as heat maps, as shown in Appendix C.

4.1.2 Color Domain. In the color domain, we applied continu-

ous and discontinuous reward functions to the colors depicted in

Figure 1 c. We drew the colors from the World Colorchip Survey

(WCS) dataset [40]. Notably, prior literature has identified how

languages represent colors at different abstraction levels, which

motivated our study of abstraction-based explanations for improv-

ing human understanding of color-based reward functions within

this domain [84]. For the continuous reward function, we set each

color’s reward equal to that of the blue value in the RGB represen-

tation (between 0 and 1). For the discontinuous reward function,

we used a hand-specified function that divided the blue values into

eight bins, which we assigned different rewards between -1 and

1; the exact function is in Appendix A.2. Thus, the color domain

largely mirrored the grid navigation domain by establishing both

continuous and discontinuous reward functions. The task that par-

ticipants performed for the best demonstration (BD) assessment in

the color domain was a sample collection task, where the objective

was to navigate through a grid and maximize the total value of

samples collected along the path. The samples were represented

by one of the colors in the original color grid, and for consistency

with the grid domain, abstract representations of the color regions

were provided as heat maps (Appendix C).

4.2 Information-Bottleneck Explanation
Generation

We used existing methods to generate explanations of our reward

functions at different complexity and distortion levels. We used

an existing IB solver (embo), which only require as inputs a joint

distribution of inputs and rewards: P(𝑋,𝑌 ) [57, 70]. For each do-

main, therefore, we computed this joint distribution by iterating

over all possible inputs 𝑋 (e.g., the (𝑥,𝑦) location of a cell in the
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domains

a) c)b)

Figure 1: Our three experiment domains. In the Manhattan (a) and Random (b) grids, reward was Manhattan distance from a
fixed point or randomly-distributed. In the color domain (c), reward was based on the blue value in a color’s RGB representation.

a) d)c)b)

Figure 2: Complexity-distortion curves (a) and corresponding abstractions (b-d) for the Manhattan grid navigation domain.
Using the true grid reward leads to low distortion as complexity increases (blue “Reward” curve), and more fine-grained
abstractions (b-c), eventually recovering the underlying reward grid. Generating abstractions to recover the 𝑥 coordinate in the
grid (red “X” curve and d), rather than the reward, led to higher distortion due to abstractions that did not align with the true
reward structure.

grid world) and computing the associated reward 𝑌 (e.g., the value

at that location); to apply our method to other domains, one would

need to provide a different P(𝑋,𝑌 ) describing inputs and rewards.

Further details of this process are included in Appendix A.

For a given reward function, the IB method generated abstrac-

tions for different solutions trading off distortion and complexity;

we dubbed such abstractions the “reward-optimal” abstractions.

Increasing the complexity of reward-optimal abstractions led to

more fine-grained abstractions and lower distortion, as shown in

Figures 2 b (low complexity) and c (high complexity). In our ex-

periments, however, we wished to explore the effects of varying

distortion and complexity independently. Therefore, in addition

to the reward-optimal abstractions, we generated additional ab-

stractions using different “training objectives:” alternate reward

functions, which were not necessarily relevant to the structure of

the reward function being explained. The abstractions generated

by these alternate training objectives resulted in higher distortion

(with respect to the true reward function) for the same complexity

as the reward-optimal abstractions.

For example, in the Manhattan grid, one training objective we

used was predicting the 𝑥 location of each cell as the reward value.

Abstractions generated from this function represented vertical

strips in the grid, as shown in Figure 2 d. At the same time, we

evaluated the distortion of such abstractions by measuring the MSE

in predicting the actual reward in the Manhattan grid. (Informa-

tiveness and distortion are tightly linked concepts, as explored in

information theory; we use distortion as an evaluation metric be-

cause we believe it corresponds to more intuitive notions of the

quality of an explanation.) Figure 2 a shows how, in general, using

𝑥-based abstractions led to higher distortion, for the same com-

plexity, than using reward-optimal abstractions based on the true

Manhattan reward.

The same trends held in the color domains as well, where we

generated reward-optimal abstractions based on the continuous

or discontinuous reward functions of a color’s blue value (from

its RGB representation), as discussed in Section 4.1.2. To gener-

ate non-reward-optimal baseline abstractions in these cases, we

used the color’s red value (again, from RGB) as an alternate train-

ing objective; such abstractions were not useful in predicting the

true reward value (which depended only on the blue value), lead-

ing to high distortion regardless of complexity. (See Figures 6 for

complexity-distortion curves in the color domain.) Overall, by us-

ing a variety of training objectives to generate abstractions, we

could test explanations using abstractions at the same complexity,

but different distortion, levels. Appendix C includes examples of

abstractions at different complexity levels and training objectives,

in all domains.

