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ABSTRACT

Model-induced distribution shifts (MIDS) occur as previous model
outputs pollute new model training sets over generations of models.
This is known as model collapse in the case of generative models,
and performative prediction or unfairness feedback loops for super-
vised models. When a model induces a distribution shift, it also
encodes its mistakes, biases, and unfairnesses into the ground truth
of its data ecosystem. We introduce a framework that allows us
to track multiple MIDS over many generations, finding that they
can lead to loss in performance, fairness, and minoritized group
representation, even in initially unbiased datasets. Despite these
negative consequences, we identify how models might be used for
positive, intentional, interventions in their data ecosystems, pro-
viding redress for historical discrimination through a framework
called algorithmic reparation (AR). We simulate AR interventions
by curating representative training batches for stochastic gradient
descent to demonstrate how AR can improve upon the unfairnesses
of models and data ecosystems subject to other MIDS. Our work
takes an important step towards identifying, mitigating, and taking
accountability for the unfair feedback loops enabled by the idea
that ML systems are inherently neutral and objective.
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1 INTRODUCTION

Fairness feedback loops have posed problems for both machine
learning practitioners’ models and societies’ policies for some time.
One example are the 1930s Home Owner Loan Corporation Security
Maps rediscovered by historian Kenneth T. Jackson in the 1980s.
These depict ‘redlining,’ where minoritized communities (especially
Black and Jewish people) were discriminated against in housing
in the United States [2, 36, 51]. These maps were likely used by
government and banks to determine which neighborhoods should
be provided programs and loans, feeding a feedback loop of seg-
regation, limited Black home ownership, environmental racism,
and increasing median household income gap between Black and
white families [23, 61]. More recently, automated systems used for
policies such as loan eligibility and approval prediction [72] risk
further entrenchment of inequitable feedback loops [18].

In the machine learning fairness community, this effect is known
as performative prediction [55] or fairness feedback loops [46],
where the errors and behaviors of a model influence its future in-
puts, causing runaway unfairness [24]. In economics this is known
as the performativity thesis, where economic theories attempting
to describe markets instead shape them [11]. Increased attention
to these effects and the proliferation of generated content on the
internet, has created terminology for a dataset ‘ecosystem.’ These
ecosystems may suffer from ‘synthetic data spills,’ such as unrealis-
tic AI-generated images of baby peacocks polluting and dominating
the image search results for real peachicks [60]. Despite the harms
that models might cause their data ecosystems, practitioners lack
understanding of the mechanics of these distribution shifts. This
can lead to unawareness of the distribution shifts, especially when
multiple models participate in the data ecosystem, and a lack of
understanding of the fairness and equity harms that may arise.

In this work we introducemodel-induced distribution shift (MIDS)
to describe model-induced changes to the data ecosystem. There
are several phenomena in existing literature that we re-specify
as MIDS; a subset of distribution shifts which are caused by past
generations of model (mis)behaviours (in)advertently impacting
successive generations. Each MIDS entails a model causing a grad-
ual change in the data ecosystem; such as when synthetic data
is published to the web and re-scraped to form new training sets.
Once re-scraped, this polluted data becomes the ground truth for
future generations of models, and the MIDS continues. We first
unify several existing MIDS into a common framework, allowing
a more nuanced understanding of their common causes and en-
abling analysis even where multiple MIDS occur in the same data
ecosystem. We analyze the model behavior and fairness impacts of
MIDS continuing over generations of models; including supervised
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classification models trained with labels sourced from their prede-
cessors’ predictions, and generative models trained from synthetic
data created by their predecessors’ outputs. We evaluate the per-
formance and a variety of properties that may indicate the fairness
of models in each generation; finding disproportionately negative
impacts on minoritized groups. We find that chains of generative
models eventually converge to the majority and amplify model mis-
takes that eventually come to dominate and degrade the data until
little information from the original distribution remains, causing
representational disparity between sensitive groups.

In contrast to these harms, we study a conceptual framework
introduced in Davis et al. [18] called algorithmic reparation (AR).
While not strictly limited to algorithmic changes, AR uses ML mod-
els to provide redress for past harms to people with marginalized
Intersectional identities. For example, if attempting reparative pre-
dictive policing for Black communities, AR interventions in mod-
els could include re-weighting marginalized peoples’ records in a
dataset to compensate for over-representation in policing, increas-
ing the model threshold for the detrimental prediction, or perhaps
removing the predictive system entirely [34]. Because AR operates
in settings where the ‘ground truth’ is of questionable validity (due
to current and historical discrimination), it provides a valuable av-
enue to provide reparation, and also to counter the injustices of
MIDS. Of course, AR interventions also create model-induced distri-
bution shifts; AR co-opts the mechanics of other MIDS to promote
equity. To that effect, we simulate the effects of AR interventions
through progressive Intersectional categorical sampling, showing
how prioritising representation lessens the unfair impacts of coex-
isting MIDS and their discriminative data ecosystems. In summary,
we make the following contributions:
• We define a new term, model-induced distribution shift (MIDS),
to unify several distribution shifts under one concept, and ex-
plore empirical settings to illustrate their impact. This unification
draws attention to the common causes of MIDS and enables anal-
ysis even where MIDS co-occur.

• Weuse our settings to evaluate the impact of the fairness feedback
loop and model collapse MIDS in several datasets, including face
CelebA and FairFace datasets. We find that MIDS can lead to
poor performance within a few generations of models, causing
class imbalance, a lack of minoritized group representation, and
unfairness. For example, our experiments on CelebA undergoing
model collapse and performative prediction leads to a 15% drop
in accuracy and complete erasure of the minoritized group.

• We position algorithmic reparation as an intentional MIDS that
used model impacts to promote equity and justice in the broader
data setting. We create an algorithm, STratified AR (STAR) to
simulate AR interventions by making training representative
of Intersectional identities. These simulations demonstrate how
AR interventions can lessen disparate impact between sensitive
groups and combat the unfair effects of other MIDS.

2 BACKGROUND

Several terms in existing literature describe distribution shifts per-
petuated by models. We provide an overview of these MIDS, their
enablers, and their relationships to fairness, then also connect algo-
rithmic reparation to MIDS. A background on bias, fairness in ML

(FML, acronym from Davis et al. [18]), and critiques of FML may
be found in Appendix B.

2.1 What are MIDS?

In Table 1, we organize three phenomena from the literature into
MIDS by determining how the model changes the data ecosystem:
1) Performative prediction occurs when a model’s predictions in-
fluence outcomes, such as when recommender models influence
and change a person’s preferences [55, 70]. This is also known as
fairness feedback loops when the outcomes of model predictions en-
trench bias or discrimination, as in redlining [26]. 2) Model collapse
may occur due to a similar phenomenon for generative models. If
synthetic outputs are used to train a new generative model, over
the course of several generations of models, the data distribution
loses its tails and converges to a point estimate [4, 62]. 3) Disparity
amplification occurs due to poor performance on a group of users.
These negatively impacted users disengage from the data ecosys-
tem, causing representational disparity. If trained upon, the altered
data ecosystem could lead to even worse performance disparity [31].
While all of these effects cause distribution shift after deploying
one model, the changes to the data ecosystem become entrenched
as the ground truth if used to train the next generation of models.
Throughout the remainder of the paper, we refer to generations,
lineages, or sequences of generative and classifier models to indi-
cate the teacher–student (see [54]) model chains underlying these
MIDS.

There are other effects, which we refer to as enablers, that pro-
vide signal to data ecosystems undergoing MIDS. If the enabler
misrepresents the training distribution to a model, this may bias
its behavior and outputs. Enablers are not innately MIDS, and can
include sampling, data annotation, generative feedback, and pseudo-
labelling methods (for background material on these concepts, see
Appendix C.2). These enablers can also permit MIDS to co-occur: a
pseudo-labeling model may annotate synthetic data created from
generative models to use for supervised training, allowing model
collapse and fairness feedback loops to co-occur. Furthermore, if
the classifier resulting from the supervised training then impacts
humans (or the non-synthetic portion of the data ecosystem), the
next generations of any of these models may also be subject to dis-
parity amplification. We model these MIDS and their interactions
in Section 3. For a review of MIDS and enablers with examples, see
Appendix C.

2.2 Algorithmic Reparation

Algorithmic reparation (AR), introduced in Davis et al. [18], pro-
poses to substitute traditional frameworks of fairness in ML with
a reparative approach to the design, development, and evaluation
of machine learning systems for social interventions. AR is pri-
marily inspired by Intersectionality theories, and seeks to promote
justice in the broader data ecosystem through interventions from
carefully-trained models. These actions are not restricted to algo-
rithmic changes; a truly reparative approach requires transdisci-
plinary collaboration and a shift of economic, legal, and societal
incentives. While AR specifically operates in machine learning, it
encourages reflection on whether use of ML or computation in
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MIDS Model action/property Δ Data Ecosystem

Fairness Feedback Loops Model predictions Predictions become outcomes, future labelsPerformative Prediction

Model Collapse Generated outputs Synthetic data in ecosystem become new inputs

Disparity Amplification Poor utility for marginalized groups Marginalized groups leave
Table 1: MIDS in the existing literature as organized by the model action that induces the MIDS and the effect on the data

ecosystem.

general may be inappropriate; and if so, advocates for eliminating
these systems.

AR is set as an alternative framework to FML, which generally
attempts to equate model properties such as accuracy or positive
prediction rate over sensitive groups. Instead, an AR approach fo-
cuses not on an equal distribution of resources and benefits, but
on a potentially uneven allocation targeted to benefit marginal-
ized intersectional identities. This arises from AR’s basis in Inter-
sectionality theories, which acknowledges that harms compound
at intersecting marginalized identities (see [59] for an overview
and [15] for a prominent example). AR rejects the notion that equal-
ity necessarily begets equity and rejects that technology, including
machine learning, can be neutral and objective (see Kapania et al.
[38] for a detailed discussion of representational thinking, algorith-
mic idealism, and algorithmic objectivity). Therefore, AR inherently
questions the validity of the ‘ground truth’ data used when training
an ML system; this makes it a critical framework for addressing
model-induced changes to the data ecosystem.

In this paper, we empirically simulate how intersectional in-
terventions at each model generation may constitute AR, harm
reduction, and better representation. In this perspective, where AR
functions as a MIDS, AR provides data ecosystemmaintenance with
a focus on reparative justice.

2.3 Related Work

We overview several pertinent related works that study MIDS and
how they connect to our work. Performative prediction, from Per-
domo et al. [55], is detected by comparing the data generating
distribution before and after a distribution shift caused by a func-
tion of the model’s parameters. A performatively optimal model
minimizes risk on the data distribution that manifests after its own
deployment, and can be approached by methods such as repeated
risk minimization and stochastic gradient updates [29, 55]. These
discussions are usually constrained to the impacts of a model af-
ter one generation, which we extend over several generations and
consider alongside other MIDS.

Another work, Taori and Hashimoto [69], observe data feed-
back loops caused as model predictions contaminate datasets. They
provide an upper bound for bias amplification depending on the
amount of synthetic predictions and on whether the model has the
same label bias as the original dataset. This second criteria is met
in classifiers that have high uncertainty over the true labels, which
follows from distributional generalization. We build on this work
by considering bias amplification due to a changing data ecosystem
subject to model collapse and performative prediction, as well as
considering fairness impacts beyond remaining faithful to dataset
label bias. While in our results some of our metrics converge and

stabilize, we do not intentionally aim for distributional generaliza-
tion.

