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ABSTRACT
While model fairness improvement has been explored previously,
existing methods invariably rely on adjusting explicit sensitive at-
tribute values in order to improve model fairness in downstream
tasks. However, we observe a trend in which sensitive demographic
information becomes inaccessible as public concerns around data
privacy grow. In this paper, we propose a confidence-based hierar-
chical classifier structure called “Reckoner” for reliable fair model
learning under the assumption of missing sensitive attributes. We
first present results showing that if the dataset contains biased
labels or other hidden biases, classifiers significantly increase the
bias gap across different demographic groups in the subset with
higher prediction confidence. Inspired by these findings, we devised
a dual-model system in which a version of the model initialised with
a high-confidence data subset learns from a version of the model
initialised with a low-confidence data subset, enabling it to avoid
biased predictions. Our experimental results show that Reckoner
consistently outperforms state-of-the-art baselines in COMPAS
dataset and New Adult dataset, considering both accuracy and
fairness metrics.
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1 INTRODUCTION
Automated models and algorithms have found wide application in
various domains, including finance and justice, as tools to assist
human decision-making processes [7, 11]. These applications collect
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information like age and education level in financial services, or
misconduct incidents in policing, as well as sensitive data like race
and gender from individuals, raising concerns about the ability
of automation to deliver accurate and equitable judgments across
diverse demographic groups [1]. Due to concerns about the misuse
of private data, increasing regulatory restrictions have made it more
challenging to access and make use of sensitive information in
automated decision making [6, 37]. Approaches to improve fairness
by not making use of sensitive data can be roughly divided into two
categories: (1) focusing on ensuring that accuracy-related utility
is equal across various demographic groups [24, 29, 38] and (2)
focusing on limiting the impact of sensitivity-correlated proxies on
predictions [16, 19, 22, 39, 41]. By relying on the correlated observed
attributes, these methods have the potential benefit of mitigating
bias.

However, we argue that fairness is still underachieved because of
the unfair data being used. Most current approaches are limited by
the presence of biased labels and other hidden bias concealed within
the training data. For example, when faced with judges who are
either overly strict or lenient, there may be unusual fluctuations in
the number and severity of crimes committed by offenders, leading
to biased labels [18]. In the supervised learning setting, the model,
in an effort to minimize the loss with respect to the biased ground
truth, may learn unnecessary biases [29]. With such data, attempts
to obtain auxiliary information, about demographic groups to assist
in tasks can unfortunately fail [29]. Moreover, approaches relying
on selected proxy combinations are difficult to scale for sparse
datasets and also difficult to be applied on unstructured data such
as image and audio. [15, 41]

In this paper, we aim to answer the following research question:
How can we enhance the fairness of algorithmic predictions when
we exclude sensitive information from the dataset?. We begin by
presenting a model confidence study. Confidence calibration is
important for classification tasks [21]; however we do not focus on
adjusting confidence but rather use the lens of confidence to explore
model behaviour. We observe that as the model makes predictions
with higher confidence scores, the bias gap between demographic
groups increases as well. On the other hand, the analysis of feature
value distributions on the COMPAS dataset reveals that, for subsets
with higher confidence, the distribution pattern of selected features
becomes more distinctive. Combining both analytical results, we
argue that in a supervised learning setting, when the model tries to
minimise the loss with respect to the training labels, it also learns
the bias present in these biased labels. This results in subsets with
easier-to-classify samples, yet with predictions which are less fair.
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Figure 1: Observed measure factor gaps derived from the confusion matrix of the trained logistic regression classifier. (a) and (c)
True Negative Rate (TNR) and True Positive Rate (TPR) gaps for two demographic groups across different confidence levels in
COMPAS dataset and New Adult dataset, respectively. (b) and (d) False Negative Rate (FNR) and False Positive Rate (FPR) gaps
for two demographic groups across different confidence levels in the COMPAS dataset and the New Adult dataset, respectively.

Inspired by these findings, we initially divide the original training
set into two subsets based on confidence scores obtained from
a simple linear classifier, and then initialise different classifiers
with corresponding data subsets. After that, we introduce learnable
noise into the original data, aiming to retain only the necessary
information for prediction. In the next phase, one classifier acquires
knowledge from the other classifier to learn fairness while also
updating itself using the training labels to maintain high levels of
effectiveness.

The main contributions of this paper are as follows:

• By analysing bias and the distribution of non-sensitive at-
tributes across demographic groups in different model confi-
dence intervals, we observe that as the model becomes more
certain, it tends to make biased predictions more easily. This
analysis reveals how biased labels or other hidden bias ad-
versely affect fairness in machine learning, even when there
are no sensitive attributes considered during the supervised
learning process.
• We introduce a novel confidence-based classification frame-
work, named Reckoner. This framework achieves improved
group fairness while maintaining accurate classifications by
utilising learnable noise and knowledge-sharing in a dual-
model system architecture. This provides an effective ap-
proach to improve fairness without using sensitive attributes.
• We conduct extensive experiments to evaluate the effective-
ness of the proposed framework as compared to other base-
lines in terms of fairness and predictive performance on
datasets from which sensitive information is removed. We
also present the results of an ablation study to understand the

impact on effectiveness of the components in the proposed
framework.

