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ABSTRACT
Deploying an algorithmically informed policy is a significant in-

tervention in society. Prominent methods for algorithmic fairness

focus on the distribution of predictions at the time of training, rather

than the distribution of social goods that arises after deploying the

algorithm in a specific social context. However, requiring a ‘fair’

distribution of predictions may undermine efforts at establishing a

fair distribution of social goods. First, we argue that addressing this

problem requires a notion of prospective fairness that anticipates

the change in the distribution of social goods after deployment.

Second, we provide formal conditions under which this change

is identified from pre-deployment data. That requires accounting

for different kinds of performative effects. Here, we focus on the

way predictions change policy decisions and, consequently, the

causally downstream distribution of social goods. Throughout, we

are guided by an application from public administration: the use

of algorithms to predict who among the recently unemployed will

remain unemployed in the long term and to target them with labor

market programs. Third, using administrative data from the Swiss

public employment service, we simulate how such algorithmically

informed policies would affect gender inequalities in long-term

unemployment. When risk predictions are required to be ‘fair’ ac-

cording to statistical parity and equality of opportunity, targeting

decisions are less effective, undermining efforts to both lower over-

all levels of long-term unemployment and to close the gender gap

in long-term unemployment.
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1 A FUNDAMENTAL QUESTION FOR FAIR
MACHINE LEARNING

Research in algorithmic fairness is often motivated by the con-

cerns that machine learning algorithms will reproduce or even

exacerbate structural inequalities reflected in their training data

[62, 76]. Indeed, whether an algorithm exacerbates an existing so-

cial inequality is emerging as a central compliance criterion in

EU non-discrimination law [79]. However, many methodological

solutions developed by researchers in algorithmic fairness are, sur-

prisingly, ill-suited for addressing this fundamental question. At

some level, the questions of algorithmic fairness are ill-posed: often,

it does not make sense to talk about the fairness of a predictor

independent of the policy context in which it is deployed. It is our

policies and their effects that are just or unjust; ‘fair’ predictors

can both support unjust policies and undermine just policy. For

example, public employment services use predictions of the risk

of long-term unemployment (LTU) to decide who is given access

to labor market programs. Policy doves target those at the highest

risk with training programs, while hawks, considering those at the

highest risk to be hopeless cases, withhold training on grounds

of ‘efficiency’. The social consequences of prediction errors differ

significantly depending on how these predictions will be used. It

would be surprising if we could say whether a predictor is fair

independent of this policy context. Therefore, rather than focusing

on the distribution of predictions at the time of training, we focus

on the distribution of social goods induced by deploying a predictive

algorithm in a policy context. Our point is not that formal fairness

constraints on predictions would always make things worse, but

rather that part of due diligence is forecasting their effects on out-

comes. In our case study, we focus on the gender gap in long-term

unemployment as one such outcome.

The field of algorithmic fairness has produced many mathe-

matical demonstrations of necessary trade-offs between different

notions of ‘fairness’, and between ’fair’ and accurate prediction

[14, 20, 46, 64]. This lends the field an air of tragedy and makes the

pursuit of fairness seem fundamentally quixotic. But, while mathe-

matical trade-offs exist between predictive accuracy and the ‘fair’

distribution of predictions, predictive accuracy does not necessarily

https://creativecommons.org/licenses/by-nc-sa/4.0/
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trade-off against the fair distribution of social goods [23, 34, 75].

Indeed, we should expect that accurate predictions help us to effec-

tively implement policy aimed at ameliorating unjust inequalities.

In our empirical case study, we demonstrate that (1) requiring risk

predictions to be ‘fair’ in terms of statistical parity and equal op-

portunity undermines efforts to lower overall levels of long-term

unemployment and to close the gender gap in long-term unemploy-

ment, (2) that the hawkish policy of withholding training programs

from those at the highest risk is no more efficient than the dovish

policy of prioritizing those with the highest risk, and (3) that accu-

rate prediction of counterfactual treatment outcomes, rather than

risk scores, enables individualized targeting and therefore, a better

and more equitable distribution of social goods.

Of course, this shift in focus poses methodological challenges.

To anticipate the causal effects of embedding a predictive algorithm

into a social process, we must make some effort to, first, identify

the contextually relevant inequalities in the distribution of social

goods; second, understand the policy processes and decisions that

partially give rise to, and could conceivably ameliorate these in-

equalities; and third, model how algorithmic predictions might

change these processes and, therefore, the distribution of social

goods. Standard algorithmic fairness methods neglect every part of

this process [34, 74]. All of these methods impose some constraints

on predictions that hold in the (retrospective) training distribution.

By focusing on the distribution of predictions at the time of train-

ing, they obscure substantive inequalities in real-world quantities

and neglect the changes in decision-making that arise from the

deployment of predictive algorithms. Consequently, these methods

fail to anticipate the effects of deploying these algorithms on the

distribution of social goods. Here, we address these shortcomings

in the following way:

• We reconceptualize algorithmic fairness questions as policy

problems: Prospective fairness requires efforts to anticipate

the impact of deploying an algorithmically informed policy

on inequality in social goods.

• We state formal conditions under which the effect of deploy-

ing an algorithmically informed policy on context-relevant

inequalities is identified from pre-deployment data.

• We illustrate our approach with an extensive case study on

the statistical profiling of registered unemployed using a rich

administrative dataset from Switzerland. We study the likely

effects of two algorithmic policy proposals on the gender

gap in the rates of long-term unemployment.

Our case study is based on administrative data from the Swiss

Active Labor Market Policy Evaluation Dataset [57]. The original

sample, collected in 2003, contains roughly one hundred thousand

observations of registered unemployed aged 24 to 55. Although

most unemployed were not assigned to any program, we observe

outcomes for six labor market programs. The Swiss labor market,

as outlined in Section 3, is characterized by an overall unemploy-

ment rate of about 4%, a high rate of long-term unemployment

(LTU), and a persistent gender reemployment gap (Figure 2). In

the administrative data, the LTU gender gap is at 3.9%, with an

LTU rate of 43.6% among women and 39.7% among men. The gap

between Swiss citizens and non-citizens is at 15.8%, with a rate of

35.7% among Swiss citizens and 51.5% among non-citizens.

The plan of the paper is as follows: first, we argue for prospec-

tive fairness as a conceptual framework and survey related work;

section 3 introduces two recently proposed algorithmic policies

intended to support public employment agencies in reducing long-

term unemployment; we argue that, in this context, the gender gap

in long-term unemployment is a simple and intuitivemeasure of sys-

temic inequality; section 4 formalizes conditions under which the

causal effect of deploying an algorithmically informed policy on a

measure of systematic inequality is identified from pre-deployment

data; in section 5 we illustrate the method with an extended case

study, simulating two proposed profiling policies and their effects

on the gender reemployment gap. Section 6 concludes and outlines

directions for future work.

2 FROM RETROSPECTIVE TO PROSPECTIVE
FAIRNESS

In paradigmatic risk-assessment applications, machine learners

are concerned with learning a function that takes as input some

features 𝑋 and a sensitive attribute 𝐴 and outputs a score 𝑅 which

is valuable for predicting an outcome 𝑌 . The algorithmic score 𝑅

is meant to inform some important decision 𝐷 that, typically, is

causally relevant for the outcome𝑌 . In the application that concerns

us in this paper, features such as the education and employment

history (𝑋 ) and gender (𝐴) of a recently unemployed person are

used to compute a risk score (𝑅) of long-term unemployment (𝑌 ) .
This risk score 𝑅 is meant to support a caseworker at a public

employment agency in making a plan (𝐷) about how to re-enter

employment. This plan may be as simple as requiring the client to

apply to some minimum number of jobs every month or referring

them to one of a variety of job-training programs.

Formal fairness proposals require that some property is satis-

fied by either the joint distribution 𝑃 (𝐴,𝑋, 𝑅, 𝐷,𝑌 ) or the causal
structure𝐺 giving rise to it. Individual fairness proposals introduce

a similarity metric𝑀 on (𝐴,𝑋 ) and suggest that similar individu-

als should have similar risk scores. In all these cases, the relevant

fairness property is a function 𝜑 (𝑃,𝐺,𝑀). Group-based fairness

[8] ignores all but the first parameter; causal fairness [44, 52] ig-

nores the last; and individual fairness [30] ignores the second. All

these proposals agree that fairness is a function of the distribution

(and perhaps the causal structure) at the time when the predic-

tion algorithm has been trained, but before it has been deployed.