Discussions of model collapse and the impact of generative mod-
els on future training sets are frequent in the natural language
processing (NLP) literature, which concludes that removing this
data ensures better future performance as NLPmodels improve [57].
More recent work answers questions on how synthetic data im-
pacts downstream tasks. [32] finds worse downstream classifier
performance when training from a synthetic dataset instead of the
original. Evaluation settings with multiple, connected generative
models have since been investigated in [4, 48, 62]. Each of these
works finds negative impact to utility if there is a sufficient lack
of non-synthetic data. We depart from all of these works by con-
sidering the impacts of model collapse on fairness and equity; we
combine the downstream performance task of [32] with the model
collapse evaluation scheme of [48] and add fairness considerations,
as well as co-occuring MIDS.

The work that introduces disparity amplification, Hashimoto
et al. [31], considers fairness cases where sensitive information is
unavailable. To minimize the risk that the minoritized group incurs
high loss and disengages from the dataset ecosystem, they use
distributionally robust optimization (DRO). As mentioned in their
discussions, DRO might not protect minoritized groups so much as
some worse-off group (as in Rawlsian justice), which for our focus
on algorithmic reparation and Intersectionality is inappropriate.

3 METHODOLOGY

In this section we introduce two settings, sequences of classifiers
and sequences of generators, to allow for the observation and eval-
uation of MIDS. In these settings, each new model in the sequence
is (at least partially) trained using the outputs of its predecessor(s)
as inputs and/or labels. As that model is deployed and used, it prop-
agates MIDS through its own properties and outputs, potentially
affecting both the synthetic and non-synthetic portions of the data
ecosystem. We also position AR as an intentional MIDS aiming
for justice for historical discrimination and oppression. These set-
tings provide an understanding of model impact over many genera-
tions, enabling informed maintenance of model and data ecosystem
‘health,’ and reinforcing accountability for model impacts.

3.1 Modeling Assumptions

Measuring distribution shift requires comparison between the cur-
rent and the reference distribution, which represents the data ecosys-
tem before the presence of any MIDS. The original reference distri-
bution is given byH = X × L × S, where X represents the inputs,
andL andS are annotations for the labels and sensitive attribute(s).
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Sampling from H gives dataset 𝐷 = 𝑋 × 𝐿 × 𝑆 . (i.e., via disparity
amplification). To compare the current data ecosystem against the
original, we would need access to the original input distribution
X and oracles for X → L and X → S. Instead, we approximate
these with a generative model 𝐺0 and classifiers 𝐴𝐿 and 𝐴𝑆 , all
trained from 𝐷 . We use these to approximate data from the original
distribution and to annotate the class and group of generated data.

These oracles provide an infinite data source that may be used to
train all of the downstream models in our settings. Therefore, if the
oracles misrepresent the distribution, the models trained from their
outputs will experience MIDS relative to the original training dis-
tribution. These oracle approximations are not strongly limiting as
we are primarily interested in the effects of MIDS relative to some
distribution, be it the original or its approximation. These oracles
resemble an online query model for annotations. Alternatively, for
an offline setting, these oracles could be replaced by three pools
of data, corresponding to samples of inputs, inputs with sensitive
attribute annotations, and inputs with label annotations. The inter-
section of these pools provides an annotated dataset “generated”
offline. Using classifiers to annotate generated samples has been
used for the fair training of generative models, though 𝐴𝐿 and 𝐴𝑆

could also represent human annotators conducting manual data an-
notation [27, 28, 32, 43]. The initial generator,𝐺0, is also relevant for
scenarios where synthetic data is preferred over human-generated
data for a downstream task, which may sometimes arise in FML
and privacy [25, 53, 64, 73]. Sampling from 𝐺0, as opposed to the
training set, also allows a chance at sampling from groups that
might not otherwise be well-represented in the dataset, as in [73].

3.2 Sequential classifiers

Figure 1: A high-level depiction of sequentially training clas-

sifiers (SeqClass setting) for MIDS such as performative pre-

diction and runaway feedback loops. The oracle models, 𝐴𝐿 ,

𝐴𝑆 , and𝐺0 provide an infinite source of labels, sensitive group

annotations, and inputs. We use these to train classifiers 𝐶𝑖 ,

where 𝐶𝑖 is trained using labels from 𝐶𝑖−1. To alleviate the

harms caused from sequentially training, cla-STAR may

be used to incorporate sensitive attribute data from 𝐴𝑆 , as

shown by the narrowly-dashed green lines.

The sequential classifier (SeqClass) setting permits us to pursue
the study of MIDS such as fairness feedback loops and performa-
tive prediction, where distribution shift is mediated by classifier
predictions becoming the ground truth of the next generation, as
shown in Figure 1. In the first generation, we train a classifier 𝐶0
by sampling inputs from 𝐺0 and labeling these with oracle 𝐴𝐿 . In

subsequent generations 𝑖 = 1 . . . 𝑛, the classifier 𝐶𝑖 is trained on
data sampled from 𝐺0 but labeled by the preceding classifier 𝐶𝑖−1.

Disparity amplification can be modeled by taking non-synthetic
samples ℎ𝑖 ∼ H𝑖 to train 𝐶𝑖 , where H𝑖 is the non-synthetic data
distribution after models from generation 𝑖 were deployed. We as-
sume that disparity amplification has already influenced the label
and sensitive group balances of H𝑖 via 𝐶𝑖−1. Therefore, to get ℎ𝑖
in practice, we inference 𝐶𝑖−1 on a held-out subset of 𝐷 , recording
label prediction frequencies over the categories formed from the
Cartesian product of the sensitive attribute values and the possible
labels. We use this to define a categorical distribution which we use
to perform quota sampling on𝐷 . Quota sampling refers to partition-
ing a population into strata (in our case defined by label and group
intersections) and selecting from each partition until we reach its
quota, which is given by the categorical distribution multiplied by
the total number of samples we wish to select. Henceforth we refer
to this categorical distribution as a strata. In a nutshell, if 𝐶𝑖−1
often assigns negative predictions to a minoritized group, then ℎ𝑖
will contain a proportional number of minoritized group samples
with the negative label. Therefore, 𝐶𝑖 may be influenced by 𝐶𝑖−1
in two ways: 1) through data labeled by 𝐶𝑖−1 and 2) through non-
synthetic data undergoing disparity amplification due to prediction
disparity in𝐶𝑖−1. When training𝐶0, we sample ℎ0 ∼ 𝐷 as disparity
amplification has not yet occurred.

The formulations are shown below, where TC (·; ·) is the classifier
training algorithm trained from the data in its first argument(s) as
labeled by its second argument(s), TG is the generator training algo-
rithm, and Sample(·; ·) samples from its first argument according
to a property (such as group representation) of its second argu-
ment(s). The terms causing performative prediction and disparity
amplification are in red bold and teal bold face:

𝐶𝑖 = TC (𝑔𝑖 ,𝒉𝒊 ; 𝑪𝒊−1), where 𝐶0 = TC (𝑔0, ℎ0;𝐴𝐿), 𝐺0 = TG (𝑋 ),
and 𝑔𝑖 ∼ 𝐺0

(1)
and ℎ𝑖 = Sample(𝐷 ; 𝑪𝒊−1), where ℎ0 = Sample(𝐷) .

(2)

3.3 Sequential generators and classifiers

The sequential generator (SeqGen) setting primarily investigates
the model collapse MIDS, where distribution shift occurs as syn-
thetic data is used for training new models, as shown in Figure 2.
For this setting, we train generators 𝐺𝑖 sequentially from the sam-
ples of the preceding generator 𝐺𝑖−1, where the first generator 𝐺0
is trained from the original dataset. This chain of generators is the
same setting as used by Shumailov et al. [62]. Departing from them,
we also train a downstream classifier𝐶𝑖 by sampling inputs from𝐺𝑖

and labels from either𝐴𝐿 or from the preceding classifier𝐶𝑖−1. The
former case is the sequential generator and non-sequential classifier
setting (henceforth SeqGenNonSeqClass), and the latter the se-
quential generator sequential classifier setting (SeqGenSeqClass).
In SeqGenSeqClass, the classifiers are chained together and suffer
the MIDS described in the SeqClass setting. These downstream
classifiers allow us to initiate the study of downstream classifier
performance and FML fairness metrics while also tracking the de-
volution of minoritized group representation and model collapse.
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Figure 2: A high-level depiction of sequentially training generators with and without sequential classifiers (left: SeqGenNon-
SeqClass, right: SeqGenSeqClass). The oracle models, 𝐴𝐿 , 𝐴𝑆 , and 𝐺0 provide an infinite source of labels, sensitive group

annotations, and inputs. We train a lineage of generative models (𝐺𝑖 ) and train classifiers 𝐶𝑖 from these, where 𝐶𝑖 is trained

using labels from 𝐴𝐿 (left) or 𝐶𝑖−1 (right). To alleviate the harms caused from sequentially training, cla-STAR and gen-STAR

may be used to incorporate sensitive attribute data from𝐴𝑆 , as shown by the narrowly-dashed green lines and the broad-dashed

purple lines.

Additionally, disparity amplification due to 𝐶𝑖−1 and 𝐺𝑖−1 may im-
pact the non-synthetic data distribution,H𝑖 , that may be used when
training 𝐺𝑖 and/or 𝐶𝑖 . Similarly to the SeqClass setting, we find
the categorical distribution of𝐶𝑖−1 over the sensitive attributes and
labels and quota sample proportionally from 𝐷 to form ℎ𝑖 . While
this directly impacts 𝐺𝑖 , it also impacts 𝐶𝑖 since it trains from 𝐺𝑖 .

The formulation for SeqGenwith classifiers is shown below, with
a substitute model 𝐶 that may stand for 𝐴𝐿 or 𝐶𝑖−1 depending on
whether the classifiers are sequential. The terms for performative
prediction, model collapse, and disparity amplification are bolded
in red, blue, and teal face.

𝐺𝑖 = TG (𝒈𝒊−1,𝒉𝒊), where 𝐺0 = TG (𝑋 ) and 𝑔𝑖 ∼ 𝐺𝑖 (3)
𝐶𝑖 = TC (𝑔𝑖 ,𝒉𝒊 ; 𝑪), where 𝐶0 = TC (𝑔0, ℎ0;𝐴𝐿) (4)
ℎ𝑖 = Sample(𝐷 ; 𝑪𝒊−1,𝒈𝒊−1), where ℎ0 = Sample(𝐷) . (5)

3.4 Simulating Algorithmic Reparation

In our experiments, we measure and simulate equity-oriented inter-
ventions as a change in the discrete distribution (strata) formed
from the Cartesian product of the label and sensitive attribute val-
ues. For example, the strata of the current data ecosystem may
be formed from 𝐿 and 𝑆 , and the strata of a classifier 𝐶𝑖 may be
formed from its predictions (on 𝐺𝑖 or 𝑋 ) and sensitive group anno-
tations (from 𝐴𝑆 or 𝑆). We use strata to characterize the training
sets used when training models, where these strata change over
the generations.