2 PROBLEM SETUP AND FAIRNESS METRICS
Problem definition. Our goal is to improve group fairness in pre-
diction tasks in a non-sensitive attributes setting, where a set of la-
beled data 𝐷 = {𝑥𝑖 , 𝑦𝑖 }𝑁𝑖=1 is available for training. Each 𝑥𝑖 ∈ R1×𝑚
is a m-dimensional data instance, and we use 𝐹 = {𝑓𝑖 , . . . , 𝑓𝑚} to
denote the m features. Sensitive attributes S are not used in train-
ing, i.e. 𝑆 ∉ 𝐹 . Following the task settings on COMPAS dataset[31],
New Adult dataset[17] and CelebA dataset[33], we focus on binary
classification problems, i.e., 𝑦𝑖 ∈ {0, 1}.
Group Fairness Metrics.We aim to reduce the difference in model
predictions across various demographic groups. In this paper, we
use two group fairness metrics for evaluation: Demographic Parity
[12] and Equalised Odds [3]. Both fairness metrics are considered
better when they have lower values.
• Demographic Parity measures the difference in favourable
outcomes between privileged and non-privileged classes:

Δ𝐷𝑃 = 𝑝 (𝑦 = 1|𝑥𝑠 = 𝑠𝑖 ) − 𝑝 (𝑦 = 1|𝑥𝑠 = 𝑠 𝑗 ) (1)

• Equalised Odds measures the difference in true positive rates
and false positive rates, aiming for equality between privi-
leged and non-privileged classes:

Δ𝐸𝑂𝑑𝑑𝑠 =
1
2
|𝑝 (𝑦 = 1|𝑥𝑠 = 𝑠𝑖 , 𝑦 = 1) − 𝑝 (𝑦 = 1|𝑥𝑠 = 𝑠 𝑗 , 𝑦 = 1) |+

1
2
|𝑝 (𝑦 = 1|𝑥𝑠 = 𝑠𝑖 , 𝑦 = 0) − 𝑝 (𝑦 = 1|𝑥𝑠 = 𝑠 𝑗 , 𝑦 = 0) |,

(2)



Fairness without Sensitive Attributes via Knowledge Sharing FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

RecidivistRaceAge……Charge 
Degree

Previous 
Misconduct

TrueWhite23……Felony0Offender A

FalseBlack22……Felony3Offender B

TrueBlack30……Misdemeanor2Offender C

(a)

Income
LabelRaceAge……OccupationEducation

FalseWhite23……EngineerBachelorsIndividual A

FalseBlack22……SalesHigh SchoolIndividual B

TrueBlack30……ProfessorMasterIndividual C

(b)

Figure 2: (a) An example of the COMPAS dataset. In our experiment, the attribute ’Race’ in the red box is not used. (b) An
example of the New Adult dataset. In our experiment, the attribute ’Race’ in the red box is not used.

where 𝑠𝑖 and 𝑠 𝑗 are arbitrary sensitive attributes from sensitive
attribute set 𝑆 and 𝑦 is prediction from the classifier. 𝑥𝑠 specifies
which demographic group data instance 𝑥 belongs to. In addition
to group fairness metrics, we employed the bias gap illustrated in
Figure 1 in the confidence analysis in Section 3. Taking Figure 1 as
an example, we analysed the bias gap of True Positive Rate (TPR)
exhibited by two demographic groups: Δ𝑇𝑃𝑅 = 𝑇𝑃𝑅𝑠𝑖 −𝑇𝑃𝑅𝑠 𝑗 . On
the other three measure factors, we applied a similar definition to
obtain the corresponding bias gap results.

3 ANALYSIS OF BIAS GAP ACROSS
CONFIDENCE LEVELS

Given current confidence-based approaches, such as Out-of-Distribution
(OOD) detection [26] and those for image classification [13, 14], we
are interested in studying the behaviour of the classifier in subsets
with varying levels of confidence. Viewing the data through the
lens of confidence provides a more detailed picture of bias patterns
across various datasets. In this analysis, we employ logistic regres-
sion on two real-world datasets: COMPAS [31] and New Adult [17].
Figure 2a provides a toy example using the COMPAS dataset, which
is used for predicting offender recidivism. In our setup, sensitive
information within the red dashed box is omitted from training.
As a consequence, we partitioned the testing dataset into four dis-
joint subsets using confidence thresholds of 0.5, 0.6, 0.7, and 0.8,
respectively. This threshold setting ensures a sufficient number of
samples in each subset.