We claim that addressing this fundamental question of fair ma-

chine learning requires comparing the status quo before deploy-

ment with the situation likely to arise after deployment. In other

words: prospective fairness is a matter of anticipating the change

from 𝜑 (𝑃pre, 𝐷pre, 𝑀) to 𝜑 (𝑃post, 𝐷post, 𝑀). We do not claim that

there is a single correct inequality measure 𝜑 (·), nor even that there

is an all-things-considered way of trading off different candidates,

only that we must make a good faith effort to anticipate changes in

the relevant measures of inequality.

As shown in Figure 1, deploying a decision support algorithm

introduces a causal path from the predicted risk scores 𝑅 to the

decisions 𝐷 . Importantly, the outcome variable 𝑌 is causally down-

stream of this intervention. The addition of a causal path can be

modeled as a structural intervention [17, 63].
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(a) Causal structure 𝐺pre before
deploying an algorithmically in-
formed policy.

(b) Causal structure 𝐺post after
deploying an algorithmically in-
formed policy.

Figure 1: The left hand side shows the pre-deployment causal
graph𝐺pre inducing a joint probability distribution 𝑃pre over
sensitive attributes 𝐴, features 𝑋 , risk score 𝑅, decision 𝐷 ,
and outcome variable 𝑌 . The risk score 𝑅 is the output of a
learned function from 𝐴 and 𝑋 . Since this graph represents
the situation after training, but before deployment, there
is no arrow from the risk score 𝑅 to the decision 𝐷 . Retro-
spective fairness formulates constraints 𝜑 (𝐺pre, 𝑃pre, 𝑀) on
the pre-deployment arrangement alone. The right-hand side
represents the situation after the algorithmically informed
policy has been deployed, with predictions 𝑅 now affecting
decisions 𝐷 . Prospective fairness requires comparing the
consequences of intervening on the structure of 𝐺pre and
moving to𝐺post. In other words, comparing 𝜑 (𝐺pre, 𝑃pre, 𝑀)
with 𝜑 (𝐺post, 𝑃post, 𝑀).

From a dynamical perspective, static and retrospective fairness

proposals go wrong in two ways. In the worst case, they are self-

undermining. Mishler and Dalmasso [65] show that meeting the

fairness notions of sufficiency (𝑌 ⊥ 𝐴 | 𝑅) or separation (𝑅 ⊥ 𝐴 | 𝑌 )
at the time of training necessitates that they will be violated after

deployment. In terms of sufficiency, where ⊥ denotes (conditional)

statistical independence, we have that:

𝑌 ⊥pre 𝐴 | 𝑅 entails 𝑌 ̸⊥post 𝐴 | 𝑅.

Group-based notions of fairness like sufficiency and separation that

feature the outcome fall victim to performativity: the tendency of

an algorithmic policy intervention to shift the distribution away

from the one on which it was trained [70]. But as Mishler and

Dalmasso [65] show, they are undermined not by an unintended

and unforeseen performative effect, but by the intended, and foreseen

shift in distribution induced by algorithmic support, i.e.:

𝑃pre (𝐷 | 𝐴,𝑋, 𝑅) ≠ 𝑃post (𝐷 | 𝐴,𝑋, 𝑅).

In other words, they are undermined by the fact that algorithmic

support changes decision-making, which, presumably, is the point

of algorithmic support in the first place. Since the distribution of the

outcome 𝑌 will change after deployment, Berk et al. [11] advises

against group-basedmetrics involving it, opting for statistical parity

(𝑅 ⊥ 𝐴) instead.

It is not likely that individual and causal fairness proposals are

so drastically self-undermining. So long as the similarity metric

stays constant, an algorithm that treats similar people similarly

will continue to do so after deployment. If, as Kilbertus et al. [44]

suggest, causal fairness is a matter of making sure that all paths

from the sensitive attribute 𝐴 to the prediction 𝑅 are appropriately

mediated, then causal fairness is safe from performative effects so

long as the qualitative causal structure upstream of the prediction

𝑅 remains constant.

But even if causal and individual fairness proposals are not so

dramatically self-undermining, they are simply not probative of

whether the algorithm reproduces or exacerbates inequalities in the

distribution of social goods, since these are causally downstream of

algorithmic predictions. In particular, it is customary to ignore the

real-world dependence between 𝐴 and 𝑌 induced by the social sta-

tus quo as the target of an intervention, since nothing can be done

about it at the time of training. Instead, fairness researchers focused

on whether the risk score itself is fair, whether in the group, indi-

vidual, or causal sense. However, from the dynamical perspective,

it is perfectly reasonable to ask whether the proposed algorith-

mic policy will exacerbate the systemic inequality reflected in the

dependence between gender (𝐴) and long-term unemployment

(𝑌 ). Indeed, simple dynamical models and simulations suggest that

algorithms meeting static fairness notions at training may in the

long run exacerbate inequalities in outcomes [61, 81]. We derive

formal conditions under which the effect of deploying an algo-

rithmic policy on the joint distribution of (𝑌,𝐴) is identified from

pre-deployment data and provide a realistic case study analyzing

the effects of algorithmic policies in public employment on the

gender gap in long-term unemployment.

2.1 Related Work
In machine learning, the fairness debate began with risk assess-

ment tools for decision- and policy-making [5, 20, 46, 66]. To this

day, many standard case studies e.g., lending, school admissions,

and pretrial detention, fall within this scope. See Berk et al. [10]

for a review on fairness in risk assessment and Borsboom et al.

[14] and Hutchinson and Mitchell [39] for predecessors in psycho-

metrics. Since then, researchers have stressed the importance of

explicitly differentiating policy decisions from the risk predictions

that inform them [7, 9, 51, 60, 67, 75] and of studying machine

learning algorithms in their socio-technological contexts [35, 74].

We incorporate both of these insights into the present work.

A central negative result emerging from recent fairness literature

highlights the dynamically self-undermining nature of group-based

fairness constraints that include the outcome variable 𝑌 . Mishler

and Dalmasso [65] show that a classifier that is formally fair in the

training distribution will violate the respective fairness constraint

in the post-deployment distribution. Coston et al. [24] suggests

that the group-based fairness notion be formulated instead in terms

of the potential outcomes 𝑌𝑑 . These alternative proposals are no

longer self-undermining, but they are still not testing the policy’s

effect on inequality in the distribution of social goods. This paper

builds upon the negative results of Berk et al. [11] and Mishler

and Dalmasso [65]: we show how the post-interventional effect

of an algorithmically informed policy on the distribution of social
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goods can be identified from a combination of (1) observational,

pre-deployment data and (2) models of the policy proposal.

An emerging literature on long-term fairness focuses on the

dynamic evolution of systems under sequential-decision making,

static fairness constraints, and feedback loops; see Zhang and Liu

[81] for a survey. Ensign et al. [31] consider predictive feedback

loops from selective data collection in predictive policing. Hu and

Chen [38] propose short-term interventions in the labor market to

achieve long-term objectives. Using two-stage models, Liu et al. [61]

and Kannan et al. [41] show that retrospective fairness constraints

can, under some conditions, have negative effects on outcomes

in disadvantaged groups. With simulation studies, D’Amour et al.

[27] and Zhang et al. [82] confirm that imposing static fairness

constraints does not guarantee that these constraints are met over

time and can, under some conditions, exacerbate inequalities in

social goods. Scher et al. [72] model long-term effects of statisti-

cal profiling for the allocation of unemployed into labor market

programs on skill levels. The picture emerging from this literature

is that post-interventional outcomes of algorithmic policies are a

relevant dimension for normative analysis that is not adequately

captured by retrospective fairness notions designed to hold in the

training distribution.

3 STATISTICAL PROFILING OF THE
UNEMPLOYED

Since the 1990s, participation in active labor market programs

(ALMPs) has been a condition for receiving unemployment bene-

fits in many OECD countries [22]. ALMPs take many forms, but

paradigmatic examples include resume workshops, job-training

programs, and placement services (see Bonoli [13] for a helpful

taxonomy). Evaluations of ALMPs across OECD countries find

small but positive effects on labor market outcomes [18, 55, 78].