To simulate the effects of AR interventions, we introduce an
algorithm called STratified sampling AR (STAR; see Algorithm 1).
STAR creates model training batches by taking a biased sample
according to these strata categories (within a resampling budget).
As we are not experts in AR and do not provide a case study, we
use a uniform distribution over the categories to give quotas for the
number of samples from each category that should be present in
the batch. Using an ‘ideal’ (finite) distribution may be inappropriate
as a distribution cannot neutrally or objectively determine the
‘best’ mixture of demographics for a task. Due to this concession,
we will refer to these measurements as fairness/unfairness (in the
FML sense), as we cannot make claims of equity or justice without

considering the myriad sources of bias in the ML life cycle [67] and
the specific data ecosystem.

In the SeqClass setting, we use the name Classifier-STAR, or
cla-STAR, to refer to creating more Intersectionally representative
batches for the classifiers in the lineage. This is not the only avenue
for AR, but is inspired by work done by the FML community for per-
formative prediction [24]. To train 𝐶𝑖 , cla-STAR labels generated
outputs from 𝐺0 using 𝐶𝑖−1 and 𝐴𝑆 , then selects a subset of these
samples for each training batch such that each label and group
category in the batch meets the quota set by the fairness ideal. We
update TC to TA,C and show the additional labeling and sensitive
group annotations from 𝐶𝑖−1 and 𝐴𝑆 in green:

𝐶𝑖 = TA,C (𝑔𝑖 , ℎ𝑖 ; 𝑪𝒊−1,𝑨𝑺 ), where 𝐶0 = TA,C (𝑔0, ℎ0;𝐴𝐿,𝑨𝑺 ).
(6)

STAR in SeqGenSeqClass may occur at all the same points
described above, with the addition of interventions taken while
training the generators. We examine both classifier-side STAR
(cla-STAR, taken while training classifiers, shown in green), and
generator-side STAR (gen-STAR, while training generators, shown
in purple). gen-STAR also uses annotations from𝐶𝑖−1 and𝐴𝑆 to fill
the label and group category quotas set by the fairness ideal. Both
cla-STAR and gen-STAR are described in Equation (7) and Equa-
tion (8), respectively:

𝐶𝑖 = TA,C (𝑔𝑖 , ℎ𝑖 ; 𝑪,𝑨𝑺 ), where 𝐶0 = TA,C (𝑔0, ℎ0;𝐴𝐿,𝑨𝑺 ) (7)
𝐺𝑖 = TA,G (𝑔𝑖−1, ℎ𝑖 ; 𝑪,𝑨𝑺 ), where 𝐺0 = TA,G (𝑋 ; 𝑳, 𝑺) . (8)

3.4.1 STAR Implementation. We simulate algorithmic reparation
using the two variants of STAR introduced in Section 3.4; cla-STAR
and gen-STAR. The algorithm uses sampling and pseudo-labelling
to create training batches of size 𝑏 that meet the fairness ideal
by having a prescribed number of samples to fill a quota in each
category. However, the closeness between this fairness ideal and
the resulting strata of the batch is bounded by the reparation
budget 𝑟 , which simulates costs to conducting reparation. For our
experiments, we use a uniform distribution as the fairness ideal.

STAR creates a pool of 𝑏 + 𝑟 samples from either the previous
generator or the original dataset, which is then annotated by 𝐴𝑆

and either 𝐴𝐿 or 𝐶𝑖−1. The fairness ideal, multiplied by 𝑏, gives a
quota for the number of samples ideally belonging to each category.
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STAR then attempts to fill each category to its quota from the pool
of samples. If after this initial filling, some of the categories did not
meet their quota, the remainder of the batch is filled with randomly
selected samples from the remaining pool. This process (henceforth
re-sampling) will most likely add samples representative of the
majority group and class. There are therefore two barriers to mean-
ingful reparation: 1) we cap the number of samples that may be
drawn to form the batch yet attempt to create equal categories from
an unequal dataset; and 2) the effects of MIDS. If STAR increases
the representation of a minoritized group, then these samples may
be re-selected more often than majoritized group peers, increas-
ing their exposure to mislabeling. Additionally, the higher number
of generations this data is subjected to may accelerate the model
collapse at this area of the distribution. STAR is shown for binary
labels and binary sensitive attribute (4 categories in the strata) in
Algorithm 1.

4 EVALUATION

Now that we have overviewed our methodology, we outline our
experimental setup using two main sets of experiments to illus-
trate MIDS in the SeqClass and SeqGenSeqClass settings. These
experiments are designed to answer the following questions: (Q1)
what are the effects of MIDS on performance, representation, and
fairness? (Q2) why is it important to be aware of MIDS? (Q3) how
do MIDS interact? (Q4) Can AR interventions alleviate the harms of
MIDS? We provide brief answers to these questions in Section 4.2.

4.1 Modeling MIDS

4.1.1 Experimental Setup. We provide computer vision experi-
ments for four datasets: textttMNIST, SVHN, FairFace, and CelebA.
We modify the digit recognition datasets MNIST and SVHN into
ColoredMNIST and ColoredSVHN by adding color to create binary
sensitive groups and by forming two classes for digits < 5 and ≥ 5.
We choose the beneficial class as the class converged to by model
collapse, and bias the majoritized group towards it. These arbitrary
choices simplify our presentation; we vary the class and group
balance in Appendix E.1, finding little impact. These datasets differ
in their complexity, SVHN is usually the harder dataset to learn, and
in their class balance once binarized (see Table 3). Despite their
similarities, they also show very different points of model collapse
and even opposite behavior when observing the accuracy differ-
ence between groups, as in Figure 5 and Figure 20. We use CelebA
and FairFace to represent more complex and real-world tasks. For
CelebA, our task is to predict attractiveness with gender as the sen-
sitive attribute; these attributes have well-documented errors and
disparities [44]. On the other hand, FairFace is chosen for its bal-
ance in both race and gender; alongside other metrics, it is simple to
measure sensitive group intersections. For FairFace, we attempt to
predict gender (2 values) with sensitive attributes race (7 values) and
age (which we binarize at < 30, ≥ 30). Note that our FairFace ex-
periments are intersectional, and for𝐴𝑆 we use a different classifier
for each sensitive attribute. For CelebA and FairFace, we provide
between 5-10 generations,1 for ColoredMNIST and ColoredSVHN
we train for 40 generations. When training each generation, all

1Repeatedly training CelebA and FairFace takes days, due to the cost and CO2 foot-
print, we terminated these experiments upon realization of the MIDS.

synthetic data is sampled from the prior generator and/or classi-
fier/annotator, while non-synthetic data is taken from the training
distribution.

Further details on the datasets, model architectures, hyperpa-
rameters, and compute specifics we use are in Appendix D.2 Loss
values for generators may be found in Figure 13, and accuracies
and fairnesses for 𝐴𝐿 and 𝐴𝑆 are in Table 4. These performances
reflect baseline results of training without fairness optimization.
For STAR, we set the reparation budget 𝑟 at 25% of 𝑏, the batch size,
for all datasets aside from ColoredSVHN, which is set to 33% of 𝑏.
This budget was tuned by finding the lowest possible value that
results in a decrease in the proportion of each batch resampled over
generations, indicating that STAR is changing the data ecosystem
towards its ideal. We also train the models from a 50-50 mixture
of synthetic and non-synthetic data, allowing us to observe the
effects of disparity amplification as it co-occurs with performative
prediction and model collapse. We use this data mixture to train
the classifiers in SeqClass, and the generators in SeqGenSeqClass
where we observe downstream impacts in the classifiers.
MIDS Metrics. To measure MIDS and their fairness impacts, we
inspect the original dataset, generated outputs and annotations,
and model performances. We use a held-out evaluation set i.i.d.
from the original training set 𝐷 . In the classifiers, we measure
fairness using demographic parity difference (DP), equalized odds
difference (EOdds), and group accuracy gaps, and measure utility
with accuracy. DP difference (Definition 1) compares the positive
prediction rates between groups. EOdds difference (Definition 2)
is the maximum between two values: the difference between the
groups’ true positive rates, or between their false positive rates. For
performance disparity, we report the maximum accuracy gap when
comparing all sensitive groups. For these metrics, a lower value
(less difference between groups) indicates more fairness. Note that
accuracy and EOdds require a ground truth label which may be
taken from a biased original distribution. Therefore, to meet other
fairness objectives, such as in STAR, EOdds and group accuracy dif-
ferences may worsen as the label distribution changes. We measure
these metrics on the evaluation set, but also between successive
classifiers using images from 𝐺0 or 𝐺𝑖 with sensitive annotations
from 𝐴𝑆 and labels from 𝐶𝑖−1. The difference between the former
(measuring with respect to 𝐷) and the latter (measuring with re-
spect to the preceding models) shows how model performances can
be misreported if the evaluator is unaware of MIDS. To track the
class and group representation of the generators, we generate 1000
samples and annotate class and group with 𝐴𝐿 and 𝐴𝑆 .
MIDS strata. We also observe the strata of the original dataset
(using 𝑋 , 𝐿, and 𝑆), the model training batch strata (using 𝐺0 or
𝐺𝑖 , 𝐴𝐿 or 𝐶𝑖−1, and 𝐴𝑆 ), and the model output strata (classifiers
using 𝑋 , 𝐶𝑖 , and 𝐴𝑆 , generators using (𝐺𝑖 , 𝐴𝐿 , and 𝐴𝑆 ). We also
record the Kullback–Leibler (KL) Divergence between these strata
and the fairness ideal used in STAR. These KL-Divergence results
provide a simple way to measure and visualize change in inter-
sectional representation for our experiments; a ‘fairness ideal’ is
otherwise inappropriate (see Section 3.4 for clarity on representa-
tional thinking). We also measure the progression of STAR through

2Our code is available publicly on GitHub: https://github.com/cleverhans-lab/
FairFeedbackLoops

https://github.com/cleverhans-lab/FairFeedbackLoops
https://github.com/cleverhans-lab/FairFeedbackLoops
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the strata it achieves during batch curation, the amount of resam-
pling required when categories fail to meet their quotas, and the
KL-Divergence between the strata and the fairness ideal.

4.2 Results

We return to the questions posed at the start of Section 4 and
provide brief answers before discussing the full results: Q1) What

are the effects of MIDS on performance, representation, and

fairness?We find that the performative prediction, model collapse,
and disparity amplification MIDS lead to a loss of accuracy, fairness,
and representation in classes and/or groups. These effects are more
pronounced in SeqGenSeqClass, likely because model collapse
sometimes results in the beneficial class and majoritized group
dominating the generated samples. These effects are more severe in
data ecosystems with higher proportions of synthetic data, which
we ablate in Appendix E.2.
Q2) Why is it important to be aware of MIDS? We find that
unawareness of MIDS results in overstating the accuracy and fair-
ness, which can be observed by measuring the relative performance
of classifiers (comparing 𝐶𝑖 against labels provided by 𝐶𝑖−1). In
SeqClass, these relative results show nearly 100% accuracy and 0
EOdds difference, the same holds for SeqGenSeqClass with the
addition of mis-reported class and group balances (see Appendix H).
Q3) How do MIDS interact?We compare SeqGenSeqClass and
SeqGenNonSeqClass, revealing that the fairness feedback loop
in the former allows the classifiers to adapt to distribution shift in
the inputs caused by model collapse. This co-operation lessens the
rate and degree of classifier performance decline. When training
with a mixture of synthetic and non-synthetic data, we observe that
the non-synthetic data greatly slows the degree of model collapse,
though also enables disparity amplification amongst groups in the
non-synthetic data ecosystem.
Q4) Can AR interventions alleviate the harms of MIDS? Our
AR interventions using STAR lessen unfair behaviors and achieve
better downstream classifier fairness, especially in SeqClass, and
also in settings undergoing disparity amplification. In SeqGenSeq-
Class, gen-STAR usually performs better than cla-STAR, likely
due to the strength of the model collapse MIDS in deteriorating the
data ecosystem.

