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ABSTRACT
We consider the problem of unfair discrimination between two

groups and propose a pre-processing method to achieve fairness.

Corrective methods like statistical parity usually lead to bad accu-

racy and do not really achieve fairness in situations where there is

a correlation between the sensitive attribute 𝑆 and the legitimate

attribute 𝐸 (explanatory variable) that should determine the deci-

sion. To overcome these drawbacks, other notions of fairness have

been proposed, in particular, conditional statistical parity and equal

opportunity. However, 𝐸 is often not directly observable in the

data. We may observe some other variable 𝑍 representing 𝐸, but

the problem is that 𝑍 may also be affected by 𝑆 , hence 𝑍 itself can

be biased. To deal with this problem, we propose BaBE (Bayesian

Bias Elimination), an approach based on a combination of Bayes

inference and the Expectation-Maximization method, to estimate

the most likely value of 𝐸 for a given 𝑍 for each group. The decision

can then be based directly on the estimated 𝐸. We show, by experi-

ments on synthetic and real data sets, that our approach provides a

good level of fairness as well as high accuracy.
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1 INTRODUCTION
One of the first group of fairness notions proposed in literature

was statistical parity (SP) [11], which enforces the probability of

a positive prediction to be equal across different groups. Let the

prediction and the group be represented, respectively, by the ran-

dom variables 𝑌 and 𝑆 , both of which are assumed to be binary for

simplicity, and let 𝑌 = 1 stand for the positive prediction. Then SP

is formally described by P[𝑌 = 1|𝑆 = 1] = P[𝑌 = 1|𝑆 = 0], where
P[·|·] represents conditional probability.
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However, SP has been criticized for causing loss of accuracy

and for ignoring circumstances that could justify disparity. A more

refined notion is conditional statistical parity (CSP) [21], which

allows some disparity as long as it is legitimated by explaining

factors. For example, a hiring decision positively biased towards

Group 1 could be justified if Group 1 has a higher education level

than Group 0 in average. CSP is formally defined by P[𝑌 = 1|𝑆 =

1, 𝐸 = 𝑒] = P[𝑌 = 1|𝑆 = 0, 𝐸 = 𝑒], for all 𝑒 , where 𝐸 is a random

variable representing the ensemble of explaining features.

The most common pre-processing approach to achieve CSP (or

an approximation of it) consists in editing the label 𝑌 (decision) in

the training data, according to some heuristic, so to ensure that the

number of samples with 𝑌 = 1, 𝑆 = 1, and 𝐸 = 𝑒 are approximately

the same number as those with 𝑌 = 1, 𝑆 = 0, and 𝐸 = 𝑒 . One

problem, however, is that often 𝐸 is not directly observable in the

data. Usually, we can observe some other variable 𝑍 that is repre-

sentative of 𝐸, but the problem is that 𝑍 may be also influenced by

the sensitive attribute 𝑆 , hence 𝑍 itself can be biased. We illustrate

this scenario with the following examples.

Example 1. The SAT (Scholastic Assessment Test) is a standardized
test widely used for college admissions in the United States aiming at
indicating the skill level of the applicant, and therefore her potential
to succeed in college. However, the performance at the test can be
affected by other socio-economic, psychological, and cultural factors.
For instance, a recent study [16] points out that, on average, black
students are less likely to undergo the financial burden of retaking
the test than white students. This causes a racial gap in the scores,
since retaking the test usually improves the result. Another study [17]
reports that, on average, girls score approximately 30 points less on
SAT than boys, despite the fact that girls routinely achieve higher
grades in school. According to [17], the cause is the higher sensitivity
to stress and test anxiety among females.

Example 2. Many healthcare systems in the United States rely on
prediction algorithms to identify patients in need of assistance. One of
the most used indicators is the individual healthcare expenses, as they
are easily available in the insurance claim data. However, healthcare
spending is influenced not only by the health condition, but also by
the socio-economic status. A recent study [31] shows that typical
algorithms used by these healthcare systems are negatively biased
against black patients, in the sense that, for the same prediction score,
black patients are in average sicker than the white ones. According to
[31], this is due to the bias in the healthcare spending data, since black
patients spend less on healthcare due to lower financial capabilities
and lower level of trust towards the white-dominated medical system
and practitioners.

In the above examples, the “true skills” and the “true health

status”, respectively, are the legitimate features 𝐸 (explanation) on

https://doi.org/10.1145/3630106.3659016
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Figure 1: Left: illustration of the causal relation between the data. Right: illustration of our pre-processing method.

which we should base the decision. Unfortunately 𝐸 is not directly

observable. What we can observe, instead, is the result of the SAT

test and the healthcare-related spending, respectively. These are

represented by the variable 𝑍 . These indicators, however, do not

faithfully represent 𝐸, because they are influenced also by other

factors, namely the economical status (or the gender), and the race,

respectively. These are the sensitive attribute 𝑆 .

The line of research that advocates the use of statistical parity

[6, 8, 20, 26, 27] adheres to the “we are all equal” principle [14], and

makes the basic assumption that 𝐸 and 𝑆 are independent. However,
in many cases, like for instance in decisions regarding the medical

treatment of genetic illnesses, race or gender could have a direct

effect on the likeliness of the medical condition. For example, in our

second running example, the real health status is on average lower

in the black population because of socio-economic factors. Hence,

we allow the possibility of a link between the sensitive attribute 𝑆

and the explaining value 𝐸, and aim to remove the discrimination

introduced by the link between 𝑆 and 𝑍 . The method we propose

to remove the discrimination works equally well whether or not

there is a link between 𝑆 and 𝐸, and it does not modify this relation.

To summarize, in the original (unfair) scenario the decision 𝑌

is based on 𝑍 , which is influenced by both 𝐸 and 𝑆 . The situation

is represented in Figure 1 (left). The arrow from 𝑆 to 𝑍 represents

that there is a causal relation between 𝑆 and 𝑍 , and similarly for

the other solid arrows
1
, while the dashed arrow between 𝑆 and

𝐸 represents a relation that may or may not be present. In order

to take a fair decision, we would like to base the decision 𝑌 only

on 𝐸, but, as explained before, 𝐸 may not be directly available.