As shown in Figure 1, for COMPAS dataset, as the confidence
threshold increases, the performance differences between demo-
graphic groups become more pronounced. Moreover, the gap in
FNR and FPR values grows more significantly compared to TNR
and TPR values. When the confidence is below 0.6, the gap between
the two demographic groups is minimal across all four measures,
with the largest bias gap being only 13%. When the confidence
is above 0.8, we expect the classifier in this subset to accurately
capture classification patterns. Ideally, there should be high TNR
and TPR, the lowest FNR and FPR, and the smallest gap between the
two demographic groups. However, the results show that although
the first two criteria meet our expectations, the bias gap fluctuates
between remarkable values between 35% and 37%. Additionally,
the classifier has been found to perform better when identifying
positive instances in the non-privileged group, as False Negative
Rate (FNR) in the privileged group gradually decreases (from 0.54 to
0.39), while it sharply drops from 0.41 to 0.02 for the non-privileged
group.

In the New Adult dataset, we can also observe the minimum
bias gap in the low-confidence subsets in terms of TPR and FNR.
Specifically, both the privileged group and the non-privileged group
show an increasing trend in TNR and a sharp decreasing trend
in FPR. This indicates that the performance of the classifier in
identifying negative samples in both groups improves, and the
performance gaps are small, achieving the ideal performance in the
high-confidence subset mentioned above. In contrast, the model
struggles in identifying samples where the salary exceeds the set
income threshold. Plots of TPR and FNR values also show that
bias gaps for these two metrics increase with increasing model
confidence. The differences in bias gaps on the two datasets may be
attributed to COMPAS being a dataset with biased labels [18]. The
classifier may mistakenly treat bias as knowledge to learn when it
tries to minimise the loss based on the available ground truth labels.
Therefore, we observe a significant disparity in bias gap between
the low-confidence subset (samples near the decision boundary,
confidence < 0.6) and the high-confidence subsets (samples away
from the decision boundary, confidence ≥ 0.6).

In summary, on both datasets, we observe that bias gaps tends
to be relatively smaller in low-confidence subsets for all or some
measure factors of classification results, and it increases as confi-
dence levels rise. This indicates that models learn to make biased
decision with high confidence from the biased labels present in the
training data.

To further investigate why the model performs sub-optimally
on COMPAS, we selected two non-sensitive attributes from the
dataset to understand their distribution patterns across different
confidence subsets. Figure 3a and Figure 3b show the distribution
patterns of the ’Age’ attribute and ’Previous Misconduct’ in various
subsets, partitioned based on confidence scores.We can observe that
different racial backgrounds exhibit distinguishable distribution
patterns within high-confidence subsets, while these differences are
not observed in the low-confidence subset. Specifically, within high-
confidence subsets, comprising approximately 65% of the testing
data, there are varying tendencies of age distribution dispersion
and right-skewness among different racial groups. However, we
only observe a tendency toward right-skewness in age distribution
of low-confidence subset. Similar patterns can be observed in the
distribution of previous misconduct. We suspect that this is caused
by biased labels and other hidden bias. The classifier, by making
biased predictions toward the majority, is enabled to minimise the
training loss based on predicting distinguishable patterns frommost
instances.
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Figure 3: (a) and (b) Distributions of the attribute ’Age’ and ’Previous Misconduct’ across different subsets of the testing set.

4 METHOD
Overview. As shown in Figure 4, our proposed method consists of
two training stages, the Identification stage and Refinement stage.
In the Identification stage (Sec. 4.2), we employ a simple linear clas-
sifier, such as logistic regression, to perform a binary classification
task on the raw dataset under a supervised learning setting. Then
the training data is split into two subsets based on a predefined con-
fidence threshold: a high-confidence subset and a low-confidence
subset. These subsets are then used to initialise their respective
classifiers, both of which are three-layer multilayer perceptrons
(MLPs). At the beginning of the Refinement stage (Sec. 4.3), we
introduce learnable noise to the original dataset, generating noise-
augmented data for training in this stage. Next, during the iterations,
the High-Confidence (or “High-Conf ”) classifier produces pseudo-
labels to train the Low-Confidence (or “Low-Conf ”) classifier, and
the Low-Conf classifier updates its knowledge back to the High-
Conf classifier. The Low-Conf classifier is trained for a limited
number of iterations, for example, three epochs, before reverting to
its initialised state. This approach ensures accurate and unbiased
prediction while maintaining an efficient training process. Lastly,
the High-Conf classifier uses ground truth and shared knowledge
to update its parameters.