Importantly, the literature also reports large effect-size heterogene-

ity between programs and demographics, as well as assignment

strategies that are as good as random for Switzerland [49], Belgium

[21], and Germany [33]. This implies potential welfare gains from

a more targeted allocation into programs, especially when taking

into account opportunity costs—a compelling motivation for algo-

rithmic support. Indeed, the subsequent case study suggests that,

if allocation decisions are made based on data-driven estimates

of individualized treatment effects, the gender reemployment gap,

as well as overall long-term unemployment, can be significantly

reduced.

Statistical profiling of the unemployed is current practice in var-

ious OECD countries including Australia, the Netherlands, and

Flanders, Belgium [28]. Paradigmatically, supervised learning tech-

niques are employed to predict who is at risk of becoming long-term

unemployed (LTU) [68]. Such tools are regularly framed as intro-

ducing objectivity and effectiveness in the provision of public goods

and align with demands for evidence-based policy and digitization

in public administration. ALMPs target supply-side problems by

increasing human capital and matching problems by supporting

job search. Demand-side policies that focus on the creation of jobs

are not considered [34].

Individual scores predicting the risk of long-term unemployment

support a variety of decisions. For example, the public employment
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Figure 2: Swiss Long-Term Unemployment Rates by Gender.
Data for the period 2010-2022 are from Eurostat [32]; the
gender rates in long-term unemployment are computed as
the share of all unemployed men/women aged 20-64 who are
unemployed for more than a year. Data for the period 1991-
2007 are from the 2012 Swiss Social Report [15], where age
information is not available. Data for 2008-9 is not readily
available.

service (PES) of Flanders so far uses risk scores only to help case-

workers and line managers decide who to contact first, prioritizing

those at higher risk [29]. In contrast, the PES of Austria (plans

to) use risk scores to classify the recent unemployed into three

groups: those with good prospects in the next six months; those

with bad prospects in the next two years; and everyone else. The

proposed policy of the Austrian PES is to focus support measures

on the third group while offering only limited support to the other

two. Advocates claim that, since ALMPs are expensive and would

not significantly improve the re-employment probabilities of indi-

viduals with very good or very bad prospects, considerations of

cost-effectiveness require a focus on those with middling prospects

[3]. However intuitive this may seem, it is nowhere substantively

argued that statistical predictions of long-term unemployment from

observational data can be reliably used as estimates for the effec-

tiveness of administrative interventions. One worry is that the

unemployed who are labeled high-risk may be similar to those who,

historically, received ineffective programs. This is further compli-

cated by the presence of long-standing structural inequalities in

the labor market, which may be reproduced by algorithmic policies

leaving those with “poor prospects" to their own devices. In the

subsequent simulation study, the efficiency claims made in favor of

Austrian-style policy are not corroborated.

Labor markets in OECD countries are structured by various in-

equalities. Gender is a particularly long-standing and significant

axis of inequality in labor markets, with the gender pay gap and the

child penalty being notorious examples [12, 47]. On the other hand,

the gender gap in unemployment rates has largely disappeared

over the last decades [2]. Nevertheless, structural differences in

unemployment dynamics remain. For example, although women

in Germany are less likely to enter into unemployment, their exit

probabilities are also lower [16]. Similarly, there is a longstand-

ing gender gap in long-term unemployment in Switzerland (see

Figure 2). The obvious worry is that prediction algorithms will

pick up on these historical trends, as demonstrated in Kern et al.
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[43]. The Austrian proposal for an LTU prediction algorithm fur-

nishes a particularly dramatic example. That algorithm takes as

input an explicitly gendered feature “obligation to care”, which has

a negative effect on the predicted re-employment probability and,

by design, is only active for women [3]. This controversial design

choice was justified as reflecting the “harsh reality" of the gendered

distribution of care responsibilities. Whatever the wisdom of this

particular variable definition, many other algorithms would pick

up on the same historical patterns. Moreover, if the intended use of

these predictions is to withhold support for individuals at high risk

of long-term unemployment, it is clear that such a policy might

exacerbate the situation by further punishing women for greater

care obligations.

The preceding underscores the need for a prospective fairness

methodology that assesses whether women’s actual re-employment

probability suffers under a proposed algorithmic policy. More ab-

stractly, what is needed is a way to predict how the pre-deployment

probability 𝑃pre (𝑌 | 𝐴) will compare with the post-deployment

probability 𝑃post (𝑌 | 𝐴). With these estimates in hand, it would

also be possible to predict whether the gender gap in long-term

unemployment is exacerbated, or ameliorated, under a proposed

algorithmic policy. This gender gap is one particular choice for

a fairness notion 𝜑 (·) . Variations on this simple metric could be

relevant in many other settings. For example, gender gaps in hir-

ing, or racial disparities in incarceration could be criteria that an

algorithmically informed policy should, minimally, not exacerbate

[42]. In the following section, we give general conditions under

which the post-deployment change in the joint distribution of the

outcome (𝑌 ) and the sensitive attribute (𝐴) is identified from pre-

deployment data.

4 IDENTIFIABILITY OF THE
POST-DEPLOYMENT DISTRIBUTION

Let 𝐴,𝑋, 𝑅, 𝐷,𝑌 be discrete, observed random variables. Here, 𝐴

represents gender;𝑋 represents baseline covariates observed by the

public employment service; 𝑅 is an estimated risk of becoming long-

term unemployed; 𝐷 is an allocation decision made by the public

employment service and 𝑌 is a binary random variable that is equal

to 1 if an individual becomes long-term unemployed. For simplicity,

we assume that 𝑅 is a deterministic function of 𝐴 and 𝑋 . We write

A,X,R,D,Y for the respective ranges of these random variables.

For 𝑑 ∈ D, let 𝑌𝑑
be the potential outcome under policy 𝑑, in other

words: 𝑌𝑑
represents what the long-term unemployment status

of an individual would have been if they had received allocation

decision 𝑑. Naturally, 𝑌 1, . . . , 𝑌 |D |
are not all observed. Our first

assumption is a rather mild one; we require that the observed

outcome for individuals allocated to 𝑑 is precisely 𝑌𝑑
:

𝑌 =
∑︁
𝑑∈D

𝑌𝑑1[𝐷 = 𝑑] . (Consistency)

Consistency is to be interpreted as holding both before and after

the algorithmic policy is implemented.

More substantially, we assume that the potential outcomes and

decisions are unconfounded given the observed features (𝐴,𝑋 )
both before and after the intervention:

𝑌𝑑 ⊥𝑡 𝐷 | 𝐴,𝑋 . (Unconfoundedness)

Unconfoundedness is a rather strong assumption that requires that

the observed features 𝐴,𝑋 include all common causes of the de-

cision and outcome. In the case of a fully automated algorithmic

policy, unconfoundedness holds by design; but usually, risk as-

sessment tools are employed to support human decisions, not fully

automate them [59]. Although it is not fated that all factors relevant

to a human decision are available to the data analyst, unconfound-

edness is reasonable if rich administrative data sets capture most

of the information relevant to allocation decisions. For a case in

which this assumption fails, see Petersen et al. [71].

We have argued that, to address our fundamental question of

fair machine learning, one must predict whether implementing the

candidate algorithmically informed policy leads to an improvement,

or at least no deterioration, in the distribution of social goods. In the

running example, this amounts to comparing features of 𝑃pre (𝑌 | 𝐴)
with 𝑃post (𝑌 | 𝐴). The first distribution is trivial to estimate, but

how to estimate 𝑃post (𝑌 | 𝐴) from pre-deployment data? Here, the

fundamental problem is performativity [70]. Our policy interven-

tion will, in all likelihood, change the process of allocation into labor

market programs and, thus, change the distribution of outcomes we

are interested in. But not all kinds of performativity are equal. Some

performative effects are intended and foreseeable. For example, the

algorithmic effect is the intended change in decision-making due to

algorithmic support:

𝑃pre (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥) ≠ 𝑃post (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥) .
(Algorithmic Effect)

The first term in this inequality is the propensity score which can

be directly estimated from training data. The second term cannot

be directly estimated ex-ante. Nevertheless, it is possible to make

reasonable conjectures about the second term given a concrete

proposal for how risk scores should inform decisions. For example,

if 𝐷 is binary, we could model the Austrian proposal as providing

support so long as the risk score is neither too high nor low:

𝑃post (𝐷 = 1 | 𝐴 = 𝑎,𝑋 = 𝑥) = 1 [𝑙 < 𝑅(𝑎, 𝑥) < ℎ] .
More complex proposals for how risk scores should influence de-

cisions require more careful modeling. The subsequent empirical

case study delivers a more realistic model.

