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ABSTRACT
Artificial Intelligence (AI) systems are evaluated using competitive
methods that rely on benchmark datasets to determine performance.
These benchmark datasets, however, are often constructed through
arbitrary processes that fall short in encapsulating the depth and
breadth of the tasks they are intended to measure. In this paper, we
interrogate the naturalization of benchmark datasets as veracious
metrics by examining the historical development of benchmarking
as an epistemic practice in AI research. Specifically, we highlight
three key case studies that were crucial in establishing the existing
reliance on benchmark datasets for evaluating the capabilities of AI
systems: (1) the sharing of Highleyman’s OCR dataset in the 1960s,
which solidified a community of knowledge production around a
shared benchmark dataset, (2) the Common Task Framework (CTF)
of the 1980s, a state-led project to standardize benchmark datasets
as legitimate indicators of technical progress; and (3) the Netflix
Prize which further solidified benchmarking as a competitive goal
within the ML research community. This genealogy highlights how
contemporary dynamics and limitations of benchmarking devel-
oped from a longer history of collaboration, standardization, and
competition. We end with reflections on how this history informs
our understanding of benchmarking in the current era of generative
artificial intelligence.
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1 INTRODUCTION
LLM – Detect AI Generated Text: Identify which essay was written
by a large language model

“This competition challenges participants to develop a machine
learning model that can accurately detect whether an essay was
written by a student or an LLM. The competition dataset comprises
a mix of student-written essays and essays generated by a variety
of LLMs.” [29]

This is the description for one of the over 600 machine learning
(ML) “competitions” hosted on Kaggle, a data science competition
platform hosted by Google. At the time of writing in December
2023, this particular competition’s participation metrics boasted
over 2,789 competitors across 2,516 teams, and over 38,900 en-
tries. It is scheduled to award over $110,000 in prize money to the
winners and is funded by major foundations including the Bill &
Melinda Gates Foundation, Schmidt Futures, and the Chan Zucker-
berg Initiative. These sorts of ML competitions have now become a
taken-for-granted infrastructure of ML practice: how else would
machine learning systems be evaluated, and technological progress
measured?

An indispensable component of these competitions is the “com-
petition dataset.” This essentially refers to the standardized dataset
that all competitors work with to develop and test their models.
Within the context of the competition, this dataset becomes the
central artifact around which the parameters of the task to be rep-
resented and measured are defined. It might be thought of along
a similar vein as a professional basketball court for the National
Basketball Association (NBA) – the lines on the court determine
important boundaries that distinguish between in-bound vs out-
of-bounds, 2-points vs 3-points, in-paint vs out-of-paint etc. The
standardization of these courts and the rules that follow allow for
competitive games to be played, in which a win between two teams
in Toronto during the Fall becomes comparable to another win
between two different teams in New Orleans during the Spring. As
Bowker and Star [8] have written about at length, such a standard,
understood as a “set of agreed-upon rules for the production of
(textual or material) objects” [p. 13], allows for a community of
practice to form that can persist across space and time.

We begin our paper with a discussion of competitions and the
standards that make them possible because we’re interested in
querying the emergence of leaderboards, accuracy scores, and com-
petition datasets and how they became accepted features for eval-
uating the progress of machine learning. In other words, how did
machine learning become a sport? Here, we understand ‘sport’ as a
domain where participants compete amongst a community under
a standardized set of rules and objectives, striving for recognition
within a structured framework. To address this question, we zoom
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out from specific competition datasets, and instead, examine the
role of benchmark datasets in ML practice, writ large. Defined as
a “particular combination of a dataset or sets of datasets (at least
test data, sometimes also training data), and a metric, conceptual-
ized as representing one or more specific tasks or sets of abilities,
picked up by a community of researchers as a shared framework
for the comparison of methods” [48, p. 2], the benchmark dataset
as a standardized framework for comparison has become a core el-
ement of the broader culture of machine learning. Indeed, it is near
impossible to conceive of a recognized machine learning task today
outside of the benchmarks that have come to effectively define and
represent these tasks, such as ImageNet [13] for object detection
in computer vision or GLUE [57] for tasks such as paraphrasing
and textual entailment in natural language processing (NLP). The
benchmark dataset has, in this way, become the standard that both
brings together particular subcommunities of ML researchers, as
well as further enables their ‘progression’ through the competitive
and iterative comparison of ML models.