4.1 Motivation
Biased labels and other hidden bias concealed within the dataset
results in the classifier learning misleading classification patterns
and feature distributions, leading to 1) model-learned parameters
that do not enable fair predictions, and 2) limited auxiliary infor-
mation that non-sensitive attributes can provide. The motivation
behind our proposed framework stems from the analytical findings
in Section 3. We observed the smallest bias gap in the results of the
classifier on low-confidence subsets. This insight can be utilised
to introduce regularisation to the classifier’s learning based on the
knowledge acquired from low-confidence subsets. We also intro-
duced learnable noise, to obtain more reliable auxiliary information.
To improve fairness in the settings of missing sensitive attributes,
we design a novel framework, named Reckoner, which seamlessly
integrates learnable noise and a knowledge-sharing mechanism

between dual models. We have demonstrated the necessity of com-
bining these two components in our ablation study (see Section 5.2).

4.2 Identification stage
In this stage, we perform a simple confidence-based sample split
on the training data to obtain high-confidence samples and low-
confidence samples. Specifically, we train a logistic regression clas-
sifier on the original training set and we split the data using con-
fidence threshold (in this case, it is set to 0.6 following the re-
sults in [30]). Our hypothesis is that the model trained on the
low-confidence subset is more inclined towards classifications with
smaller bias gap, even if its predictive accuracy is relatively modest.
However, by integrating the knowledge derived from the model
trained on the high-confidence subset, it is possible to enhance
prediction effectiveness while maintaining good fairness.

4.3 Refinement stage
4.3.1 Learnable noise. In the initial phase of this stage, learnable
noise is introduced into the training set. Intuitively, learnable noise
has a similar effect to L1 regularisation. L1 regularisation is em-
ployed to encourage sparsity in the model parameters, resulting
in a model that utilises only a subset of the initial features. This is
beneficial for reducing bias gaps in model predictions because, even
if the dataset does not contain sensitive information, the associated
non-sensitive information may still be biased. Therefore, employ-
ing feature selection methods becomes necessary. However, we do
not directly use L1 regularisation here because it is constrained
by the model structure and feature scale thus being less general-
isable. L1 regularisation imposes a penalty on the weight of each
feature, which is the sum of the absolute values of the weights.
Consequently, changes to the model structure or adjustments to
the feature scale can change the weights, affecting the strength
of L1 regularisation. On the other hand, adding learnable noise to
input data can be considered as disrupting the original inputs to
increase the sparsity. Through supervised learning, the model is
encouraged to select features that have higher cross-entropy with
the ground truth. Moreover, learnable noise is robust to changes
in model structure or feature scale, allowing us to leverage this
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Figure 4: Overview of Reckoner. Reckoner consists of two stages. Identification stage: we first train a logistic regression classifier
on the raw data, and then split the data based on confidence scores. In Refinement stage, we introduce learnable noise into
the original dataset. We employ two classifiers, one for low-confidence instances and another for high-confidence ones. The
Low-Conf classifier uses pseudo-labels produced by the High-Conf classifier for limited training times and restores for each
new data. Knowledge acquired during this process is then shared with the High-Conf classifier, which incorporates ground
truth data to refine its model weights.

property to design a more flexible framework where the classifier
can be any model suitable for downstream tasks. To be more spe-
cific, we add a noise wrapper to vectors of the same dimensions as
the input (denoted as 𝜂). The noise wrapper is a simple two-layer
MLP that is subsequently applied to modify the input. The resulting
modified input is referred to as a noise-augmented input and can
be represented as follows:

𝑥𝑖 = 𝑥𝑖 + 𝑡𝑎𝑛ℎ(𝑔𝜔 (𝜂)), (3)

where𝜔 is the set of parameters in the noise wrapper 𝑔, and 𝑡𝑎𝑛ℎ(·)
helps constrain the range of noise values to [-1, 1]. In the rest of
the refinement stage, 𝑥𝑖 is the new input we use for the High-Conf
classifier.

4.3.2 Dual-model and knowledge sharing. The lower predictive
performance prevents us from relying on the Low-Conf classifier to
perform classification tasks, but it can guide theHigh-Conf classifier
to make fairer classifications. Within the Reckoner framework,
the Low-Conf classifier relies on the pseudo-labels produced by
the High-Conf classifier for supervised learning to update its own
parameters. Since ground truth data is not used in this phase, the
learning process can be referred to as pseudo-learning. The reason
we do not use ground truth here is that some datasets with hidden
bias contain a considerable amount of biased labels which may be
propagated during model learning. If these labels were used during
the learning phase of the Low-Conf classifier, it might lead the
model tomake biased predictions, thereby limiting its regularisation
effect on the High-Conf classifier. We use binary cross entropy as

the supervised loss of pseudo-learning:

LL = 𝐵𝐶𝐸 (𝑓ΘL (𝑥), 𝑦), (4)

where 𝑓ΘL is Low-Conf classifier and 𝑦 is the pseudo-label pro-
duced by High-Conf classifier. The subscripts “L” refers to the Low-
Conf classifier. Note that during this phase, the training iterations of
the Low-Conf classifier are limited (set to only 3 times in our exper-
iments) for training efficiency. Furthermore, once these iterations
end, the Low-Conf classifier has a rollback operation, reverting its
parameters to their initialised values. This design maintains the
effectiveness of Low-Conf classifier in providing fairness guidance
to the parameters of High-Conf classifier, and avoids learning the
bias inherent in the dataset.