Although we allow for algorithmic effects, these cannot be too

strong—the policy cannot create allocation options that did not

exist before. That is, the risk assessment tools only change allo-

cation probabilities into existing programs. Moreover, we assume

that the policy creates no unprecedented allocation-demographic

combinations:

𝑃pre (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥) > 0 if 𝑃post (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥) > 0.

(No Unprecedented Decisions)

This would be violated if e.g., no women were allocated to some

program before the policy change.

Throughout this paper, we assume that no other forms of per-

formativity occur. In particular, we assume that the conditional

average treatment effects (CATEs) of the allocation on the outcome

are stable across time:

𝑃pre

(
𝑌𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥

)
= 𝑃post

(
𝑌𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥

)
.

(Stable CATE)

This amounts to assuming that the effectiveness of the programs

(for people with 𝐴 = 𝑎,𝑋 = 𝑥) does not change, so long as all that
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has changed is the way we allocate people to programs. In the case

study, we assume that conditional average treatment effects are

stable under changes to allocation policies, as well as to the total

number of places available in (capacities of) each program. This

assumption could be violated if e.g., a program works primarily by

making some better off only at the expense of others—if everyone

were to receive such a program, it would have no effect [25].

While algorithmic effects of deployment are intended and, to

some degree, foreseeable types of performativity, feedback effects

that change the covariates are more complicated to model.
1
Follow-

ing Mishler and Dalmasso [65] and Coston et al. [24], we assume

away the possibility of feedback effects, leaving these for future

research:

𝑃pre (𝐴 = 𝑎,𝑋 = 𝑥) = 𝑃post (𝐴 = 𝑎,𝑋 = 𝑥) . (No Feedback)

No Feedback amounts to assuming that the baseline covariates

of the recently employed are identically distributed pre- and post-

deployment. Strictly speaking, this is false, since the decisions of

caseworkers will affect the covariates of those who re-enter em-

ployment and some of them will, eventually, become unemployed

again. However, since the pool of employed is much larger than the

pool of unemployed, the policies of the employment service have

much larger effects on the latter than the former. For this reason,

we may hope that feedback effects are not too significant.

No Unprecedented Decisions, Stable CATE and No Feed-

back might fail dramatically if e.g., the deployment of the policy

coincided with a major economic downturn. In a serious downturn,

the employment service may have to assist people from previ-

ously stable industries (violating No Unprecedented Decisions

and No Feedback), or employment prospects might deteriorate

for everyone (violating Stable CATE). However, the possibility

of such exogenous shocks is not a threat to our methodology. We

are interested in the ceteris paribus effect of the algorithmic policy

on structural inequality, not an all-thing-considered prediction of

future economic conditions.

We are now in a position to show that, under the assumptions

outlined above, it is possible to predict 𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎) from
pre-interventional data and a supposition about 𝑃post (𝐷 = 𝑑 | 𝐴 =

𝑎,𝑋 = 𝑥). That means that we can also predict changes to the

overall reemployment probability 𝑃post (𝑌 = 0) as well as the gender
reemployment gap 𝑃post (𝑌 = 1 | 𝐴 = 1)−𝑃post (𝑌 = 1 | 𝐴 = 0) . Each
of these are natural and important instances of 𝜑 (·) . The proof is
deferred to the supplementary material.

Theorem 4.1. Suppose that Consistency, Unconfoundedness,

No Unprecedented Decisions, Stable CATE and No Feedback hold.

Suppose also that 𝑃post (𝐴 = 𝑎) > 0. Then, 𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎) is
given by∑︁
(𝑥,𝑑 ) ∈Πpost

𝑃pre (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑)𝑃pre (𝑋 = 𝑥 | 𝐴 = 𝑎)·

𝑃post (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥),
where Π𝑡 = {(𝑥, 𝑑) ∈ X × D : 𝑃𝑡 (𝑋 = 𝑥, 𝐷 = 𝑑 | 𝐴 = 𝑎) > 0} .

Note that the first two terms in the product are identified from

pre-deployment data. Given a sufficiently precise proposal for how

1
In the classification of Pagan et al. [69], we focus on what they call “Outcome Feedback

Loops”. In our terminology, performativity is not exhausted by feedback effects.

risk scores influence decisions, it is also possible to model Πpost and

the last term before deployment. This allows us to systematically

compare different (fairness-constrained) algorithms and decision

procedures, and arrive at a reasonable prediction of their combined

effect on reemployment probabilities (and the gender reemployment

gap) before they are deployed. In the following, we show how this

approach works in a realistic case study.

5 LONG-TERM UNEMPLOYMENT IN
SWITZERLAND

Prospective fairness requires forecasting the effect of using (fair)

risk scores to inform program allocation decisions on both the

overall risk of long-term unemployment and the gender gap in

long-term unemployment.We present an extensive case study based

on Swiss administrative data to study three questions: do fairness-

constrained risk scores improve outcomes? are restrictive, Austrian-

style allocation policies more efficient than Flemish-style policies

that prioritize people at high risk? and can we improve outcomes

with individualized estimates of program effectiveness?

5.1 Methodology
Our analysis proceeds in the following stages: (1) Using double-

robust machine learning, we first estimate the effectiveness of each

of the programs for all individuals in our test sample. (2)We estimate

risk scores for the individuals in our test sample, using fairness-

constrained and fairness-unconstrained methods. We implement

two fairness constraints: statistical parity and equal opportunity.

(3) For each of the risk scores from stage two, we prioritize the

individuals in the test sample. The Flanders-style policy prioritizes

those at the highest risk. The Austrian prioritization does the same,

but only for those in the 30 − 70th risk percentiles; the rest go to

the end of the line. (4) For each priority list from stage three, we

assign unemployed to programs until program capacity is reached.

We model two assignment schemes. The first assigns individuals

to programs randomly. The second uses the results of stage one

to assign individuals to the program with the highest estimated

effectiveness. Additionally, we consider the effect of increasing

program capacities. Finally, we summarize the effects of different

combinations of choices from steps (2-4) on overall rates of long-

term unemployment and the gender-reemployment gap.
2

5.1.1 Data. We exploit the administrative Swiss Active Labor Mar-

ket Policy (ALMP) Evaluation Dataset.
3
The original sample con-

tains observations on 100, 120 registered unemployed in 2003, aged

24 to 55. Recently unemployed received one of seven treatments: no

program, vocational training, computer programs, language courses,

job search programs, employment programs, and personality training.

Among the seven treatment options, no program and job search

programs are by far the most common treatments. We restrict the

analysis to the German-speaking cantons as assignment strategies

differ among the three language regions [48]. To avoid overstating

the effectiveness of “no program”, we estimate pseudo program

starting points for individuals in this treatment arm and exclude

2
The replication package for this analysis is available on Github: https://github.com/

sezezulka/2023-01-ALMP-LTU.git.

3
The data is available for scientific use at SWISSbase [57].

https://github.com/sezezulka/2023-01-ALMP-LTU.git
https://github.com/sezezulka/2023-01-ALMP-LTU.git
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those who are re-employed before the pseudo starting point [48, 56].

This results in the exclusion of 5, 076 observations.4

The final data set contains 64, 296 individuals, which we divide

equally into training and test sets. The simulation study is per-

formed on the test set of 32, 148 individuals and all results are re-

ported for this population. Descriptive statistics for the simulation

data are reported in Table 1 in the Appendix.

For all individuals, we observe employment status for 36months

after registration with the Swiss Public Employment Service (PES).

Our target, long-term unemployment, is defined as a binary vari-

able indicating continuous unemployment for 12 months after the

(pseudo) program start.
5
The treatment variable is defined as the

first program assigned within six months after registering as un-

employed. The administrative data includes information on the

individual employment biographies, demographics, and local labor

market conditions as well as information on the individual case-

worker and their assessment of their clients’ labor market outlook.

5.1.2 Individualized Average Potential Outcomes. We adopt double-

robust machine learning for the estimation of individual average

potential outcomes (IAPOs) and treatment effects (IATEs) for the

seven treatment options [1, 19, 26]. We follow Knaus [48] and Kört-

ner and Bach [53] in their identification strategy and use the R-

package causalDML [48]. Inverse probability weighting is used

to account for non-random selection into the programs under the

identifying assumptions ofUnconfoundedness (similar to ourUncon-

foundedness), Common Support (No Unprecedented Decisions),

and Stable Unit Treatment Value (Consistency and Stable CATE).