4.3 Experiment Design
In order to empirically study the relationships between abstrac-

tion complexity and human workload and between distortion and

human understanding, we performed human-subject experiments

across both domains. In each, we studied explanations of the two

types of reward function (continuous and discontinuous) discussed

in Section 4.1. For each reward type, we generated a set of abstract

explanations spanning a range of complexities and distortions. (We

include examples of these abstractions in Appendix C.) The in-

dependent variables were the complexities and distortions of the

abstractions; dependent variables included both human mental
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workload (as measured via the NASA TLX scale) and reward un-

derstanding, measured according to feature ranking (FR) and best
demonstration (BD) assessments.

4.4 Procedure
For each of the two experiments (one in each domain), partici-

pants were first asked a set of demographic questions, including a

question about colorblindness, since successful performance of the

provided tasks relied upon interpretation of color. Next, participants

received an overview of the experiment. In order to reduce learning

effects and ensure that participants understood the task, they were

presented with a set of example abstract explanations, along with

corresponding examples of correct responses to the two reward

understanding questions that they were asked throughout the ex-

periment (feature rank and best demonstration as detailed in Section

3.1.2). Following these examples, participants were presented with

two different scenarios in the given domain. For each scenario in

each experiment, the participant was shown abstractions based

upon a combination of training objective and complexity level.

Grid Domain: In the grid domain, one scenario involved the

Manhattan grid (based on a continuously varying distance from a

point), and one scenario involved the random grid (a discontinuous

reward function). Abstractions were selected from the set of three

training objectives (continuous blue, discontinuous blue, and red)

and five possible complexities, for a total of 15 possible abstractions.

The five complexity values were chosen such that the abstract colors

regions spanned a range from one to eight regions.

Color Domain: In the color domain, one scenario involved the

continuous reward function, while the other involved the discontin-

uous reward function. The order of presentation of scenarios was

counterbalanced for each experiment across all participants. As in

the grid domain, there were three training objectives (Manhattan

or random reward, 𝑦-based reward, and 𝑥-based reward) with five

possible levels of complexity, for a total of 15 possible abstractions.

The number of abstract color regions again spanned a range of one

to eight.

Following each scenario, participants were asked the feature

rank and best demonstration questions; they were also asked the

six NASA TLX scale questions to assess cognitive workload, along

with seven additional questions related to subjective assessment

of the explanation quality, which were adapted team fluency scale

questions from Hoffman [33]. At the end of the experiment, par-

ticipants were asked open-ended feedback questions about the

experiment, including what they found to be most challenging and

whether they had feedback about the experiment. In addition, we

asked two attention-check questions during the survey: one before

the two scenarios, and another immediately after.

4.4.1 Experiment Details and Participants. We administered both

experiments through the Qualtrics platform and recruited our par-

ticipants via the Prolific platform. Participants received no time

limit and took an average of 28 minutes to complete the color survey

and 19.5 minutes to complete the grid navigation survey. They were

compensated with $7 for completing the grid navigation survey

and $10 for completing the color survey, with bonus payments of

$20 provided to the highest-performing participants in each case.

As this experiment involved minimal risk, it qualified for exempt

human-subject evaluation status according to the policies outlined

by MIT’s institutional review board (IRB).

5 RESULTS
5.1 Grid Navigation Domain
Fifty-one participants completed the grid navigation survey (20

women, 30 men, and 1 non-binary individual). The median age was

37 years (min=19 years, max=76 years). Data from six participants

was omitted from analysis due to failed attention-check questions

or incomplete responses. The number of survey participants was

chosen in order to ensure that we recorded at least three responses

for each of the 15 different possible abstraction level-training objec-

tive pairs (five levels of abstraction and three training objectives).

We first analyzed the Spearman correlations between distortion and

understanding and between complexity and workload for the each

of the Random and Manhattan grids separately. We used Spearman

correlations due to the non-normality of the underlying datasets

in this analysis, as well as the expected monotonic relationships

between the correlated variables. We then analyzed the combined

Random and Manhattan grid data through a linear mixed-effects

analysis to account for individual differences in participants’ re-

sponses to the reward understanding and workload questions.