On the other hand, we rely on the High-Conf classifier, which
offers higher accuracy, to perform classification tasks. However,
as revealed by the analysis in Section 3, we are aware of its poor
performance in terms of decreasing bias. Previous work shows that
leveraging the strengths of both models is a common strategy for
various research problems, such as, for example, the high-pass and
low-pass filters in graph neural networks [5], and efforts to average
model weights for improved image classification [36]. The most
promising improvement on fairness for the High-Conf classifier
lies in integrating the knowledge from the Low-Conf classifier, and
its parameter update mechanism can be expressed as follows:

ΘH ← 𝛼ΘH + (1 − 𝛼)ΘL, (5)

where 𝛼 controls the proportion of the knowledge of High-Conf
classifier. The subscripts “H” and “L” refer to the High-Conf classi-
fier and the Low-Conf classifier, respectively. In order to enhance
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predictive accuracy, we use ground truths and employ the backprop-
agation algorithm to update theHigh-Conf classifier. By integrating
the knowledge from the Low-Conf classifier, the final update mech-
anism can be formulated as follows:

𝜃H𝑖 ← 𝜃H𝑖−1 − 𝛾
𝜕LH

𝜕𝜃H
𝑖−1

, 𝜃H𝑖−1 ← 𝛼𝜃H𝑖−1 + (1 − 𝛼)𝜃
L
𝑘
, (6)

where 𝜃H
𝑖

is the weight of High-Conf classifier at 𝑖-th iteration,
𝜃H
𝑖−1 is the temporary weight integrating both High-Conf classifier
and Low-Conf classifier knowledge controlled by 𝛼 , and 𝑘 is the
iteration number when the Low-Conf classifier achieves the best
performance during pseudo-learning. We also employ binary cross
entropy as the supervised loss of classification task:

LH = 𝐵𝐶𝐸 (𝑓ΘH (𝑥), 𝑦) . (7)
Intuitively, the pseudo-learning applied to the High-Conf clas-

sifier can be interpreted as shifting the decision boundary closer
to the feature space of the the major samples in high-confidence
subsets, with the hyperparameter 𝛼 controlling stability. Hence, the
model will not misclassify similar instances based on distribution
patterns of the majority. Another component of the framework,
learnable noise, offers more auxiliary information for demographic
groups, ensuring both accuracy and enhanced fairness. We will
discuss the contribution of each of these two components to pre-
diction fairness when discussing the results of the ablation study
(see Section 5.2).

5 EXPERIMENTAL EVALUATION
Datasets.We validate our model on three benchmark datasets:(1)
New Adult: as introduced by [17], it comprises of 49,531 sam-
ples, each associated with 14 attributes. The primary objective is
to predict whether an individual’s income exceeds 50k. In our ex-
periments, we convert income into binary labels, and we set ‘race’
as the sensitive attribute and exclude it from our experiments. (2)
COMPAS: COMPAS [31] comprises 7,215 data samples, each as-
sociated with 11 attributes. Following previous work on fairness
without sensitive attributes [8], we have filtered this dataset to
include only African American and Caucasian offenders, hence
we use a modified dataset containing 6,150 samples. The primary
objective is to predict whether an offender will commit another
offense within two years. We set ‘race’ as the sensitive attribute and
exclude it from our experiments. (3) CelebA: The CelebA dataset
[33] comprises 202,599 image samples with resolution 178*218, each
associated with 40 attributes. The primary objective is to predict
the attractiveness of each image. We set ‘gender’ as the sensitive
attribute and exclude it from our experiments.

Baselines. We compare our method with four related meth-
ods for comparisons: (1) Distributed Robust Optimisation (DRO)
[24]: The primary objective of this method is to enhance Rawlsian
Max-Min Fairness [35]. It specifically focuses on mitigating the
prioritisation of benefits for the majority group that may arise from
employing empirical risk minimisation. The approach establishes
upper and lower bounds for the objective function of each group
based on different group proportions, ensuring non-discrimination
by the algorithm. (2) ARL [29]: This approach also aims at opti-
mising Rawlsian Max-Min Fairness and uses adversary learning

to optimise worst-case performance by prioritising instances with
higher loss. (3) FairRF [41]: This approach identifies proxy features
strongly correlated with sensitive attributes and minimises the cor-
relation by re-weighting to achieve fairness. (4) [8]: This approach
applies knowledge distillation requiring one model to produce soft
labels, and uses them to train a second model to obtain a better de-
cision boundary. It has two variants: either with labels determined
by softmax function or linear function.