Therefore, we need to determine what is the most likely value of

𝐸 for the given values of 𝑆 and 𝑍 . To this purpose, we will derive

the conditional distribution of 𝐸 given 𝑍 and 𝑆 , i.e. P[𝐸 |𝑍, 𝑆]. The
objective is illustrated in Figure 1 (right).

Note that 𝐸 can be multi-dimentional, and that we represent the

effect of other possible latent variables by the randomness in the

distribution of the data.

The method we propose uses a combination of the Bayes theorem
and the Expectation-Maximization method (EM) [10], a powerful

statistical technique to estimate unobservable variables as the max-

imum likelihood parameters of empirical data observations. We call

our method BaBE, for Bayesian Bias Elimination.
BaBE relies on some additional knowledge, namely an estimation

of the conditional distribution of 𝑍 given 𝑆 and 𝐸, i.e., P[𝑍 |𝐸, 𝑆].
This estimation can be obtained by collecting additional data. For

instance, for Example 2, we could use the richer set of biomarkers,

1
Note that 𝐸 is what in causality is called a mediator.

like in [31]. Alternatively, it can be produced by studies or exper-

iments in a controlled environment. For instance, for Example 1,

we could assess skills in some subjects by in-depth examinations,

and derive statistics about their SAT performance both at the first

attempt and after several retakes. Another possibility is to collect

data on the subsequent performance of the students that have been

accepted, and of those who have not been accepted in the school in

question but have been accepted in another school.

One obvious question that may arise is: what are the advantages

of deriving P[𝑍 |𝐸, 𝑆], rather than directly P[𝐸 |𝑍, 𝑆], from the ad-

ditional data? (The derivation of the latter from the former is the

essence of our proposal.) We argue that, while in general there

may not be any advantage, there are real-life situations in which

P[𝑍 |𝐸, 𝑆] is more “universal” than P[𝐸 |𝑍, 𝑆], in the sense that the

first does not depend on the distribution of 𝐸 |𝑆 (𝐸 given 𝑆), while

the latter does. As a consequence, the knowledge of the first can be

re-used in different contexts, while the latter cannot. One typical

example is the study of symptoms (𝑍 ) induced by certain diseases

(𝐸), which may also depend on the gender or other characteristics

such as ethnicity, age, etc. (𝑆): P[𝑍 |𝐸, 𝑆] can be statistically esti-

mated from medical data 𝐷 collected by some hospitals, and it is

reasonable to assume that it does not depend on the distribution

of 𝐸 |𝑆 , which, in contrast, can vary greatly depending on the geo-

graphical area, on the social context, etc. Also P[𝐸 |𝑍, 𝑆] could be

estimated from 𝐷 , but it may depend on 𝐸 |𝑆 . For example, in towns

that are very polluted (area 𝐴1), the risk that coughing (symptom,

𝑍 ) indicates lung cancer rather than a simple cold (diseases, 𝐸) may

be much higher than in the (less polluted) area 𝐴2 where the data

𝐷 were collected. The idea of BaBE to predict diseases in 𝐴1 is to

estimate P[𝑍 |𝐸, 𝑆] in the area where complete data (including 𝐸)

are available, in this case, area𝐴2, assuming that the same P[𝑍 |𝐸, 𝑆]
is valid also in 𝐴1. Then, we estimate the empirical probability (fre-

quency) P[𝑍 |𝑆] in 𝐴1. Subsequently, using the above P[𝑍 |𝐸, 𝑆] and
P[𝑍 |𝑆], the BaBE method allows us to derive P[𝐸 |𝑆] in 𝐴1. Finally,

by applying the Bayes theorem to the above probabilities, we derive

P[𝐸 |𝑍, 𝑆] in 𝐴1.

We note that the scenario we are considering is the same as

that of machine learning (ML). Indeed, in machine learning, we

assume the existence of a dataset (for instance, historical data), i.e.,

a representation of the joint distribution P[𝐸, 𝑍, 𝑆]. In the case of

ML, we typically derive directly the prediction of 𝐸 for a given

value of 𝑍 and 𝑆 . However, it may happen that P[𝐸 |𝑍, 𝑆] depends
on the distribution of 𝐸 |𝑆 , which can vary greatly depending on the

context. The effect of the distribution shift is a well known problem



BaBE: Enhancing Fairness via Estimation of Explaining Variables FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

in ML, impeding the deployment of the model in populations that

are different from the one in the training data [32, 35].

In contrast, P[𝑍 |𝐸, 𝑆] may be more “universal”, and this is exactly

the case in which our BaBE method is applicable, also in case of

a distribution shift (on 𝐸). In this case, it is convenient to invest

in the estimation of P[𝑍 |𝐸, 𝑆], which can be done once and then

transferred to different contexts. Indeed, one advantage of our

approach is that it allows the transfer of causal knowledge. Namely,

once we learn the relation P[𝑍 |𝐸, 𝑆], the method can be applied

to a population with different proportions, i.e. different P[𝐸 |𝑆]
(but the same P[𝑍 |𝐸, 𝑆]). For more discussion about this point, we

refer to [1–3, 33, 36]. Another case in which our method presents

an advantage over ML is when it is possible to estimate causal

prior knowledge from experimental data, which is typically small.

Machine learning algorithms need large data sets to achieve a good

performance, whereas Bayesian statistics can be suitable also for

small sample sizes [19, 29].