Especially important for the plausibility of Unconfoundedness is

the availability of information about the individual caseworker.

See Appendix B.2 for a more detailed discussion of the estimation

approach.

The resulting (individualized) average treatment effects are given

in Figure 3. They are in line with the results reported in Knaus

[48] and Körtner and Bonoli [54]. Vocational Training, Computer

Programs, and Language Courses have the strongest effects on

reducing (long-term) unemployment. We find that Job Search and

Employment Programs on average increase the risk of long-term

unemployment by between 2 to 3 percentage points and confirm the

high effect heterogeneity in all treatments. The reported treatment

effects are the difference of the respective potential outcome scores,

where “no program” is the baseline program. IATEs broken down

by gender are given in Figure 6.

5.1.3 Risk scores. In 2003, program assignment in the Swiss public

employment service was made at the discretion of the individual

caseworker. This practice continues to this day.
6
For estimating

the risk scores to determine the prioritization, all caseworker in-

formation is excluded so that only data reasonably available at

registration time is used. The sensitive attributes are included and

the full list of features is given in Appendix B.3.

4
The problem is that some people are assigned to “no program” while others exit

unemployment before they can receive an assignment but these are coded the same

way. Compare: if someone spontaneously recovers before being assigned to an arm of

a drug trial, this should not count in favor of the placebo.

5
This is a deviation from Körtner and Bach [53], who define their target variable as 12

months after registration with the PES.

6
The canton of Freiburg had a pilot study from 2012-2014, providing caseworkers with

estimates of the expected length of the unemployment spell [6].

We estimate fairness-unconstrained risk scores as well as risk

scores constrained to satisfy statistical parity
7
and equality of op-

portunity
8
. Throughout, we use logistic ridge regressions. We use

the R-package fairml for the fairness-constrained risk scores [73]

and do not require the fairness constraint to be met exactly.

All three methods, applying a decision threshold of .5, achieve

an accuracy of about 64 − 65%. These results are in line with inter-

nationally reported accuracy rates for the prediction of long-term

unemployment [28]. The unconstrained risk scores violate statisti-

cal parity, with more women than men being predicted to become

long-term unemployed (a discrepancy of 0.116). Further, the true (a

discrepancy of 0.174) and false positive (0.062) rates are higher for

women than for men. The fairness-constrained scores reduce these

discrepancies. The unconstrained risk scores are approximately

calibrated for men and women, see Table 4. Details on the imple-

mentation together with descriptive statistics for the risk scores

can be found in Appendix B.3.

5.1.4 Prioritization. For each of the three risk scores from the

previous stage, we compile two priority lists modeling the Belgian

and Austrian proposals. The Belgian list goes in order of decreasing

risk [29]. The Austrian list does the same for those in the 30 − 70𝑡ℎ

risk percentiles. The others are put at the end of the list, in random

order [3]. This yields six priority lists, one for each combination of

risk score and prioritization scheme.

5.1.5 Program Assignments. For each of the six lists from the pre-

vious stage, we assign individuals to programs in order of priority.

Individuals are assigned according to two schemes: optimal and

random. The first assigns each person to the program that is most

effective for them and not yet at capacity. This models the best-case

scenario in which caseworkers are very good at discerning which

program is best for each client. The second makes assignments by a

uniform draw from the available programs.
9
These two assignment

schemes provide upper and lower bounds for what might happen

when caseworkers are informed by risk scores when making as-

signment decisions instead of fully automating the decision. To

model adjustments to the budget constraint of the PES, we consider

the effect of increasing program capacities. As a baseline, we take

the program sizes observed in the test set (see Table 1). Then, we

consider capacities that are 2−5𝑥 larger. Because the most effective

programs are also the smallest, increasing overall capacities mainly

influences outcomes by increasing the capacities of these small but

effective programs.

5.2 Results
5.2.1 Fair Prediction and the Fair Distribution of Social Goods. Re-
gardless of the notion of retrospective fairness and the choices

made at other stages, constraining risk predictions to be fair yields

larger gender reemployment gaps (Figure 4). This is because fair-

ness constraints, by shifting the distribution of risk scores among

women to look more like the distribution among men (Figure 7),

7
Also called demographic parity or Independence of the predictions from the sensitive

attribute [8].

8
The equality in true positive rates for both groups. This is a relaxation of equalized

odds, also called Separation [8].

9
We run this scheme ten times per policy and average over the resulting individual

risks for long-term unemployment.
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(a) Individualized Average Treatment Effects.

ATE SE 95%-CI

Vocational -11.12 0.06 [-11.12, -11.12]

Computer -11.37 0.05 [-11.37, -11.37]

Language -5.25 0.04 [-5.26, -5.25]

Job Search 3.43 0.03 [3.43, 3.43]

Employment 1.83 0.04 [1.83, 1.83]

Personality -1.84 0.04 [-1.84, -1.84]

(b) Average Treatment Effects in percentage points, standard
errors, and 95% confidence intervals. Negative treatment effects
imply a lower risk of becoming long-term unemployed.

Figure 3: Estimated (Individualized) Average Treatment Effects for six labormarket programs with “no program” as the baseline.

tend to underestimate their risk of long-term unemployment. The

effect of fairness constraints is to reserve a roughly equal number of

seats in effective training programs for men and women (Figure 8).

Therefore, fairness-constrained policies induce similar improve-

ments in labor market outcomes for both genders, which keeps

the gender reemployment gap relatively constant. On the other

hand, fairness unconstrained risk scores are, on average, higher for

women. That means that more seats are reserved for women in effec-

tive programs–the result is more aggressive reductions in rates of

long-term unemployment among women than among men. These

effects are only made more pronounced when budget constraints

are relaxed and program capacities are increased. For example, at

baseline program sizes the combination of Belgian prioritization

and individualized treatment decisions yields a 3.2% gender gap in

reemployment probabilities (40.4% vs 37.2%) when risk scores are

unconstrained and a 4.1% gender gap (40.9% vs 36.8%) when risk

scores are constrained to satisfy equal opportunity. This means that,

at baseline program sizes, the equal opportunity constraint slightly

exacerbated the ex-ante gender gap of 3.9% (43.6% vs. 39.7%). If

programs are made five times larger, the fairness unconstrained

policy reduces the gender gap to .9% (35.1% vs 34.2%) whereas

equal opportunity leaves the gender gap relatively unchanged at 3%

(36.2% vs 33.2%). All results are given in Tables 5 for baseline and 6

for five-fold capacities. We observe similar patterns for citizenship

gaps (Appendix, Figures 9 and 10).

5.2.2 Hawks and Doves. Regardless of other choices, the Belgian
policy is at least as efficient as the Austrian policy, both in reducing

overall rates of long-term unemployment and reducing the gen-

der reemployment gap (Figure 5). This holds both for the optimal

program assignment and the random assignment. For example: at

baseline program sizes, when the unemployed receive targeted as-

signment and risk scores are not fairness constrained, the Belgian

policy achieves an overall LTU rate of 38.6% and a gender reem-

ployment gap of 3.2% (40.4% vs. 37.2%) whereas the Austrian policy

induces an identical overall rate and a gap of 3.4%. If programs

are made five times larger, the Belgian policy achieves an overall

rate of 34.6% and a gender gap of .9% (35.1% vs 34.2%), whereas

the Austrian policy achieves an identical overall rate and a gender

gap of 1.2% (35.3% vs 34.1%). Thus, targeting those at the highest

risk of long-term unemployment achieves improvements in gender

equality without any costs in overall efficiency. A more fine-grained

analysis shows that the Belgian prioritization closes the gender gap

much more aggressively among married non-citizens, who tend

to have the worst labor market outcomes, whereas the Austrian

prioritization does slightly better among groups with better average

outcomes (Figure 11). Similar effects are observed for citizenship

gaps (Figures 9 and 10). Therefore we do not find any efficiency

advantage for withholding training from individuals at the highest

risk of unemployment. Indeed, risk scores tend to overestimate the

risk of unemployment under optimal treatment (Figure 12).

5.2.3 Gains fromModeling Counterfactual Outcomes. Regardless of
other choices, assigning individuals to the programwith the highest

estimated effectiveness reduces overall long-term unemployment

and reemployment gaps (Figures 4 and 5). This represents gains due

to explicit estimation of treatment effects rather than risk scores

alone. For example: at baseline program sizes, when risk scores are

not fairness constrained, targeting achieves a reduction of about

1.5 percentage points in overall long-term unemployment over

random assignment, regardless of prioritization. If programs are

made five times larger, targeting achieves a reduction of about 3.7

percentage points over random assignment. Targeting is also more

effective than random assignment at reducing gender gaps under

both prioritization regimes.