Experimental Setting. We employ feature hashing on categor-
ical features if the dataset we use contains categorical features. For
the proposed framework, we apply logistic regression to train a
simple binary classifier and follow [30] by setting 0.6 as the confi-
dence threshold for data splitting in the identification stage. In the
refinement stage, we use each confidence-based subset and use 10%
of the total model training iterations to initialise both the High-Conf
classifier and the Low-Conf classifier. In the pseudo-learning phase,
the Low-Conf classifier is trained three times. In the training for the
whole proposed framework, we use Adam to be the optimiser and
binary cross entropy for classification loss. We employ Resnet-50
[25] as the backbone of the classifiers for the CelebA dataset. For
evaluation, we use Equalised Odds [3] and Demographic Parity
[12] as fairness metrics and report accuracy for classification. Both
fairness metrics are considered better when they have lower values.

5.1 Results
Tables 1 - 3 show the results comparing our models to other base-
lines. Results for both variants of [8] and of FairRF [41] are from [8]
using the same datasets and same train-valid-test split. Our model
outperforms the selected baselines. In the COMPAS dataset, we
can observe that Reckoner achieves the best result in Equalised
Odds with a relative improvement of about 2.84% over the best
baseline, and also secures the second-best effectiveness in terms of
accuracy. Compared to [8] with the optimal Demographic Parity,
although our method exhibits a marginal difference of 1.2%, we
obtain improvements in terms of accuracy and Equalised Odds,
with improvements of 1.45% and 3.85%, respectively. In comparison
to the highest accuracy achieved by ARL [29], Reckoner exhibits
only a 0.4% gap in accuracy. However, it holds a significant edge
in fairness, with improvements of 5.54% for Equalised Odds and
4.65% for Demographic Parity. In the New Adult dataset, Reckoner
exhibits improvements in fairness compared to all the baselines. In
comparison to the best-performing baselines in terms of fairness,
it achieves a 4.51% improvement in Equalised Odds and a 0.43%
improvement in Demographic Parity. At the same time, Reckoner
achieves the second-highest position in terms of prediction accu-
racy, with a marginal 0.02% gap compared to the most accurate
baseline. In the CelebA dataset [33], on the other hand, we obtain a
third position in accuracy and Equalised Odds, but achieve the best
Demographic Parity.

Note that we differentiate our study from those that emphasise
equal accuracy-related utility across different demographic groups
(such as the percentage of matched binary labels and user satis-
faction [24] or AUC [29]). This branch of methods may not be
very competitive in fairness performance with evaluations such as
Equalised Odds and Demographic Parity, as these metrics are de-
signed for Group Fairness methods. However, as mentioned before,
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Table 1: Results on the COMPAS dataset.

Metrics(%) Accuracy Equalised Odds Demographic Parity
Methods

DRO [24] 64.88 ± 0.34% 23.11 ± 1.80% 25.32 ± 1.22%
ARL [29] 65.32 ± 0.70% 23.01 ± 1.21% 25.37 ± 1.01%
FairRF [41] 63.26 ± 0.83% 25.67 ± 2.63% 21.47 ± 1.76%
Chai’s work [8](softmax label) 63.47 ± 0.44% 21.32 ± 1.97% 19.52 ± 2.46%
Chai’s work [8](linear label) 63.34 ± 0.46% 20.31 ± 2.62% 20.27 ± 2.34%
Reckoner 64.92 ± 0.63% 17.47 ± 0.87% 20.72 ± 0.97%
Reckoner (w/o noise) 64.95 ± 0.51% 17.91 ± 1.32% 21.21 ± 1.33%
Reckoner (w/o pseudo-learning) 64.38 ± 0.83% 17.98 ± 1.34% 21.18 ± 1.46%

Table 2: Results on the New Adult dataset.

Metrics(%) Accuracy Equalised Odds Demographic Parity
Methods

DRO [24] 85.15 ± 0.93% 11.56 ± 2.10% 12.23 ± 1.41%
ARL [29] 85.37 ± 1.91% 11.79 ± 1.77% 13.05 ± 1.57%
FairRF [41] 83.74 ± 0.86% 11.23 ± 1.42% 11.37 ± 1.46%
Chai’s work [8](softmax label) 84.63 ± 0.47% 10.34 ± 1.22% 10.63 ± 1.34%
Chai’s work [8](linear label) 84.27 ± 0.31% 10.57 ± 1.64% 10.21 ± 1.52%
Reckoner 85.35 ± 0.07% 5.83 ± 0.51% 9.78 ± 0.17%
Reckoner (w/o noise) 85.36 ± 0.09% 5.82 ± 0.27% 9.98 ± 0.19%
Reckoner (w/o pseudo-learning) 85.53 ± 0.13% 4.82 ± 0.41% 9.11 ± 0.18%

Table 3: Results on the CelebA dataset.