4.2.1 Sequential classifier setting. Our first experiment suite uses
SeqClass as described in Section 3.2; MIDS occur as a classifier’s
predictions are used to label the next generation’s classifier. In
ColoredMNIST and ColoredSVHN (Figures 3 and 15), we observe
an accuracy drop of 10-15% over 40 generations, with an increase
in both DP and EOdds unfairnesses (in the case of ColoredSVHN,
both metrics increased by roughly 0.2, where the maximum un-
fairness gap is 1). CelebA immediately suffers near-random clas-
sifier performance as 𝐺0 misrepresents 𝐷 by incurring significant
class imbalance towards the detrimental class (Figure 16). FairFace
classifier accuracies drop from 57% to random accuracy within 10
generations, and also incur an accuracy difference increase of .1,
with a .2 jump in EOdds unfairness (Figure 17). Note that these
performances would likely worsen with additional generations.
Reparative interventions reduce performance degradation

from MIDS. In ColoredMNIST, ColoredSVHN, and CelebA cla-
STAR lead to a significant reduction in DP and EOdds unfairness,

and lessened the gap between cla-STAR’s fairness ideal and the
data ecosystem strata (Figures 3, 15, and 16). Across most datasets,
there is far less variance compared to results without reparation,
where variance grows with the number of generations (all figures
report the 95% confidence interval). For FairFace, classifier strata
without reparation are constituted primarily of older white males
(where younger white males are the plurality of the dataset, see
Figure 7). With reparation, the representation of young white non-
males increases, but as𝐺0 fails to adequately generate samples from
the other races, there are still large performance disparities and
high unfairnesses (Figure 17). See Appendix G.1.1 for detailed fig-
ures on the representation of classes and groups in training batches.
Due to the high representational disparity between the white race
and the other 6 races, cla-STAR did not lead to better fairness. We
also observe tension between FML metrics: for ColoredMNIST (Fig-
ure 3), the EOdds and accuracy difference increase after generation
15, while both DP and the KL-divergence continue to decrease. As
EOdds is satisfied when error rates (relative to a potentially biased
dataset) are similar across groups, meeting the STAR fairness ideal
leads to an ‘unfair’ allocation of beneficial labels to the minoritized
class, and of detrimental labels to the majoritized class.
Non-synthetic data slows MIDS, but weakens classifier-side

reparations.We also trained classifiers on an even mixture of syn-
thetic and non-synthetic data as described in Section 3.2, see Fig-
ure 28. Unsurprisingly, adding non-synthetic data greatly improved
the performance of classifiers compared to results with 100% syn-
thetic data and no reparation (see a full ablation of the amount
of synthetic data in Appendix E). While we were able to further
increase this fairness by using cla-STAR, the impact was far less
than on the 100% synthetic results, with FML unfairness metrics
converging to higher values at around the 25th generation. Because
the non-synthetic data lessens the impact of the pseudo-labelling
enabler in the fairness feedback loop, it likewise lessens the impact
of cla-STAR.

4.2.2 Sequential generator and classifier setting. These experiments
refer to the SeqGenSeqClass setting described in Section 3.3 and
depicted in Figure 2, which we use to depict model collapse and per-
formative prediction, with additional results including the effects
of disparity amplification. In our 100% synthetic training experi-
ments, we observe model collapse deteriorates the data, leading to
class imbalance (ColoredMNIST Figure 19, CelebA Figure 5) and/or
to group imbalance (ColoredSVHN Figure 4, CelebA Figure 20). As
model collapse progresses, the downstream classifiers either per-
form with random accuracy or constantly predict the beneficial
class label, leading to poor fairness. Refer to Appendix F to see
generated samples undergoing model collapse.

If we judge model collapse at the point when the generated data
ceases to have any downstream utility, model collapse occurs at
generation 15 for ColoredMNIST, 5 for ColoredSVHN, and between
generations 1-5 for CelebA and FairFace. These values correspond
to the increasing difficulty of the datasets’ tasks, which is correlated
with heavy-tailedness in their distributions [50]. A small sample
size may be able to represent a concentrated distribution, but finite
samples of a heavy-tailed distribution will likely be biased, leading
to faster distribution shift. The steep decline to random accuracy is
likely due in part to the amount of synthetic data used to train each
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Figure 3: ColoredMNIST results for SeqClass on the evaluation set. Top: accuracy, accuracy difference, and demographic parity

difference. Better fairness (lower fairness difference) and higher accuracy is achieved with cla-STAR. Bottom: equalized odds

difference, the strata created during cla-STAR, and the KL-divergence between cla-STAR fairness ideal and classifier strata.

The KL-Divergence decreases with cla-STAR, indicating more fairness, and the batches become more balanced across group

and class. The accuracy difference and EOdds difference between groups is small, but increases during reparation due to metric

tension with cla-STAR.

generation. As the amount of synthetic training data decreases, so
too does the rate of accuracy decline and beneficial class dominance,
as shown in Appendix E.2.
Unpredictable convergence of model collapse. As model col-
lapse progresses, it is difficult to predict the category of the strata
in the generators that dominates. For example, in generation 40
of ColoredMNIST, both majoritized and minoritized groups of the
beneficial class each constitute around 40% of each batch, whereas
in ColoredSVHN, the majoritized and beneficial category alone con-
stitutes 60% of each batch (Figures 19 and 4). This is in part due to
the initial class and label balances (see Table 3), but also due to how
the model collapse manifests. For example, ColoredMNIST even-
tually converges to samples that resemble an ‘8’, or all the digits
superimposed (see samples from model collapse in Appendix F). As
this happens to fall in the advantaged class, it becomes dominant
in the generators, without strongly impacting the group balance.
Meanwhile, in CelebA, model outputs become dominated by the
majoritized group, yet these same samples are also classified into
the detrimental class by 𝐴𝑆 , which is counter to the original label
balance in the dataset. Eventually, minoritized group representation
in CelebA falls to 0% (see Figure 5). FairFace has much deteriora-
tion in the data but maintains both class and group balance. These
observations support a growing consensus that the features of the
original data preserved by generative models in synthetic data is
difficult to predict, or highly data dependent (for private synthetic
data [64], and at the intersection of fairness and privacy in synthetic
data [13]).

Performative prediction adapts to model collapse. We also
uncover co-operation between MIDS by evaluating the role of se-
quential classifiers in SeqGenSeqClass and SeqGenNonSeqClass
(see Appendix E.3). In ColoredMNIST and ColoredSVHN (Figures 11
and 12): the non-sequential classifiers converge to accuracies 10-20
percentage points lower than the sequential classifiers. However,
the sequential classifiers have considerably more unfairness (in the
case of ColoredMNIST, by 0.6), likely due to their participation in
fairness feedback loops. Performative prediction among sequential
classifiers allows 𝐶𝑖−1 to provide meaningful labels for training 𝐶𝑖
from𝐺𝑖 . For the non-sequential classifiers, 𝐴𝐿 cannot adequately
support the distribution represented by𝐺𝑖 once the 𝑖𝑡ℎ distribution
substantially differs from the original. The inherited knowledge of
P(𝑌 |𝑋 ) passed through the sequential classifiers allows them to
preserve a more accurate map from the changing distribution to
the classes.
Generator-side AR improves fairness and minoritized rep-

resentation. Between gen-STAR and cla-STAR, the former leads
to more preservation of the group and label balance in all four
datasets. This result fits intuitively as the biased sampling enables
these generators to maintain more balanced representations across
the categories. For example, gen-STAR leads to better fairness than
cla-STAR in ColoredMNIST and CelebA, though with cost to accu-
racy. However, because gen-STAR results in oversampling minority
(in terms of population) categories relative to the original dataset, it
may also expose these areas of the data distribution more to model
collapse. In ColoredSVHN, for example, gen-STAR results in more
balanced strata in both the generators and classifiers (compared
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to cla-STAR), but the classifier strata are still dominated by the
(minoritized, detrimental) and (majoritized, beneficial) categories,
leading to worse DP and EOdds fairness (see Appendix G.2.1). In
the case of FairFace, a combination of oracle model bias and un-
representative generators causes large disparities between races
as gen-STAR cannot adequately sample from the smallest Inter-
sectional minorities. As FairFace has relatively balanced races
and genders, these disparities indicate that algorithmic reparation
should be considered when collecting data, and might require ac-
tion beyond collecting balanced quotas of data from various groups.
Overall, cla-STAR did not show consistent performance across
datasets, achieving worse or equivalent performance to the non-
reparative results, likely due to the strength of the model collapse
MIDS.
Disparity amplification reduced with classifier-side repara-

tion. Recall that we model disparity amplification by sampling
non-synthetic data using the strata of the classifiers, which we
use for half of the generator training data (the other half is sampled
from 𝐺𝑖−1). We evaluate this setting for ColoredMNIST. Similarly
to SeqClass, the non-synthetic data slows MIDS caused by syn-
thetic data spills, including model collapse. We evaluate the fairness
performance of gen-STAR and cla-STAR, finding substantially
better performance and fairness with cla-STAR (subject to an in-
crease in accuracy disparity due to increased false negatives) than
with gen-STAR (see Appendix I). The gen-STAR generator strata
never achieve the fairness ideal as randomly sampling from initially
biased generators leads to unfair classifiers which propagates dis-
parity amplification in the non-synthetic data, which incidentally
only protects the majority group and class categories from model
collapse. Meanwhile, cla-STAR trains classifiers with more ideal
strata that reverses disparity amplification, providing balanced
non-synthetic data to the generators and protecting all classes and
groups equally from model collapse. We may see this by comparing
the STAR strata for both algorithms, see Figure 30.

4.3 Limitations

We discuss three main limitations of our work. Firstly, we do not
provide a specific use case and cannot fully evaluate algorithmic
reparation, nor make any claims that our achievements in fairness
lead to equity or justice. Secondly, we study a worst case where
all the synthetic data used to train a model is sampled only from
the immediately preceding model(s); without provenance informa-
tion the synthetic data may be sourced from any number of other
models, including multiple predecessor models. Thirdly, in CelebA
and FairFace, we rely on race annotations which might fail to
represent the various skin tones within groups, an important con-
sideration in computer vision tasks, and for better representation
(as discussed in [9]). Additionally, racial categorizations are not uni-
versally consistent, and so these datasets provide a simplification
that may be inappropriate.

