
The Emerging Artifacts of Centralized Open-Code
Madiha Zahrah Choksi∗

mc2376@cornell.edu
Cornell Tech

New York, New York, USA

Ilan Mandel∗
im334@cornell.edu

Cornell Tech
New York, New York, USA

David Gray Widder
dg536@cornell.edu

Cornell Tech
New York, New York, USA

Yan Shvartzshnaider
yansh@eecs.yorku.ca

York University
Toronto, Ontario, Canada

ABSTRACT
In 2022, generative model based coding assistants became widely
available with the public release of GitHub Copilot. Approaches
to generative coding are often critiqued within the context of ad-
vances in machine learning. We argue that tools such as Copilot
are better understood when contextualized against technologies
derived from the same communities and datasets. Our work traces
the historical and ideological origins of free and open source code
and characterizes the process of centralization. We examine three
case studies —Dependabot, Crater, and Copilot— to compare the
engineering, social, and legal qualities of technical artifacts derived
from shared community-based labor. Our analysis focuses on the
implications these artifacts create for infrastructural dependencies,
community adoption, and intellectual property. Reframing genera-
tive coding assistants through a set of peer technologies broadens
considerations for academics and policymakers beyond machine
learning, to include the ways technical artifacts are derived from
communities.

CCS CONCEPTS
• Human-centered computing→ Open source software.

KEYWORDS
Artificial Intelligence, Commons, Ethics, Governance, Free Software,
Licenses, Political Economy

ACM Reference Format:
Madiha Zahrah Choksi, IlanMandel, David GrayWidder, and Yan Shvartzsh-
naider. 2024. The Emerging Artifacts of Centralized Open-Code. In The 2024
ACM Conference on Fairness, Accountability, and Transparency (FAccT ’24),
June 03–06, 2024, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3630106.3659019

∗Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0450-5/24/06
https://doi.org/10.1145/3630106.3659019

1 INTRODUCTION
Since its release in 2021, GitHub’s programming assistant, Copilot
has been the subject of extensive commentary and critique. Nu-
merous advocacy groups, such as the Software Freedom Conser-
vancy [94], the Open Source Initiative, and The Free Software
Foundation [3], along with scholars from diverse fields such as
Machine Learning [7], STEM education [121, 157], HCI [76, 150],
and Law [52, 129] have examined the potential benefits, harms and
implications of generative coding assistants.

However, the advent of tools such as Copilot was not a given.
They rely on the centralization of code from the Internet commons.
Here, we employ a neutral definition of the commons to reflect the
open and free access to a resource by all. There are no technical
restrictions to free reuse, and open source licenses guarantee that
there are no legal restrictions either [23, 65, 117, 137].

We describe a centralizing tendency in the hosting and sharing
platforms for Free and Open Source Software (F/OSS). Centraliza-
tion enables the creation of a new class of tools we term centralized
commons based tooling. Copilot is one such tool. This work exam-
ines the broader category of tools Copilot falls under. Although
centralized commons based tools are not necessary for centraliza-
tion, centralization is, however, necessary to produce such tools.
Our research shows how the form and function with which central-
ized commons based tools interact with the technical communities
that produce the underlying data exist along spectrum’s of social,
technological, political and economic valence.

Langdon Winner shows how technical artifacts have politics: he
demonstrates how ostensibly neutral tools— from bridges to bombs
to tomato harvesters depend on and inscribe relations of power
in society [165]. Just as text and vision models are trained on vast
corpora of images and text [9] produced on social platforms [140],
the code used to train models like Copilot is produced on GitHub.

Package managers and online code hosting simplified collabora-
tive software development [40]. Social features drove developers
to share and collaborate on GitHub where open source software
became increasingly centralized [50]. The scale of open source
development activity drove the use of automation tools for depen-
dency management and continuous integration services [63]. As
it became the dominant infrastructure underling the open source
ecosystem, GitHub amassed a vast trove of data, beyond code to
include dependency graphs, historical commits, user interactions
and documentation. In 2018, Microsoft acquired GitHub for $7.5 bil-
lion USD, 30 times its annual recurring revenue. The purchase was
widely understood as bid for its strategic rather than its financial

https://doi.org/10.1145/3630106.3659019
https://doi.org/10.1145/3630106.3659019

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Choksi and Mandel, et al.

value [156]. Three years later, it was the synthesis of GitHub’s data,
Microsoft’s compute resources, and OpenAI’s machine learning
expertise that produced Copilot [53].

Our contribution is two-fold. First, we present a historiography of
how F/OSS software became centralized on platforms and package
managers. Building on similar work in critical data studies [93],
and historical analyses of technical development [33], we examine
the process by which F/OSS code became centralized. Second, we
juxtapose Copilot with two other examples of centralized commons
based tools which have different technical, participatory, and legal
implications. We adopt a case-study approach [59] to compare three
large-scale tools that rely on centralized open source code: Crater, a
tool for testing the Rust compiler;Dependabot, a systemwhich scans
open source software repositories to keep software dependencies
up-to-date; and Copilot, a code completion subscription product by
GitHub.

We explore the relationship of these tools to their infrastruc-
tural dependencies, community interactions, and implications for
an open commons. In our discussion, we advocate for an expansive
perspective of the modern open source ecosystem, to acknowledges
the heterogeneity of tools generated from a communal wealth of
open source code. We approach this work through interdisciplinary
lenses, spanning computer science, history, human computer inter-
action, law, and software engineering.

2 RELATEDWORK
2.1 Situating the Commons
In theorizing about the commons, Elinor Ostrom’s foundational
work on governance challenges the idea that shared resources, or
commons, are necessarily overused and depleted [117]. Open source
communities manage information common resources. They are ded-
icated not to the production of tangible goods like crops or oil, as
in Ostrom’s original examples [117] but information goods that
are non-rival and non-excludable. This difference simultaneously
creates opportunities (because those goods can be freely shared
without depletion) and challenges (because it can be harder to define
and enforce communities boundaries and rules) [65]. In addition to
common-pool resources, open source communities also create intel-
lectual and social infrastructure [23, 54] to support the community’s
operations. These blended infrastructures draw on intellectual and
cultural resources to showcase a symbiotic relationship between
technical innovations and sociocultural contexts.

2.2 Ethics and Openness
Ethical issues in open source software have also been an object of
academic scholarship. Gabriella Coleman examines the ethics of
open source hacking in the context of Debian, and demonstrates
how self-governancewithin the community critiques and re-invents
wider neoliberal ideas of political participation [29]. In her work,
Coleman challenges conventional notions of authority around how
communities democratize access to knowledge and technology [30].
Innovations in licensing created complex edge cases around fair
use in both the legal and ethical sense [66]. Nissenbaum [113]

demonstrates how the “many hands” involved in software produc-
tion make it harder to hold any one person accountable. In con-
trast Grodzinsky et al. [67] argues that open source allows peers to
hold each other accountable for low quality code.

In the context of AI, Widder et al. [161] distinguishes between
“implementation” harms, which open source may help prevent
through its transparency, and “use” harms that more easily prolifer-
ate with open source distribution. Solaiman [138] catalogs middle-
ground approaches between closed and open, such as staged release
and access via an API. Others suggest behavioral use licensing [31]
may help avert some harmful uses.

The many stages of widely adopted, dynamic AI pipelines and
multi-purpose toolkits further exacerbate the “many hands” prob-
lem [32]. The fractured inter-firm nature of AI supply chains both
means developers do not feel accountable for use [160] and intro-
duces an “accountability horizon” where they do not know about
how software may be later used [28]. Given this, AI Ethic’s focus
on documenting bias and producing related metadata has been
critiqued in cases where these interventions can be easily lost or
ignored as ML artifacts are remixed and reused [55].

2.3 Critical Work on the Power and Politics of
Datasets

Datasets are far from neutral, “the work of producing, preserv-
ing, and sharing data reshapes the organizational, technological,
and cultural worlds around them” [125]. The advent of ever larger
datasets and models makes it difficult to audit them for harms such
as bias [9].

Machine Learning has long been built on centralized datasets,
however, these datasets are not themselves ready to use, nor free
from the need for curation and interpretation. Much direct hands-
on work, often undervalued [128] and underpaid [120], is needed
to make these datasets useful, underscoring both the interpretive
nature of ostensibly objective AI, as well as the enormous resources
needed to pay for this manual work [162]. Further, as data be-
comes increasingly important for building more accurate models,
companies are becoming less open in sharing their datasets and
corresponding metadata [116]. Centralization of the intellectual
product of the world, often for the benefit of a few wealthy western
corporations with access to sufficient compute, raises concerns of
data colonialism [144].

2.4 Political Economy of Software
AI ethics scholarship increasingly scrutinizes the political economy
of software. One frame for examining the political economy of
software is through contemporary labor practices. Recent work
surveys tech workers about ethical concerns they encounter in
their work, and demonstrates that those concerns cannot simply
be remedied with design changes— rather, workers lack power to
challenge corporate incentives which lead to their concerns [163].
Others examine the role of increasing tech worker collective action
in response to the absence of structural power [13, 109].

A growing body of literature examines the role powerful compa-
nies and their resources play in shaping digital possibilities. Srnicek
[140] shows how modern tech companies act as “platforms” in or-
der to orchestrate both other firms and their customers to their

The Emerging Artifacts of Centralized Open-Code FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

benefit. Dyer-Witheford et al. [49] critique AI from a Marxist per-
spective, examining how increasing labor automation entrenches
capital. Luitse and Denkena [93] examine the ascendance of large
language models, and demonstrates how they are “intertwined with
the business model of big tech companies and further shift power
relations in their favour.” Widder et al. [162] examine and reject the
claim that open source will “democratize” access to AI, given AI’s
dependence on concentrated resources— including compute, data,
and labor— in the hands of corporate actors.

While companies often support open source projects that are
important to corporate strategy [162], open source contributors
are not always paid for their labor, creating the risk of “underpro-
duction” of key digital infrastructures that depend on voluntary
maintenance contributions [19, 20, 34]. Work increasing developer
contributions in necessary infrastructure is an active area of re-
search [91]. Elinor Ostrom proposes principles for the governance
of common-pool resources [117], and we similarly theorize public
source code as a material resource and commons [131]. Cooper et al.
[32] demonstrates how in the nascent internet, the definition of
“accountablity” expanded from acutemonetary concerns to issues of
wider policy for governing common resources. We similarly exam-
ine the inextricable link between historical developments, material
resources and questions of governance.

3 THE HISTORY OF CENTRALIZATION IN
OPEN-CODE

The historical provenance of datasets are a reoccurring concern in
scholarship on fairness, accountability and transparency [57, 75, 92].
Nearly all recent models for generating code are trained on cen-
tralized open-code on GitHub [5, 56, 83, 87]. While scholars have
examined these datasets on copyright grounds [39], we trace the
ideological, legal, and technical origins of open source, attending
in particular to how this movement led to centralized codebases.
The communities that produced F/OSS code were often explicitly
political, [30, 78] and scribal, assiduously documenting their in-
trospective discourse. We use a variety of primary and secondary
sources to build on prior work that traces the history of other po-
litical concepts such as accountability [33], fairness [72], and AI
ethics [12].

3.1 The Ideological Origins of F/OSS
The Free Software Foundation (FSF), and the Open Source Initia-
tive (OSI) shepherded new practices for hosting, distributing, and
accessing publicly available source code [104]. The legal innova-
tion of copyleft licensing, notably the FSF’s General Public Licence
(GPL) used “intellectual property rules to create a commons in cy-
berspace” [103], by enabling source code to be shared, used, and
modified freely, with the “viral” condition that resulting software
be distributed on the same terms. The FSF was founded as a moral
crusade against proprietary software [141]. The OSI was founded
in response, to reject moral crusades and instead emphasize the
business benefits of openly sharing code [79]. They decided in-
tentionally to “dump the moralizing and confrontational attitude
[of] ’free software’ [...] and sell the idea strictly on [...] pragmatic,
business-case grounds” [145]. Though they had opposing ideologi-
cal commitments [102], both worked— often collaboratively— on

innovations that are technical (code), legal (licensing), and sociolog-
ical (norms of sharing) [103, 104] to construct the F/OSS ecosystem.