Once P[𝐸 |𝑍, 𝑆] is estimated, we pre-process the training data by

assigning a decision 𝑌 based on the most likely value 𝑒 of 𝐸, for

given values of 𝑆 and 𝑍 . If 𝑒 does not have enough probability mass,

however, we may not achieve CSP, or even a good approximation

of it. In such case, we can base the decision on a threshold for

the estimated 𝐸, aiming at achieving equal opportunity (EO) [18]

instead, that we regard as a relaxation of CSP. Formally, EO is

descibed as follows: P[𝑌 = 1|𝑌 = 1, 𝑆 = 1] = P[𝑌 = 1|𝑌 = 1, 𝑆 =

0], where 𝑌 represents the “true decision”, i.e., the decision based

on a threshold for the real value of 𝐸.

We validate our method by performing experiments,
2
both on

synthetic datasets and on the real ‘The National Health and Nu-

trition Examination Survey’ (𝑁𝐻𝐴𝑁𝐸𝑆) data set [13], featuring

biological and chronological age of the patients. In both cases, we

obtain a very good estimation of P[𝐸 |𝑆], and we achieve a good

level of both accuracy and fairness.

Summarizing, our contributions are as follows:

• We propose an approach to estimate the distribution of an

explaining variable 𝐸, using the Expectation-Maximization

method (EM). To the best of our knowledge, this is the first

time that EM is used to achieve fairness without assuming

the independence between 𝐸 and the sensitive attribute 𝑆 .

From the above, we then derive an estimation of P[𝐸 |𝑍, 𝑆].
• Using the estimation of P[𝐸 |𝑍, 𝑆], we show how to to esti-

mate the values of 𝐸 and 𝑌 for each value of 𝑍 and 𝑆 . These

estimations are then used to pre-process the data in order to
achieve CSP and/or EO.

• We show experimentally that our proposal outperforms other

approaches for fairness, in terms of CSP, EO, accuracy, and

other metrics for fairness and precision of the estimations.

Related Work. The notion of fairness that we consider in this

work was introduced in [21] and it is known nowadays as condi-
tional statistical parity (CSP) [9]. In [21], CSP is achieved through

data pre-processing, by applying local massaging or local prefer-
ential sampling techniques. However, the authors consider only

an explanatory variable 𝐸 which is part of the data at the time of

deployment of their method.

2
The software used for implementing our approach and for performing the experiments

is available at https://github.com/BaBE-Algorithm/BaBE.

Note that our 𝑍 , although observable, cannot be considered as

an explanatory variable, because we are assuming it is influenced

by the sensitive attribute in a way that would make it unfair to base

the decision on 𝑍 . To better understand the difference, consider

one of the main examples used in [21] to illustrate the idea, which

is a kind of Berkeley admission anomaly, an instance of the Simpson
paradox [15]. In this example, the admittance in a certain univer-

sity looks biased against females, but the disparity can actually be

explained by the fact that female students tend to choose a more

selective program. In this case, the explanatory variable is a media-

tor (the choice of the program), and it is assumed to be legitimate

as a cause for disparity. By contrast, in our example the observed

score is considered to be influenced by social discrimination, hence

it cannot be directly used as an explanatory variable.

The work closest to ours is [6], where there is a model contain-

ing a latent variable whose distribution is discovered through the

Expectation Maximization method. However, in [6] the notion of

fairness considered is statistical parity (SP). Using SP as a constraint

(thus applying a sort of self-fulfilling prophecy approach) and other

constraints such as the preservation of the total ratio of positive

decisions, the authors determine what the distribution P[𝑍 |𝐸, 𝑆]
should be, they distribute the probability mass uniformly on all

attributes, and they finally apply the EM method to determine the

fair labels. In contrast, we are aiming at discovering what is the

most probable value of 𝐸 for each combination of values of the

other attributes (𝑆 and 𝑍 ), so as to take a fair decision based on 𝐸,

considered as the explanatory variable. We do not require statistical

parity, nor do we assume a uniform distribution on all attributes. In-

stead, we use external knowledge as prior knowledge for applying

the EM method. Another difference is that they optimize accuracy

with respect to the observed biased labels, whereas we consider

accuracy towards the true fair label dependent on 𝐸, considered as

the actual attribute on which the decision should be made.

Similar in spirit to [6], [26] tries to discover the latent variable

which is maximally informative about the decision, while minimiz-

ing the correlation with the sensitive attribute (statistical disparity);

this is done via a deep learning technique. Also [22, 25, 27] use

deep learning latent variable models: [22, 25] consider latent con-

founders and [27] considers the sensitive attribute as a confounder.

The situations in which these assumptions apply are quite differ-

ent from the problem we study, since they aim at eliminating the

effect of the confounder, while for us the unobservable variable is a

mediator, and we want to use it as the basis for a fair decision. As a

consequence, the notion of fairness those works aim at achieving is

not suitable for our case. [7] introduces path-specific counterfactual

fairness, where (among other cases) they consider the latent cause

of a mediator between the sensitive attribute and the decision. This

is more similar to our notion of fairness. However, [7] assumes that

the latent variable is independent from the sensitive attribute; as

such, their method is not directly applicable to our problem. [8]

uses probabilistic circuits to impose statistical parity and to learn a

relationship between the latent fair decision and other variables.

Finally, [12] uses a notion of fairness called disparate impact, which
is similar to statistical disparity, except that it is defined as a ratio

(instead of a difference) between the probabilities of positive deci-

sions for each group. Similarly to our work, [12] applies a corrective

factor to the outcome of the observed variable 𝑍 , but their goal is to
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minimize the disparate impact (within a certain allowed threshold

𝛼), which is again in the spirit of minimizing statistical disparity.

Also their technique is very different: they consider the distribu-

tions on the observed variable 𝑍 for each group, and they compute

new distributions that minimize the earth movers’ distance and

achieve the threshold 𝛼 . Then, they map each value of 𝑍 (for each

group) on the new distribution so to maintain the percentile.