5 CONCLUDING REMARKS

In this paper, we introduced model-induced distribution shifts
(MIDS) and created empirical settings enabling the evaluation of
their harms. With these settings we found that MIDS, both on
their own and co-occurring with enablers such as data annotation,

lead to major degradation in utility, fairness, and minoritized group
representation. While MIDS can be intentional or unintentional, un-
awareness of their existence can lead to grossly overstating model
utility and fairness. Based on these harms, we discussed how al-
gorithmic reparation (from the literature of critical theory in ML)
may act as an intentional MIDS with goals of equity and justice. By
simulating the impacts of algorithmic reparation at various points
in our settings, we saw a lessening in harms.

We would also like to acknowledge that throughout this work,
we have implied that models cause model-induced distribution
shift. This is not the case; agency over MIDS rests primarily on
model owners, data publishers and collectors, and model users. Sev-
eral related works, including Shumailov et al. [62] and Hardt and
Mendler-Dünner [29], have also considered the power or advantage
given to an entity that has more control over the amount of syn-
thetic data spillage or has more access to non-synthetic data. As we
have found that MIDS are of imminent concern in data ecosystems
undergoing synthetic data spills; we now turn to solutions to MIDS
and methods for taking accountability of them. One possible solu-
tion, also mentioned in Davis et al. [18], is an archival perspective
on data curation as introduced in Jo and Gebru [37]. Specifically,
adopting the tenets of archival description codes could enable gath-
ering of high-quality provenance information, and adopting the
moral obligations underlying many an archives’ raison d’être could
help to identify and repair structural and historical bias [17, 37, 56].
Another solution motivated by our results is the importance of
non-synthetic data and human data annotation to prevent or slow
the rate of MIDS. We therefore advocate for more attention to the
often-unseen and underappreciated labor of human data workers.
We end with a call for safer conditions for data workers given their
current and increasing importance in our data ecosystems.

STATEMENTS

Ethical Considerations

We recognize that technical solutions are never disjoint from their
societal impacts, and have striven towards a more sociotechnical
framing for this work. We navigate several definitions and frame-
works for algorithmic fairness and equity by considering multiple
definitions of fairness and their contrasts with algorithmic repara-
tion. However, we primarily focus on group-based fairness metrics,
including when those groups are formed intersectionally, which
we acknowledge can reinforce the ideologies behind them. The rep-
resentational and allocative harms on minoritized groups arising
from MIDS have been a major ethical motivation and consideration
underlying our work and contributions to algorithmic reparation.
Examples of harms of MIDS include minoritized group erasure and
disparately poor performance.

Positionality

We are researchers usually operating within the more technical
areas of machine learning. Throughout our time working in this
area, we have turned to Data Feminism by D’Ignazio and Klein [22]
to inform our discussions around fairness and equity, and to inform
some of our language choices. We also rely heavily on Davis et al.
[18] and Kapania et al. [38] for their critiques of ‘representationalist
thinking,’ which has been admittedly ubiquitous in our education,
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Figure 4: ColoredSVHN results for SeqGenSeqClass. Top: shows accuracy, accuracy difference, demographic parity difference,

and equalized odds difference. For the latter three, lower values are better. Bottom: KL-Divergence between fairness ideal and

classifiers, and between fairness ideal and generator strata, the class balance, and group balance. Shading shows collapsed

generations. We observe that gen-STAR provides more minoritized group representation. While model collapse causes outputs

to eventually resemble a ‘3,’ which moves class balance towards the beneficial class, gen-STAR also maintains the original

dataset imbalance of 60%.
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Figure 5: CelebA results for SeqGenSeqClass. Top: shows accuracy, accuracy difference, demographic parity difference, and

equalized odds difference. For the latter three, lower values are better. Bottom: shows the class balance the and group balance.

Shading shows collapsed generations. The performance of the classifiers was initially low, though STAR is moderately better in

later generations. gen-STAR provides better class and group balance compared to cla-STAR and results without reparation,

but is still unable to achieve uniform representation due to the strength of model collapse.

and which seemingly appears commonly in ML research (including
ML fairness research).

Adverse Impact

We note that this work might be used to fuel despair over the ‘long-
term’ existential harms of models, especially generative models.
We advise readers to think critically about the systems of power
behind machine learning and consider the current harms these
permit, continue, and worsen. We also acknowledge that due to our
lack of a specific use case to fully evaluate algorithmic reparation,
we risk representing it as a mathematical or technical definition
to be satisfied or optimized for. This runs counter to the tenets

of AR (see Davis et al. [18]) and we have been careful with our
language around this area (for example in Sections 3.4 and 4.3, and
in Appendix B).
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Symbol Description

H ≜ The original reference distribution before MIDS occur.H = X × L × S, where X represents
the inputs, L the labels, and S the sensitive attribute(s).

𝐷 ≜ Dataset sampled fromH , where 𝐷 = 𝑋 × 𝐿 × 𝑆 .
𝐺0 ≜ The generative model that represents a generative oracle for X. 𝐺0 is trained from 𝐷 .
𝐴𝐿 ≜ The labelling oracle model that represents the mapping X → L. Model is trained from 𝐷 .
𝐴𝑆 ≜ The sensitive attribute oracle model that represents the mapping X → S. Model is trained

from 𝐷 .
𝐶𝑖 ≜ A classification model corresponding to generation 𝑖 , trained using algorithm TC (·).
𝐺𝑖 ≜ A generative model corresponding to generation 𝑖 , trained using algorithm TG (·) It may be

used to generate samples 𝑔𝑖 .
H⟩ ≜ The non-synthetic data distribution arising from MIDS in generation 𝑖 . Samples ℎ𝑖 may be

drawn to train models 𝐶𝑖 and/or 𝐺𝑖 .

STAR parameters

strata ≜ A categorical distribution over the Cartesian product of sensitive attribute values and label
values. If multiplied by the number of samples to draw, it provides a quota for the number of
samples to draw from each sensitive attribute and label category.

𝑏 = The size of the batch created by STAR.
𝑟 = The reparation budget. STAR draws a pool of 𝑏 + 𝑟 samples, then attempts to meet the quotas

for each category as given by 𝑏×strata for a total of 𝑏 samples in the returned minibatch.
Table 2: Table of notations.

measurement, aggregation, learning, evaluation, and deployment bi-
ases [68]. These often arise from misrepresenting a complex feature
(e.g., treating gender or sex as a binary), mis-measuring features,
stripping data of its context (e.g., regional or dialectal language
heteroglossia), and from historical oppression influencing the data
modelling processes. There are several frameworks for defining
and addressing issues of fairness; calibration (used when the sensi-
tive identities have impact on the decision task), anti-classification
(used when sensitive data is unavailable or illegal to use), individ-
ual fairness (“similar individuals should be treated similarly”), and
classification parity.

In group fairness, protected attributes are often chosen from
legally-protected attributes such as race or gender, and encoded
into categorical features to determine sensitive groups. In this paper
we use the terms majoritized and minoritized as in D’Ignazio and
Klein [22] to emphasize the impact of a model’s behavior on a group.
Note that the majority population might not correspond with the
majoritized (benefit-receiving) group; for example the Black popu-
lation is a minoritized majority in the COMPAS dataset [20]. This
grouping often splits the dataset into two groups, delineated by
one attribute with two possible values (e.g., ‘male’ vs ‘female’ or
‘white’ vs ‘people of color’) which may misrepresent or inappropri-
ately group populations and ignores the compounding impact of
possessing multiple marginalized identities.

In classification parity, there are a variety of metrics that aim
for some equality of rates between these groups, such as accuracy,
positive selection rate, or error rates. In this work, we use accu-
racy difference, demographic parity difference, and equalized odds
difference to cover a multitude of differing priorities model own-
ers may value. It is often impossible to satisfy multiple fairness

metrics simultaneously, so they are ideally chosen based upon the
task [14, 41]. The binary classification and binary grouping versions
of these metrics are presented below.

Definition 1 (Demographic Parity (DP) [10]). A classifier 𝑌
satisfies Demographic Parity with respect to the sensitive attribute 𝑠
if:

P(𝑌 = 1|𝑠 = 0) = P(𝑌 = 1|𝑠 = 1) ∀0, 1 ∈ 𝑠 .

In this work we consider demographic parity difference, which is
the absolute value of the difference between the two terms equated
above. Each term is also the selection rate, or rate of positive pre-
diction, for the group.

Definition 2 (Eqalized Odds (EOdds) [30]). A classifier 𝑌
satisfies Equalized Odds with respect to the sensitive attribute 𝑠 if for
ground truth 𝐿:

P(𝑌 = 1|𝐿 = 𝑙, 𝑠 = 0) = P(𝑌 = 1|𝐿 = 𝑙, 𝑠 = 1) ∀𝑙 ∈ {0, 1},∀0, 1 ∈ 𝑠 .

We also use equalized odds difference. This is formulated as
max[|P(𝑌 = 1|𝐿 = 0, 𝑠 = 0) − P(𝑌 = 1|𝐿 = 0, 𝑠 = 1) |, |P(𝑌 = 1|𝐿 =

1, 𝑠 = 0) −P(𝑌 = 1|𝐿 = 1, 𝑠 = 1) |], or the larger of the absolute value
differences between the false and true positive rates for the groups.
These metrics may be used for multiple groups by taking each
difference between every pair of groups and reporting the maximal
disparity. Similarly, these groups may be formed by intersecting
multiple sensitive attributes.

Due to the biases that may exist in data collection, training, eval-
uation, and deployment, adherence to or achievement of any of
these fairness metrics does not guarantee fairness or equity. For ex-
ample, these fairness metrics assume that the cost of an error borne
by a person of any group is the same, when in practice the costs
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and benefits may differ greatly depending on identity [47]. There
are several works that focus on the trade-offs between meeting a
decision maker’s FML criteria and the potentially inequitable social
outcomes which cast doubt on the suitability of FML metrics for
societal welfare [16, 33, 39]. This is in part a byproduct from FML’s
reliance upon algorithmic idealism, where computation assumes a
meritocratic society whereby equalizing demographic disparities
must therefore lead to fairness at a societal level [18, 26, 39]. Ad-
ditionally, FML may also engage in or reinforce two main biases:
1) automation bias, that machines are objective and are less biased
than humans, and 2) that automation invites justice without regard
for the objective and purpose of the models [18, 26].

C MIDS IN LITERATURE

This section provides a more detailed review of the MIDS and
enablers described in Section 2.

C.1 MIDS

Performative prediction. Performative prediction is a distribution
shift that occurs when a model’s predictions impact the outcome.
For example, when economists publish forecasts, they may influ-
ence the behavior of others in the market, causing the market to fit
the forecast in a self-fulfilling prophesy [29, 55]. In this case, the
model’s predictions leak into the data ecosystem as they become
outcomes. If this data ecosystem is trained upon, these outcomes are
treated as the ground truth, and the MIDS continues into another
generation of models.
Fairness feedback loops. The fairness community has studied
performative prediction and fairness feedback loops in the context
of risk assessment systems, including mortgaging and predictive
policing [26]. We provide two notable examples:

1) Figure 6 shows the 1939 HOLC Residential Security Maps for
Detroit alongside 1955 demographic information of non-white com-
munities. This map is a historical multiclass classification model
that reflects the values and priorities of the individuals and institu-
tions responsible for its creation; specifically the white male gaze
of Depression-era professional realtors [22, 36, 63]. These values
encoded into this model and the MIDS from the model itself has
contributed to housing discrimination in Detroit, as seen in the
right of Figure 6.