3.2 Software Distribution and Package
Management

Once written, software requires distribution channels to developers
and users. While Microsoft can arrange with hardware manufactur-
ers to have software pre-installed [47], this option was not available
to the early F/OSS movement. The FSF’s early years were funded
by Richard Stallman selling and shipping tapes of code to users and
contributors [104]. Mailing physical tapes was a common mode of
distribution at the time [10].

Distributing software this way is inefficient, and impeded collab-
oration. ARPANET and later the Internet fundamentally changed
this. Users could now post source and compiled code online. The
Linux project began in 1991 to build a free operating system kernel
when Linus Torvalds posted the “Sources for this pet project of
mine [which] can be found at nic.funet.fi (128.214.6.100)” [105]. Col-
laborators began navigating to that address, downloading the code
and making contributions they would send back to Linus. Linux’s
rapid adoption, popularity, and its organizational mythology helped
to propel the growth of the broader F/OSS movements [123]. When
Linux switched to the the FSF’s GPLv2 license, Linus emphasized
it was “it as an engineering choice and as a way to allow people
to improve and share rather than as a moral imperative” [68]. Un-
like other F/OSS projects such as GNU and BSD, which had a core
team of co-located developers, Linux was maintained by distributed
strangers online. Linux needed the GPL, and its licensing regime
informed how it developed both technically and socially. As early
as 1993, it was understood that Linux was not just a project but
a methodology [104]. Working collaboratively, in public, became
the basis of open source code as a “knowledge commons” [14, 131].
Originally, compressed source code was shared via web servers or
mailing lists, [146, 167]. Around 1993, some distributions of Linux
developed “packages” to allow people to install a pre-compiled bi-
nary using a package manager built into the operating system [104].
Debian released apt-get in 1998, making it possible to download
a package and its dependencies at once [27]. This made it eas-
ier to develop software by compositing smaller modular compo-
nents [82, 107]. In 2005, Linus released Git, a version control system
designed to manage the unique challenges of the decentralized col-
laboration environment that Linux had pioneered.

Individual programming languages were facing similar issues
around sharing code, libraries and packages. The LATEX ecosystem
was one of the first to centralize package management: beginning in
1993 developers could upload packages to the Comprehensive TEX
Archive Network (CTAN) [64], a model adopted by other languages
such R (CRAN) and Perl (CPAN) [148]. In the latter case, CPAN was
considered the “killer app” for the language [130], allowing novices
to build complex applications in few lines of code. Package manage-
ment had thus become a necessary feature for new programming
languages.

Package registries exhibit characteristics of a natural monop-
oly [124]. The cost of hosting packages is expensive at scale, and a
single standard can aid in interoperability, further increasing the
adoption of the registry through network effects. We can see how

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Choksi and Mandel, et al.

centralized package registries arise in the case of JavaScript. As a
language and a product JavaScript was developed in a rush. The first
prototype was made in 10 days [132]. In that rush, JavaScript was
released without language tooling or package hosting. As JavaScript
libraries began cropping up in the 2000’s, they were typically hosted
on public servers for anyone to download or use directly by includ-
ing a script tag referencing a URL [126]. While a few free content
delivery networks for JavaScript packages emerged in the early
2010s (CDNjs, jsDelivr and Google Hosted Libraries), the most sig-
nificant development was the “node package manager” (npm), an
open source project which incorporated as a start-up in 2014.

Node.js is a runtime environment for server-side JavaScript that
became popular in the 2010s. npm was created to serve as a package
registry for the ecosystem. Though Node and npmwere intended for
servers, web developers found its infrastructure useful for front-end
development. In 2014 the npm blog noted that“32% of the packages
in the top 50 [installed packages] (and 50% of the actual downloads)
are front-end tools or frameworks” even though it was not an
intended use case for the platform [153]. npm had become the de
facto registry for JavaScript packages. Growing with the web, by
2017 it had become the largest package registry of any language [16],
before being acquired by GitHub (and by extension, Microsoft) in
2020 [25]. The messy, distributed, and ad-hoc methods of software
delivery that pre-dated npm was not a saleable asset. It required a
process of centralization to become one.

3.3 Modern Social Coding
Open source ecosystems of peer production are increasingly cen-
tralized on package registries (i. e., npm [81] or PyPi [151]) and social
coding platforms [168]. As the number of open source projects and
communities expanded, this led to the development of infrastruc-
tures to organize communities, not just code. SourceForge, founded
in 1999, was the first centralized home for F/OSS code, and let users
upload software for free. By 2007, SourceForge hosted approxi-
mately 150,000 projects and was “the place to ‘see and be seen’ if
you’re an up and coming open-source project. It [has] developers
chatting with developers, sharing, rubbing elbows, strutting their
stuff, watching each other build. It’s a global community of coder
geeks” [95].

In 2008, in the same era YouTube, Facebook, and Twitter were be-
coming dominant, GitHub was founded as a “Social Coding” startup,
explicitly layering community features on top of Git. Social fea-
tures such as stars, follows, and public contribution trackers [98]
incentivize coding as content creation [50]. These features increased
both user productivity and burnout [122]. It rapidly supplanted
SourceForge. By 2018, GitHub announced it hosted 100 million
repositories [155]. In 2023 the platform surpassed 100 million reg-
istered users while articulating a vision to be “the home for all
developers” [44]. Project maintainers pursue project-specific goals
intrinsically linked to the broader ecosystem [43, 58] beyondwriting
code. Users transition into contributors over a process of socializa-
tion, often marked by rites of passage [48]. The sustainability of
an open source project is reflected in its ability to endure, expand,
and self-replicate [90] by guiding users through this integration
process.

3.4 Centralization
GitHub’s dominance in hosting open source software became un-
equivocal, and today’s F/OSS ecosystem is extremely centralized.
GitHub’s nearest competitor, GitLab, has less than a third of the
number of users, many of whom likely have GitHub accounts as
well [44, 136]. GitHub is also a crucial tool in education [119], and
hiring where developers often put their GitHub account on their
CV and recruiters often request it directly [97].

Decentralization was core to the original F/OSS ethos [69]. John
Gilmore, the Free Software advocate, programmer, and early GNU
contributor famously stated “The net interprets censorship as dam-
age and routes around it”[51]. GitHub, however, is not the internet,
but a Limited Liability Company registered and operating in the
US where it is subject to US laws. In 2019, developers living in
countries under US Sanctions including Iran, Crimea, and Syria
could not access their data, finding an alert notice stating that “Due
to U.S. trade control law restrictions, your GitHub account has been
limited” [89]. In 2020, GitHub complied with a DMCA notice from
the Recording Industry Association of America to take down code
used for downloading YouTube Videos [24]. After developer outcry
GitHub reversed course and changed its copyright policies [62]. In
these examples, GitHub assumes the role of an arbiter of what can
and cannot exist on the largest platform for F/OSS code. While Git
is a decentralized protocol [147], it has enabled code to be highly
centralized on GitHub.

Programming language package management is similarly highly
centralized. In 2016, open source developer Azer Koçulu was asked
by messaging company Kik to remove his npm package sharing the
same name [164]. After he refused, Kik’s lawyers reached out to
npm, who agreed to transfer the name to Kik. In response, Koçulu
removed over 250 of his own open-source packages from npm. One
such package, called left-pad, an unassuming 11 lines of code, was
depended on by thousands of other packages. Koçulu was explicit
in a blog post titled “I Just Liberated My Modules” [80]:

“This situation made me realize that NPM is someone’s
private land where corporate[sic] is more powerful than
the people, and I do open-source because, Power To The
People.”

Removing left-pad wreaked havoc throughout the JavaScript ecosys-
tem becoming known as the 11 lines that “broke the internet” [2].
npm took the “unprecedented” step of un-unpublishing his code [164]
to restore the broader ecosystem. Similarly in 2022, a developer
published an intentionally corrupted version of his own packages
to protest corporations using open source software without con-
tributing back [133]. Once again, npm reverted his changes, and
GitHub suspended his account.

Once technical infrastructure is centralized, attempts to reintro-
duce decentralization are difficult. In 2018, Node.js creator Ryan
Dahl identified ten design regrets he had about the language and
ecosystem he had helped create [35]. Core among them was the
way Node handled modules, the decision to include npm into Node,
and the centralizing effect it had. Dahl demonstrated Deno, an
alternative runtime to Node which obviated the kinds of supply
chain problems and intermediaries that npm had introduced into
the JavaScript ecosystem. Dependencies emulated script tags in the
browser, being pulled in from a URL online directly rather than

The Emerging Artifacts of Centralized Open-Code FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

a centralized package manager intermediary. Deno’s 1.0 release
called attention to the fact that Node.js is “is fundamentally cen-
tralized through the NPM repository, which is not inline with the
ideals of the web” [37]

Deno originally avoided npm compatibility on these grounds.
However, over the course of 2022 [36] and 2023 [38], Deno would
backtrack and support some cross-compatibility with npm— all
while simultaneously reiterating how “JavaScript[’s] reliance on a
single centralized module registry conflicts with the web’s decen-
tralized nature” [38]. Integration with npm was a highly requested
feature by developers that Deno could not ignore. The network
effects of centralization are powerful: once developers are used to
a standardized way of doing things, change is difficult.

4 ARTIFACTS OF CODE CENTRALIZATION
This work examines tools whose existence is predicated on the prior
existence of large centralized code bases. Specifically, we adopt a
cross-case analysis in accordance with Robert Gerring’s method-
ology [59]. To that end, our approach is hypothesis generating,
rather than hypothesis testing, emphasizing the causal mechanism
whereby centralization of the software commons produces the
tools examined. Cases were selected inductively and evaluated on
whether or not they were typical of tools produced from central-
ized code. Where similar tools were substitutes, we selected the
more popular one. We prioritized tools that operate within F/OSS
ecosystems as infrastructure, though that was not a strict exclusion
criteria. Although each case study is context-specific, they are se-
lected to contribute to a theoretical generalization [170] about the
changing landscape of open-code tools. In the following sections
we provide relevant background on each case.

4.1 Crater, 2015
The Rust programming language aggressively commits to “stabil-
ity without stagnation” across updates to the language and com-
piler [99, 149]. Crater was introduced in 2015 as a tool to help guar-
antee stability by “compiling and running tests for every crate on
crates.io (and a few on GitHub)” [142]. Software packages— called
crates in the Rust ecosystem are typically shared on crates.io—
the default registry for downloading and sharing packages. Nearly
every public repository on GitHub with a Cargo.lock file [15] is
tested. Brian Anderson developed the initial version of Crater as “a
tool to run experiments across parts of the Rust ecosystem.” [142].
Crater runs at least once a week [15]. All logs are public and posted
online. When proposed changes to the Rust compiler break existing
projects, the team will revert or patch the changes. In 2019 AWS
began sponsoring the EC2 compute costs for Crater. The maintainer
for Crater [4] explained:

“We know it’s not perfect. We don’t test any kind of pri-
vate code because of course we don’t have access to your
source code. But also we only test crates.io and GitHub,
and not other repositories such as GitLab, mostly be-
cause nobody got around to write scrapers yet... [Crater
is] the real reason why we can afford to make such fast
releases... I wouldn’t be comfortable making releases
every six weeks without Crater because they would be
so buggy.”