6 CONCLUSION, LIMITATIONS, AND FUTURE
WORK

We have argued that prospective algorithmic fairness requires antici-

pating the causal effects of deploying algorithms on the distribution

of outcomes. We have shown that existing methods in algorithmic

fairness can have perverse distributive effects: requiring risk scores

to be fair according to statistical parity or equal opportunity may

exacerbate inequalities in social goods. Moreover, contrary to the
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(b) Belgian prioritization and random program.
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(c) Austrian prioritization and optimal program.
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(d) Austrian prioritization and random program.

Figure 4: We plot the gender gap in long-term unemployment (LTU) against program capacity for each combination of
prioritization and assignment scheme. The level of transparency shows the gender gap for the corresponding fairness constraint:
none, statistical parity, or equal opportunity. The unconstrained risk scores (lowest transparency) result in the smallest gender
gap. This effect is especially pronounced as program capacity is increased and program assignments are individualized (optimal).

accepted trade-offs between accurate and fair predictions, accu-

rate prediction of individualized counterfactual outcomes supports

policy in reducing inequality in the distribution of social goods.

Our approach has several limitations: we have not tried ev-

ery fairness constraint (notably, multi-calibration [37, 40]), nor

accounted for uncertainty in the estimation of individualized treat-

ment effects and outcomes. Uncertainty quantification in double-

robust machine learning remains an open problem [26]. Conformal

prediction methods may apply [1, 58]. Some applications may re-

quire program assignments to be made in an online, rather than a

batch, fashion [80]. In addition to anticipatory evaluations, algo-

rithmic policy should be designed to support ex-post evaluation, for

example by (partial) randomization. Our approach is rather pater-

nalistic: future work should accommodate the preferences of the

unemployed themselves. Finally, we rely essentially on risk scores

to facilitate prioritization. This reflects the state of algorithmic pol-

icy. However, risk scores increasingly seem like an unnecessary

detour. We are inspired by Körtner and Bach [53]: future work

might directly seek distributively optimal allocations (perhaps with

more sophisticated notions of optimality) without recourse to risk

scores [45, 77]. This approach subjects claims of ‘efficiency’ to direct

test and allows the conceptual innovations of distributive justice

theory to flow directly into applications.
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(a) Optimal Program.
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(b) Random Program.

Figure 5: We show overall long-term unemployment and the gender gap against program capacity for each combination of
prioritization and assignment scheme. For clarity, results are shown only for fairness-unconstrained risk scores. Regardless of
the assignment scheme, the Belgian prioritization results in slightly lower overall rates of long-term unemployment (blue line)
and a smaller gender gap. Individualized program assignments (optimal) are markedly more effective.
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A PROOF OF THEOREM 4.1
Proof of Theorem 4.1. First, we need to show that all terms

are well-defined. This amounts to showing that 𝑃post (𝐴 = 𝑎,𝑋 = 𝑥),
𝑃pre (𝐴 = 𝑎) and 𝑃pre (𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑) are strictly greater than

zero for all (𝑥, 𝑑) ∈ Πpost .

We first show that 𝑃pre (𝐴 = 𝑎) > 0. Note that

𝑃pre (𝐴 = 𝑎) =
∑︁
𝑥∈X

𝑃pre (𝐴 = 𝑎,𝑋 = 𝑥)

=
∑︁
𝑥∈X

𝑃post (𝐴 = 𝑎,𝑋 = 𝑥) (No Feedback)

= 𝑃post (𝐴 = 𝑎) > 0.

We now show that 𝑃post (𝐴 = 𝑎,𝑋 = 𝑥) > 0 for all (𝑥, 𝑑) ∈ Πpost .

Note that

𝑃post (𝐴 = 𝑎,𝑋 = 𝑥) = 𝑃post (𝐴 = 𝑎)
∑︁
𝑒∈D

𝑃post (𝑋 = 𝑥, 𝐷 = 𝑒 |𝐴 = 𝑎)

≥ 𝑃post (𝐴 = 𝑎)𝑃post (𝑋 = 𝑥, 𝐷 = 𝑑 |𝐴 = 𝑎) > 0.

Finally, we show that 𝑃pre (𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑) > 0 for all

(𝑥, 𝑑) ∈ Πpost . Since 𝑃pre (𝐴 = 𝑎) > 0, it suffices to show that

𝑃pre (𝑋 = 𝑥, 𝐷 = 𝑑 |𝐴 = 𝑎) > 0 for all (𝑥, 𝑑) ∈ Πpost . Accordingly,

suppose that (𝑥, 𝑑) ∈ Πpost . Then

𝑃post (𝑋 = 𝑥, 𝐷 = 𝑑 |𝐴 = 𝑎)
= 𝑃post (𝐷 = 𝑑 |𝑋 = 𝑥,𝐴 = 𝑎)𝑃post (𝑋 = 𝑥 |𝐴 = 𝑎) > 0,

which entails that both 𝑃post (𝐷 = 𝑑 |𝑋 = 𝑥,𝐴 = 𝑎) > 0 and

𝑃post (𝑋 = 𝑥 |𝐴 = 𝑎) > 0. By No Unprecedented Decisions,

𝑃pre (𝐷 = 𝑥 |𝑋 = 𝑥,𝐴 = 𝑎) > 0 and by No Feedback 𝑃pre (𝑋 =

𝑥 |𝐴 = 𝑎) > 0. Therefore,

𝑃pre (𝑋 = 𝑥, 𝐷 = 𝑑 |𝐴 = 𝑎)
= 𝑃pre (𝐷 = 𝑥 |𝑋 = 𝑥,𝐴 = 𝑎)𝑃pre (𝑋 = 𝑥 |𝐴 = 𝑎) > 0;

and the question of well-definedness is settled.

Next, note that: 𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎) =

=
∑︁

(𝑥,𝑑 ) ∈Πpost

𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑)

𝑃post (𝑋 = 𝑥, 𝐷 = 𝑑 | 𝐴 = 𝑎) (Total Probability)

=
∑︁

(𝑥,𝑑 ) ∈Πpost

𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑)𝑃post (𝑋 = 𝑥 |𝐴 = 𝑎)

𝑃post (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥)

=
∑︁

(𝑥,𝑑 ) ∈Πpost

𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑)𝑃pre (𝑋 = 𝑥 |𝐴 = 𝑎)

𝑃post (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥). (No Feedback)

Note that, whenever defined,
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𝑃𝑡 (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑) =

= 𝑃𝑡

( ∑︁
𝑒∈D

𝑌𝑒1[𝐷 = 𝑒] = 1 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑

)
(Consistency)

= 𝑃𝑡

(
𝑌𝑑 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑

)
= 𝑃𝑡

(
𝑌𝑑 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥

)
. (Unconfoundedness)

Therefore,

𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑) =

= 𝑃post

(
𝑌𝑑 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥

)
= 𝑃pre

(
𝑌𝑑 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥

)
(Stable CATE)

= 𝑃pre (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑) ;

and, therefore, 𝑃post (𝑌 = 𝑦 | 𝐴 = 𝑎) =

=
∑︁

(𝑥,𝑑 ) ∈Πpost

𝑃pre (𝑌 = 𝑦 | 𝐴 = 𝑎,𝑋 = 𝑥, 𝐷 = 𝑑)𝑃pre (𝑋 = 𝑥 |𝐴 = 𝑎)

𝑃post (𝐷 = 𝑑 | 𝐴 = 𝑎,𝑋 = 𝑥).

□

B CASE STUDY
B.1 Replication
The replication package is available online on Github: https://github.

com/sezezulka/2023-01-ALMP-LTU.git. It contains the code to run

the pre-processing, the estimation of the individualized potential

outcomes, the estimation of the (fairness constraint) risk scores,

and the simulations of the algorithmically informed policies as

described here. It allows the reproduction of the reported results,

tables, and figures. Unfortunately, we are not allowed to make the

data publicly available. It is available as a scientific use file on

SWISSbase [57].