2) Work in predictive policing found that policing locations may
converge towards over-policing low-income non-white communi-
ties [46, 58]. Theoretical follow-ups find that the degree of runaway
feedback may be moderated with careful training set weighting,
but cannot be negated entirely [24].
Model Collapse. Where performative prediction and runaway
feedback loops generally refer to classification models, model col-
lapse describes the same effect for generative models.Model collapse
occurs when new generative models are trained on samples created
by their predecessor over many generations, as introduced in Shu-
mailov et al. [62] and concurrently in Alemohammad et al. [4]. This
leads to new models forgetting the original data distribution as
they recreate and amplify the failures of their ancestors. There
are two error sources that contribute: 1) functional approximation
error due to an inadequately expressive generator, and 2) statistical
approximation error from finite sampling. Model collapse begins

with a loss of information from the tails of the data distribution.
In late-stage model collapse, the model mixes the modes of the
original distribution, converging to a point estimate of some mean
betwixt them. There are also concerns over the effects of model
collapse on fairness, as model failure on “low-probability events"
may have negative effects on minoritized groups when datasets
have poor representation [68].
Disparity amplification.Unlike the aforementionedMIDS, dispar-
ity amplification arises from human-model interaction. If a model
suffers from problems derived from representational bias, it may
have overall high performance but low performance on minoritized
groups (performance disparity). This can lead to disparity ampli-
fication, where minoritized users who suffer high error rates may
choose to disengage from the model, shifting the future dataset
towards the majoritized group, and increasing the representational
disparity of the data ecosystem [31].

C.2 MIDS Enablers

We describe several enablers in more detail here. Note that even
sampling is an enabler, and indeed it informs our approach to
algorithmic reparation in our experiments.
Pseudo-labelling. Pseudo-labelling generally refers to using a
model to assign labels to unlabeled samples in a dataset, so that
this data may also be used for supervised or semi-supervised train-
ing [12]. This may occur just once [12] or iteratively [49]. Incentives
for pseudo-labelingmay arise in caseswheremanual labeling and/or
annotation is too expensive for vast swathes of data. The fairness
impact of using pseudo-labelling for self-supervised learning was
discussed in Zhu et al. [74], finding that groups with high initial
accuracy benefit whereas groups with low initial accuracy may see
a degradation in performance.
Feedback and Data Annotation. Similarly to pseudo-labelling,
feedback (whether human or model-based) is often used for label-
ing and annotating data for supervised training or for providing
feedback on generative outputs. Reliance on human annotation
can lead to unfairness arising from individual annotator bias and
instructions for annotating [68]. Recent work has found indicators
that some human data annotators use LLMs or other models, which
may lead to MIDS if these models are updated and retrained on the
data they labeled [71]. AI feedback is also used in methods such as
Constitutional AI, which uses a succession of fine-tuned supervised
models to provide RLAIF (reinforcement learning from AI feedback)
for training ‘harmless’ AI assistants [6].

D EXPERIMENTAL DETAILS

D.1 Datasets

We evaluate the fairness effects of model collapse and algorithmic
reparation on several datasets; adapted versions of MNIST and SVHN,
as well as CelebA and FairFace.
ColoredMNIST MNIST is a single-channel handwritten digit recog-
nition dataset [19]. We use 50000 images for training, 10000 for
validation, and another 10000 for testing. We adapt MNIST to a
binary classification scheme (determining if a digit is in [0..4]
for class 0 or [5..9] for class 1). The class label is switched with
a uniform probability of 5% to add label noise, as in Arjovsky



Fairness Feedback Loops FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

Figure 6: Left: 1939 Home Owner Loan Corporation Security Map for Detroit. Red areas are Grade D, or ‘hazardous’ locations

due to the presence of racial and religious minorities [51]. Banks of the time were likely privy to these otherwise secret maps

and in surveys stated that only high-graded neighborhoods would be offered loans [36, 51]. Redlining continued de jure until
the Fair Housing Act in 1968 [1]. Right: Census data on the non-white population in metropolitan Detroit from 1955 [21].

ColoredMNIST Class

Group Beneficial Detrimental

Majoritized 0.350 0.150
Minoritized 0.150 0.350

ColoredSVHN Class

Group Beneficial Detrimental

Majoritized 0.424 0.118
Minoritized 0.183 0.275

CelebA Class

Group Beneficial (Attractive) Detrimental

Majoritized (Not Male) 0.396 0.184
Minoritized 0.117 0.302

Table 3: Class and group demographics of training datasets. Values show the proportion of that group–class category in the

training dataset (and therefore sum to 1). Top: ColoredMNIST and ColoredSVHN the majoritized is group skewed towards the

beneficial class with probability 0.7, and to the detrimental class with probability 0.3. Bottom: CelebA.

et al. [5]. We also adapt MNIST to have binary groups by color-
ing the sample either red or green, where green is treated as the
‘majoritized’ group. We skew the majoritized group to the ben-
eficial class, such that P(𝑆 = majoritized|𝐿 = beneficial) = 0.7,
P(𝑆 = majoritized|𝐿 = detrimental) = 0.3. In this case, both classes
and groups are balanced, as seen in the dataset composition matrix
in Table 3. Ablations for this skew and class and label balances are
in Appendix E.
ColoredSVHN SVHN (Street View House Numbers) is a digit recog-
nition dataset composed of house numbers sourced from Google
Street View [52]. We use 52327 images for training, 20930 for valida-
tion, and another 26032 for testing. For SVHN, we adapt to a binary
task similarly as in MNIST. We binarize the classification task to
determining if a digit is in [0..4] for class 1 or [5..9] for class 0, where

class 1 is the beneficial class as converged to by model collapse.
The class label is swapped with a uniform probability of 5% to add
label noise, as in Arjovsky et al. [5]. Unlike in ColoredMNIST, class
1 is the lower numbers as SVHN converges to small numbers over
the course of model collapse, as seen in Figure 14. This causes class
imbalance; class 1 composes 60.7% of the data. We also add sensitive
groups by converting the images to grayscale and then coloring the
samples either red or green as in ColoredMNIST. The green group
again serves as the majoritized group, and is skewed towards the
beneficial class at rates P(𝑆 = majoritized|𝐿 = beneficial) = 0.7,
and P(𝑆 = majoritized|𝐿 = detrimental) = 0.3, leading to group
imbalance with the majoritized group as 54.3%. A matrix showing
the composition of the ColoredSVHN training distribution is shown
in Table 3.
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Age ≤ 29 > 30

0.541 0.459

Gender Male Female

0.531 0.469

Figure 7: Class (gender) and group (race and binarized age) balance for the FairFace training set.

CelebA CelebA is a dataset of celebrity faces [45].We use an 80/10/10
train/validation/test split of the 202599 cropped and aligned images.
The binary classification task is to predict attractiveness, where
sensitive groups are given from gender (‘Male,’ ‘not Male’). The
group and class balance is 58.% ‘not male’ and 51.3% ‘attractive.’ The
composition of the dataset is shown in Table 3. This dataset is criti-
cized for the inclusion of subjective features such as ‘attractive,’ and
there are many instances of incorrect labeling and annotation [44].
In the other datasets, we chose the beneficial class as the class most
converged to by model collapse. Interestingly, against the class
imbalance, model collapse converges to ‘unattractive,’ which would
benefit the ‘Male’ group more. However, model collapse also con-
verges to ‘Not Male.’ We therefore use ‘attractive’ as the beneficial
class and ‘Not Male’ as the majoritized group.
FairFace FairFace is a face dataset that is balanced by both gen-
der (two values) and race (seven values) [42]. The composition,
including the intersections of age, race, and gender, are shown in
Figure 7. We use an 80/10/10 train/validation/test split of the 108501
images. For binary classification, we predict gender (‘Male,’ ‘not
Male’). For sensitive features, we use 𝑆1 as race, which has seven
potential values (‘White’, ‘Latino Hispanic’, ‘Indian’, ‘East Asian’,
‘Black’, ‘Southeast Asian’, ‘Middle Eastern’), and 𝑆2 as age, which
we binarize as above and below 30 years (see Figure 7 for the class
and group balances). For the group annotation oracles, we have two
separate classifiers corresponding to these features. The beneficial
class is ‘not Male,’ as model collapse increases the representation of
this class, even through they are a minority in the original dataset

class balance. As there are 14 categories created from the intersec-
tion of age and race, we instead track the representations of both
of these attributes alone and the largest and smallest categories
among these over time. Note that these choices for the beneficial
and majoritized annotations are arbitrary for these experiments as
we do not make claims of justice (recall Section 3.4).
Justification of dataset choice. We choose ColoredMNIST and
ColoredSVHN due to their similarity. Both detect and classify digits,
and may be easily adapted into a binary classification and binary
fairness grouping task. They differ in their complexity, SVHN is usu-
ally the harder dataset to learn, and also in their class balance once
binarized (see Table 3). These two datasets, despite their similarities,
show very different points of model collapse and even opposite
behavior when observing the accuracy difference between groups,
as in Figure 5 and Figure 20. CelebA is chosen to represent a more
complex and real-world dataset with well-documented disparities
between the class and grouping we use for its task [44]. On the
other hand, FairFace is chosen for its balance in both race and
gender; alongside other metrics, it is simple to measure sensitive
group intersections.

D.2 Compute and codebase

Experiments were performed on Ubuntu 18.04.6 LTS using 4 Intel
Xeon CPU cores per GPU. We use the following GPUs per random
seed: for ColoredMNIST we use 1 NVIDIA T4 GPU with 16 giga-
bytes of memory; for ColoredSVHN we use 2 NVIDIA RTX6000s
with 40 gigabytes each; for CelebA we use 2 NVIDIA A100s with
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40 gigabytes each (split GPUs); for FairFace we use 2 NVIDIA
A40s with 48 gigabytes each. Our codebase is in Python 3.9 with
PyTorch and fairness metrics from Fairlearn [8]. Existing code
was adapted for our experiments: VAE models from Subramanian
[65], ColoredMNIST from Arjovsky et al. [5], SVHN with fairness
from Kenfack et al. [40], and ResNets from Idelbayev [35].

D.3 Models

The architectures and hyperparameters differ based on dataset. The
performance of the annotator models 𝐴𝐿 and 𝐴𝑆 are shown in
Table 4. All generative models were trained with ADAM (weight
decal 1 × 10−5), and all classifiers with SGD and cross-entropy loss.

ColoredMNIST

• Classifiers and annotators are 6 layer CNNs with 2 convo-
lution layers and ReLU activations. Learning rate 0.1, batch
size 256, for 30 epochs.

• Generators (VAEs) are mirrored encoder and decoder CNNs.
Each is 2 convolution layers with ReLU activations. Uses BCE
Loss with KL-divergence term, a latent space dimension of
20, and a variational beta of 1. Learning rate 0.001, batch size
256, for 30 epochs.

ColoredSVHN

• Classifiers and annotators are 32-layer ResNets adapted from Idel-
bayev [35]. Learning rate 0.001, batch size 32, for 30 epochs.