Results from the Random grid domain are in Figure 3. Both

feature rank (𝐹𝑅) and best demonstration (𝐵𝐷) were negatively

correlated with reward distortion (Figures 3 a and b). Intuitively,

this supports our hypothesis that understanding would decrease as

reward distortion increased (H1). Quantitatively, these results were

significant: using the Spearman correlation coefficient, we found

𝜌 (FR,Dist) = −0.83, (𝑝 < 0.001) and 𝜌 (BD,Dist) = −0.68, (𝑝 <

0.001). At the same time, Figure 3 c shows a significantly positive

correlation between workload and complexity (𝜌 (Work.,Comp.) =
0.53, (𝑝 < 0.001)); that is, as the complexity of abstractions in-

creased, so did the workload, supporting H2.

We observed similar trends in the Manhattan grid domain, de-

picted in Figure 4. Both 𝐹𝑅 and 𝐵𝐷 scores decreased as distortion

increased (Figures 4 a and b). Concretely, 𝜌 ( FR, dist) = −0.97 (𝑝 <

0.001), and 𝜌 ( BD, dist) = −0.63 (𝑝 < 0.001). That is, each measure

of understanding was significantly negatively correlated with dis-

tortion and, as before, the correlation was stronger for FR than for

BD. Unlike with the Random grid, we did not identify a significant

correlation between workload and complexity, although the trend

was still positive: 𝜌 ( Work., Comp.) = 0.23 𝑝 = 0.13.

Following the analysis of Spearman correlations for each grid

type separately, we performed linearmixed effectsmodeling (LMEM)

on the joint data from the Manhattan and Random grids and found

significant trends supporting all our hypotheses. The models we

applied for this analysis were formulated according to the fol-

lowing equations in Wilkinson notation [78]: 𝐹𝑅 ∼ 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 +
(1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡),𝐵𝐷 ∼ 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛+(1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡), and𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ∼
𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 + (1|𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡). Here, the models were fit using

𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡 as a grouping variable, with a random intercept to

account for the individual differences between participants, which

were not accounted for by the Spearman correlations (e.g., perhaps

one participant would consistently report higher workload). In our

joint analysis, we leveraged the fact that each participant answered
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Figure 3: Results from the Random grid domain. As distortion increased, explanation understanding, as measured by Feature
Rank (a) or Best Demonstration (b), decreased. At the same time, as complexity increased, workload increased (c).
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Figure 4: Manhattan domain results, connecting metrics of understanding to distortion (a-b) and workload to complexity (c).
Increased distortion led to worsened understanding, and increased complexity led to increased workload.

one question about the Manhattan grid and one about the Ran-

dom grid. We observed significant main effects for distortion and

complexity within each model at the 𝑝 < 0.001 level, with the fol-

lowing effect sizes and intercepts for each: 𝐹𝑅 = −0.92∗Dist.+ 0.35,
𝐵𝐷 = −2.19 ∗ Dist. + 1.02, Work. = 33.50 ∗ Comp. + 79.80.

Overall, our grid domain experiment results strongly support our

hypotheses that 1) decreased distortion would be associated with

increased understanding and 2) increased complexity would be as-

sociated with increased workload. We found statistically significant

support for all but one of our hypotheses via Spearman correlation

tests assessing each grid-based reward function separately, and

we found support for all of our hypotheses when evaluating the

combined datasets through a linear mixed effects analysis, which

accounted for individual differences in participant responses.

5.2 Color Domain
As in the grid domains, in the color domain we analyzed the results

of the continuous and discontinuous reward functions separately

via Spearman correlation and then performed joint analysis of the

full data with a LMEM. Forty-seven participants completed the

color survey (11 women, 33 men, 1 non-binary individual, and 2

not reporting gender). The median age was 33 years (min=20 years,

max=66 years). We omitted data collected from two participants

from analysis due to failed attention-check questions or incomplete

responses. The number of participants was selected in the same

manner as in the grid domain.