B.2 Double-Robust Machine Learning for
Estimating IAPOs

In Section 4, we have derived the formal conditions under which the

post-interventional gender gap is identified. Two assumptions con-

cern the internal validity of our study. Unconfoundedness is the

strongest assumption. Replicating the work by Knaus [48], Knaus

et al. [49] and Körtner and Bach [53], we rely on extensive informa-

tion on caseworkers and their subjective assessment of their clients

in the estimation of treatment effects combined with rich adminis-

trative data on the demographics and employment biographies to

support the assumption. No Unprecedented decisions requires

that the propensity scores are non-zero. The other two concern

the external validity of our simulation study. We presuppose that

the treatment effects of the programs are stable under different

allocations and increased program capacities (stable CATEs) and

that the pool of unemployed stays the same (No Feedback on the

covariates).

First, we estimate the normalized conditional probability to be

allocated into each program (the propensity of treatment, 𝑒𝑑 (𝑋𝑖 ))
and the conditional outcome mean in the observed allocation (in

short, conditional outcome, 𝜇 (𝑑, 𝑥)). Given the small number of

observations in most of the labor market programs, we use the

full data set and cross-validation for the estimation of the nuisance

parameters. The two nuisance parameters then allow the estimation

of the doubly robust score:

Γ̂𝑖,𝑑 = 𝜇 (𝑑,𝑋𝑖 ) +
𝐷𝑖 (𝑑) (𝑌𝑖 − 𝜇 (𝑑,𝑋𝑖 ))

𝑒𝑑 (𝑋𝑖 )
,

where𝐷𝑖 (𝑑) indicates the treatment assignment for individual 𝑖 and

𝑌𝑖 the observed, pre-interventional outcome. This strategy is called

doubly robust because the functional form of either the propensity

score or the conditional outcome can be miss-specified without

threatening the identification [19, 48]. In the last step, the estimates

of the debiased scores, Γ̂𝑖,𝑑 , are used as pseudo outcomes to estimate

the conditional expected outcomes, E[Γ̂𝑖,𝑑 | 𝑋𝑖 ] using a regression

forest. These estimates are the individualized average potential

outcomes for each treatment option under the outlined identifying

assumptions. For this step, the regression forest is trained only on

the training set.

We estimate individualized average treatment effects for each

individual 𝑖 in the sample as differences between the respective

individualized average potential outcomes:

Δ̂𝑖,𝑑,𝑑 ′ = Γ̂𝑖,𝑑 − Γ̂𝑖,𝑑 ′ .

In Table 6, we show the distribution of individualized average treat-

ment effects by gender.While the overall trends remain the same, all

treatments except job search programs on average are slightly more

effective for women than for men. Treatment effects are estimated

against the baseline of no program.

B.3 Risk Scores and Prioritization Policies
To determine the prioritization of registered unemployed in its

Belgian or Austrian variants we estimate risk scores for becoming

long-term unemployed. The full list of features is given in Table 3.

For a discussion on the predictability of long-term unemployment,

see Mueller and Spinnewijn [68]. Using administrative data from

Germany, Kunaschk and Lang [50] evaluate the performance of risk

scores under external shocks like the COVID-19 pandemic. Kern

et al. [43] evaluate the violation of retrospective fairness criteria

when predicting long-term unemployment in the same context.

First, we estimate risk scores by a fairness-unconstrained logistic

ridge regression. The optimal regularization strength is chosen by

cross-validation at about 𝜆 = 0.049. Second, we add a fairness

constraint for statistical parity and, third, a constraint for equal

opportunity. In this case, the true positive rates among the sensitive

attribute are equalized, a relaxation of Separation [36]. We make

use of the the implementation by [73] for the estimation of fairness-

constrained risk scores. To achieve statistical parity they use a ridge

penalty to bound the variance explained by the sensitive attribute

(gender) over the total explained variance. For equal opportunity,

the risk score is regressed against the sensitive attribute and the

outcome variable with the ridge penalty bounding the variance

explained by the sensitive attribute over the total explained variance.

https://github.com/sezezulka/2023-01-ALMP-LTU.git
https://github.com/sezezulka/2023-01-ALMP-LTU.git
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#Obs LTU Female Age Non-Citizen Employability Past Income

(binary) in years (binary) in CHF

Simulation Data 32,148 0.41 0.44 36.8 0.36 1.93 43,461

No program 23,785 0.41 0.43 36.6 0.37 1.92 42,557

Vocational 423 0.28 0.32 37.5 0.32 1.91 49,349

Computer 446 0.24 0.61 38.9 0.20 1.98 43,251

Language 723 0.48 0.54 35.3 0.68 1.83 37,779

Job Search 5,868 0.43 0.44 37.4 0.33 1.98 46,815

Employment 321 0.46 0.43 35.3 0.39 1.84 36,902

Personality 582 0.37 0.35 39.4 0.25 1.93 53,136

Table 1: Descriptive statistics for key demographic variables in the test and simulation data and by observed treatment groups.
Long-term unemployment (LTU), Female, and Non-Citizen are given as shares. Age, Employability, and Past Income are
averages. Employability is an ordered variable from low (1) to high (3), assigned by the caseworker. Knaus [48] reports an
exchange rate USD/CHF of about 1.3 for 2003.

#Obs LTU Female Age Non-Citizen Employability Past Income

(binary) in years (binary) in CHF

Full Sample 64,296 0.41 0.44 36.8 0.36 1.93 43,391

No program 47,631 0.41 0.44 36.6 0.37 1.93 42,529

Vocational 858 0.29 0.33 37.5 0.30 1.93 48,654

Computer 905 0.28 0.60 39.1 0.21 1.97 43,213

Language 1,504 0.47 0.55 35.28 0.66 1.85 37,300

Job Search 11,610 0.43 0.44 37.3 0.33 1.98 46,693

Employment 611 0.43 0.41 35.3 0.38 1.83 37,084

Personality 1,177 0.37 0.36 38.7 0.27 1.93 53,067

Table 2: Descriptive statistics for key demographic variables in the full sample and by observed treatment groups. The
simulation data is drawn from this full sample. Long-term unemployment (LTU), Female, and Non-Citizen are given as shares.
Age, Employability, and Past Income are averages. Employability is an ordered variable from low (1) to high (3), assigned by the
caseworker. Knaus [48] reports an exchange rate USD/CHF of about 1.3 for 2003.

In both cases, we use a fairness penalty of 0.01, where 0 requires

perfect fairness and 1 corresponds to no fairness constraint.

Note some important differences between the Belgian and Aus-

trian implementations of our work. In Flanders, Belgium the proba-

bility of re-employment within six months is estimated by a random

forest model [29]. Sensitive attributes are no longer included due

to privacy regulations. In our simulation study, the definition of

long-term unemployment corresponds to the ILO definition with

12 months of uninterrupted unemployment.

In Austria, two different models are estimated [4]. The first, short-

term model, uses as a binary target at least 90 days of unsupported

employment within seven months after the reference date. The

second, long-term model, uses at least 180 days of unsupported

employment within 24 months as the target. Those with a short-

term probability of employment above 66% are classified as low

risk for LTU. Those with a long-term probability of employment

below 25% are classified as high risk. The middle group is built as a

residual. That is, it includes all those not classified as high or low

risk. In difference to earlier reports [3], a stratification approach is

applied, and logistic regressions are used to evaluate the feature

importance only [4]. Sensitive attributes like gender and citizenship

are included as features. In difference to the Austrian proposal, we

estimate one model and create the prioritized middle group as those

individuals falling in the 30 − 70𝑡ℎ percentile of the respective risk

distribution.

B.4 Further Results
Following, we present several additional results. In Table 1, we

report descriptive statistics for our simulation and test data with

32, 148 observations. Table 2 shows the respective statistics for the

full dataset.

Figure 6 compares the distribution of the estimated Individual-

ized Average Treatment Effects (IATEs) by gender.

Figure 7 shows histograms of all three risk scores, fairness con-

straint and not. Results on the predictive power of the risk scores

after applying a decision threshold at 0.5 and a formal fairness anal-

ysis with gender as the sensitive attribute are reported in Table 4.

Rates of long-term unemployment under the different algorith-

mically informed policies and baseline as well as five-fold capacities

are reported in Tables 5 and 6. Program participation by gender

under the algorithmically informed policies is shown in Figure 8.
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Figure 6: Individualized and Average Treatment Effects for six labor market programs by gender. The baseline treatment against
which the treatment effects are estimated is “no program”.

We show the gap in long-term unemployment between Swiss

citizens and non-citizens for each combination of prioritization and

assignment schemes in Figure 9. As for gender, the comparison

with the overall LTU rate is presented in Figure 10.