• Generators are the deep convolutional VAE adapted from Su-
jit [66], using MSE loss with KL-divergence term, a latent
space dimension of 32, and a variational beta of 1. Learning
rate 0.0005, batch size 128, for 30 epochs.

CelebA

• Classifiers and annotators are 110-layer ResNets adapted
from [35]. Learning rate 0.001, batch size 128, for 15 epochs.

• Generator VAEs are composed of a 5-layer CNN encoder
and 6-layer upsampling CNN decoder with LeakyReLU ac-
tivations. Loss is BCE with KL-divergence term, a latent
space dimension of 500, with a variational beta of 5 × 10−6.
Learning rate 0.005, batch size 64, for 30 epochs.

FairFace

• Classifiers and annotators are pretrained 50-layer ResNets
adapted from [35]. Pretraining is on Imagenet, using the
version 1 weights from PyTorch. Learning rate 0.001, batch
size 256, for 30 epochs.

• Generator VAEs are composed of a 5-layer CNN encoder
and 6-layer upsampling CNN decoder with LeakyReLU ac-
tivations. Loss is MSE with KL-divergence term, a latent
space dimension of 500, with a variational beta of 1 × 10−6.
Learning rate 0.0001, batch size 256, for 50 epochs.

D.4 STAR Algorithm

Algorithm 1 shows an example of STAR for binary group and binary
sensitive attributes.

Algorithm 1: Training with algorithmic reparation
batches.
Input: Sample-providing generator 𝐺 , batch size 𝑏,

reparation budget 𝑟 , label annotator 𝐶 (either 𝐶𝑖−1
or 𝐴𝐿), sensitive attribute annotator 𝐴𝑆 .

Output: Reparation batch

1: for batch in number batches do
2: Ideal = [𝑏/4, 𝑏/4, 𝑏/4, 𝑏/4] ⊲ Ideal category sizes

3: Batch = [𝑏𝐿=0,𝑆=0, 𝑏𝐿=0,𝑆=1, 𝑏𝐿=1,𝑆=0, 𝑏𝐿=1,𝑆=1] = [0, 0, 0, 0]
⊲ Initialize batch categories

4: Temporary batch = Sample 𝑏 + 𝑟 times from 𝐺 ⊲ Initial batch

from uniform sampling

5: Annotate temporary batch using 𝐶 and 𝐴𝑆

6: Categorize batch depending on 𝐿 and 𝑆 values from
annotations

7: Populate Batch until Ideal𝑖 =Batch𝑖
8: To_resample =sum(Ideal − Batch) ⊲ Get amount to sample to fill

deficient categories

9: Batch.append(Sample To_resample times from 𝐺 , annotate
with 𝐶 and 𝐴𝑆 ) ⊲ Refill batch

10: Update model on Batch.
11: return Batch

E APPENDIX: ABLATION STUDIES

In this appendix we provide experiments to demonstrate the effects
of MIDS over several ablated variables: the sensitive group imbal-
ance, class imbalance, and amount of synthetic training data. We
provide results for both ColoredMNIST and ColoredSVHN.

E.1 Class and group imbalance

In these studies we varied the class balance or group balance. The
study was carried out on ColoredMNISTwith 5 seeds in the sequen-
tial generator and classifier setting. For group imbalance, the groups
were equally likely to belong to the beneficial class, though their
populations were varied. For class imbalance, the majoritized group
was skewed towards the beneficial class in the same manner as
discussed in Appendix D.1, and the class population varied. For this
task, the variations in balance did not strongly effect the generated
population or downstream classifier performance. The generator
class and group balances are shown for varied group balance in
Figure 8 and for varied class balance in Figure 9. The results in Sec-
tion 4.2.2 use datasets with a mixture of class and group imbalance
which better elucidate the effects of MIDS.

E.2 Amount of synthetic data

In this study we varied the amount of original training data (drawn
randomly from the training set) in each batch for training genera-
tors in the sequential generator and classifier setting. These exper-
iments were carried out on ColoredMNIST for 5 seeds. There is a
substantially higher accuracy cost and accuracy disparity between
groups, as shown in Figure 10. Note that evenwith 0% synthetic data
(i.e., training each generator from the original training set) there is
still an accuracy loss over time due to the effects of the sequential
classifiers. While the group balance is not hugely effected (as in
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Table 4: Performances (with standard deviations) of the label and sensitive attribute annotator models 𝐴𝐿 and 𝐴𝑆 . Performances

are shown for each dataset. The performance of 𝐴𝑆 is high for ColoredMNIST and ColoredSVHN as determining sample color is an

easy task. The fairness metrics for 𝐴𝑆 should be close to 1, as these models should assign class based on the sensitive attribute

alone. Reported accuracies are all macro-averaged. Note the high accuracy disparity for FairFace 𝐴𝑆1 , although racial groups

are roughly balanced, we observed far higher accuracy for ‘white’ than any other group, perhaps due to simplicity bias [7].

ColoredMNIST ColoredSVHN CelebA

𝐴𝐿 𝐴𝑆 𝐴𝐿 𝐴𝑆 𝐴𝐿 𝐴𝑆

Accuracy 0.928 ± 0.003 1 ± 0 0.849 ± 0.080 1 ± 0 0.816 ± 0.005 0.976 ± 0.002
Δ Accuracy 0.009 ± 0.005 0 ± 0 0.052 ± 0.111 0 ± 0 0.029 ± 0.008 0.015 ± 0.008
Δ DP 0.367 ± 0.008 1 ± 0 0.151 ± 0.193 1 ± 0 0.440 ± 0.022 0.951 ± 0.004
Δ EOdds 0.032 ± 0.022 1 ± 0 0.163 ± 0.240 1 ± 0 0.271 ± 0.037 0.971 ± 0.008
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Figure 8: ColoredMNIST class and group balance while varying the group balance in SeqGenSeqClass.
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Figure 9: ColoredMNIST class and group balance while varying the class balance in SeqGenSeqClass.

the other ColoredMNIST results in Section 4.2), the class balance
skews towards the beneficial class over the generations, fueling an
increase of equalized odds difference with more synthetic data, see
Figure 10.

In practice, there may be several generations of synthetic data
present when drawing from a corpus of polluted data. For example,
when training 𝐺2, samples from𝐺0 and𝐺1 might also be present.

In this case, the compounded artefacts of model collapse will be
lesser in these early generations. In this study, the synthetic data is
only pooled from the most recent generator, and so these results
may overstate the effect of model collapse in the aforementioned
case.
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Figure 10: ColoredMNIST metrics while varying the amount of synthetic data in SeqGenSeqClass. Top: beneficial class balance
and group balance. Center: accuracy, and accuracy difference between groups. Bottom: DP and EOdds difference. These generally

show worse performance and fairness with more synthetic data, with larger variances.

FairFace

𝐴𝐿 𝐴𝑆1 𝐴𝑆2

Accuracy 0.884 ± 0.013 0.617 ± 0.010 0.789 ± 0.017
Δ Accuracy 0.104 ± 0.011 0.428 ± 0.088 0.251 ± 0.094
Δ DP 0.360 ± 0.023 0.443 ± 0.057 0.683 ± 0.031
Δ EOdds 0.308 ± 0.014 0.438 ± 0.139 0.254 ± 0.075

E.3 Sequential versus non-sequential classifiers

in SeqGenSeqClass and

SeqGenNonSeqClass

In this study we demonstrate the impact of sequential classifiers in
SeqGenSeqClass. These experimentswere conducted for ColoredMNIST
and ColoredSVHN for 25 and 10 seeds, respectively.
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The non-sequential classifiers are more sensitive to changes in
the distribution, as seen in the accuracy over generations and se-
lection rate graphs in Figure 11 and Figure 12 for ColoredMNIST
and ColoredSVHN, respectively. This is consistent with the intu-
ition that the sequential classifiers are ‘adapting’ their mapping
of X → L to changes in X caused by model collapse. This allows
the sequential classifiers to experience more generations of utility
compared to the non-sequential classifiers, as seen in their higher
accuracies. As model collapse causes strong imbalance towards the
beneficial class (as determined by 𝐴𝐿), the non-sequential classi-
fiers eventually only predict the positive label, decreasing DP and
EOdds unfairness as both groups receive the same predictions and
error rates (in ColoredMNIST, EOdds difference drops to 0 as error
rates from only giving the positive prediction are identical due to
group and class balance). Meanwhile, the sequential classifiers for
ColoredMNIST andColoredSVHN instead evolve to only give a ben-
eficial prediction to a majoritized sample, increasing unfairnesses
(see Section 4.2.2).

Note that the achievement of higher fairness in the non-sequential
classifier case indicates higher fairness with respect to the original
distribution. This may be undesirable in some cases, particularly
those applicable to algorithmic reparation, which specifically notes
that equality of of model outputs to base rates in a dataset does
not guarantee equity. This is especially true if the dataset is col-
lected with any biases, including compounding Intersectional biases
which these experiments do not inform upon [18].

F MODEL COLLAPSE IN GENERATORS

We show the losseswith respect to the parent generator loss (L(𝐺𝑖 ,𝐺𝑖−1))
over generations as they undergo model collapse and while subject
to gen-STAR (which causes a minor adjustment). Intuition would
suggest that the distribution collapses to be increasingly easy-to-
learn, such that successive generators inherit simplified versions
(due to finite sampling of their parents) of the problem and so per-
form better. We observe this effect with the smoothly decreasing
loss curves of ColoredSVHN and FairFace in Figure 13.

However, for both ColoredMNIST and CelebA, we see the exact
opposite curve. The child generators are faced with an increasingly
hard-to-learn distribution. We hypothesize that this may be due to
one of two causes. 1) We do not perform hyper-parameter tuning
for the generators at each generation, and perhaps ColoredMNIST
and CelebA experience hyperparameter instability. 2) Perhaps this
is simply a quirk of model collapse, finite sampling of heavy-tailed
distributions may lead to enough bias and noise to significantly
complicate the learning task. We propose to investigate the stability
of model collapse in future work.

We also provide some examples generated by generators under-
going model collapse in Figure 14.

G ADDITIONAL RESULTS

G.1 SeqClass Results

We provide full suites of figures for ColoredMNIST, ColoredSVHN,
CelebA, and FairFace on SeqClass. See Figures 3, 15, 16 and 17,
respectively.

G.1.1 cla-STAR Batch Balances. We report the composition of the
batches used when training the classifiers with and without cla-
STAR in the SeqClass setting in Figure 18. These figures show the
strata cla-STAR uses to train classifiers, the resulting classifier
strata, and the strata of classifiers trainedwithout any reparation.
Usually, the cla-STAR strata are the most balanced, followed by
the strata of classifiers that received reparation. In FairFace,
the batches are mostly older white males, and sometimes younger
white non-males; the least populated categories are usually younger
people from the Indian, South East Asian, and Hispanic/Latino
races.

G.2 SeqGenSeqClass Results

We provide full suites of figures for ColoredMNIST, ColoredSVHN,
CelebA, and FairFace on SeqGenSeqClass. See Figures 19, 4, 5
and 20, respectively.