Results from the color domain experiments corroborate the key

trends observed in the grid navigation domains, with the excep-

tion of the best demonstration (BD) understanding assessment. First,

separating results by continuous and discontinuous reward func-

tions, we established significant Spearman correlations for some

of the hypothesized trends. Feature rank (FR) and distortion were

negatively correlated for both reward functions (𝑝 < 0.001). For
the continuous reward (shown in Figure 5 a), 𝜌 (FR, dist) = −0.47;
for discontinuous, 𝜌 (FR, dist) = −0.40. Correlations between com-

plexity and workload were positive, but not at the 𝑝 = 0.05 level:

for continuous (Figure 5 c), 𝜌 (Work.,Comp.) = 0.24 (𝑝 = 0.06)
and for discontinuous, 𝜌 (Work.,Comp.) = 0.18 (𝑝 = 0.11). Lastly,
correlations between the best demonstration (BD) understanding
assessment and distortion were weak, with no significance value

lower than 0.15.We attribute the best demonstration (BD) correlation
failure to high random chance performance with high distortion:

evenwith completely uninformative abstractions, some participants

selected the optimal best path through random guessing. Also of

note is that the visualizations of the abstractions within the color

domain were not provided in the same space in which the best

demonstration task was performed (as opposed to the grid domain,

where the abstractions were visualized in the grid itself), so an-

other possible reason for this difference (and the added difficulty

with high-complexity abstractions) is the extra step necessary to

translate the abstract information into the task space.

Complementing our Spearman correlation analysis for each do-

main separately, we again performed LMEM tests on all the joint

data, grouped by participant, as we did for our grid navigation
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Figure 5: Color domain results, using the continuous reward function. Trends were weaker than those observed in the grid
domains, but still reflected the hypothesized directions. Similar results for the discontinuous reward function are included in
Figure 7 in Appendix B.

experiments. We applied linear mixed effects models of the same

form, and found significant main effects for both distortion in the

𝐹𝑅 model and complexity in the𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 model. The linear trends

for 𝐹𝑅 vs. distortion and workload vs. complexity were significant

at 𝑝 < 0.05: FR = −0.70∗Dist+0.34, Work. = 39.43∗Comp.+156.23.
These findings support our two hypotheses that (H1) increasing

distortion would decrease understanding and (H2) increasing com-

plexity would increase workload. As before, however, the corre-

lation between 𝐵𝐷 and distortion was not statistically significant:

BD = −1.11 ∗ Dist. + 0.73 (𝑝 = 0.12).

6 DISCUSSION
Across domains, we found evidence supporting our two hypothe-

ses. In every domain, and with every reward function, we observed

significantly negative Spearman correlation coefficients between

feature-based understanding and distortion. While the significance

of other trends varied slightly across domains, when we leveraged

the within-participant aspect of our experiment design to account

for individual differences in participant responses, we similarly

found significantly positive correlations between workload and

complexity. Although weaker than the 𝐹𝑅 and distortion correla-

tions, we also found significant correlations between the 𝐵𝐷 mea-

sure of understanding (i.e., policy understanding) and distortion

in all cases within the grid navigation domain. These weaker cor-

relations track with previous experimental results, which demon-

strated that the factor loadings for policy-based assessments of

alignment (understanding) were weaker than those for feature-

based assessments [66]; this is likely due to the additional challenge

of translating a reward function into an optimal policy within a

given environment. Nonetheless, the overall trends in our results

support the hypothesized link between human factors constructs

and information-theoretic concepts. This enables us to leverage

these information-theoretic concepts to mathematically charac-

terize the workload-understanding tradeoff in XAI design and to

automatically generate abstraction-based explanations which trade

off these factors, allowing us to account for variable informational

and workload needs between different users of AI systems.

Overall, we observed a larger number of significant results and

stronger correlations in the grid-navigation domain compared with

the color domain, particularly for the 𝐵𝐷 (policy understanding)

results. This is likely related to the visualizations of the abstrac-

tions in each domain: in the grid-navigation domain, heat maps of

square values were provided within the best demonstration task

grid itself, while in the color domain, participants interpreted the

heat maps and their relation the color grid separately from the task

grid, and then had to translate their reward understanding into an

optimal policy in the task grid in an additional step. Beyond this,

identifying the precise differences between individual colors within

the color grid may have posed an additional challenge. While we

identified significant support for our key hypotheses related to the

relationships between information-theoretic concepts and human

factors constructs in abstract explanation generation across both

experiments, the differences in the 𝐵𝐷 results corresponding to

the different types of abstraction visualizations between the exper-

iments highlight the importance of carefully considering how to

visualize abstractions for effective communication in future expla-

nation design.

Finally, we observed some evidence that continuous reward func-

tions may be better candidates for abstraction than discontinuous

ones. The correlations between 𝐹𝑅 (feature-based reward under-

standing) and distortion were stronger for the Manhattan grid

(with a fundamentally continuous reward structure) than the Ran-

dom grid in the grid-navigation domain, and for the continuously

varying reward function than the discontinuously varying reward

function in the color domain. This suggests that abstracting such

continuously varying reward regions may lead to more natural

explanations of reward functions than groupings of discontinuous

reward regions. We leave additional exploration of the impact of

the structure of reward functions on explanation efficacy as an area

for future work.