In this paper, we trace how this came to be. Specifically, we
argue that there were three key moments in the development of
pattern recognition and eventually machine learning research that
positioned the benchmark dataset as an indispensable feature of ma-
chine learning culture: (1) the distribution of Highleyman’s dataset
among pattern recognition researchers working separately on op-
tical character recognition (OCR) in the 1960s, (2) the emergence
of the Common Task Framework (CTF) in the 1980s that set stan-
dards supported by the US federal government for how to share
data and evaluations in AI research, and (3) the Netflix competition
of the 2000s which incentivized machine learning researchers to
compete for a million dollar prize in developing the best recom-
mendation algorithm using a dataset provided by Netflix. We select
these three cases because they each illustrate a pivotal shift in how
AI systems were evaluated. More specifically, these historical mo-
ments together trace the gradual development of (1) a community
of knowledge production, (2) standardized practices for evaluating
progress, and (3) a platform for competition. By focusing on these
three pivotal moments – each roughly two decades apart – we trace
a genealogy [15] of how organizing and sharing data, and bounding
a community around an accessible standard eventually evolved and
established the grounds for the competitive computational culture
we see in machine learning today. While these three cases are by no
means the only important historical cases of AI benchmarking, we
present them as particularly striking moments that represent the
progression we document. Ultimately, we argue that this competi-
tive computational culture continues to provide a form of discursive
power in what is now being called the “AI race” [55] between major
technology companies such as Google and Microsoft, especially in
their chase for more powerful generative AI systems.

2 BENCHMARKING PRACTICES
Benchmark datasets in machine learning aren’t rendered “bench-
marks” from their inception. Typically, they begin as just another
dataset that formalizes a certain technical challenge or task into a
set of input and output pairs, which can then be used to evaluate the
performance of a particular ML model. This arrangement allows for
the production of “accuracy scores” representing the performance

of theMLmodel on the particular task represented by the dataset. In
the context of a platform like Kaggle, these scores are then compiled
into public-facing leaderboards that serve to represent “technical
progress” on the denoted challenges. In this way, the ambiguous
concepts of “task,” “performance,” and “progress” are translated into
tangible material artifacts: the dataset, the accuracy score, and the
leaderboard.

Denton et al. [14] show in their genealogical tracing of ImageNet,
the de facto benchmark for computer vision, that the transition
from ‘dataset’ to ‘benchmark’ is often an informal and mercurial
process. For instance, a team developing a model may select a partic-
ular dataset – out of convenience, availability, their own subjective
preferences etc. – to test the performance of their model on the task
represented by the chosen dataset. If this model becomes successful
or highly cited, future teams developing similar models that seek
to compare and establish “state-of-the-art” (SOTA)1 performance
are expected to use the same dataset for evaluation. As such, cer-
tain benchmarks become widely cited and circulated within the
ML subcommunities that form around particular tasks, with these
datasets being viewed as rigorous yardsticks due to being “implicitly
community vetted” by frequent use and impressive citation counts
[41]. As Jaton [26] documents in his ethnography with a team of
researchers developing a new ground truth dataset for saliency de-
tection in images, more challenging or differently arranged datasets
are often developed that may address the limitations of existing
benchmarks. Despite this, these new attempts still often have to
position themselves alongside the existing benchmarks and often
exist as supplementary to the original highly cited datasets that
continue to be used as standards for the community [48]. These
practices of “peer-washing” naturalize benchmarks and their limi-
tations as authoritative proxies for specific tasks or domains [41].
Indeed, such is the character of standards: they “have significant
inertia and can be very difficult and expensive to change” [8, p. 14].