4.2 Dependabot, 2017
To maintain dependencies and mitigate security vulnerabilities in
the software supply chain, GitHub uses a system for automated
pull requests called Dependabot [61]. Founded as a start-up in
2017, Dependabot was acquired by GitHub in 2019 and has been
fully integrated into GitHub’s platform [70]. Dependabot alerts are
on by default for public repositories on GitHub [61, 100]. Secu-
rity Advisories are synchronized from the National Vulnerability
Database [108], and the GitHub Advisory Database. While other
dependency management bots exist, Dependabot’s integration on
GitHub makes it the most widely used. In 2019, 67% of all bot-
created pull requests came from a combination of the original and
GitHub native versions of Dependabot [169].

4.3 Copilot, 2022
Copilot is a subscription cloud-based “artificial intelligence” assis-
tant for writing code. It was originally based on a derivative of
OpenAI’s Codex model [21] trained on GitHub repositories. Paying
subscribers can install Copilot as a plugin within several popular
code editors, where it acts as a form of advanced auto-complete.
The product is free to use for students and “verified open-source
maintainers”, where maintainer is defined as “someone who has
write or admin access to one or more of the most popular open-
source projects on GitHub” [44]. Based on GitHub’s definition all
maintainers use GitHub [74].

4.4 Case Study Justification
We investigate Crater, Dependabot, and Copilot based on their ca-
pacity to help clarify the boundaries of emerging open-code artifacts
that are produced via centralization. From Gerring [59] we apply
diversity sampling. Cases demonstrate diversity in their business
model’s and origins. Dependabot began as a startup that was ac-
quired and integrated into GitHub, Crater is internal infrastructure
for Rust’s largely volunteer maintainers and Copilot is a subscrip-
tion product.Whereas Dependabot and Crater originatedwith small
teams, Copilot was predicated on significant capital, expertise, and
data provided by Microsoft, OpenAI, and GitHub respectively.

The cases we select are also diverse in their interaction model.
Individual programmers interact with Dependabot as as their code
enters GitHub’s platform. Copilot lives “with” a programmer in
their IDE. In contrast, most Rust programmers will only notice that
their code continues to compile, never necessarily attributing it to
Crater.

Our case inclusion criteria required determining if a tool requires
a large set of software generated via peer production as a functional
input. We define those inputs as centralized open-code. We contrast
this with popular F/OSS Libraries such as PyTorch, Serde, or zlib,
which do not rely on centralized open-code to function. While
they may be central nodes in dependency networks— both up and
downstream of other projects— our inclusion criteria hinges on
whether tools rely on the centralization of large datasets of open-
code to achieve their stated utility. Dependabot, Crater, and Copilot
all require the existence of extensive code ecosystems, producing
large volumes of software. Centralized commons based tools must
be in regular sync with the broader open source ecosystem. Crater,

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Choksi and Mandel, et al.

Dependabot, and Copilot are constantly re-run or retrained as new
software is published online.

Each tool is also predicated on centralization in the F/OSS ecosys-
tem. For example, as programmers increasingly depend on growing
lists of open source dependencies [50, 139, 166], tools such as De-
pendabot become necessary for developers who could not otherwise
keep up with updates to dependencies in real-time. In the case of
the Rust ecosystem, Crater’s maintainer states that they only use
GitHub and Cargo, not taking the time to write scrapers for even
the second largest public code forge. In a more distributed ecosys-
tem, Crater would presumably look very different. For Copilot, the
original model was trained on GitHub code [21], and has been ex-
tended via extensive retraining with augmentation from telemetry
data [173]. While there are numerous datasets curated specifically
for training code synthesis models, they are nearly all curated from
public code on GitHub’s Archive [5, 56, 83, 87].

Differences occur even in the tools produced by the same firm.
Notably, Dependabot and Copilot are both released by GitHub. De-
pendabot is not the only bot intended to provide ecosystem-wide
assistance. Other dependency management bots such as Green-
keeper (deprecated) and Snyk characterized by Wessel et al. [158]
would make for promising case studies. While various languages
employ tools to mitigate risks [110, 154], Dependabot, being inte-
grated into Github and on by default makes it central infrastructure
for the F/OSS ecosystem.

Alternative coding assistants such as Amazon’s CodeWhisper,
Tabnine, and ChatGPT [88] embody similar features as Copilot
and could have been examined. Unlike ChatGPT, Copilot runs in
user’s existing development environment adding mode diversity
to our cases. Copilot was selected for its documented scale [172]
and its intentional integration with open source communities by
granting free licenses to open source developers [74]. Additionally,
its development by Microsoft and GitHub were considered, given
Microsoft’s role as arguably the primary beneficiary of centralized
code on GitHub.

Across programming languages Crater is unique [135]. While
centralized package mangers and tooling have become standard
among many programming languages [11, 45, 148], Crater stands
out by using its package management infrastructure, and public
code as a resource for improving language development.

5 COMPARING ARTIFACTS OF CODE
CENTRALIZATION

Each case is a product downstream of commons based peer pro-
duction, centralization, aggregation, and synthesis loops. These
artifacts are novel emergent phenomena that have not been catego-
rized collectively. The variance across tools described in this section
seeks to explore the bounds of this phenomenon. Specifically, we
trace the idiosyncrasies of centralized commons based tools along
axes of technology, community interaction, and legal compliance.

5.1 Stated Goals
Each case provides documentation, code and marketing materi-
als that explicitly describe how the tool is intended to function.
Crater was made to support the Rust language’s commitment to
stability [149]. Crater relies on GitHub and crates.io, to engage

in “ecosystem-level experimentation” [6], treating the entirety of
the open source Rust codebase as a test suite to evaluate proposed
changes.

Dependabot primarily focuses on safety, aiming to strengthen the
overall security of open source projects by ensuring that individual
packages are updated and vulnerabilities are patched [106]. This
stated goal extends to both upstream and downstream projects — a
collective approach to security enhancement. In 2020, a blog post
from Dependabot stated:

“Keeping dependencies updated is a crucial part of secur-
ing your software supply chain, whether you’re work-
ing on an open-source project or a large enterprise. To
make that easy, we’re sticking to our promise to make
all Dependabot features free for every repository on
GitHub.” [106]

Along these lines, Dependabot emphasizes its commitment to en-
abling security measures for an entire software supply chain by
ensuring its features are freely accessible to every repository on
GitHub.

Copilot’s marketing home page describes it as an “AI pair pro-
grammer” [73]. It is primarily concerned with end-user task com-
pletion by automating repetitive coding tasks to enable developers
to concentrate on more substantial development tasks. The GitHub
blog’s Copilot announcement underscores that “GitHub Copilot
distills the collective knowledge of the world’s developers into an
editor extension that suggests code in real time, to help you stay
focused on what matters most: building great software” [74].

Security and language stability for a broader ecosystem of users
and tools are presented as integral goals for Dependabot and Crater.
In comparison, Copilot’s goals focus on efficiency and productiv-
ity for individual developers through artificial intelligence. The
different ideological commitments of each tool demonstrate how
centralization may be leveraged into either product-style tools or
shared infrastructure.

5.2 Technology
While all three tools depend on the centralization of open source
code, as described in Section 3.4, how they operationalize central-
ization differs. Here we compare how these tools leverage central-
ization to provide data as a resource, alongside their dependence
on compute, and their core technical functionality, in Table 1.

The technical implementations of each tool varies in their trans-
parency and reproducibility. Dependabot and Crater, for example,
are themselves open source and both their code and underlying
datasets are publicly available. Dependabot has been forked, reused,
and integrated into other open source projects. Crater has inspired
the creation of similar tooling [115] targeted at related concerns in
the Rust ecosystem. Copilot has been emulated by companies [41]
and open source projects [5, 86, 111, 112] such as FauxPilot [8, 26]

Crater depends on Rust’s central package manager. Additional
packages are sourced from GitHub. While the maintainers discuss
the possibility of including other code hosting platforms, their
choice not to do so suggests an implicit acceptance of GitHub’s
dominance [4]. Crater currently runs on an AWS c5.2xlarge with 2
TB of storage [142]. This costs $0.34/hour, and runs typically take
a few days [15]. The cost is not insubstantial, “if the usage of Rust

The Emerging Artifacts of Centralized Open-Code FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

skyrockets [the Rust Foundation is] going to reach a point where it’s
not economically feasible to run Crater in a timely fashion” [142].
However, the resources are replicable by researchers [115] or other
open source foundations.

Dependabot is a mechanism for interacting with the GitHub
Advisory Database. Beyond the open source core logic for checking
dependencies, Dependabot is largely a user interface to a database.
GitHub scans user code and crosschecks it against their shared data-
base [100]. In addition, GitHub is a numbering authority capable
of adding entries to the Common Vulnerabilities and Exposures
(CVE) system [96], the IT security industry standard venue for
vulnerability disclosures.

Copilot is trained on code hosted on GitHub, without explicit
consent from project owners andwithout regard for project licences.
While others have used GitHub’s Archive [5, 86, 111, 112] to train
coding assistants, GitHub already hosts the code, making it tech-
nically trivial for them to access, providing an advantage given
that dataset size yields significant advantages for transformer-like
models [71]. Telemetry data from Copilot IDE plugin gives GitHub
a substantial asset for improving and growing the model as develop-
ers’ use of the tool becomes additional training data [84]. Training
large models is financially costly, and while GitHub does not release
details on training or compute costs, estimates based on the AWS
EC2 P3 compute instances used by Allal et al. [5] suggest a lower
bound of $40-$60,000, not including significant additional costs
for multiple iterations during testing and inference while in use.
Reportedly, Copilot looses money and depends on Microsoft’s sig-
nificant financial resources [46]. Copilot, like other large AI models
are fundamentally products of large, well-resourced institutions.

5.3 Intellectual Property
In November 2022, a class-action lawsuit was filed against GitHub,
Microsoft, and OpenAI alleging that Copilot was trained on copy-
righted computer code without preserving required attribution
and copyright notices [17, 22, 152]. The lawsuit, Doe v. GitHub, Inc.
broadly gestures at how such violations will create future harms
for copyright management [127]. The U.S. intellectual property law
framework in this case serves as a useful reference for analyzing
convergent and divergent legal perspectives on Crater, Dependabot,
and Copilot. We examine license choices, lawful inputs and out-
puts in the context of U.S. software copyright, and potential viola-
tions of the Digital Millennium Copyright Act (DMCA) § 1202 [17].
§ 1202 (a) of the DMCA restricts providing or distributing falsified
copyright management information, and § 1202 (b) restricts the
removal of copyright management information [17].

In software development, enhancing code functionality often
involves adding features, optimizing performance, or fixing bugs.
Expressive rights, in the context of code, refer to the freedom to
express creative or innovative elements in the code, such as unique
algorithms, creative solutions, or original design choices [66].

Crater is dually-licensed under Apache 2.0 andMIT licenses [143].
Programmers use and share their Rust code on crates.io. Crater
conducts regression testing on the compiler [142], a practice that
does not contravene the terms of use outlined in common F/OSS
licenses. In other words, Crater enhances the code’s functionality,
but does not infringe upon its expressive rights. In doing so, Crater

provides functional improvements to the code in a way that does
not encroach upon the creative or expressive aspects of the original
code. There is separation between the functional enhancements of
Rust code, and the creative expression embedded in the code. From
a fair-use perspective, this approach does not diminish the market
value of the shared code, but amplifies its worth by guaranteeing
its continued efficacy. Crater relies on open source packages for
noncommercial purposes. Further, the transformative nature of
Crater’s operations (i.e. the output builds on copyrighted code in a
different manner or for a different purpose from the ingested code)
further underscores the absence of copyright concerns. Since Crater
does not produce code outputs, they do not violate DMCA § 1202.

Dependabot is self-activating and on by default for public repos-
itories. Dependabot’s core source code and underlying database
are available online [61] and released under the Prosperity Public
License (PPL). The PPL creates strong limitations for commercial
use by offering a restricted trial for such uses [100]. Dependabot
does not create copyright infringement for code inputs, or risks for
outputs, as its operational function is to maintain the sustainability
of a given repository. Along these lines, Dependabot’s technical pro-
cesses would be classified as transformative use. Its use enhances
the copyrighted code towards the goal of protecting packages from
security risks and ensuring security over the ecosystem.