6.1 Limitations and Future Work
Our work takes an important step toward connecting IB meth-

ods to human factors in understanding explanations, but we rely

upon some simplifying assumptions. First, in our experiments, we

used the “ground truth” reward function, as well as alternative

reward function baselines, to generate abstractions. As shown in

our results, generating low-distortion explanations is extremely

important for understanding explanations; future work may wish

to further consider methods for generating good abstractions with-

out access to reward functions. Second, we find support for linear
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relationships between the human factors and information theoretic

concepts explored in our experiments through linear-mixed effects

analysis. However, non-linear relationships might exist, particularly

between workload and complexity, where reducing the complexity

of explanations beyond some point might ultimately increase the

difficulty of interpretation and correspond to an increase workload.

Third, we used exact IB methods for generating abstractions, which

may not scale to larger domains. Fortunately, recent work proposed

approximate discrete IB methods at large scale [75]; we anticipate

that such methods may be easily combined with our explanation

work.

Finally, we scoped our work to study abstract explanations of

reward functions in particular, but there are additional concepts

related to AI decision making, such as policies, constraints, and de-

cision uncertainty (among others), which might also be effectively

explained through automatically generated abstract explanations.

Beyond this, our technique can be extended to explain complex con-

cepts in larger-scale domains, such as reinforcement learning-based

robotics applications and large language models (LLMs). In particu-

lar, given recent emphasis on reinforcement learning from human

feedback (RLHF) and connections between rewards and policies

(as in DPO [59]), we believe that lossy, simplified explanations of

complex reward functions for language models are a promising di-

rection for future work. In this work, we have established empirical

connections between information-theoretic concepts and human

factors constructs which we hope will apply to explanation design

for this broader scope of AI concepts and domains, and have laid

the groundwork for future exploration and confirmation of these

relationships in different settings.

7 CONCLUSION
In this work, we established empirical connections between human

factors metrics of explanation understanding and workload with In-

formation Bottleneck (IB) concepts of distortion and complexity. In

the standard IB framework, a tradeoff exists between distortion and

complexity; we established a similar tradeoff of people improving

reward understanding as distortion decreased, but at at the cost of

increased workload as complexity increased. Our findings may be

used directly to inform explanation design, especially in accounting

for differing informational and workload needs between individual

users of AI systems. For example, given a maximum acceptable

workload, one could find the corresponding allowed complexity

level for explanations, and, at that complexity level, promote un-

derstanding by minimizing distortion. More generally, our work

establishes important connections at the intersection of human

factors and information theory, which we hope future work will

continue to explore.
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8 ETHICS, UNINTENDED IMPACTS, AND
AUTHOR BACKGROUND

Our work is inspired by a fundamentally ethical view of human-

centered explanation design, but there remains the possibility of

unintended consequences related to mis-aligned representations

and interpretations. On the one hand, our work seeks to establish

important theoretical and experimental guidance on how to best

design AI explanations to support human understanding while

limiting workload. Such guidance should support better user ex-

periences as well as personalization (e.g., allowing individuals to

specify their own workload/understanding tradeoff preferences).

On the other hand, the real world may not be as supportive of allow-

ing individual variation across the tradeoff spectrum we explore.

For example, different stakeholder incentives may lead to engi-

neers or designers opting for high-understanding/high-workload

explanations that actual users who have to interpret explanations

find more challenging. Furthermore, as demonstrated in experi-

ments, the choice of reward function in generating explanations

has important effects on explanation understandability. In all our

experiments, we assumed that there was a fixed “ground truth”

reward function; if different users prioritize different features or

behaviors (i.e., have different internal reward functions), our IB

tradeoff framework alone is insufficient to address such varied

needs. Thus, while we begin to explore aspects of personalization

in explanations, societal risks, in particular revolving around who

controls the personalization, remain.