2 PRELIMINARIES AND NOTATION
𝐸, 𝑌 and 𝑌 notations. In this paper, 𝐸 (with generic value 𝑒)

represents the estimation of the explanatory variable 𝐸. Similarly,

𝑌
𝐸
(with generic value 𝑦) represents the estimation of the decision,

based on 𝐸, rather than the prediction of the model. To put it in

context, recall that we are proposing a pre-processing method: 𝑦

represents the value that we assign as decision in a sample of the

training data during the pre-processing phase. The fairness and

precision notions are defined with respect to these estimations. We

use 𝑌𝑍 to indicate the biased decision based on 𝑍 , and 𝑌𝐸 for the

“true” decision based on 𝐸. When clear from the context, we may

use 𝑌 instead of 𝑌𝐸 .

The Expectation-Maximization Framework. Let 𝑂 be a random

variable depending on an unknown parameter 𝜃 . Given that we

observe 𝑂 = 𝑜 , the aim is to find the value of 𝜃 that maximizes

the probability of this observation, and that therefore is its best
explanation. To this purpose, we use the log-likelihood function
𝐿(𝜃 ) = logP[𝑂 = 𝑜 |𝜃 ]. A Maximum-Likelihood Estimation (MLE)

of the parameter is then defined as argmax𝜃 𝐿(𝜃 ) (which is the𝜃 that
maximizes P[𝑂 = 𝑜 |𝜃 ], since log is monotone). The Expectation-

Maximization (EM) framework [10, 28, 37] is a powerful method

for computing argmax𝜃 𝐿(𝜃 ).

2.1 Metrics for the quality of estimations
The Wasserstein distance. This distance is defined between prob-

ability distributions on a metric space. Let X be a set provided with

a distance 𝑑 , and 𝜇, 𝜈 be two discrete probability distributions on X.

The Wasserstein distance between 𝜇 and 𝜈 is defined as

W(𝜇, 𝜈) = min

𝛼

∑︁
𝑥,𝑦∈X

𝛼 (𝑥,𝑦) 𝑑 (𝑥,𝑦), (1)

where𝛼 represents a coupling, i.e., a joint distributionswithmarginals

𝜇 and 𝜈 satisfying the properties

∑
𝑦∈X 𝛼 (𝑥,𝑦) = 𝜇 (𝑥) and∑

𝑥∈X 𝛼 (𝑥,𝑦) = 𝜈 (𝑦).

Accuracy. Let 𝑋,𝑌 be two random variables with support X and

Y respectively, and joint distribution P[𝑋,𝑌 ]. Let 𝑓 : X → Y
be a function that, given 𝑥 ∈ X, estimates the corresponding 𝑦,

and let 𝑦 be the result, i.e., 𝑦 = 𝑓 (𝑥). The accuracy of 𝑓 is defined

as the expected value of 1�̂�=𝑦 , that is the function that gives 1 if

𝑦 = 𝑦, and 0 otherwise. When the distribution is unknown, the

accuracy is estimated empirically via a set of pairs {(𝑥𝑖 , 𝑦𝑖 ) | 𝑖 ∈ I}
independently sampled from P[𝑋,𝑌 ] (testing set), and is defined as

Acc(𝑌,𝑌 ) =
1

|I |
∑︁
𝑖∈I

1�̂�𝑖=𝑦𝑖 where 𝑦𝑖 = 𝑓 (𝑥𝑖 ). (2)

Distortion. If the variable to be predicted ranges over a metric

space, and the metric is important for decision-making (like the

case of 𝐸 in our examples), accuracy is not always the best way to

Figure 2: The pipeline of BaBE application. The variable 𝐸 is
observable in the source data andP[𝑍 |𝐸, 𝑆] can be derived. The
target data is the one where 𝐸 is not observable and we want
to recover it using P[𝑍 |𝐸, 𝑆] derived from the source data. We
input P[𝑍 |𝐸, 𝑆] and statistics from the observable variables
in the target data to BaBE and estimate 𝐸 consistent with the
target distribution (possibly different than in the source data).
We then again use P[𝑍 |𝐸, 𝑆] (from source data), observable
variables (from the target data) and 𝐸 (BaBE estimation) to
inference 𝐸 |𝑍, 𝑆 for each sample in the target data.

measure the quality of the estimation. Arguably, it is more suitable

to use the distortion, i.e., the expected distance between the true

value and its estimation. Using the testing set {((𝑧𝑖 , 𝑠𝑖 ), 𝑒𝑖 ) | 𝑖 ∈ I},
the distortion in the estimation of 𝐸 is defined as

Dist (𝐸, 𝐸) = 1

|I |
∑︁
𝑖∈I

|𝑒𝑖 − 𝑒𝑖 |, where 𝑒𝑖 = 𝑓 (𝑧𝑖 , 𝑠𝑖 ) . (3)

2.2 Metrics for fairness
SP, CSP, and EO are rarely achieved, since they require a perfect

match. It is therefore useful to quantify the level of (un)fairness, i.e.,

the difference between the two groups. We will use the following

metrics:

Statistical parity difference (SPD)

P[𝑌
𝐸
= 1|𝑆 = 1] − P[𝑌

𝐸
= 1|𝑆 = 0] . (4)

Conditional statistical parity difference (CSPD)

P[𝑌
𝐸
= 1|𝐸, 𝑆 = 1] − P[𝑌

𝐸
= 1|𝐸, 𝑆 = 0] . (5)

Equal opportunity difference (EOD)

P[𝑌
𝐸
= 1|𝑌𝐸 = 1, 𝑆 = 1] − P[𝑌

𝐸
= 1|𝑌𝐸 = 1, 𝑆 = 0] . (6)