Metrics(%) Accuracy Equalised Odds Demographic Parity
Methods

DRO [24] 77.12 ± 0.58% 17.22 ± 1.69% 19.04 ± 1.51%
ARL [29] 78.91 ± 0.41% 17.53 ± 1.72% 19.46 ± 1.96%
Chai’s work [8](softmax label) 80.87 ± 0.14% 11.43 ± 1.25% 15.27 ± 1.71%
Chai’s work [8](linear label) 80.76 ± 0.73% 10.62 ± 1.10% 14.47 ± 1.64%
Reckoner 79.47 ± 0.25% 11.58 ± 0.49% 13.92 ± 1.27%
Reckoner (w/o noise) 79.86 ± 0.09% 11.96 ± 0.67% 14.23 ± 0.85%
Reckoner (w/o pseudo-learning) 77.99 ± 0.11% 11.01 ± 0.74% 13.19 ± 0.94%

some datasets may contain biased labels, and focusing on increasing
classification performance for the minority may lead to an increase
in the bias gap, which is what we aim to avoid. Therefore, our
study underscores the significance of group fairness for a more
comprehensive improvement, steering away from inadvertently
perpetuating bias in labelled datasets.

5.2 Ablation Study
In our ablation study, we look at the effectiveness of the two com-
ponents in the proposed framework, Reckoner, and the necessity of
combining them. Tables 1 - 3 show prediction accuracy and fairness
measurements for all variants. In general, Reckoner and its vari-
ants achieve superior performance on the COMPAS and NewAdult
datasets. In the CelebA dataset, Reckoner and its variants exhibit
better performance only in Demographic Parity compared all the

baselines. Based on these results, we are interested in understanding
the differences in performance among each variant across different
datasets.

Effect of the Learnable Noise. Our model without learnable
noise trains both classifiers using original inputs in the refinement
stage. It achieves a slight advantage in accuracy on COMPAS and
CelebA datasets, with a minor gap in fairness results. However, in
the New Adult dataset there is no particularly noticeable difference
in performance across the three metrics compared with the full
Reckoner. It is worth noting that we argue that COMPAS andCelebA
datasets contain biased labels, as their ground truth is assigned by
officials of the legal department and human annotators. Due to
the absence of learnable noise, the classifier in the pseudo-learning
phase tends to push the decision boundary significantly into the
feature space of the majority, enhancing discrimination against the
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minority and leading to an increase in accuracy. However, when
the dataset labels are considered biased, this can also result in a
decrease in fairness values. This is why in the New Adult dataset,
whether the proposed framework introduces learnable noise or not,
the performance difference is not significant. However, in datasets
suspected of having biased labels there is a larger fluctuation in
fairness among these two variants of the proposed approach.

Effect of the pseudo-learning. In addition to the learnable
noise, we also evaluate the effectiveness of pseudo-learning. Our
model without pseudo-learning employs a three-layer MLP as the
main classifier, takes noise-augmented information as input, and
does not involve the identification stage. Similar to our previous
speculation, its poor performance on datasets with biased labels
is also related to the misguidance caused by supervised learning
with problematic ground truth. Without the regularisation provided
by pseudo-learning, the classifier mistakenly treats bias as knowl-
edge, and learnable noise reinforces this by selecting features that
maximise the cross-entropy with the ground truth. Additionally,
experimental results seem to suggest overfitting issues with this
variant on these datasets. As compared to the results on New Adult,
where our method outperforms five baselines and other variants,
both in terms of predictive accuracy and fairness, these results sug-
gest that the bias in labels will greatly impact algorithmic fairness.
Perhaps in a dataset with unbiased labels, improving predictive
accuracy could effectively reduce the bias gap between different
demographic groups.

6 RELATEDWORK
Group Fairness. In contrast to approaches that emphasise the
equitable treatment of similar individuals in pursuit of individual
fairness, our work focuses on group fairness, manifesting in the
differential treatment of distinct demographic groups. Some foun-
dational methods to group fairness include incorporating fairness
regularisation into the objective function or converting it into a con-
strained optimisation problem. Kamishima et al. [28] introduced a
method for reducing mutual information between sensitive groups
and targets by quantifying the mutual distribution between them.
This approach aims to diminish the dependency between sensitive
groups and targets. A similar concept is also adopted by Beutel et al.
[4], where fairness is achieved by minimising the absolute correla-
tion between these two entities. In contrast to the aforementioned
methods, Hardt et al. [23] propose the use of the Equalised Odds
fairness metric, which underscores the equalisation of true posi-
tive and false positive rates across different demographic groups. It
transforms the general loss function into an optimisation problem
subject to fairness constraints, ensuring that the revised unbiased
predictions closely approximate the original predictions. Similarly,
Zafar et al. [40] achieve fair classification by adding tractable con-
straints at the decision boundary. However, as the desire for both
algorithmic fairness and privacy grows, we observe the require-
ment of avoiding the use of sensitive attributes in machine learning
model training, leading to legislative restrictions on such practices
like, e.g., the General Data Protection Regulation (GDPR) [37]. To
manage such requirements, some approaches have been designed
under the assumption that sensitive attributes are either difficult to
obtain or prohibited from use, like we do in our work.