G.2.1 STAR Batch Balances. We compare the composition of the
batches used when training the classifiers with and without STAR
in the SeqGenSeqClass setting. For ColoredMNIST, see Figure 21,
ColoredSVHN, see Figure 22, and FairFace, see Figure 23. These
figures show the strata STAR uses to train models, the resulting
model strata, and the strata of models trained without reparation.
In FairFace, the batches are mostly older white males, and some-
times younger white non-males; the least populated categories are
usually people from the Indian, Middle Eastern, South East Asian,
Black, and Hispanic/Latino races.

H RELATIVE PERFORMANCES OF MIDS

If the model trainer is unaware of MIDS occurring over time, they
may see only the relative performances (i.e., performance of genera-
tion 𝑖 measured w.r.t. generation 𝑖 − 1) of each generation compared
to its prior generation. In this case, when each generation of mod-
els is trained to have relatively high performance, it may look as
though the models are performing well, though not when compared
to the original data distribution. This may lead to overstating the
model’s performance, which for the FML metrics results in fair-
washing the model due to inadequate validation and testing [3]. For
ColoredMNIST and ColoredSVHN, we report results on the testing
set for the ‘actual’ results (classifiers measured against the testing
set) and for the relative results (classifiers measured against the pre-
vious generation’s classifier predictions on the testing set inputs).
We choose not to present these two graphs on the same plots to
prevent confusion as they measure two different properties.

For reference, ColoredMNIST plots are in Figure 24 for SeqClass
and Figure 26 for SeqGenSeqClass. ColoredSVHN plots are in Fig-
ure 25 for SeqClass and Figure 27 for SeqGenSeqClass.

These results also demonstrate how even when training each
new classifier with a small tolerance for unfairness can accrue to
high unfairness. For example, consider the relative equalized odds
results in Figure 24 which on average stay below 0.06 for each
generation accrue to over 0.2.

Figure 26 shows the point of model collapse in the SeqGenSe-
qClass setting in ColoredMNIST (collapse by generation 15) can
be seen in the relative accuracy plot and in the increase in vari-
ance in the other relative plots. Similarly as found in the SeqClass
plots discussed above, low relative equalized odds difference and
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Figure 11: ColoredMNIST results for sequential versus non-sequential classifiers in SeqGenSeqClass and SeqGenNonSeqClass.

Top: accuracy and accuracy difference between groups. Bottom: demographic parity difference, selection rate, and equalized

odds difference.
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Figure 12: ColoredSVHN results for sequential versus non-sequential classifiers in SeqGenSeqClass and SeqGenNonSeqClass.

Top: accuracy and accuracy difference between groups. Bottom: demographic parity difference, selection rate, and equalized

odds difference.
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Figure 13: Top row: ColoredMNIST, Second row: ColoredSVHN, Third row: CelebA, Bottom row: FairFace. Left: model collapse losses,

Right: model collapse with gen-STAR losses.
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Figure 14: Samples from generators undergoing model collapse in SeqGenSeqClass for ColoredMNIST (top left), ColoredSVHN
(top right), CelebA (bottom left), and FairFace (bottom right).

a relatively balanced minoritized group under-report the actual
unfairness and imbalance.

I CO-OCCURING MIDS

In this section we present two sets of experiments to showcase how
disparity amplification can co-occur with performative prediction,
and also with model collapse. We evaluate these experiments for
ColoredMNIST, where Figure 28 shows the SeqClass case, Figure 29
shows the SeqGenSeqClass case, and Figure 30 shows the strata
for models trained in both settings.

For the SeqClass setting, we train each classifier in the lineage
from a 50/50 mixture of data from𝐺0 and from the original training
set. In the SeqGenSeqClass setting, the generators are trained from
this data mixture, though the downstream classifiers are trained
entirely from their corresponding generator’s synthetic outputs.
The inclusion of human-generated data moderates the degree of
model collapse to showcase other effects.

For disparity amplification to co-occur, we use stratified sam-
pling on the original training set portion of the data mixture, where
the strata are determined by the classifier’s label distribution over
the groups. Note that this is not disparity amplification as discussed
in Hashimoto et al. [31], which is due to performance failures, but
instead due to label and group representation. This approximates
the effects of the classifiers on the human-generated data distri-
bution, and shows how this effects feeds into the other MIDS. We
conduct additional experiments to showcase the effects of AR at

the classifiers or generators, in isolation from and in combination
with the disparity amplification sampling strategy.

Note that at the limit where there is no synthetic data, we recover
the promising technical question of how to create a biased sampling
mechanism that begets fairness in a downstream model trained
from a generator.
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Figure 15: ColoredSVHN results for SeqClass on the evaluation set. Top: accuracy, accuracy difference, and demographic parity

difference. We observe lower fairness differences with cla-STAR, with a cost of more inaccuracy. Bottom: equalized odds

difference, the strata created during cla-STAR, and the KL-divergence between cla-STAR fairness ideal and classifier strata.

The KL-Divergence decreases with cla-STAR as the batches become more evenly balanced across group and class.
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Figure 16: CelebA results for SeqClass on the evaluation set. Top: accuracy, accuracy difference, and demographic parity

difference. Better fairness (lower fairness difference) and higher accuracy is achieved with cla-STAR. Bottom: equalized odds

difference and the strata created during cla-STAR. The batches become more evenly balanced across group and class.
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Figure 17: FairFace results for SeqClass on the evaluation set. Top: accuracy, accuracy difference, and demographic parity

difference. We observe lower fairness differences with cla-STAR, with a cost of more inaccuracy. Bottom: equalized odds

difference, and the KL-divergence between cla-STAR fairness ideal and classifier strata. We do not report the strata formed

by cla-STAR as there are 28 categories; instead, refer to the strata of the classifiers in Appendix G.1.1.
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Figure 18: strata balances for datasets in SeqClass. Left: The strata of classifiers without reparation. Center: The strata
resulting from classifiers with cla-STAR. Right: The strata used to train classifiers with cla-STAR. Top: ColoredMNIST. Second
row: ColoredSVHN. Bottom: FairFace, instead of showing all 28 categories, we choose the two categories per label that are most

frequently the largest and smallest portion of the batch across all generations.
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Figure 19: ColoredMNIST results for SeqGenSeqClass. Top: shows accuracy, accuracy difference, demographic parity difference,

and equalized odds difference. For the latter three, lower values are better. Bottom: KL-Divergence between fairness ideal and

classifiers, and between fairness ideal and generator strata, the class balance, and group balance. Shading shows collapsed

generations. We observe that gen-STAR leads to better representation and fairness, though with a cost to the accuracy metrics.

Recall that for ColoredMNIST, we find metric tension between EOdds, accuracy difference, and the STAR fairness ideal.
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Figure 20: FairFace results for SeqGenSeqClass. Top: shows accuracy, accuracy difference, demographic parity difference,

and equalized odds difference. For the latter three, lower values are better. Center: KL-Divergence between fairness ideal

and classifiers, and between fairness ideal and generator strata, and the class balance. Bottom: shows the group balance for

sensitive attributes race and age by reporting the plurality race and age at each generation. Shading shows collapsed generations.

For this dataset, the annotator for race (𝐴𝑆1 ) as roughly 45% utility on all groups aside from ‘white,’ where it is 80% accurate.

This is despite the near-perfect balance between racial groups. This effects our annotations for race, which, alongside with a

similarly biased lineage of generators leads to a lack of samples from non-white races. This thwarts STAR, resulting in similar

unfairnesses as results without reparation.
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Figure 21: ColoredMNIST strata balances for datasets in the SeqGenSeqClass setting. Top: strata resulting from classifiers

without reparation, strata resulting from classifiers with cla-STAR, and the strata used to train classifiers with cla-STAR.

Bottom: strata resulting from generators without reparation, strata resulting from generators with gen-STAR, and the

strata used to train generators with gen-STAR. We see that gen-STAR accomplishes a more balanced strata than cla-STAR,

but ultimately both are unable to get perfect balance due to model collapse casuing class imbalance.
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Figure 22: ColoredSVHN strata balances for datasets in the SeqGenSeqClass setting. Top: strata resulting from classifiers

without reparation, strata resulting from classifiers with cla-STAR, and the strata used to train classifiers with cla-STAR.

Bottom: strata resulting from generators without reparation, strata resulting from generators with gen-STAR, and the

strata used to train generators with gen-STAR. We can see that gen-STAR results in slightly more balanced representation

than does cla-STAR.
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Figure 23: FairFace strata balances for datasets in the SeqGenSeqClass setting. Top: strata resulting from classifiers without

reparation, strata resulting from classifiers with cla-STAR, and the strata used to train classifiers with cla-STAR. Bottom:
strata resulting from generators without reparation, strata resulting from generators with gen-STAR, and the strata used

to train generators with gen-STAR. Neither AR simulation is able to achieve balance due to large racial disparities.
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Figure 24: Accuracy, demographic parity difference, and equalized odds difference in SeqClass on ColoredMNIST. Higher

accuracy is better, but for the FML metrics higher difference is worse. Left: Performances on the test set. Right: Relative
performances between models. The model quality of accuracy and equalized odds in the relative performances is far higher

than the actual results. In equalized odds, this shows that even if small unfairnesses were tolerated over while training each

classifier, the result over time accrues high unfairness compared to the original testing set.
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Figure 25: Accuracy, demographic parity difference, and equalized odds difference in SeqClass on ColoredSVHN. Higher accuracy

is better, but for the FML metrics higher difference is worse. Left: Results on the test set. Right: Relative performances between

models.
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Figure 26: Accuracy, demographic parity difference, equalized odds difference, and rates of the beneficial class and minoritized

group in SeqGenSeqClass on ColoredMNIST. Higher accuracy is better, but for the FML metrics higher difference is worse. Left:
Results on the test set. Right: Relative performances between models.
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Figure 27: Accuracy, demographic parity difference, equalized odds difference, and rates of the beneficial class and minoritized

group in SeqGenSeqClass on ColoredSVHN. Higher accuracy is better, but for the FML metrics higher difference is worse. Left:
Results on the test set. Right: Relative performances between models.
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Figure 28: ColoredMNIST results for SeqClass when training with half synthetic and half non-synthetic data. Plots show

accuracy, accuracy difference, demographic parity difference, and equalized odds difference. Non-synthetic data is sampled

according to the strata of the prior classifier to model disparity amplification. cla-STAR leads to more DP and EOdds fairness

even while disparity amplification and performative prediction occur.
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Figure 29: Training on a mixture of synthetic and non-synthetic data, where performative prediction, model collapse, and

disparity amplification can co-occur, for ColoredMNIST on SeqGenSeqClass. Top: accuracy, accuracy difference, demographic

parity difference, and equalized odds difference. Bottom: KL-Divergence between the STAR fairness ideal and the strata of

classifiers and generators, the group balance, and the label balance.
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Figure 30: Left: The strata of classifiers without reparation. Center: The strata resulting from models with STAR. Right: The
strata used to train models with STAR. Top: ColoredMNIST in SeqClass with a mixture of synthetic and non-synthetic data.

Second row: ColoredMNIST in SeqGenSeqClass with a mixture of synthetic and non-synthetic data, reporting strata of the

classifiers and using cla-STAR. Bottom: ColoredMNIST in SeqGenSeqClass with a mixture of synthetic and non-synthetic data,

reporting strata of the generators and using gen-STAR.
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