3 THE BABE METHOD
In this section we describe the BaBE approach. We briefly recall

the problem: we have a data model represented in Figure 1, where

𝑆 is the sensitive attribute, 𝐸 is the explanatory variable on which

a fair decision should be based, and 𝑍 is an observed but biased

version of 𝐸. We need to estimate the distribution P[𝐸 |𝑍, 𝑆]. The
first step is to estimate the distribution of 𝐸 for each group, P[𝐸 |𝑆].
We accomplish this task by adapting the Expectation-Maximization

method to our particular setting. Then, from P[𝐸 |𝑆] we derive,

using the Bayes theorem, the estimation of
ˆP[𝐸 |𝑆, 𝑍 ], from which

we finally derive 𝐸 and 𝑌
𝐸
. The pipeline of the process is provided

in Figure 2.
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3.1 Deriving ˆP[𝐸 |𝑆]
We estimate the unknown parameter P[𝐸 |𝑆] as the MLE of a se-

quence of samples (𝑧, 𝑠) = {(𝑧𝑖 , 𝑠𝑖 ) | 𝑖 ∈ [1, 𝑁 ]},3 assuming that we

know the effect of the bias, i.e., P[𝑍 |𝐸, 𝑆]. We denote by 𝜑𝑠 [𝑧, 𝑧] the
empirical probability of 𝑍 = 𝑧 given 𝑆 = 𝑠 , i.e., the frequency of 𝑧 in

the samples with 𝑆 = 𝑠 . Algorithm 1 estimates P[𝐸 |𝑆] by starting

with the uniform distribution and by iteratively computing at step

𝑡 a new estimation
ˆP[𝐸 |𝑆] (𝑡 ) from the previous one, getting closer

and closer to the MLE. The proof of correctness of Algorithm 1 is

provided in [5] (the archival version of this paper).

We have experimentally verified that our method is quite effi-

cient: The running time of Algorithm 1 on the data of Section 4 is a

few seconds. Details are reported in the additional material.

Algorithm 1 BaBE: Bayesian Bias Elimination

Data: {(𝑧𝑖 , P[𝑍 = 𝑧𝑖 |𝐸 = 𝑒, 𝑆 = 𝑠])}𝑖∈{1..𝑁 } and 𝛾 (an allowed

error in estimating P[𝐸 = 𝑒 |𝑆 = 𝑠])
Result: An approximation (up to 𝛾 ) ˆP[𝐸 |𝑆] of the MLE

Compute 𝜑𝑠 [𝑧, 𝑧], for every 𝑧 ∈ Z and 𝑠 ∈ S
ˆP[𝐸 = 𝑒 |𝑆 = 𝑠] (0) = 1

| E | , for every 𝑒 ∈ E
𝑡 = 0

repeat
𝑡 = 𝑡 + 1

ˆP[𝐸 = 𝑒 |𝑆 = 𝑠] (𝑡 ) =∑
𝑧∈Z

𝜑𝑠 [𝑧, 𝑧] P[𝑍=𝑧 |𝐸=𝑒,𝑆=𝑠 ] ˆP[𝐸=𝑒 |𝑆=𝑠 ] (𝑡−1)∑
𝑒′ ∈E
P[𝑍=𝑧 |𝐸=𝑒′,𝑆=𝑠 ] ˆP[𝐸=𝑒′ |𝑆=𝑠 ] (𝑡−1) , for every

𝑒 ∈ E and 𝑠 ∈ S
until ∀𝑒 ∈ E ∀𝑠 ∈ S.

���ˆP[𝐸 = 𝑒 |𝑆 = 𝑠] (𝑡 ) − ˆP[𝐸 = 𝑒 |𝑆 = 𝑠] (𝑡−1)
��� <

𝛾

return ˆP[𝐸 |𝑆] = ˆP[𝐸 |𝑆] (𝑡 )

3.2 Deriving ˆP[𝐸 |𝑍, 𝑆] from ˆP[𝐸 |𝑆]
Given the data {(𝑧𝑖 , 𝑠𝑖 ) | 𝑖 ∈ [1, 𝑁 ]}, the conditional distributions
P[𝑍 |𝐸, 𝑆], and the estimation

ˆP[𝐸 |𝑆], we use the Bayes formula to

estimate
ˆP[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠] as
ˆP[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠] = P[𝑍=𝑧 |𝐸=𝑒,𝑆=𝑠 ] ˆP[𝐸=𝑒 |𝑆=𝑠 ]

P[𝑍=𝑧 |𝑆=𝑠 ]

3.3 Deriving 𝐸 and 𝑌𝐸 from ˆP[𝐸 |𝑍, 𝑆]
We propose two ways to derive𝑌

𝐸
for pre-processing the samples in

the training data, depending on how much probability mass is con-

centrated on the mode of
ˆP[𝐸 |𝑍, 𝑆]. We denote by 𝜏 the threshold

for the values of 𝐸 that qualify for the positive decision.

Method 1. Given 𝑧 and 𝑠 , if ˆP[𝐸 |𝑍 = 𝑧, 𝑆 = 𝑠] is unimodal and

has a large probability mass (say, 50% or more) on its mode, then

we can safely set 𝐸 to be that mode. Namely, if max𝑒
ˆP[𝐸 = 𝑒 |𝑍 =

𝑧, 𝑆 = 𝑠] ≥ 0.5 then we set 𝑒 = argmax𝑒
ˆP[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠],

and we can then use 𝑒 directly to set 𝑌
𝐸
= 1 or 𝑌

𝐸
= 0 in those

samples with 𝑍 = 𝑧 and 𝑆 = 𝑠 , depending on whether 𝑒 ≥ 𝜏 or not,
respectively. Our experimental results show that this method gives

a good accuracy.

3
We use the notation [𝑎,𝑏 ] to represent the integers from 𝑎 to 𝑏.

Method 2. If ˆP[𝐸 |𝑍 = 𝑧, 𝑆 = 𝑠] is dispersed on several values,

so that no value is strongly predominant, then it is impossible to

estimate individual values for 𝐸 with high accuracy. However, we

can still accurately estimate 𝑌𝐸 as follows: Let 𝜎0 =
∑
𝑒<𝜏

ˆP[𝐸 =

𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠] and 𝜎1 =
∑
𝑒≥𝜏 ˆP[𝐸 = 𝑒 |𝑍 = 𝑧, 𝑆 = 𝑠]. If 𝜎0 < 𝜎1,

then we set 𝑌
𝐸
= 1; otherwise, 𝑌

𝐸
= 0.