Copilot, in the context of its output, is a code recommendation
system that may generate copyright-infringing works [22]. Along
these lines, Copilot is not considered liable under U.S. copyright law
until it is prompted to produce an output. This implies that the tool
itself is not engaging in primary infringement; instead, it becomes
relevant to the copyright liability when it is activated or prompted
to generate some output by a user that may involve copyrighted
material. As such, automated recommendation tools that copy code
from the commons produce a significant source of risk to their
users [17]. Further, Copilot is trained on code from repositories on
GitHub which are released under numerous open source licenses.
Butterick [17] claims that ingesting and distributing licensed ma-
terials without attribution, copyright notices, or licensing terms
violates DMCA § 1202. Notably, GitHub admitted that the text of
the GPL appears in Copilot’s training data over 700,000 times [172],
a license which specifically requires attribution.

Whereas licenses enable others to obtain rights to copy and use
software, “Terms of Service” agreements are legal contracts that
outline a service relationship between a customer and a corpora-
tion [85]. Copilot is a proprietary product developed by GitHub in
collaborationwithOpenAI, and is not released under an open source
license. Instead, it is a commercial service provided by GitHub, and
users are required to pay for access [129]. Ongoing litigation [17]
will determine the legality of mining publicly available source code
to power an AI-writing tool operating under a paid subscription
model [22, 42].

5.4 Interface and Community Participation
Each tool operates at distinct levels of abstraction from developers,
influencing how users interact with the tool, and the autonomy
they have to opt-out. Crater, as a tool for maintainers, is experi-
enced by Rust programmers indirectly through language features.
While there are features for developers to request or audit Crater

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Choksi and Mandel, et al.

Table 1: Technical Features: Dataset, Compute Resources, and Core Function

Tool Dataset Compute Resources Core Function

Crater Packages indexed on crates.io, and
packages the scraper identifies as Rust
code bases on GitHub; 561,346 repos as
of 2023.

AWS c5.2xlarge with 2 TB of stor-
age [142]. Their configuration would cost
$0.34/hour on AWS with runs taking a
few days.

Compiles each package un-
der two versions of the com-
piler, runs its test suite and
reports failures.

Dependabot GitHub Advisory Database including
CVEs, NVD, and language-specific alerts.
Database is open source and open to con-
tributions.

Difficult to estimate at scale. Dependabot-
core can run in a docker environment
without significant compute.

A library for automated pull
requests based on changes to
the database.

Copilot 159 GB of Python code from 54M public
GitHub repositories for OpenAI’s origi-
nal Codex model. There have been mul-
tiple updates to Copilot, expanding its
use beyond python to other languages,
and likely including data collected from
telemetry from over 1M users.

“GPT-3-12B relied on hundreds of
petaflop/sdays of compute. Fine-tuning
Codex-12B consumed a similar amount
of compute” [21]. Trained on a custom
cluster with 10,000 V100 GPU’s. Esti-
mated cost is $5M in compute. Additional
resources costs accrue at inference.

A decoder only transformer
model which probabilisti-
cally estimates the most
likely next token in a se-
quence. The model is fine-
tuned on code datasets.

runs, the tool is effectively invisible to the average Rust developer.
Dependabot takes the form of notifications that developers must
respond to within GitHub. Users can configure notification activity
for Dependabot, allowing for a degree of control over their inter-
action. Copilot operates at an inter-textual [103] level, integrated
into the developer’s coding environment as they write, offering
real-time code suggestions and providing a chat interface.

With respect to community participation, each tool offers very
different levels of interaction in data creation, tool development, and
tool use. Dependabot enables users to respond to automated pull
requests, akin to contributing code, with configurable notification
settings. The community can actively contribute to the security
landscape by raising security alerts, a process open to any GitHub
user [61]. GitHub explicitly incentivizes this mode of participation
via social signaling, stating “contributors will get public credit on
their GitHub profile once their contribution is merged!” [18]. When
users raise a security alert, GitHub provides an option to request a
CVE entry be opened on their behalf. In this act, GitHub lends its
authority as a CVE partner to its users, making the alert available
to the wider security community beyond GitHub.

Dependabot is enabled by default on public repositories but has
documentation for opting out. Crater, however, lacks an explicit
method to opting out. While not documented nor routine, develop-
ers could theoretically obfuscate their repositories by excluding a
Cargo.lock file, or by opening a pull request on Crater and adding
themselves to the list of blacklisted repositories. All Craters runs
are public, allowing anyone to observe experiments, watch running
tests, and see which packages failed to compile. Copilot is available
to paying subscribers or free for verified students, teachers, and
maintainers of popular open source projects hosted on GitHub.
Utilizing Copilot necessitates enabling telemetry data collection,
indicating a level of data participation required for tool access. The
terms and conditions [60] for the Copilot technical preview state:

“When you edit files with the GitHub Copilot plugin
enabled, file content snippets and suggestion results
will be shared with GitHub and OpenAI and used for
diagnostic purposes and to improve suggestions”.

As such, centralized commons based tools can have different gover-
nance structures in how they interface with their community, and
the extent to which members can opt out from sharing their data
with each tool.

5.5 Political Economy
According to Ostrom [117], governance models for common-pool
resources rely on well-defined boundaries, tailored rules, moni-
toring, and collective decision-making mechanisms. However, the
growth of centralized commons based tools challenge these con-
ventional norms, demanding a reevaluation of governance in open
source ecosystems.

Tensions related to motivation and autonomy within communi-
ties may arise. In the context of Crater and Dependabot, for example,
the absence of clear rule-making processes and monitoring mecha-
nisms can hinder autonomy and motivation, presenting obstacles
to sustained participation.

Changes and developments in F/OSS ecosystems are not pred-
icated on technological determinism. Rather, they are dependent
on choices made by system developers. The way developers per-
ceive the role of the open source ecosystem— as a collaborator,
a commons, or a resource to be mined— will reflect on whether
they choose adhere to or challenge the norms and principles of the
ideologies embedded in open source development.

Dependabot’s embedded politics are shaped by the project’s
stated commitment to enhancing security in open source projects.
Even those not hosted on GitHub. Dependabot’s README [1] has
a section titled “Why Is This Public” where they state:

“If we were paranoid about someone stealing our busi-
ness thenwe’d be keeping it under lock and key. Dependabot-
Core is public because we’re more interested in it having
an impact than we are in making a buck from it.”

In their commitment to making the tool available and compatible
with their competitors, Dependabot prioritizes project impact over
profit. Dependabot relies on GitHub’s Advisory Database, a public
centralized resource to address security vulnerabilities. Together,

The Emerging Artifacts of Centralized Open-Code FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

these choices reflect a prioritization of the collective security of the
open source community.

Copilot is a predicated on well-funded institutional support. The
development of Copilot was a collaborative effort involving Mi-
crosoft owned GitHub and OpenAI, which Microsoft has a signifi-
cant financial stake in. The substantial resources the three compa-
nies have invested in Copilot’s creation include the datasets and
community goodwill obtained through GitHub, expansive compute
infrastructure from Microsoft [93], and expertise from OpenAI [21].
The technical infrastructure of Copilot is intricately tied to the eco-
nomic and strategic interests of its institutional backers [159]. This
financial support not only influences the tool’s technical capacity,
but also underscores broader questions regarding the governance,
ethics, and socio-political consequences associated with AI-driven
technologies developed within the realm of well-funded institu-
tions.

6 DISCUSSION
Our work traces the process of centralization within the F/OSS
ecosystem. Through our case study analysis, we demonstrate how
centralization can create the conditions in which novel modes of
commons based tools emerge. Centralization is a necessary precur-
sor to the development of such tooling. In the following section, we
discuss the implications of our findings and directions for future
work.

(1) Centralized commons based resources are too valuable to
ignore. We expect similar artifacts to those discussed to
proliferate. Within the last year alone we observe Crater-
Semver, for example, which takes specific inspiration from
Crater [115]. In another example, Fleet Context attempts to
“embed the entire python ecosystem” [171]. So long as there
is not a significant shift in the centralized state of platforms,
we expect to see more examples that operate at a level of ab-
straction that encompasses entire ecosystems. Scale creates
new opportunities and harms. Classifying and cataloging
these emergent artifacts can aid in tracing the implications
of centralization for computational systems broadly.

(2) Centralized commons based tooling can vary in reciprocity.
Some tools are other regarding, and some are individual
serving. Dependabot and Crater are specifically in service of
the commons. Just as likely are artifacts that expropriate the
commons. It is pertinent that we center the sustainability of
the ecosystems from which these artifacts are derived. As
the internet is rapidly filling with the outputs of generative
models, the hazard of “model collapse” — Models trained on
their own outputs [134] threatens the category of centralized
commons based tools. Along these lines, centralization and
its attendant tooling can both reify and contravene the re-
cursivity [78] of F/OSS ecosystems. Through centralization,
the commons can produce extreme value and novel tooling,
but can, in the process, become vulnerable to appropriation
and control.

(3) Package management, software sharing, and open collabora-
tion platforms exhibit features of a natural monopoly [118].
We show how network effects at scale produce a new kind
of value. The existence of centralized commons based tools

strengths the incentive to centralize communities. Once an
ecosystem has been centralized, it tends to remain so. Com-
mons based tools are demonstrably useful, and it is finan-
cially valuable to be the platform where this centralization
occurs. Recently valued at $4.5 billion dollars [101], Hugging-
Face has become the de facto home for open source mod-
els and the collaborative machine learning community [77].
They have achieved success by emulating the approach taken
by GitHub a decade earlier, centering many of the social as-
pects of peer production. Future work should continue to
trace the social, political, and economic consequences of mo-
nopolistic tendencies within open source ecosystems and
how they shape technological development.

(4) To understand the impact of computational systems on soci-
ety, it is pertinent to center the real world choices of develop-
ers. These decisions are not only influenced by technical con-
siderations but also by socio-economic factors, ethical con-
siderations, and evolving cultural norms of sharing [23, 30].
By focusing on the choices developers make in adopting
and shaping technological tools, we gain insight into the
broader landscape within which computational systems op-
erate. Transformations in the working practices of devel-
opers and the technical tools they choose enables a deeper
understanding of how these developments may intersect
with societal values, power dynamics, and ethical consid-
erations. This further informs scholarship on the political
economy of the open source ecosystem.

(5) In this work we documented the historical processes that
shaped centralization within the F/OSS commons and the
software artifacts that centralization can produce. We note,
however, that this process is occurring across the internet
in a wide variety of non-software contexts. Many AI sys-
tems have been enabled by the centralizing [114] tendencies
of large tech companies. These companies wield immense
control over data and resources, and continue to shape the
trajectory of a wide range of computational systems.

7 CONCLUSION
In this paper, we classify tools derived from the labor of open source
communities as part of a broader analytic category. Copilot can be
more coherently interpreted when situated adjacent to tools reliant
on data from the centralization of open source ecosystems. Our
research traces the historical and ideological roots of open-code
centralization. Our comparative analysis of Crater, Dependabot,
and Copilot hones in on the implications of these artifacts for in-
frastructural dependencies, community adoption and intellectual
property. Such technical artifacts that can only be built via central-
ization. We demonstrate how centralized commons based tools can
simultaneously strengthen the open source ecosystem and push
the commons towards further centralization.

ACKNOWLEDGMENTS
We would like to thank our brilliant colleagues A.F. Cooper, David
Goedicke, Benjamin Mako Hill, James Grimmelmann, Wendy Ju,
Amrit Kwatra, Eben Moglen, Helen Nissenbaum, and Luis Villa for
their insightful and constructive feedback throughout this project.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Choksi and Mandel, et al.