Figure 11 shows both the gender gaps in long-term unemploy-

ment and overall LTU rates for four subgroups in our data: unmar-

ried non-citizen, married non-citizen, unmarried Swiss citizen, and

married Swiss citizen.

Lastly, in Figure 12 we plot the estimated risk scores against the

respective optimal, that is lowest, potential outcome.
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Features used for the estimation of risk scores

Age

Mother tongue in canton’s language

Lives in big city

Lives in medium city

Lives in no city

Fraction of months employed in last 2 years

Number of employment spells in last 5 years

Female (binary)

Foreigner with temporary permit

Foreigner with permanent permit

Cantonal GDP p.c.

Married

Mother tongue other than German, French, Italian

Past income in CHF

Previous job: Manager

Previous job in missing sector

Previous job in primary sector

Previous job in secondary sector

Previous job in tertiary sector

Previous job: self-employed

Previous job: skilled worker

Previous job: unskilled worker

Qualification: semiskilled

Qualification: some degree

Qualification: unskilled

Qualification: skilled without degree

Swiss citizenship

Number of unemployment spells in last 2 years

Cantonal unemployment rate in %

Table 3: List of features from the “Swiss Active Labor Market Policy Evaluation Dataset” [57] used for the estimation of risk
scores. All caseworker information is omitted, sensitive attributes like “Female” or “Citizenship” are included.

Reference Ridge Regression Statistical Parity Equality of Opportunity

Accuracy (1) 0.644 0.644 0.645

Precision (1) 0.612 0.605 0.607

Recall (1) 0.384 0.404 0.404

Stat Parity (0) 0.116 0.041 0.019

Equal Opportunity (0) 0.173 0.07 0.044
False Positive Parity (0) 0.062 0.005 -0.014

Positive Predictive Parity (0) 0.062 0.072 0.081

Negative Predictive Parity (0) 0.011 0.011 0.016

Table 4: Results for predicting long-term unemployment (LTU). To get binary predictions of the target, a threshold of 0.5 is
applied to the risk scores. The sensitive attribute for the group-based fairness analysis is gender. All results are reported as
differences between the respective results for women and men. For example, statistical parity is estimated as 𝑃 (𝑌 = 1 | 𝐴 =

1) − 𝑃 (𝑌 = 1 | 𝐴 = 0), where 𝑌 is the random variable representing the binary predictions of LTU and 𝐴 the sensitive attribute.
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Figure 7: Risk scores for long-term unemployment by gender, estimated by logistic ridge regression with and without fairness
constraints. The vertical line at .5 gives the decision threshold for binary predictions.
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LTU Women Men Gender gap Non-Citizens Citizen Citizen Gap

Status quo 0.414 0.436 0.397 0.039 0.515 0.357 0.158

Belgian, optimal
Logistic Regression 0.386 0.404 0.372 0.032 0.446 0.351 0.095

Stat. Parity 0.386 0.408 0.368 0.039 0.448 0.35 0.097

Equal Opp. 0.386 0.409 0.368 0.041 0.448 0.35 0.097

Belgian, random
Logistic Regression 0.4 0.421 0.385 0.036 0.473 0.359 0.114

Stat. Parity 0.400 0.422 0.383 0.039 0.473 0.359 0.114

Equal Opp. 0.400 0.423 0.383 0.04 0.474 0.359 0.115

Austrian, optimal
Logistic Regression 0.386 0.405 0.371 0.034 0.447 0.351 0.097

Stat. Parity 0.386 0.408 0.369 0.038 0.451 0.349 0.101

Equal Opp. 0.386 0.408 0.369 0.039 0.451 0.349 0.101

Austrian, random
Logistic Regression 0.402 0.423 0.385 0.037 0.476 0.359 0.117

Stat. Parity 0.402 0.424 0.385 0.04 0.479 0.358 0.120

Equal Opp. 0.402 0.425 0.385 0.04 0.479 0.359 0.120

Table 5: Rates of long-term unemployment (LTU) under the different algorithmically informed policies and baseline capacities.

LTU Women Men Gender Gap Citizens Non-Citizen Citizen Gap

Status quo 0.414 0.436 0.397 0.039 0.515 0.357 0.158

Belgian, optimal
Logistic Regression 0.346 0.351 0.342 0.009 0.375 0.329 0.046

Stat. Parity 0.345 0.36 0.333 0.026 0.378 0.326 0.051

Equal Opp. 0.345 0.362 0.332 0.03 0.377 0.326 0.051

Belgian, random
Logistic Regression 0.383 0.395 0.373 0.022 0.44 0.350 0.09

Stat. Parity 0.383 0.399 0.370 0.029 0.441 0.349 0.092

Equal Opp. 0.383 0.400 0.369 0.031 0.442 0.349 0.092

Austrian, optimal
Logistic Regression 0.346 0.353 0.341 0.012 0.380 0.327 0.053

Stat. Parity 0.346 0.361 0.334 0.026 0.388 0.322 0.066

Equal Opp. 0.346 0.362 0.333 0.029 0.387 0.322 0.065

Austrian, random
Logistic Regression 0.383 0.397 0.373 0.024 0.444 0.349 0.095

Stat. Parity 0.384 0.401 0.371 0.030 0.449 0.347 0.102

Equal Opp. 0.384 0.402 0.370 0.032 0.449 0.347 0.102

Table 6: Rates of long-term unemployment (LTU) under the different algorithmically informed policies and five-fold capacities.
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Figure 8: Program participation by gender under both algorithmically informed policies, for all risk scores, and baseline
capacities. Note the different scales and, especially, the higher participation of women in vocational training and employment
programs and the drop in language courses.
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(a) Belgian Prioritization and Optimal Program.
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(b) Belgian Prioritization and Random Program.
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(c) Austrian Prioritization and Optimal Program.
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(d) Austrian Prioritization and Random Program.

Figure 9: We plot the citizen gap in long-term unemployment (LTU) against program capacities for each combination of
prioritization and assignment schemes. The level of transparency shows the citizen gap for the corresponding fairness
constraint: none, statistical parity, or equal opportunity. All policy combinations reduce the citizen gap. The unconstrained
risk scores (lowest transparency) result in the smallest citizen gap. This effect is especially pronounced as program capacity is
increased and program assignments are individualized (optimal). Austrian prioritization compared to the Belgian approach
performs particularly poorly under fairness constraints with respect to gender.
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(a) Optimal Program.
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(b) Random Program.

Figure 10: We plot overall long-term unemployment and the citizen reemployment gap against program capacity for each
combination of prioritization and assignment scheme. For clarity, results are shown only for fairness-unconstrained risk scores.
Regardless of the assignment scheme, the Belgian prioritization (blue line) results in the same long-term unemployment rate
as the Austrian and a slightly smaller citizen gap. Individualized program assignments (optimal) are markedly more effective,
especially under larger program capacities.
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(a) Unmarried Non-Citizen.
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(b) Married Non-Citizen.
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Policy: Austrian Belgian
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(c) Unmarried Swiss Citizen.
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(d) Married Swiss Citizen.

Figure 11: We show the overall long-term unemployment (LTU) rates by prioritization scheme (red and blue line) and by gender
for four sub-groups: unmarried non-citizen, unmarried Swiss citizen, married non-citizen, and married Swiss citizen. All results
are based on fairness unconstrained risk scores for LTU and optimal assignment. Note the different scales. The reduction in
LTU rates and the gender gap is especially pronounced for the group of married foreigners. For unmarried foreigners, the
gender gap even flips under both algorithmic policies at four- and five-fold program capacities.
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(a) Risk scores without any fairness constraint plotted against the
optimal (minimal) potential outcome. Spearman’s rank correlation is
𝜌 = 0.864.

(b) Risk scores with the statistical parity constraint plotted against the
optimal (minimal) potential outcome. Spearman’s rank correlation is
𝜌 = 0.832.

(c) Risk scores with the equal opportunity constraint plotted against
the optimal (minimal) potential outcome. Spearman’s rank correlation
is 𝜌 = 0.826.

Figure 12: We plot the respective (fairness constraint) risk scores for long-term unemployment (LTU) against the estimated
individually optimal (minimal) potential outcomes. All three risk scores are biased estimates of the optimal potential outcome.
An unbiased estimate would scatter around the diagonal line shown. The fairness constraints additionally increase the variance.
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