4 EXPERIMENTS
In this section, we test BaBE on scenarios corresponding to Exam-

ples 1 and 2, using synthetic data sets and a real data set respectively.

We compare our results with those achieved by the following well-

known pre-processing approaches that aim to satisfy statistical

parity, as well as machine learning algorithms trained on the data

set where 𝐸 is observable.

4.1 Metrics
We will use the following metrics to measure fairness: Statistical

parity difference (𝑆𝑃𝐷 , Equation 4), Conditional statistical parity

difference (𝐶𝑆𝑃𝐷 , Equation 5), Equal opportunity difference (𝐸𝑂𝐷 ,

Equation 6). The performance is measured by accuracy (Acc(𝑌,𝑌 ),
Equation 2), distortion (Dist (𝐸, 𝐸), Equation 3), and the Wasserstein

distance between the true and estimated distributions (W(𝜇, 𝜈),
Equation 1).

4.2 Other Algorithms for Comparison
The first approach we compare with is the disparate impact (DI)
remover [4, 12].4 DI has a parameter 𝜆, which represents the mini-

mum allowed ratio between the probability of success (𝑌 = 1) of

each group (hence 𝜆 = 1 corresponds to statistical parity). For the

experiments, we use 𝜆 = 0.8.

The second algorithm we compare with ours is the naive Bayes
(NB) [6].

5
NB also applies the EM method; however, in contrast

to our work, NB assumes that 𝐸 and 𝑆 are independent, and uses

EM to take decisions that optimize the trade-off between SPD and

accuracy.

Finally, we compare the performance of BaBE with the ML meth-

ods that are trained on the data where 𝐸 is observed (the source

data). The model is then used to predict 𝐸 (from 𝑆 and 𝑍 ) in the

data sets where the distribution of 𝐸 |𝑆 is different from the source

data, but the learned mechanism (𝑍 |𝐸, 𝑆) is the same. We used

linear regression (LG) and decision tree regression (DT) for the

experiments.
6

4.3 Synthetic data sets with distributions shifts
This group of experiments is aimed at testing how BaBE copes with

the transfer of knowledge to populations with different distribu-

tions. For this purpose, we generate a synthetic set, that we call

"source data", where the mean of 𝐸 for group 0, mean0, is 40 and

the mean of 𝐸 for group 1, mean1, is 80. The groups in this data set

are about even in size. We use this set of “source data” to estimate

the distributions P[𝑍 |𝐸, 𝑆].
Then, we generate three different data sets 1, 2 and 3 where

mean1 is still 80, while mean0 varies from 40 to 80, representing a

4
We use the implementation by [4].

5
Implementation kindly provided by the authors of [6].

6
We use scikit-learn implementations of the machine learning algorithms [34].
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Figure 3: The distribution of 𝐸 |𝑆 in the source data and in the
new populations.

distribution shift, w.r.t. the source data, on the 𝐸 for group 0. Varying

mean0will also allow us to validate the claim that ourmethodworks

well regardless of 𝐸 being independent of 𝑆 or not. The percentage

of the two groups in these new data sets also changes: we have

set the group 1 to be 60% of the population, and, consequently, the

group 0 to be 40%.

4.3.1 Generation of the synthetic data sets. In this section we ex-

plain how to generate various data sets containing tuples of the

form (𝑠𝑖 , 𝑒𝑖 , 𝑧𝑖 , 𝑦𝑖 ). First, we generate a data set of 30K elements

{𝑠𝑖 }𝑖∈[1,30K] representing values for the sensitive variable (group)
𝑆 , where each 𝑠𝑖 is sampled from the Bernoulli distribution B(0.5).
This means that the two groups are about even. Then, we set the

domain of 𝐸 to be equal to [0, 99], and to each of the elements 𝑠𝑖
in the sequence we associate a value 𝑒𝑖 for the variable 𝐸, sam-

pled from the normal distribution N(mean0, 𝑠𝑑), if 𝑠𝑖 = 0, and

from N(mean1, 𝑠𝑑), if 𝑠𝑖 = 1,
7
where the mean mean1 is set to 80,

and the standard deviation 𝑠𝑑 is set to 30. On the other hand, the

value of mean0, is 40 in the source data, and varies from 40 to 80

in the data sets 1, 2 and 3. Finally, to each pair (𝑠𝑖 , 𝑒𝑖 ) we asso-

ciate a value 𝑧𝑖 with 𝑍 by applying a bias to 𝑒𝑖 . More precisely, 𝑧𝑖 =

100×𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑒𝑖/10−5)−100×𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑒𝑖/10−5)×0.2 + 𝜀 for 𝑆 = 0

and 𝑧𝑖 = 100× 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑒𝑖/10− 5) + 100× 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑒𝑖/10− 5) × 0.02

+ 𝜀 for 𝑆 = 1, where 𝜀 is a noise term sampled from N(1, 0.05). The
threshold for the decision is 𝐸 = 80, namely: 𝑌 = 1 if 𝐸 > 80 and

𝑌 = 0 otherwise. This is used to associate a decision𝑦𝑖 to each tuple

(𝑠𝑖 , 𝑒𝑖 , 𝑧𝑖 ). The distribution of 𝐸 |𝑆 for the source data and the data

sets 1-3 are shown in Figure 3.

4.3.2 Application of BaBE. We use the source data to estimate

P[𝑍 |𝐸, 𝑆]. This conditional probability is then used to estimate

P[𝐸 |𝑆] in the other data sets, where it is different from the "source

data", in the following way: We take a random subset of the data

from the data sets 1-3 (80%), remove the 𝐸 values from them, and use

them to compute the empirical distribution P[𝑍 |𝑆] and to produce

the estimate
ˆP[𝐸 |𝑆] by applying our BaBE method.