Beyond broad ethical considerations, we authors recognize the

role that our backgrounds, educations, and experiences play in

developing this work. We hold that human-centered post-hoc ex-

planation design, using abstractions that may come at the expense

of providing the most faithful explanation, is an important area

of research. Other researchers can and do argue that approximate

post-hoc explanations should be avoided. This debate is clearly

important, but given the prevalence of black-box systems with

no explanation mechanisms at all, we believe our work still holds

practical value. Our backgrounds in the fields of human factors,

computer science, and cognitive science biases us towards thinking

about lossy cognitive models. We believe that mathematical mod-

els of human cognition and explanations offer important insight

into how to better design human-compatible technologies; other

researchers with different backgrounds in humanities, for example,

might start from a more qualitative point of view.
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A GENERATING IB ABSTRACTIONS
IMPLEMENTATION

We used the embo package to generate abstractions at different

levels of complexity and reward distortion and employed these

abstractions in human participant experiments to analyze the role

of complexity and distortion in human understanding [57]. Here, we

discuss how we generated our abstractions, and demonstrate that

we induced meaningful variation in complexity and distortion.
1

A.1 Grid Domain
In the grid domains, we numbered each of the 25 grid cells with a

unique id, and used four reward functions during the IB process:

Manhattan distance, random reward, 𝑥 coordinate, and𝑦 coordinate.

For the Manhattan distance reward, depicted in the main paper in

Figure 1 a, reward was set to +1 at cell location (1, 3) and decreased
by 0.33 for each increase in Manhattan distance, to a minimum of

−1.0. For the random reward, depicted in Figure 1 b, we selected a

reward value uniformly at random in the range [−1, 1]. For exact
values, we refer the reader to our code which, given the fixed

random seed of 0, will exactly reproduce the random values in

our experiments. Lastly, for the 𝑥 and 𝑦 coordinate rewards, we set

the reward equal to the integer value of the 𝑥 or 𝑦 coordinate of

each cell, ranging from 0 to 4, inclusive.

For each of the four training objects used during the IB process,

we evaluated abstractions with the Manhattan and random grid

reward functions. For example, we generated abstractions via the

𝑥 coordinate reward function, which divided the grid into vertical

regions, and evaluated distortion using such abstractions for the

Manhattan and random grid rewards. Figure 2 a in the main paper

shows how abstractions generated using different reward functions

resulted in different distortion values for the same complexity.

A.2 Color Domain
In the color domain, we uniquely numbered each of the 122 colors

in our experiments, and used three reward functions during the IB

process: 1) predict the blue value in the color’s RGB representation,

1
Code used to generate the abstractions in our experiments is available at

https://github.com/mycal-tucker/ib_xai.

https://openreview.net/forum?id=HPuSIXJaa9
https://github.com/mycal-tucker/ib_xai
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2) predict the discontinuous reward (defined in the next paragraph)

based on the blue value of the color, or 3) predict the red value of

the color’s RGB representation.

The continuous reward functions (predicting the blue or red

value) were simply defined as the continuous value of the color,

ranging from 0 to 1.0. We additionally used a discontinuous reward

function, which divided the blue color range into eight bins of equal

sizes (in [0, 0.125), [0.125, 0.25), etc.) with values of [0.5, −0.5, 0.0,
0.75, 1.0, −1.0, 0.25, −0.75]. We chose these values to intentionally

cause similar continuous blue values (e.g., 0.124 and 0.126) to have

dissimilar rewards (e.g., 0.5 and −0.5).
We include results of evaluating all such abstractions using the

continuous blue reward function in Figure 6. Unsurprisingly, using

the continuous blue reward to generate abstractions resulted in

lower distortion for the same complexity compared with using the

other two training objectives. Concretely, we observed that increas-

ing the complexity of abstractions used for predicting a color’s red

value had virtually no effect on the distortion for predicting the

color’s blue value. Given the orthogonal nature of blue and red rep-

resentations in RGB colors, this is unsurprising. Overall, we used

these three training objects for generating abstractions to decouple

changes in complexity and distortion, while exploring meaningful

ranges for each value.

B COLOR DOMAIN RESULTS
In the main paper, we omitted some of the graphs from the color

domain experiments for clarity; we include them here for complete-

ness.

Figure 7 shows the key trends between Feature Rank and Dis-

tortion (a), Best Demonstration and Distortion (b), and Workload

and Complexity (c) using the discontinuous reward function. In

the main paper, we noted that the FR-distortion trend was signifi-

cant but the Workload-Complexity trend was not, while the Best

Demonstration results were never significant in any color domain.

The plots in Figure 7 visually corroborate these statistical tests.

The Best Demonstration trend line is nearly flat, including some

participants predicting the exact right demonstration at a distortion

of over 0.4, which indicates high performance using uninformative

abstractions. At the same time, the trend between complexity and

workload is positive, as we hypothesized.

C ABSTRACTION VISUALIZATIONS
Throughout our experiments, we used abstractions at different com-

plexity and distortion levels and typically reported the complexity

and distortion metrics. Here, to provide intuition about the types

of abstractions used, we provide visualizations for both domains,

at various complexity and distortion values.