REFERENCES
[1] 2022. Dependabot README.MD. https://github.com/dependabot/dependabot-

core (see page: 8)
[2] Rabe Abdalkareem. 2017. Reasons and drawbacks of using trivial npm packages:

the developers’ perspective. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017).
Association for Computing Machinery, New York, NY, USA, 1062–1064. https:
//doi.org/10.1145/3106237.3121278 (see page: 4)

[3] Darren Abramson and Ali Emami. 2022. Interpreting docstrings without using
common sense. (2022). https://www.fsf.org/licensing/copilot/interpreting-
docstrings-without-using-common-sense (see page: 1)

[4] Pietro Albinim. 2019. Shipping a compiler every six weeks. https://www.
pietroalbini.org/blog/shipping-a-compiler-every-six-weeks/ (see pages: 5, 6)

[5] Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher
Akiki, Carlos Munoz Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu,
Manan Dey, et al. 2023. SantaCoder: don’t reach for the stars! arXiv preprint
arXiv:2301.03988 (2023). (see pages: 3, 6, and 7)

[6] Brian Anderson. 2017. How Rust is Tested. https://brson.github.io/2017/07/10/
how-rust-is-tested (see page: 6)

[7] Hao Bai. 2022. A practical three-phase approach to fully automated program-
ming using system decomposition and coding copilots. In Proceedings of the
2022 5th International Conference on Machine Learning and Machine Intelligence.
183–189. (see page: 1)

[8] Brett A Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming is hard-or at least it
used to be: Educational opportunities and challenges of ai code generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1. 500–506. (see page: 6)

[9] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can LanguageModels Be
Too Big?. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency. ACM, Virtual Event Canada, 610–623. https://doi.org/10.
1145/3442188.3445922 (see pages: 1, 2)

[10] Thomas J Bergin. 2006. The origins of word processing software for personal
computers: 1976-1985. IEEE Annals of the History of Computing 28, 4 (2006),
32–47. (see page: 3)

[11] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. 2012. Julia: A
fast dynamic language for technical computing. arXiv preprint arXiv:1209.5145
(2012). (see page: 6)

[12] Abeba Birhane, Elayne Ruane, Thomas Laurent, Matthew S. Brown, Johnathan
Flowers, Anthony Ventresque, and Christopher L. Dancy. 2022. The forgotten
margins of AI ethics. In Proceedings of the 2022 ACM Conference on Fairness,
Accountability, and Transparency. 948–958. (see page: 3)

[13] William Boag, Harini Suresh, Bianca Lepe, and Catherine D’Ignazio. 2022. Tech
Worker Organizing for Power and Accountability. In 2022 ACM Conference on
Fairness, Accountability, and Transparency (Seoul, Republic of Korea) (FAccT ’22).
Association for Computing Machinery, New York, NY, USA, 452–463. https:
//doi.org/10.1145/3531146.3533111 (see page: 2)

[14] Valeriia Boldosova. 2015. Looking beyond traditional network relationships:
Online Subcontracting Platform as an unconventional tool for connecting and
benefiting actors in the network. (2015). (see page: 3)

[15] Mara Bos. 2022. Do we need a "Rust Standard"? https://blog.m-ou.se/rust-
standard/ Additional reference: https://blog.m-ou.se/rust-standard/. (see
pages: 5, 6)

[16] Paul Brown. 2017. State of the Union: npm - Linux.com. https://www.linux.
com/news/state-union-npm/ (see page: 4)

[17] Matthew Butterick. 2022. This CoPilot is stupid and wants to kill me. (see
page: 7)

[18] Kate Catlin. 2022. GitHub Advisory Database now open to community contri-
butions. https://github.blog/2022-02-22-github-advisory-database-now-open-
to-community-contributions/ Accessed Date. (see page: 8)

[19] Kaylea Champion. 2022. Sociotechnical Risk in Sustaining Digital Infrastruc-
ture. In Companion Publication of the 2022 Conference on Computer Supported
Cooperative Work and Social Computing (Virtual Event, Taiwan) (CSCW’22 Com-
panion). Association for Computing Machinery, New York, NY, USA, 232–236.
https://doi.org/10.1145/3500868.3561406 (see page: 3)

[20] Kaylea Champion and Benjamin Mako Hill. 2021. Underproduction: An Ap-
proach for Measuring Risk in Open Source Software. In 2021 IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). 388–399.
https://doi.org/10.1109/SANER50967.2021.00043 (see page: 3)

[21] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021). (see pages: 5, 6, 8, and 9)

[22] Madiha Zahrah Choksi and David Goedicke. 2023. Whose Text Is It Any-
way? Exploring BigCode, Intellectual Property, and Ethics. arXiv preprint
arXiv:2304.02839 (2023). (see page: 7)

[23] Madiha Zahrah Choksi and James Grimmelmann. 2024. How Licenses Learn.
Forthcoming, Lewis & Clark Law Review 28, 2 (2024). (see pages: 1, 2, and 9)

[24] Catalin Cimpanu. 2024. RIAA blitz takes down 18 GitHub projects
used for downloading YouTube videos. ZDNET (23 Oct 2024).
https://www.zdnet.com/article/riaa-blitz-takes-down-18-github-projects-
used-for-downloading-youtube-videos/ (see page: 4)

[25] Thomas Claburn. 2020. Microsoft’s GitHub absorbs NPM into its code-hosting
empire: JavaScript library vault used by 12 million devs now under Redmond’s
roof. https://www.theregister.com/2020/03/16/microsofts_github_npm/ (see
page: 4)

[26] Thomas Claburn. 2022. FauxPilot: Like GitHub Copilot withoutMicrosoft telemetry.
https://www.theregister.com/2022/08/06/fauxpilot_github_copilot/ (see page: 6)

[27] Maelick Claes, Tom Mens, Roberto Di Cosmo, and Jérôme Vouillon. 2015. A
historical analysis of Debian package incompatibilities. In 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories. IEEE, 212–223. (see page: 3)

[28] Jennifer Cobbe, Michael Veale, and Jatinder Singh. 2023. Understanding Ac-
countability in Algorithmic Supply Chains. In 2023 ACM Conference on Fair-
ness, Accountability, and Transparency. ACM, Chicago IL USA, 1186–1197.
https://doi.org/10.1145/3593013.3594073 (see page: 2)

[29] E Gabriella Coleman. 2005. Three ethical moments in Debian. Available at SSRN
805287 (2005). (see page: 2)

[30] E. Gabriella Coleman. 2013. Coding Freedom: The Ethics and Aesthetics of Hacking.
Princeton University Press, Princeton. (see pages: 2, 3, and 9)

[31] Danish Contractor, Daniel McDuff, Julia Katherine Haines, Jenny Lee, Christo-
pher Hines, Brent Hecht, Nicholas Vincent, and Hanlin Li. 2022. Behav-
ioral Use Licensing for Responsible AI. In 2022 ACM Conference on Fairness,
Accountability, and Transparency (Seoul, Republic of Korea) (FAccT ’22). As-
sociation for Computing Machinery, New York, NY, USA, 778–788. https:
//doi.org/10.1145/3531146.3533143 (see page: 2)

[32] A. Feder Cooper, Emanuel Moss, Benjamin Laufer, and Helen Nissenbaum.
2022. Accountability in an Algorithmic Society: Relationality, Responsibility,
and Robustness in Machine Learning. In 2022 ACM Conference on Fairness,
Accountability, and Transparency. ACM, Seoul Republic of Korea, 864–876. https:
//doi.org/10.1145/3531146.3533150 (see pages: 2, 3)

[33] A. Feder Cooper and Gili Vidan. 2022. Making the Unaccountable Internet:
The Changing Meaning of Accounting in the Early ARPANET. In 2022 ACM
Conference on Fairness, Accountability, and Transparency (Seoul, Republic of
Korea) (FAccT ’22). Association for Computing Machinery, New York, NY, USA,
726–742. https://doi.org/10.1145/3531146.3533137 (see pages: 2, 3)

[34] Daniel Curto-Millet and Alberto Corsín Jiménez. 2022. The sustainability of
open source commons. European Journal of Information Systems (2022), 1–19.
(see page: 3)

[35] Ryan Dahl. 2018. 10 Things I Regret About Node.js. https://www.youtube.com/
watch?v=m3bm9tb-8ya (see page: 4)

[36] Ryan Dahl. 2023. Why We Added package.json Support to Deno. https:
//deno.com/blog/package-json-support (see page: 5)

[37] Ryan Dahl, Bert Belder, and Bartek Iwańczuk. 2020. Deno 1.0. https://deno.com/
blog/v1 (see page: 5)

[38] Ryan Dahl and Alon Bonder. 2022. Big Changes Ahead for Deno. https:
//deno.com/blog/changes (see page: 5)

[39] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, and Zhen Ming Jack Jiang. 2023. Github copilot ai pair
programmer: Asset or liability? Journal of Systems and Software 203 (2023),
111734. (see page: 3)

[40] Alexandre Decan, TomMens, and Philippe Grosjean. 2019. An empirical compar-
ison of dependency network evolution in seven software packaging ecosystems.
Empirical Software Engineering 24, 1 (2019), 381–416. (see page: 1)

[41] Ankur Desai and Atul Deo. 2022. https://aws.amazon.com/blogs/machine-
learning/introducing-amazon-codewhisperer-the-ml-powered-coding-
companion/ (see page: 6)

[42] Drew DeVault. 2022. GitHub Copilot and open source laundering. https:
//drewdevault.com/2022/06/23/Copilot-GPL-washing.html (see page: 7)

[43] Edson Dias, Paulo Meirelles, Fernando Castor, Igor Steinmacher, Igor Wiese, and
Gustavo Pinto. 2021. What makes a great maintainer of open source projects?.
In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE).
IEEE, 982–994. (see page: 4)

[44] Thomas Dohmke. 2023. 100 million developers and counting. https://github.
blog/2023-01-25-100-million-developers-and-counting/ (see pages: 4, 5)

[45] Alan AA Donovan and BrianW Kernighan. 2015. The Go programming language.
Addison-Wesley Professional. (see page: 6)

[46] Tom Dotan and Deepa Seetharaman. 2023. Big Tech Struggles to Turn AI Hype
Into Profits. WSJ (Oct 2023). https://www.wsj.com/tech/ai/ais-costly-buildup-
could-make-early-products-a-hard-sell-bdd29b9f (see page: 7)

[47] Jay Dratler Jr. 1995. Microsoft as an Antitrust Target: IBM in Software. Sw. UL
REv. 25 (1995), 671. (see page: 3)