We verify that these data sets satisfy the conditions for Method

1 (cf. Section 3.3), and we apply this method to the remaining (20%)

of the data (testing data sets) to infer the values of 𝐸 and 𝑌
𝐸
for

each sample. We compare our estimates to the true values of 𝐸 and

𝑌 in the testing data.

Figure 4 shows the Wasserstein distances between the true dis-

tributions and the estimated ones. As we can see, BaBE manages to

estimate 𝐸 quite well: the distance w.r.t. 𝐸 is very small.

Figure 5 shows the accuracy with respect to the true 𝐸 (dis-

cretized values). BaBE is able to achieve a much better accuracy

than other methods. DT algorithm is the second best performer;

7
To keep the samples in the range of 𝐸, we re-sample the values that are lower than 0

or higher than 99. We also discretize them by rounding to the nearest integer.

Figure 4: Experiments on the synthetic data sets: TheWasser-
stein distance between ˆP[𝑍 ] and P[𝐸] and between ˆP[𝐸] and
P[𝐸].

however DT is still performing worse than BaBE, despite being

trained on the data set where 𝐸 is observable.

Figure 5: Experiments on the synthetic data sets: The accu-
racy between 𝑍 and 𝐸, and between 𝐸 and 𝐸.

Figure 6 shows the accuracy with respect to𝑌 for the two groups.

Once again the performance of BaBE is better than other pre-

processing methods. The overall performance of all methods is

better than measuring the accuracy with respect to 𝐸. This is not

surprising, as achieving good accuracy in a binary setting is an

easier task. DT achieves almost the same accuracy as BaBE on the

dataset 1 (𝑚𝑒𝑎𝑛0 = 40,𝑚𝑒𝑎𝑛1 = 80) which has the same distribu-

tion of 𝐸 |𝑆 as the training data. However, the performance of DT

decreases on the data sets where the distribution of 𝐸 |𝑆 is different

from the training data (𝑚𝑒𝑎𝑛0 = 60 and𝑚𝑒𝑎𝑛0 = 80).

Figure 6: Experiments on the synthetic data sets: The accu-
racy between 𝑌𝑍 and 𝑌𝐸 , and between 𝑌

𝐸
and 𝑌𝐸 .

Figure 7 shows the distortion (Equation 3). BaBE again produces

results that are closer to the true values of 𝐸 than the ones produced

by other methods.

Figure 7: Experiments on the synthetic data sets: The distor-
tion between 𝑍 and 𝐸 and between 𝐸 and 𝐸.

Figure 8 shows the conditional statistical parity difference on

admission for each group, conditioned on 𝐸. The values for BaBE

are close to zero, indicating the absence of discrimination. The DI

method has decreased the discrimination with respect to 𝑍 . NB

results are worse than the initial discrimination: it is possible that
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the non linear bias function together with the accuracy constraints

inbuilt in the algorithm has impeded its performance. DT once

again is a second best performer after BaBE.

Figure 8: Experiments on the synthetic data sets: Conditional
Statistical Parity Difference (CSPD). We recall that, for BaBE,
DI, NB, LG and DT, the CSPD is defined as P[𝑌

𝐸
= 1|𝐸, 𝑆 =

1] − P[𝑌
𝐸
= 1|𝐸, 𝑆 = 0]. For 𝑍 , the definition is similar, with 𝑌

𝐸
replaced by 𝑌𝑍 .

Figure 9 shows the probabilities of positive prediction when

the true decision is positive, and the corresponding difference in

equal opportunity. We note that the prediction based on 𝑍 has

a high probability to be positive for the group 1, but not for the

group 0, therefore EOD for 𝑍 is close to 1. On the other hand,

BaBE’s prediction is based on the estimation of 𝐸, and hence tends

to be equal to the true decision yielding EOD close to zero. Quite

surprisingly, DI gives bad results, even though it is supposed to

equalize the distributions for 𝑆 = 0 and 𝑆 = 1. However, DI decreases

the mean for 𝑆 = 1 instead of increasing the mean for 𝑆 = 0, leaving

the values for 𝑆 = 0 below the positive decision threshold (80).

Similar considerations apply to NB and LG.

Figure 9: Experiments on the synthetic data sets: Equal Op-
portunity Difference (EOD). We recall that, for BaBE, DI,
NB, LG and DT, the EOD is defined as P[𝑌

𝐸
= 1|𝑌𝐸 = 1, 𝑆 =

1] − P[𝑌
𝐸
= 1|𝑌𝐸 = 1, 𝑆 = 0]. For 𝑍 , the definition is similar,

with 𝑌
𝐸
replaced by 𝑌𝑍 .

Finally, Figure 10 compares the statistical difference (SPD) of the

prediction 𝑌
𝐸
obtained with the various methods and the SPD of

𝑌𝑍 . The SPD for 𝑌
𝐸
is defined in (4), for 𝑌𝑍 is defined as P[𝑌𝑍 =

1|𝑆 = 1] − P[𝑌𝑍 = 1|𝑆 = 0]. When mean0 = 80, that is, the same

as mean1, BaBE achieves, correctly, 𝑆𝑃𝐷 = 0. In contrast, DI and

NB do not achieve equal distribution for S=1 and S=0, which is

surprising since the algorithms are geared towards equality. We

hypothesize that the performance of the algorithms is impeded by

the non linear bias function and in-built accuracy constraints. The

DT algorithm is closest to the performance of BaBE, as it is more

suitable to handle non-linearity in the data set than other ML model

(LG).

4.4 The real-world data set
The National Health and Nutrition Examination Survey (NHANES)

[13] is a series of studies that are intended to evaluate the health

and nutritional status of adults and children in the United States.

Figure 10: Experiments on the synthetic data sets: Statistical
Parity Difference (SPD). We recall that, for BaBE, DI, NB, LG
and DT, the SPD is defined as P[𝑌

𝐸
= 1|𝑆 = 1] −P[𝑌

𝐸
= 1|𝑆 = 0].