Figures 8 and 9 include visualizations of abstractions for the

Manhattan and random grid domains, respectively. Within each

figure, we selected three checkpoints at low, medium, and high

complexity (corresponding to different columns). Note how the

low-complexity checkpoints used fewer abstractions than higher-

complexity checkpoints.

The different rows in each figure reflect abstractions generated

using different training objectives in the IB process. Recall from

Section 4.2 that we used different training objectives when gen-

erating abstractions to induce different distortions for the same

complexity. Abstractions based on different reward functions are

included as different rows in Figures 8 and 9. For example, the top

row of Figure 8 shows abstractions generated using the Manhattan

reward function; the second row, however, depicts abstractions gen-

erated using the 𝑥 coordinate of each location. Even as the 𝑥-based

abstractions increased in complexity, until each 𝑥 value was repre-

sented separately, such abstractions remained poor for predicting

the actual Manhattan reward in the grid. Similar patterns were

true in the random grid as well (Figure 9). Overall, the visualiza-

tions of abstractions in these grid domains confirm intuitions that

1) increasing complexity led to finer-grained abstractions and 2)

abstractions generated using sub-optimal training objectives led to

poor reward prediction, and therefore high distortion.

We note that our visualizations of the abstractions are merely

one possible way of representing the underlying abstraction. In gen-

eral, we consider an abstraction as a lossy, discrete representation

that captures one or more inputs. In Figures 8, therefore, we show

how different grid locations (inputs) are grouped into different ab-

stractions that produce different rewards (represented as colors in

the visualizations). Even as our definition of abstractions remains

fixed, one may consider alternate depictions of abstractions, such

as sampling only a subset of inputs that map to a given abstraction.

Figure 10 includes visualizations of abstractions from the color

domain much like the previous visualizations of grid-based abstrac-

tions. Abstractions were evaluated according to the continuous

blue reward function; the heatmap used for visualization shows the

average blue value of each abstraction. As before, we selected three

checkpoints at low, medium, and high complexity (corresponding

to different columns).

The different rows in Figure 10 reflect abstractions generated

using different training objectives. In the top row, we used the

continuous blue reward function – the same function used for

evaluation. In the second row, we used the discontinuous blue

reward function, and in the third row we used a color’s red value

to generate abstractions.

As in the grid domains, we found that 1) increasing complexity

led to more fine-grained abstractions and 2) using different training

objectives in the IB process led to sub-optimal abstractions that

resulted in high distortion. For example, using the discontinuous

blue reward function (second row) at high complexity (Figure 10 f),

we observed that two abstractions have nearly identical average

rewards of 0.17 and 0.18. Thus, the additional complexity incurred

by having more abstractions comes with barely any decrease in

distortion. This suboptimality is even more pronounced for abstrac-

tions generated with the continuous red reward function (bottom

row). Using just two abstractions at low complexity (Figure 10 g),

the color space is partitioned into two groups that are meaningful

for predicting the redness of a color, but with almost no difference

in blue value (mean values of 0.43 and 0.47).
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Figure 6: Complexity-distortion curves (a)) and corresponding abstractions (b-e) for the continuous reward function in the color
domain. Using different rewards to generate abstractions (different curves) led to varying distortions for the same complexity.
Using the continuous reward function led to optimal distortion-complexity tradeoffs, and varying complexity increased the
number of abstractions (d-e).
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Figure 7: Color domain results using the discontinuous blue reward function. Trends were weaker than those observed with
the continuous reward, although there was still a significant negative correlation between feature rank and distortion (a).

D SURVEY QUESTIONS
Here, we include examples of each question asked of participants

in the grid navigation survey and the color survey. Each participant

answered two of each question within the particular survey they

were responding to: one for a continuous reward function and one

for a discontinuous reward function.

D.1 Grid Navigation Domain
Figures 11 and 12 depict the feature rank (FR) and the best demon-
stration (BD) questions as they were presented to participants in

the grid navigation domain. Here, the abstract explanation shown

in each question (via a heat map indicating the values of the grid

squares) represents the ground truth reward function. In this case,

grid squares in the upper left corner have values of +1.0, those in

the upper right have values of +0.5, those in the middle row have

values of 0.0, those in the lower left have values of -0.5, and those

in the lower right have values of -1.0.