[48] Nicolas Ducheneaut. 2005. Socialization in an open source software community:
A socio-technical analysis. Computer Supported Cooperative Work (CSCW) 14
(2005), 323–368. (see page: 4)

https://github.com/dependabot/dependabot-core
https://github.com/dependabot/dependabot-core
https://doi.org/10.1145/3106237.3121278
https://doi.org/10.1145/3106237.3121278
https://www.fsf.org/licensing/copilot/interpreting-docstrings-without-using-common-sense
https://www.fsf.org/licensing/copilot/interpreting-docstrings-without-using-common-sense
https://www.pietroalbini.org/blog/shipping-a-compiler-every-six-weeks/
https://www.pietroalbini.org/blog/shipping-a-compiler-every-six-weeks/
https://brson.github.io/2017/07/10/how-rust-is-tested
https://brson.github.io/2017/07/10/how-rust-is-tested
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3531146.3533111
https://doi.org/10.1145/3531146.3533111
https://blog.m-ou.se/rust-standard/
https://blog.m-ou.se/rust-standard/
https://blog.m-ou.se/rust-standard/
https://www.linux.com/news/state-union-npm/
https://www.linux.com/news/state-union-npm/
https://github.blog/2022-02-22-github-advisory-database-now-open-to-community-contributions/
https://github.blog/2022-02-22-github-advisory-database-now-open-to-community-contributions/
https://doi.org/10.1145/3500868.3561406
https://doi.org/10.1109/SANER50967.2021.00043
https://www.zdnet.com/article/riaa-blitz-takes-down-18-github-projects-used-for-downloading-youtube-videos/
https://www.zdnet.com/article/riaa-blitz-takes-down-18-github-projects-used-for-downloading-youtube-videos/
https://www.theregister.com/2020/03/16/microsofts_github_npm/
https://www.theregister.com/2022/08/06/fauxpilot_github_copilot/
https://doi.org/10.1145/3593013.3594073
https://doi.org/10.1145/3531146.3533143
https://doi.org/10.1145/3531146.3533143
https://doi.org/10.1145/3531146.3533150
https://doi.org/10.1145/3531146.3533150
https://doi.org/10.1145/3531146.3533137
https://www.youtube.com/watch?v=m3bm9tb-8ya
https://www.youtube.com/watch?v=m3bm9tb-8ya
https://deno.com/blog/package-json-support
https://deno.com/blog/package-json-support
https://deno.com/blog/v1
https://deno.com/blog/v1
https://deno.com/blog/changes
https://deno.com/blog/changes
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
https://aws.amazon.com/blogs/machine-learning/introducing-amazon-codewhisperer-the-ml-powered-coding-companion/
https://drewdevault.com/2022/06/23/Copilot-GPL-washing.html
https://drewdevault.com/2022/06/23/Copilot-GPL-washing.html
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://github.blog/2023-01-25-100-million-developers-and-counting/
https://www.wsj.com/tech/ai/ais-costly-buildup-could-make-early-products-a-hard-sell-bdd29b9f
https://www.wsj.com/tech/ai/ais-costly-buildup-could-make-early-products-a-hard-sell-bdd29b9f

The Emerging Artifacts of Centralized Open-Code FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

[49] Nick Dyer-Witheford, Atle Mikkola Kjøsen, and James Steinhoff. 2019. Inhuman
Power: Artificial Intelligence and the Future of Capitalism. Pluto Press. https:
//doi.org/10.2307/j.ctvj4sxc6 jstor:10.2307/j.ctvj4sxc6 (see page: 3)

[50] Nadia Eghbal. 2020. Working in public: the making and maintenance of open
source software. Stripe Press San Francisco. (see pages: 1, 4, and 6)

[51] Philip Elmer-Dewitt and D Jackson. 1993. First nation in cyberspace. Time 6
(1993), 62–64. (see page: 4)

[52] Ivo Emanuilov. 2022. Artificial Intelligence and Intellectual Property Law. In
IMEC Workshop, Date: 2022/06/17-2022/06/17, Location: Antwerp. (see page: 1)

[53] Nat Friedman. 2022. Introducing GitHub Copilot: your AI pair program-
mer. https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-
programmer/ (see page: 2)

[54] Brett M Frischmann. 2012. Intellectual Infrastructure. B. Frischmann, Infrastruc-
ture: The Social Value of Shared Resources (2012), 253. (see page: 2)

[55] Ben Gansky and Sean McDonald. 2022. CounterFAccTual: How FAccT Un-
dermines Its Organizing Principles. In 2022 ACM Conference on Fairness, Ac-
countability, and Transparency (Seoul, Republic of Korea) (FAccT ’22). Asso-
ciation for Computing Machinery, New York, NY, USA, 1982–1992. https:
//doi.org/10.1145/3531146.3533241 (see page: 2)

[56] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. 2020. The
pile: An 800gb dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027 (2020). (see pages: 3, 6)

[57] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets
for datasets. Commun. ACM 64, 12 (2021), 86–92. (see page: 3)

[58] R Stuart Geiger, Dorothy Howard, and Lilly Irani. 2021. The labor of maintaining
and scaling free and open-source software projects. Proceedings of the ACM on
human-computer interaction 5, CSCW1 (2021), 1–28. (see page: 4)

[59] John Gerring. 2006. Case study research: Principles and practices. Cambridge
university press. (see pages: 2, 5)

[60] GitHub. 2021. Telemetry terms - GitHub Docs. https://web.archive.org/web/
20210704072124/https://docs.github.com/en/github/copilot/telemetry-terms
(see page: 8)

[61] Github. 2023. Code Security: Dependabot. https://docs.github.com/en/code-
security/dependabot/dependabot-alerts/about-dependabot-alerts Additional
reference: https://docs.github.com/en/code-security/dependabot/dependabot-
alerts/about-dependabot-alerts. (see pages: 5, 7, and 8)

[62] GitHub. 2024. Standing up for developers: youtube-dl is back. https://github.
blog/2020-11-16-standing-up-for-developers-youtube-dl-is-back/. (see page: 4)

[63] Mehdi Golzadeh, Alexandre Decan, and Tom Mens. 2022. On the rise and fall of
CI services in GitHub. In 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER). IEEE, 662–672. (see page: 1)

[64] G Grätzer. 2009. What Is New in LATEX? II. TEX implementations, Evolution
or Revolution. Notices of the AMS 56, 5 (2009). (see page: 3)

[65] James Grimmelmann. 2009. The Internet is a semicommons. Fordham L. Rev. 78
(2009), 2799. (see pages: 1, 2)

[66] James Grimmelmann. 2015. Copyright for literate robots. Iowa L. Rev. 101 (2015),
657. (see pages: 2, 7)

[67] F S Grodzinsky, K Miller, and M J Wolf. 2003. Ethical Issues in Open Source
Software. Journal of Information, Communication and Ethics in Society 1, 4 (nov
2003), 193–205. https://doi.org/10.1108/14779960380000235 (see page: 2)

[68] The VAR guy. 2016. Torvalds Talks about Early Linux History, GPL Li-
cense and Money. https://web.archive.org/web/20170324170531/http:
//thevarguy.com/open-source-application-software-companies/torvalds-
talks-about-early-linux-history-gpl-license-and- (see page: 3)

[69] Reinhard Anton Handler. 2018. Protocols of Control: Collaboration in Free and
Open Source Software. Technologies of Labour and the Politics of Contradiction
(2018), 175–192. (see page: 4)

[70] Runzhi He, Hao He, Yuxia Zhang, and Minghui Zhou. 2022. Automating De-
pendency Updates in Practice: An Exploratory Study on GitHub Dependabot.
arXiv preprint arXiv:2206.07230 (2022). (see page: 5)

[71] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, et al. 2022. Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556 (2022). (see page: 7)

[72] Ben Hutchinson and Margaret Mitchell. 2019. 50 years of test (un) fairness:
Lessons for machine learning. In Proceedings of the conference on fairness, ac-
countability, and transparency. 49–58. (see page: 3)

[73] Github Inc. 2021. Introducing GitHub Copilot: your AI pair programmer. https:
//github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/ (see
page: 6)

[74] Github Inc. 2022. GitHub Copilot is generally available to all develop-
ers. https://github.blog/2022-06-21-github-copilot-is-generally-available-
to-all-developers/ (see pages: 5, 6)

[75] Yacine Jernite, Huu Nguyen, Stella Biderman, Anna Rogers, Maraim Masoud,
Valentin Danchev, Samson Tan, Alexandra Sasha Luccioni, Nishant Subra-
mani, Isaac Johnson, Gerard Dupont, Jesse Dodge, Kyle Lo, Zeerak Talat,

Dragomir Radev, Aaron Gokaslan, Somaieh Nikpoor, Peter Henderson, Rishi
Bommasani, and Margaret Mitchell. 2022. Data Governance in the Age of
Large-Scale Data-Driven Language Technology. In 2022 ACM Conference on
Fairness, Accountability, and Transparency (Seoul, Republic of Korea) (FAccT
’22). Association for Computing Machinery, New York, NY, USA, 2206–2222.
https://doi.org/10.1145/3531146.3534637 (see page: 3)

[76] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J Cai, and Michael Terry. 2022. Discovering the syntax and
strategies of natural language programmingwith generative languagemodels. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.
1–19. (see page: 1)

[77] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R Schorlemmer, Rohan
Sethi, Yung-Hsiang Lu, George K Thiruvathukal, and James C Davis. 2023. An
empirical study of pre-trained model reuse in the hugging face deep learning
model registry. arXiv preprint arXiv:2303.02552 (2023). (see page: 9)

[78] Christopher Kelty. 2005. Geeks, social imaginaries, and recursive publics. Cul-
tural Anthropology 20, 2 (2005), 185–214. (see pages: 3, 9)

[79] Mathias Klang. 2005. Free software and open source: The freedom debate and
its consequences. First Monday (2005). (see page: 3)

[80] Azer Koçulu. 2016. I’ve Just Liberated My Modules. web.archive.org/web/
20180217094442/http://azer.bike/journal/i-ve-just-liberated-my-modules (see
page: 4)

[81] Hemank Lamba, Asher Trockman, Daniel Armanios, Christian Kästner, Heather
Miller, and Bogdan Vasilescu. 2020. Heard it through the Gitvine: an empirical
study of tool diffusion across the npm ecosystem. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 505–517. (see page: 4)

[82] Butler W Lampson. 2004. Software components: Only the giants survive. In
Computer Systems: Theory, Technology, and Applications. Springer, 137–145. (see
page: 3)

[83] Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Vil-
lanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo
González Ponferrada, Huu Nguyen, et al. 2022. The bigscience roots corpus: A
1.6 tb composite multilingual dataset. Advances in Neural Information Processing
Systems 35 (2022), 31809–31826. (see pages: 3, 6)

[84] Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven
Chu Hong Hoi. 2022. Coderl: Mastering code generation through pretrained
models and deep reinforcement learning. Advances in Neural Information Pro-
cessing Systems 35 (2022), 21314–21328. (see page: 7)

[85] Mark A Lemley. 2006. Terms of use. Minn. L. Rev. 91 (2006), 459. (see page: 7)
[86] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis

Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, et al. 2023. StarCoder: may the source be with you! arXiv preprint
arXiv:2305.06161 (2023). (see pages: 6, 7)

[87] Renee Li, Pavitthra Pandurangan, Hana Frluckaj, and Laura Dabbish. 2021. Code
of conduct conversations in open source software projects on github. Proceedings
of the ACM on Human-computer Interaction 5, CSCW1 (2021), 1–31. (see pages: 3,
6)

[88] Yichen Li, Yintong Huo, Zhihan Jiang, Renyi Zhong, Pinjia He, Yuxin Su, and
Michael R. Lyu. 2023. Exploring the Effectiveness of LLMs in Automated Logging
Generation: An Empirical Study. arXiv:2307.05950 [cs.SE] (see page: 6)

[89] Rita Liao and Manish Singh. 2019. GitHub confirms it has blocked developers
in Iran, Syria and Crimea. https://techcrunch.com/2019/07/29/github-ban-
sanctioned-countries/ (see page: 4)

[90] Johan Linåker, Efi Papatheocharous, and Thomas Olsson. 2022. How to char-
acterize the health of an Open Source Software project? A snowball literature
review of an emerging practice. In Proceedings of the 18th International Sympo-
sium on Open Collaboration. 1–12. (see page: 4)

[91] Johan Linåker and Per Runeson. 2022. Sustaining Open Data as a Digital
Common – Design Principles for Common Pool Resources Applied to Open
Data Ecosystems. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3555051.3555066 (see page: 3)

[92] Alexandra Sasha Luccioni, Frances Corry, Hamsini Sridharan, Mike Ananny,
Jason Schultz, and Kate Crawford. 2022. A Framework for Deprecating Datasets:
Standardizing Documentation, Identification, and Communication. In 2022 ACM
Conference on Fairness, Accountability, and Transparency (Seoul, Republic of
Korea) (FAccT ’22). Association for Computing Machinery, New York, NY, USA,
199–212. https://doi.org/10.1145/3531146.3533086 (see page: 3)