For 𝑍 , the definition is similar, with 𝑌
𝐸
replaced by 𝑌𝑍 .

The survey is unique in that it incorporates in-depth interviews

and detailed physical examinations. Health-related questions and

demographics are included in the NHANES interview. For the

survey, the sample was selected to represent the US population

of all ages. To produce reliable statistics, NHANES oversamples

individuals aged 60 and over, African Americans, and Hispanics.

NHANES is a popular source for studying biological aging [23, 24,

30, 38]. The data set consists of 8243 samples. For our experiments,

we use three variables from the data set, race (black or white), which

is out 𝑆 , chronological age (20-90), which is our 𝑍 , and an estimate

of the biological age of the original KDM
8
biological age (variable

’kdm0’) which is our 𝐸. We choose chronological or biological age

75 or more as the threshold to set 𝑌𝑍 = 1 and 𝑌𝐸 = 1. This age

group shows the most racial disparity in biological aging in the

NHANES data set. Additionally, it is a reasonable age to check for

age-related diseases or consider retirement.

Experiments on the NHANES data are carried out usingMethod 2

(cf. Section 3.3) of the BaBE method. This is because the conditional

distribution of𝑍 |𝐸, 𝑆 does not allow the accurate estimation of every

individual 𝐸. However, it still allows us to recover the aggregated

distribution and estimate 𝑌
𝐸
. In the experiments we consider only

the fairness metric EODS, because the statistical disparity in the

NHANES data is very small (owing to the oversampling of the

minority population), so SPD is not interesting, and CSPD is not

relevant because we apply Method 2.

The boxplots are obtained by repeating the experiments ten times

with the same parameters. We report the results for the values of

𝑚𝑒𝑎𝑛0 equal to 40, 60 and 80.

Figure 11 shows the accuracy resulting from the application of

BaBE, DI, and NB to the NHANES data set. As we can see, BaBE

achieves better overall accuracy and significantly better accuracy

for 𝑆 = 1.

Figure 12 shows the equal opportunity from the application of

BaBE, DI, and NB to the NHANES data set. BaBE achieves EOD close

to zero. DI and NB preprocessing methods do not differ significantly

from the estimated 𝐸𝑂𝐷 considering the original 𝑍 .

4.5 Discussion
Our experiments show that BaBE performs well for the fairness

notions for which BaBE is designed, i.e., CSPD and EOD, while

maintaining good accuracy.

BaBE performs well also when P[𝐸 |𝑆] is different from that of the

data in which P[𝑍 |𝐸, 𝑆] has been computed (Figure 4), which shows

that BaBE is compatible with the transfer of causal knowledge to

8
Klemera and Doubal’s method for calculating the biological age from the set of

biomarkers.
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Figure 11: Experiments on the NHANES data. The Accuracy
for the two groups separately, and overall.

Figure 12: Experiments on the NHANES data. Equal oppor-
tunity difference (EOD), for the two groups separately, and
overall.

populations with different distributions. On the contrary, DI and NB

highly depend on the distribution as they always aim to minimize

SPD. Note that minimizing SPD in the NHANES data set would still

result in discrimination against black people, who on average have

higher biological age than white people of the same chronological

age.

The results of machine learning algorithms LG and DT show

the sensitivity to the change in distribution of 𝐸 |𝑆 . For example,

the accuracy with respect to 𝑌𝐸 of LG and DT is highest on the

data set 1, where 𝐸 |𝑆 is the same as in the training data (𝑚𝑒𝑎𝑛0 =

40,𝑚𝑒𝑎𝑛1 = 80) and degrades in the data sets 2 and 3, where it is

different. In addition, LG performs worse the DT in all experiments.

This is expected, because the relationship between 𝑍 and 𝐸 is non

linear. We note that BaBE is able to recover 𝐸 without restrictions

on the functional relationship in the data set. We acknowledge,

that it is possible that a more complex machine learning algorithm

could perform better on the proposed data set than linear regression,

however it would imply higher computational cost. Moreover, it

might still be affected by the distribution shift [32].

It is important to mention that the performance of BaBE is de-

pendent on the invertibility of P[𝑍 |𝐸, 𝑆 = 𝑠] (seen as stochastic

matrix, aka bias matrix), because invertibility is necessary for the

uniqueness of the MLE. However, even when the matrix is not

invertible, we are able to obtain favorable results. Indeed, in all our

experiments the bias matrices we produce from the synthetic data

are not invertible, to mimic the more realistic scenarios. Preliminary

experiments show that the diagonal deterministic matrix produces

the highest precision for the estimation of distributions P[𝐸 |𝑆], and
highest accuracy of the prediction 𝑌

𝐸
. We leave a more systematic

study on how precision and accuracy depend on P[𝑍 |𝐸, 𝑆 = 𝑠] as a
topic for future work.

5 CONCLUSIONS AND FUTUREWORK
We have proposed BaBE, a framework to use knowledge of a bi-

asing mechanism from domain-specific studies to perform data

pre-processing, aiming at achieving Conditional Statistical Parity

and Equal Opportunity when the explaining variable, and, conse-

quently, the true decision, are not contained in the data. The BaBE

algorithm uses the bias mechanism to estimate the probability dis-

tributions of the explaining variable, and it performs equally well

even when the population distributions are different from the ones

in which the study of the bias was conducted. A distinguishing

feature of our approach is that we do not need to assume that the
explaining variable is independent of the sensitive attribute. One chal-
lenging direction for future work is to explore how the precision of

the estimation, the accuracy of the prediction, and the fairness level

depend on the form of the matrices
ˆP[𝐸 |𝑍, 𝑆], and how the latter

depends on the matrices representing the external knowledge (i.e.,

the bias mechanism)
ˆP[𝑍 |𝐸, 𝑆].

We trust our method to serve as a tool to enhance interdisci-

plinary collaboration between domain experts and ML Fairness

practitioners.
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