D.2 Color Domain
Figures 13 and 14 depict the feature rank (FR) and the best demon-
stration (BD) questions as they were presented to participants in

the color domain. The abstract explanation shown in each question

(via a heat map indicating the values of each color in the color grid)

represents the ground truth reward function. Colors in the top part
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(a) Manhattan Low (b) Manhattan Middle (c) Manhattan High

(d) 𝑋 Coord. Low (e) 𝑋 Coord. Middle (f) 𝑋 Coord. High

(g) 𝑌 Coord. Low (h) 𝑌 Coord.Middle (i) 𝑌 Coord. High

Figure 8: Manhattan grid abstractions for various training objectives (different rows) and complexity levels (different columns).
Increasing complexity led to more and finer-grained abstractions. Some abstractions led to low distortion (top row), whereas
others removed important information, leading to high distortion (bottom two rows).
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(a) Random Grid Low (b) Random Grid Middle (c) Random Grid High

(d) 𝑋 Coord. Low (e) 𝑋 Coord. Middle (f) 𝑋 Coord. High

(g) 𝑌 Coord. Low (h) 𝑌 Coord. Middle (i) 𝑌 Coord. High

Figure 9: Random grid abstractions for various training objectives (different rows) and complexity levels (different columns).
As in the Manhattan grid abstractions, more complex abstractions captured finer-grained information, but the distortion for a
given complexity level depended upon the training objective.
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(a) Blue Cont. Low (b) Blue Cont. Middle (c) Blue Cont. High

(d) Blue Disc. Low (e) Blue Disc. Middle (f) Blue Disc. High

(g) Red Cont. Low (h) Red Cont. Middle (i) Red Cont. High

Figure 10: Color abstractions evaluated on the continuous blue reward function. Increasing complexity (left to right) increased
the number of abstractions. The distortion associated with such abstractions varied greatly, however, depending upon the
training objective used when generating abstractions. Using the continuous blue reward to generate abstraction (top row)
led to evenly spaced abstractions with little distortion. Different training objectives (discontinuous blue in the second row,
continuous red in the third) led to suboptimal abstractions with higher distortion.

of the grid have values of +0.5, those below that have values of +1.0,

those below that have values of -1.0, and those at the bottom have

values of -0.5.

D.3 Workload Questions
The workload questions that we applied in our surveys were drawn

from the NASA TLX survey [28]. The set of questions as they were

displayed in the grid navigation domain are depicted in Figure

15. The questions shown to participants in the color domain were

nearly identical with minor wording changes based on the differ-

ences between the two domains.
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Figure 11: Example of the feature rank question in the grid navigation domain. The top left grid designates regions of the grid
which are ranked by participants when answering the question. The top right grid depicts the abstract reward regions. The
reward values associated with each reward region are depicted in the five numbered swatches below the grids. At the bottom,
sample responses for the feature rank question are provided based on the given abstract grid.
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Figure 12: Example of the best demonstration question in the grid navigation domain. The same explanation (grid with the
abstract reward regions) is shown to participants as for the feature rank question. For this question, participants must select
the reward-maximizing shortest path through the grid at the bottom of the figure (depicted through the selected green boxes
with check marks).
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Figure 13: Example of the feature rank question in the color domain. The heat map and the associated numbered color swatches
at the top indicate the abstract regions of colors from the color grid below and their corresponding reward values. At the
bottom, sample responses for the feature rank question (a set of ranked colors from the color grid) are provided based on the
given abstraction of the color grid.
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Figure 14: Example of the best demonstration question in the color domain. The same explanation (color grid with the abstract
reward regions) is shown to participants as for the feature rank question. Here, participants must select the path through the
grid at the bottom of the figure which maximizes the value of the collected samples, which are indicated by different colors
from the original color grid. The selected path is, again, marked by green boxes with check marks. Note that as in the grid
navigation domain, participants were asked to identify a shortest path through the grid.
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Figure 15: Questions from the NASA TLX survey [28]. The questions above are depicted for the grid navigation domain.



An Information Bottleneck Characterization of the Understanding-Workload Tradeoff FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Figure 16: Subjective assessment questions adapted fromHoffman [33]. The questions above are depicted for the grid navigation
domain, and were largely similar in the color domain.
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D.4 Subjective Assessment Questions
The subjective assessment questions that we applied in our surveys

were adapted from the scale for team fluency proposed by Hoffman

[33]. The set of questions as they were displayed in the grid navi-

gation domain are depicted in Figure 16. The questions shown to

participants in the color domain were, again, nearly identical with

minor wording changes based on the differences between the two

domains.
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