Fairness Without Sensitive Attributes. As public concerns
about privacy are on the rise, an increasing amount of research
on group fairness is turning its attention to “imperfect" data, such
as missing protected class labels [2, 10, 32] or noisy sensitive at-
tributes [19, 34]. To deal with fairness in this setting, the main
idea of some studies is leveraging the correlation between sensitive
and non-sensitive attributes to mitigate bias. Representative work
includes the use of proxy features [22], in which a proxy group is
obtained from clustering the data and is used to replace actual sensi-
tive attributes during training. A well-known example is using ‘zip
code’ instead of ‘race’ as this can have similar effects on individual
splits since the two attributes are highly correlated [15]. Similarly,
Yan et al. [39], Zhao et al. [41] explore features which have strong
correlation with sensitive attributes to learn fair classifiers by using
them for training and for regularisation in learning. However, this
approach needs a careful selection of proxy attributes and even
of fairness metrics. To address underlying issues, Zhu et al. [42]
estimate fairness using only weak proxies. Through estimating the
transition probabilities between sensitive group target values, it
uses auxiliary models to calibrate the fairness metrics. Another fam-
ily of approaches [24] addresses fairness without sensitive attributes
via distributionally robust optimisation (DRO). Themain idea is that
the fairness of the algorithm is related to the quantity of individuals
in different demographic groups. If empirical risk minimisation is
employed to optimise the algorithm, it may lead to a prioritisation
of benefits for the privileged group, as the privileged group consti-
tutes the majority. This could result in the non-privileged group
gradually avoiding the algorithm due to a poor experience, creating
a vicious cycle that ultimately causes the algorithm to increasingly
overlook the non-privileged group. This approach utilises different
group proportions to design upper and lower bounds for the objec-
tive function of each group, ensuring that no group is discriminated
against by the algorithm. Recently, Jung et al. [27], targeting group
fairness, extended DRO with fairness constraints in the resulting
objective function using a re-weighting based learning method.
Beside the aforementioned methods, others have recently utilised
various techniques to address unfairness without knowledge of
demographics. For example, Lahoti et al. [29] adversarially reweigh
the samples to achieve a Rawlsian Max-Min fairness and learn the
classifier. However, these methods can be easily influenced by out-
liers. Others tackle the problem through knowledge distillation [8],
reweighing-based contrastive learning [9], and causal variational
autoencoders [20]. However, these methods need the prior iden-
tification of proxies to harness their interactions with sensitive
attributes, such as correlation and causality, in order to achieve
fairness. Our approach avoids the need for such analysis. Instead, it
leverages learnable noise applied to all data, forcing the data to re-
tain only essential information for better predictions. Additionally,
it employs a dual-model knowledge-sharing mechanism to acquire
fairness-related knowledge, thereby improving predictive fairness.
Hence, our proposed framework exhibits greater generalisability,
particularly when dealing with data where proxy identification is
challenging, such as images and audio.
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7 CONCLUSIONS
In this paper, we present a novel framework for classification tasks
that improves fairness without using sensitive attributes. Through
an analysis of the bias gap and the distribution of selected non-
sensitive attributes across different confidence subsets with respect
to different demographic groups, we gain insights into how biased
labels and other hidden bias harm fairness in predictions and mis-
lead the classifier. Our proposed framework integrates (1) learnable
noise and (2) a dual-model system, enabling a knowledge-sharing
framework for fair predictions for different demographic groups.
Our experimental results show the superiority of the proposed
method, which can make accurate and fair predictions, as com-
pared to state of the art baseline methods. Our ablation study also
confirms the benefits of the two main components in our pro-
posed solution. The code of our method is publicly available at
https://github.com/uewopq88/Reckoner-Fairness. It is important
to acknowledge that the critical issue of the intersectionality of
multiple sensitive attributes in automated decision-making systems
warrants further investigation in our future research. While our
proposed framework is able to perform classification tasks even
with multiple sensitive attributes, this paper does not discuss inter-
sectional fairness due to challenges such as data scarcity at intersec-
tions of minority groups and a lack of proper group fairness metrics.
Future studies will focus on enhancing intersectional fairness in
classification and extending current group fairness metrics.
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