[93] Dieuwertje Luitse andWiebkeDenkena. 2021. The great transformer: Examining
the role of large language models in the political economy of AI. Big Data &
Society 8, 2 (2021), 20539517211047734. (see pages: 2, 3, and 9)

[94] Bradley M. Kuhn. 2022. If Software is My Copilot, Who Programmed My
Software? https://sfconservancy.org/blog/2022/feb/03/github-copilot-copyleft-
gpl/ (see page: 1)

[95] James Maguire. 2007. The SourceForge Story - Datamation.
web.archive.org/web/20110804024950/http://itmanagement.earthweb.com/
cnews/article.php/3705731 (see page: 4)

https://doi.org/10.2307/j.ctvj4sxc6
https://doi.org/10.2307/j.ctvj4sxc6
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://doi.org/10.1145/3531146.3533241
https://doi.org/10.1145/3531146.3533241
https://web.archive.org/web/20210704072124/https://docs.github.com/en/github/copilot/telemetry-terms
https://web.archive.org/web/20210704072124/https://docs.github.com/en/github/copilot/telemetry-terms
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://docs.github.com/en/code-security/dependabot/dependabot-alerts/about-dependabot-alerts
https://github.blog/2020-11-16-standing-up-for-developers-youtube-dl-is-back/
https://github.blog/2020-11-16-standing-up-for-developers-youtube-dl-is-back/
https://doi.org/10.1108/14779960380000235
https://web.archive.org/web/20170324170531/http://thevarguy.com/open-source-application-software-companies/torvalds-talks-about-early-linux-history-gpl-license-and-
https://web.archive.org/web/20170324170531/http://thevarguy.com/open-source-application-software-companies/torvalds-talks-about-early-linux-history-gpl-license-and-
https://web.archive.org/web/20170324170531/http://thevarguy.com/open-source-application-software-companies/torvalds-talks-about-early-linux-history-gpl-license-and-
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://doi.org/10.1145/3531146.3534637
web.archive.org/web/20180217094442/http://azer.bike/journal/i-ve-just-liberated-my-modules
web.archive.org/web/20180217094442/http://azer.bike/journal/i-ve-just-liberated-my-modules
https://arxiv.org/abs/2307.05950
https://techcrunch.com/2019/07/29/github-ban-sanctioned-countries/
https://techcrunch.com/2019/07/29/github-ban-sanctioned-countries/
https://doi.org/10.1145/3555051.3555066
https://doi.org/10.1145/3531146.3533086
https://sfconservancy.org/blog/2022/feb/03/github-copilot-copyleft-gpl/
https://sfconservancy.org/blog/2022/feb/03/github-copilot-copyleft-gpl/
web.archive.org/web/20110804024950/http://itmanagement.earthweb.com/cnews/article.php/3705731
web.archive.org/web/20110804024950/http://itmanagement.earthweb.com/cnews/article.php/3705731

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Choksi and Mandel, et al.

[96] David E Mann and Steven M Christey. 1999. Towards a common enumera-
tion of vulnerabilities. In 2nd Workshop on Research with Security Vulnerability
Databases, Purdue University, West Lafayette, Indiana. (see page: 7)

[97] Jennifer Marlow and Laura Dabbish. 2013. Activity traces and signals in soft-
ware developer recruitment and hiring. In Proceedings of the 2013 conference on
Computer supported cooperative work. 145–156. (see page: 4)

[98] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. 2013. Impression formation
in online peer production: activity traces and personal profiles in github. In
Proceedings of the 2013 conference on Computer supported cooperative work. 117–
128. (see page: 4)

[99] Niko Matsakis. 2014. Semantic versioning for the language. RFC 1122. https:
//rust-lang.github.io/rfcs/1122-language-semver.html (see page: 5)

[100] Mike McDonald. 2021. Goodbye Dependabot Preview, hello Depend-
abot. https://github.blog/2021-04-29-goodbye-dependabot-preview-hello-
dependabot/ Additional reference: https://github.blog/2021-04-29-goodbye-
dependabot-preview-hello-dependabot/. (see pages: 5, 7)

[101] Rachel Metz. [n. d.]. AI Startup Hugging Face Valued at 4.5 Bil-
lion After Raising Funding From Google, Nvidia. Bloomberg ([n. d.]).
https://www.bloomberg.com/news/articles/2023-08-24/ai-startup-hugging-
face-valued-at-4-5-billion-after-fundraising (see page: 9)

[102] Keith W Miller, Jeffrey Voas, and Tom Costello. 2010. Free and open source
software. It Professional 12, 6 (2010), 14–16. (see page: 3)

[103] Eben Moglen. 1999. Anarchism triumphant: Free software and the death of
copyright. First Monday 4, 8 (Aug. 1999). https://doi.org/10.5210/fm.v4i8.684
(see pages: 3, 8)

[104] Glyn Moody. 2009. Rebel code: Linux and the open source revolution. Hachette
UK. (see page: 3)

[105] JMoon and Lee Sproull. 2010. Essence of distributedwork. Online communication
and collaboration: A reader 125 (2010). (see page: 3)

[106] Alex Mullans. 2021. Keep all your packages up to date with Depend-
abot. https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-
with-dependabot/ (see page: 6)

[107] Ian Murdock. 2007. How package management changed everything.
https://web.archive.org/web/20090223072201/http://ianmurdock.com/2007/07/
21/how-package-management-changed-everything/ (see page: 3)

[108] national institute of Standards and Security. 2023. National Vulnerability Data-
base. https://nvd.nist.gov/ (see page: 5)

[109] Nataliya Nedzhvetskaya and J. S. Tan. 2022. The Role of Workers in AI Ethics
and Governance. In The Oxford Handbook of AI Governance (1 ed.), Justin B.
Bullock, Yu-Che Chen, Johannes Himmelreich, Valerie M. Hudson, Anton Ko-
rinek, Matthew M. Young, and Baobao Zhang (Eds.). Oxford University Press,
C68.S1–C68.N14. https://doi.org/10.1093/oxfordhb/9780197579329.013.68 (see
page: 2)

[110] Zachary Newman, John Speed Meyers, and Santiago Torres-Arias. 2022. Sig-
store: software signing for everybody. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security. 2353–2367. (see page: 6)

[111] Erik Nijkamp, Hiroaki Hayashi, Caiming Xiong, Silvio Savarese, and Yingbo
Zhou. 2023. CodeGen2: Lessons for Training LLMs on Programming and Natural
Languages. ICLR (2023). (see pages: 6, 7)

[112] Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou,
Silvio Savarese, and Caiming Xiong. 2023. CodeGen: An Open Large Language
Model for Code with Multi-Turn Program Synthesis. ICLR (2023). (see pages: 6,
7)

[113] Helen Nissenbaum. 1996. Accountability in a Computerized Society. Science and
Engineering Ethics 2, 1 (mar 1996), 25–42. https://doi.org/10.1007/BF02639315
(see page: 2)

[114] Mark Nottingham. 2023. Centralization, decentralization, and internet standards.
Technical Report. RFC 9518. IETF. ht tp://tools. ietf. org/rfc/rfc9518. txt. (see
page: 9)

[115] Tomasz Nowak, Michał Staniewski, Mieszko Grodzicki, and Bartosz Smolar-
czyk. 2023. Accelerating package expansion in Rust through development of a
semantic versioning tool. arXiv preprint arXiv:2308.14623 (2023). (see pages: 6,
7, and 9)

[116] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs] (see page: 2)
[117] Elinor Ostrom. 2008. Tragedy of the commons. The new palgrave dictionary of

economics 2 (2008), 1–4. (see pages: 1, 2, 3, and 8)
[118] Frank A Pasquale. 2018. Tech platforms and the knowledge problem. American

Affairs, Summer (2018). (see page: 9)
[119] Yasset Perez-Riverol, Laurent Gatto, Rui Wang, Timo Sachsenberg, Julian Uszko-

reit, Felipe da Veiga Leprevost, Christian Fufezan, Tobias Ternent, Stephen J
Eglen, Daniel S Katz, et al. 2016. Ten simple rules for taking advantage of Git
and GitHub. , e1004947 pages. (see page: 4)

[120] Billy Perrigo. 2023. OpenAI Used Kenyan Workers on Less Than $2 Per Hour:
Exclusive | Time. https://time.com/6247678/openai-chatgpt-kenya-workers/.
(see page: 2)

[121] Ben Puryear and Gina Sprint. 2022. Github copilot in the classroom: learning to
code with AI assistance. Journal of Computing Sciences in Colleges 38, 1 (2022),
37–47. (see page: 1)

[122] Naveen Raman, Minxuan Cao, Yulia Tsvetkov, Christian Kästner, and Bogdan
Vasilescu. 2020. Stress and burnout in open source: Toward finding, under-
standing, and mitigating unhealthy interactions. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering: New Ideas and Emerging
Results. 57–60. (see page: 4)

[123] Eric Raymond. 1999. The cathedral and the bazaar. Knowledge, Technology &
Policy 12, 3 (1999), 23–49. (see page: 3)

[124] Gil B Reschenthaler and Fred Thompson. 1996. The information revolution
and the new public management. Journal of public administration research and
theory 6, 1 (1996), 125–143. (see page: 3)

[125] David Ribes and Steven J. Jackson. 2013. Data Bite Man: The Work of Sustaining
a Long-Term Study. In "Raw Data" Is an Oxymoron, Lisa Gitelman (Ed.). The
MIT Press, 0. https://doi.org/10.7551/mitpress/9302.003.0010 (see page: 2)

[126] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. 2010. An analysis
of the dynamic behavior of JavaScript programs. In Proceedings of the 31st ACM
SIGPLAN Conference on Programming Language Design and Implementation.
1–12. (see page: 4)

[127] Emma Roth. 2023. Microsoft, GitHub, and OpenAI ask court to throw out AI
copyright lawsuit. https://www.theverge.com/2023/1/28/23575919/microsoft-
openai-github-dismiss-copilot-ai-copyright-lawsuit (see page: 7)

[128] Nithya Sambasivan, Shivani Kapania, Hannah Highfill, Diana Akrong, Praveen
Paritosh, and Lora M Aroyo. 2021. “Everyone Wants to Do the Model Work, Not
the Data Work”: Data Cascades in High-Stakes AI. In Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. 1–15. (see page: 2)

[129] Pamela Samuelson. 2023. Legal Challenges to Generative AI, Part I. 66, 7 (jun
2023), 20–23. https://doi.org/10.1145/3597151 (see pages: 1, 7)

[130] Randal L Schwartz, Tom Phoenix, et al. 2012. Intermediate Perl: Beyond The
Basics of Learning Perl. " O’Reilly Media, Inc.". (see page: 3)

[131] Charles M Schweik and Robert C English. 2012. Internet success: a study of
open-source software commons. MIT Press. (see page: 3)

[132] Charles Severance. 2012. Javascript: Designing a language in 10 days. Computer
45, 2 (2012), 7–8. (see page: 4)

[133] Ax Sharma. 2022. Dev corrupts NPM libs ’colors’ and ’faker’ break-
ing thousands of apps. BleepingComputer (Jan 2022). https:
//www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-
colors-and-faker-breaking-thousands-of-apps/ (see page: 4)

[134] Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot,
and Ross Anderson. 2023. The Curse of Recursion: Training on Generated Data
Makes Models Forget. arXiv preprint arxiv:2305.17493 (2023). (see page: 9)

[135] Joseph Sible, David Svoboda, and Garret Wassermann. 2023. Will Rust Solve
Software Security? (2023). (see page: 6)

[136] Sid Sijbrandij. 2020. Upcoming changes to CI/CD Minutes for free tier users on
GitLab.com. about.gitlab.com/blog/2020/09/01/ci-minutes-update-free-users
(see page: 4)