This concretization of standardized benchmarkswithin particular
ML subcommunities also results in the adoption of these bench-
mark datasets across subcommunities, resulting in these datasets
being reframed and adopted for tasks beyond their original domain
[30]. This phenomenon is exacerbated by the fact that creating a
dataset can be a task of significant human, financial, and temporal
investment [42], which renders their revision and construction a
particularly inaccessible endeavor. For instance, a dataset designed
for evaluating e-commerce recommendation algorithms is com-
monly used for evaluating the ‘sentiment’ of written reviews [35].
In fact, Koch and colleagues [30] found that over 70% of benchmark
datasets used in prominent computer vision papers were appro-
priated from datasets that were originally developed in different
domains.

Existing critical ML research has highlighted that these moments
of naturalization and uncritical adoption occlude the inherent lim-
itations of benchmark datasets [14, 41]. As proxies for the tasks
they’re meant to evaluate, benchmark datasets are never complete
nor can they ever amount to a comprehensive representation of
reality [12, 27, 28, 48]. Rather, benchmark datasets provide one per-
spective on examples that are deemedmost pertinent, defined by the
1State-of-the-art (SOTA) performance by a machine learning model refers to the
“correct” prediction of the outputs of a popular benchmark. This is generally taken to
indicate technical progression in the field [48]
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instances collected in the dataset. This means that the performance
of a model on that benchmark is not necessarily representative of a
broader more generalized “domain” such as ‘computer vision,’ but a
more specific and localized “task” such as ‘figure-ground distinction’
that is defined in direct relation to the arrangement of the dataset.
While benchmarks can be useful apparatuses for evaluating ML
models, their practical use in existing ML practice renders them as
normative instruments that perpetuate particular epistemological
perspectives about how the world is ordered. Indeed, the grandiose
rhetoric that accompanies popular benchmarks such as ImageNet
and GLUE matches the obsession with scale that has come to sym-
bolize the AI community. ImageNet, for instance, claims to “map
out the entire world of objects” [14], while GLUE presents itself
as a benchmark for evaluating models on their “General Language
Understanding” of the English language [57]. The large scale and
scope of benchmark datasets, however, do not necessarily mean
they represent meaningful technological progress in AI research.
As Raji et al. [48] have emphasized, benchmarks that claim to be
all-encompassing occlude the inherently closed worlds and humble
capabilities of these artifacts.

In addition to concerns around construct validity – i.e., whether
a dataset is actually representative of the task it serves as a proxy
for – the culture of competitive benchmarking has also started to
receive pushback regarding the reliability of accuracy metrics as a
proxy for technical performance. As benchmark datasets are more
frequently used and circulated, models may be able to exploit statis-
tical patterns within the data. As such, models produce impressive
accuracy scores on certain benchmarks while being unable to solve
a simple problem that is not found within the dataset [60]. In a
process known as overfitting, these models essentially ‘game the
system’ while not actually improving their technical performance
at a given task. For instance, a dataset commonly used to train large
language models (LLMs) was found to include evaluation examples
from GLUE, which would mean that the LLM would perform ex-
ceptionally well on that benchmark thus inflating the perceived
capability of the model [47]. Overfitting also obscures any mean-
ingful progress that can be made on a given benchmark as it is
difficult to distinguish between models that have solved a problem
“correctly” versus those that have exploited statistical shortcuts.

Despite these epistemological and technical limitations, bench-
marking remains the primary apparatus for evaluating ML systems
and technical progress within the field. In the sections that follow,
we highlight three historical moments in the development of ma-
chine learning as a field of research that have been formative in
the transformation of benchmarking from processes of informal
standardization to naturalized and institutionally accepted metrics
of success. In so doing, we document a “history of the present” [15,
p. 31] of how the benchmark dataset became central to the practice
of machine learning, and how these dynamics are shifting – or not
– in the current era of generative AI.

3 FORMATION OF A COMMUNITY:
HIGHLEYMAN’S DATASET (1960s)

The late 1950s and early 1960s was an influential period in the early
cultural history of machine learning. This was the era of pattern
recognition, in which the prime focus among ML practitioners and

researchers was optical/object character recognition (OCR) – i.e.,
the automatic recognition of handwritten letters and numbers by
digital computers.2 Multiple labs around the United States proposed
computational methods for translating handwritten alphanumeric
characters into machine code, but these methods had only been
evaluated by their creators and not by other researchers [23], which
thus raised questions about scientific replicability. Indeed, without
agreed-upon evaluation metrics or standards, there was little con-
sensus within this community of researchers as to which methods
were superior.