[137] Henry E Smith. 2004. Property and property rules. NYUL rev. 79 (2004), 1719.
(see page: 1)

[138] Irene Solaiman. 2023. The gradient of generative AI release: Methods and consid-
erations. In Proceedings of the 2023 ACM Conference on Fairness, Accountability,
and Transparency. 111–122. (see page: 2)

[139] César Soto-Valero, Thomas Durieux, and Benoit Baudry. 2021. A longitudinal
analysis of bloated java dependencies. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1021–1031. (see page: 6)

[140] Nick Srnicek. 2016. Platform Capitalism. John Wiley & Sons. (see pages: 1, 2)
[141] Richard Stallman. 2009. Viewpoint Why" open source" misses the point of free

software. Commun. ACM 52, 6 (2009), 31–33. (see page: 3)
[142] Rust Team. 2015. Crater. https://rustc-dev-guide.rust-lang.org/tests/crater.html

Additional reference: https://github.com/rust-lang/crater. (see pages: 5, 6, 7,
and 8)

[143] Rust Team. 2015. Crater. https://rustc-dev-guide.rust-lang.org/licenses.html
(see page: 7)

[144] Jim Thatcher, David O’Sullivan, and Dillon Mahmoudi. 2016. Data Colonial-
ism through Accumulation by Dispossession: New Metaphors for Daily Data.
Environment and Planning D: Society and Space 34, 6 (dec 2016), 990–1006.
https://doi.org/10.1177/0263775816633195 (see page: 2)

[145] Michael Tiemann. 2006. History of the OSI. web.archive.org/web/
20090116020539/https://opensource.org/history Accessed: 2023-01-21. (see
page: 3)

[146] Linus Torvalds. 1991. LINUX–a free unix-386 kernel. (see page: 3)
[147] Linus Torvalds. 2007. Tech Talk: Linus Torvalds on git. https://www.youtube.

com/watch?v=4xpnkhjaok8 (see page: 4)
[148] Sam Tregar. 2002. CPAN. InWriting Perl Modules for CPAN. Springer, 1–20. (see

pages: 3, 6)
[149] Aaron Turon and Niko Madsakis. 2014. Stability as a Deliverable. https://blog.

rust-lang.org/2014/10/30/Stability.html Additional reference: https://blog.rust-
lang.org/2014/10/30/Stability.html. (see pages: 5, 6)

[150] Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: Evaluating the usability of code generation tools powered by

https://rust-lang.github.io/rfcs/1122-language-semver.html
https://rust-lang.github.io/rfcs/1122-language-semver.html
https://github.blog/2021-04-29-goodbye-dependabot-preview-hello-dependabot/
https://github.blog/2021-04-29-goodbye-dependabot-preview-hello-dependabot/
https://github.blog/2021-04-29-goodbye-dependabot-preview-hello-dependabot/
https://github.blog/2021-04-29-goodbye-dependabot-preview-hello-dependabot/
https://www.bloomberg.com/news/articles/2023-08-24/ai-startup-hugging-face-valued-at-4-5-billion-after-fundraising
https://www.bloomberg.com/news/articles/2023-08-24/ai-startup-hugging-face-valued-at-4-5-billion-after-fundraising
https://doi.org/10.5210/fm.v4i8.684
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://github.blog/2020-06-01-keep-all-your-packages-up-to-date-with-dependabot/
https://web.archive.org/web/20090223072201/http://ianmurdock.com/2007/07/21/how-package-management-changed-everything/
https://web.archive.org/web/20090223072201/http://ianmurdock.com/2007/07/21/how-package-management-changed-everything/
https://nvd.nist.gov/
https://doi.org/10.1093/oxfordhb/9780197579329.013.68
https://doi.org/10.1007/BF02639315
https://arxiv.org/abs/2303.08774
https://doi.org/10.7551/mitpress/9302.003.0010
https://www.theverge.com/2023/1/28/23575919/microsoft-openai-github-dismiss-copilot-ai-copyright-lawsuit
https://www.theverge.com/2023/1/28/23575919/microsoft-openai-github-dismiss-copilot-ai-copyright-lawsuit
https://doi.org/10.1145/3597151
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
https://www.bleepingcomputer.com/news/security/dev-corrupts-npm-libs-colors-and-faker-breaking-thousands-of-apps/
about.gitlab.com/blog/2020/09/01/ci-minutes-update-free-users
https://rustc-dev-guide.rust-lang.org/tests/crater.html
https://github.com/rust-lang/crater
https://rustc-dev-guide.rust-lang.org/licenses.html
https://doi.org/10.1177/0263775816633195
web.archive.org/web/20090116020539/https://opensource.org/history
web.archive.org/web/20090116020539/https://opensource.org/history
https://www.youtube.com/watch?v=4xpnkhjaok8
https://www.youtube.com/watch?v=4xpnkhjaok8
https://blog.rust-lang.org/2014/10/30/Stability.html
https://blog.rust-lang.org/2014/10/30/Stability.html
https://blog.rust-lang.org/2014/10/30/Stability.html
https://blog.rust-lang.org/2014/10/30/Stability.html

The Emerging Artifacts of Centralized Open-Code FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

large language models. In Chi conference on human factors in computing systems
extended abstracts. 1–7. (see page: 1)

[151] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of the
PyPI ecosystem. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 644–655. (see page: 4)

[152] James Vincent. 2022. The lawsuit that could rewrite the rules of AI copy-
right. https://www.theverge.com/2022/11/8/23446821/microsoft-openai-
github-copilot-class-action-lawsuit-ai-copyright-violation-training-data (see
page: 7)

[153] Laurie Voss. 2014. npm Blog Archive: npm and front-end packaging. https://blog.
npmjs.org/post/101775448305/npm-and-front-end-packaging. (see page: 4)

[154] Duc-Ly Vu, Ivan Pashchenko, Fabio Massacci, Henrik Plate, and Antonino Sa-
betta. 2020. Typosquatting and combosquatting attacks on the python ecosystem.
In 2020 ieee european symposium on security and privacy workshops (euros&pw).
IEEE, 509–514. (see page: 6)

[155] Jason Warner. 2019. Thank you for 100 million repositories. (see page: 4)
[156] Paul V Weinstein. 2018. Why Microsoft is willing to pay so much for GitHub.

Harvard Business Review 6 (2018). (see page: 2)
[157] Michel Wermelinger. 2023. Using GitHub Copilot to solve simple programming

problems. In Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 172–178. (see page: 1)

[158] Mairieli Wessel, Bruno Mendes De Souza, Igor Steinmacher, Igor S Wiese, Ivanil-
ton Polato, Ana Paula Chaves, and Marco A Gerosa. 2018. The power of bots:
Characterizing and understanding bots in oss projects. Proceedings of the ACM
on Human-Computer Interaction 2, CSCW (2018), 1–19. (see page: 6)

[159] Meredith Whittaker. 2021. The steep cost of capture. Interactions 28, 6 (2021),
50–55. (see page: 9)

[160] David Gray Widder and Dawn Nafus. 2023. Dislocated Accountabilities in the
“AI Supply Chain”: Modularity and Developers’ Notions of Responsibility. SAGE
Big Data & Society 10, 1 (jan 2023), 20539517231177620. https://doi.org/10.1177/
20539517231177620 (see page: 2)

[161] David Gray Widder, Dawn Nafus, Laura Dabbish, and James Herbsleb. 2022.
Limits and Possibilities for “Ethical AI” in Open Source: A Study of Deepfakes.
In 2022 ACM Conference on Fairness, Accountability, and Transparency (Seoul,

Republic of Korea) (FAccT ’22). Association for Computing Machinery, New York,
NY, USA, 2035–2046. https://doi.org/10.1145/3531146.3533779 (see page: 2)

[162] David Gray Widder, Sarah West, and Meredith Whittaker. 2023. Open (For
Business): Big Tech, Concentrated Power, and the Political Economy of Open
AI. https://doi.org/10.2139/ssrn.4543807 (see pages: 2, 3)

[163] David Gray Widder, Derrick Zhen, Laura Dabbish, and James Herbsleb. 2023.
It’s about Power: What Ethical Concerns Do Software Engineers Have, and
What Do They (Feel They Can) Do about Them?. In 2023 ACM Conference on
Fairness, Accountability, and Transparency. ACM, Chicago IL USA, 467–479.
https://doi.org/10.1145/3593013.3594012 (see page: 2)

[164] Chris Williams. 2016. How one developer just broke Node, Babel and thousands
of projects in 11 lines of JavaScript. The Register 172 (23 Mar 2016). (see page: 4)

[165] LangdonWinner. 2017. Do artifacts have politics? In Computer Ethics. Routledge,
177–192. (see page: 1)

[166] Niklaus Wirth. 1995. A plea for lean software. Computer 28, 2 (1995), 64–68.
(see page: 6)

[167] Ming-Wei Wu and Ying-Dar Lin. 2001. Open Source software development: An
overview. Computer 34, 6 (2001), 33–38. (see page: 3)

[168] YuWu, Jessica Kropczynski, Patrick C Shih, and John M Carroll. 2014. Exploring
the ecosystem of software developers on GitHub and other platforms. In Pro-
ceedings of the companion publication of the 17th ACM conference on Computer
supported cooperative work & social computing. 265–268. (see page: 4)

[169] Marvin Wyrich, Raoul Ghit, Tobias Haller, and Christian Müller. 2021. Bots
don’t mind waiting, do they? Comparing the interaction with automatically and
manually created pull requests. In 2021 IEEE/ACM Third International Workshop
on Bots in Software Engineering (BotSE). IEEE, 6–10. (see page: 5)

[170] Robert K Yin. 2011. Applications of case study research. sage. (see page: 5)
[171] Andrew Zhou and Nicolas Ouporov. 2023. Building a RAG Pipeline for the

Entire Python Ecosystem. https://fleet.so/blog/library-rag. (see page: 9)
[172] Albert Ziegler. 2022. GitHub Copilot research recitation. https://github.blog/

2021-06-30-github-copilot-research-recitation/ (see pages: 6, 7)
[173] Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,

Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2022. Productiv-
ity assessment of neural code completion. In Proceedings of the 6th ACM SIGPLAN
International Symposium on Machine Programming. 21–29. (see page: 6)

https://www.theverge.com/2022/11/8/23446821/microsoft-openai-github-copilot-class-action-lawsuit-ai-copyright-violation-training-data
https://www.theverge.com/2022/11/8/23446821/microsoft-openai-github-copilot-class-action-lawsuit-ai-copyright-violation-training-data
https://blog.npmjs.org/post/101775448305/npm-and-front-end-packaging
https://blog.npmjs.org/post/101775448305/npm-and-front-end-packaging
https://doi.org/10.1177/20539517231177620
https://doi.org/10.1177/20539517231177620
https://doi.org/10.1145/3531146.3533779
https://doi.org/10.2139/ssrn.4543807
https://doi.org/10.1145/3593013.3594012
https://fleet.so/blog/library-rag
https://github.blog/2021-06-30-github-copilot-research-recitation/
https://github.blog/2021-06-30-github-copilot-research-recitation/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Situating the Commons
	2.2 Ethics and Openness
	2.3 Critical Work on the Power and Politics of Datasets
	2.4 Political Economy of Software

	3 The History of Centralization in Open-Code
	3.1 The Ideological Origins of F/OSS
	3.2 Software Distribution and Package Management
	3.3 Modern Social Coding
	3.4 Centralization

	4 ARTIFACTS OF CODE CENTRALIZATION
	4.1 Crater, 2015
	4.2 Dependabot, 2017
	4.3 Copilot, 2022
	4.4 Case Study Justification

	5 Comparing Artifacts of Code Centralization
	5.1 Stated Goals
	5.2 Technology
	5.3 Intellectual Property
	5.4 Interface and Community Participation
	5.5 Political Economy

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