Figure 1: Examples of the quantized forms of hand-printed
numbers. Adapted and redrawn by authors from [21, p. 1511]

To address this, two researchers from Bell Labs, Highleyman
and Kamentsky, created a scanner that translated handwritten sym-
bols into punch cards to be read by a computer. They recruited
50 participants to handwrite the 26 letters of the alphabet and ten
digits, which resulted in a dataset of 1800 alphanumeric characters
rendered onto punch cards. In so doing, they hoped to “facilitate a
systematic study of character-recognition techniques and an eval-
uation of methods prior to actual machine development” [23, p.
291]. Indeed, in a paper published 3 years later, Highleyman [20]
was able to evaluate the OCR techniques proposed by the different
teams of researchers using this dataset as a common framework
for analysis.

Following their analysis, several labs around the US requested a
copy of the dataset to develop and test novel methods. Highleyman
[22] thus offered to mail the dataset to anyone who requested it
“for the nominal charges of reproduction and shipment” [p. 136].

2See Mendon-Plasek [37] for a comprehensive examination of this period.
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He elaborated that “Since it appears that this data is being used
commonly, it may, therefore, serve as an unintended, incomplete,
yet interesting, available and temporary standard by which workers
in the fieldmay compare their results with those of others [emphasis
added]” [p. 136]. It is important to note, here, that Highleyman was
clear in identifying the limitations of the dataset, stating that a
formal standard for evaluating models should be “well thought out
and certainly more complete than this data of mine” [p. 136].

Despite these shortcomings in design, the sharing of the dataset
itself was decidedly useful. “Many published works tend to be am-
biguous as to the quality or sources of their data” [p. 136], so a
shared dataset allowed for a level of control in the evaluation of
methods. Indeed, by standardizing evaluation, Highleyman and
Kamentsky were able to identify methodologies that reported ac-
curacy scores that didn’t align with their own evaluations. For
instance, while a method proposed by Bledsoe and Browning [7]
recorded an accuracy of 78.4% in recognizing hand-printed charac-
ters, Highleyman and Kamentsky’s [24] duplication of their meth-
ods on their dataset achieved only 19.6% accuracy (see also [49]).
Though there was disagreement and controversy regarding the
success of individual methods, it was only by evaluating models on
Highleyman’s data that these techniques gained legitimacy. As such,
the constructed accuracy scores, which were inextricably linked
to Highleyman’s dataset, became community-accepted proxies for
models’ capabilities. The standardization of pattern recognition
evaluation allowed these metrics to be taken as “matters of fact”
[51].

These metrics also gained legitimacy through the public record
and reproduction. As Shapin and Schaffer [51] outline in their
canonical text Leviathan and the Air-Pump, the development of the
scientific method as a means of producing scientific knowledge
was intertwined with its visibility. The ability of members of the
scientific community to witness experiments allowed them to ver-
ify the findings and conclusions. In instances in which physical
witnessing was not possible, extensive documentation of methods
undertaken, as well as candid admissions of missteps, served as a
proxy or “virtual witnessing” of these experiments. Contemporary
peer-reviewed scientific research papers can be seen as modern
iterations of this kind of virtual witnessing. These practices of visi-
bility were crucial for the collective agreement and understanding
of experimental phenomena, wherein clear documentation of exper-
imental practices encouraged the perception that these experiments
could be replicated and thus valid [51]. In the case of the pattern
recognition researchers, Highleyman’s sharing of the dataset in
1963 constituted the first time that a community of researchers
could experiment separately and legitimately compare their results.
It addressed the previous problem of scientific replicability, which
then solidified the idea of the “benchmark dataset” as a central
object and viable scientific tool that made model evaluation across
time and space possible in the OCR community.

The circulation of Highleyman’s dataset was not only instrumen-
tal in forming a scientific community of knowledge production, but
also in establishing specific methods for the evaluation of machine
learning models. Indeed, a consensus regarding the comparison
of models necessitates both an agreed apparatus for analysis (the
dataset) as well as established practices for making use of this tool

[51]. The legitimacy of scientific findings is grounded in a knowl-
edge community’s understanding and belief in the methods of the
experiments. Perhaps most influentially, in replicating his method
on Highleyman’s dataset, Bledsoe [6] trained his model on the
characters of 40 writers, leaving the characters written by the re-
maining ten writers to later test the model. This is likely the first
documented instance of a ‘training-test split’ in a dataset, which
is now of course an indispensable practice within benchmarking
in machine learning [49]. The development of standardized and
community-accepted practices for evaluation allowed for the com-
petitive culture of model testing to emerge, which would soon
become synonymous with technical progress.

The story of Highleyman’s dataset demonstrates the utility of
a standardized artifact around which a scientific community of
knowledge production can form. It is also exemplary, however, of
the arbitrariness and haphazardness of how a dataset becomes a
benchmark, as well as how that arbitrariness is easily forgotten
once it becomes accepted or “usable” as a standardized tool for
comparison. Indeed, as Mulvin [38] writes, “Standardization is a
process of forgetting” [p. 6], in which we begin to lose the com-
munal, intentional, institutional, practical, and material work that
goes into turning an arbitrary “thing” into a standard. Highleyman
himself explicitly emphasized the limitations and incompleteness
of the dataset, but a synthesis of the dataset’s early introduction,
availability, and eventual adoption allowed the OCR community
to overlook those limitations and use it as a de facto benchmark
for character recognition. In this way, its significance as a bench-
mark was not necessarily “technical,” but cultural: it allowed a
collaborative-competitive community to form and knowledge to
be produced through a standardized way of comparison and doing
science.

4 STANDARDIZATION: DARPA’S COMMON
TASK FRAMEWORK (1980s)

The trajectory of AI research has also been profoundly shaped by
the ebbs and flows of public interest and funding. Despite recent
surges in AI headlines and claims of innovation, the field has his-
torically experienced seasonal funding cycles oscillating between
periods of fervent growth and advancements known as “AI sum-
mers,” and disillusionment and skepticism, known as “AI winters.”

The first AI winter occurred in the 1970s following a series of
overhyped state-funded AI projects that failed to meet their lofty
expectations [54]. During the 1960s, the Defense Advanced Re-
search Projects Agency (DARPA) provided grants of millions of
dollars to AI research labs across the US, often with few restrictions
or accountability requirements such as the need for timelines or
justifications [54]. Similar to the excitement around AI today, the
hype surrounding AI research created immense public expectations
regarding the possibilities of the technologies; the hype was simi-
larly matched with exaggerations and false predictions by experts
which further inflated expected capabilities. As John Pierce [44],
inventor of the transistor and Vice president of Bell Labs, argued,
AI researchers acted “not like scientists, but like mad inventors or
untrustworthy engineers”. Immense time and financial resources
were spent on “grandiose aims” [33], resulting in negligible returns.
Put simply, “To sell suckers, one uses deceit and offers glamour,”
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encapsulating the prevailing sentiment of the time [44]. The AI
winter of the 1970s was thus not just a crisis of funding, but also a
crisis of trust and credibility.

Despite the eroding trust in AI research during this time, there
was a resurgence of funding by DARPA only a decade later in 1986.
This can largely be attributed to DARPA project manager Charles
Wayne, who introduced the Common Task Framework (CTF), “a vir-
tuous cycle involving shared objectives, data and evaluations” [32,
p. 1]. This framework was characterized by detailed task definitions
and explicit, quantitative success metrics, wherein evaluations of
AI technologies were conducted by a ‘neutral’ entity, the National
Institute for Standards and Technology (NIST). In a marked depar-
ture from the earlier ad-hoc approach epitomized by Highleyman’s
dataset, NIST created and distributed test datasets specifically with
the purpose of evaluating AI systems on specific tasks at scale.

The introduction of centralized and standardized performance
evaluations was a strategic response to the aforementioned mistrust
in AI research that brewed during the seventies. Indeed, a program
with clear objectives and metrics for success was seen as the only
viable way to attract and justify funding [31]. Many government
agencies, however, remained skeptical of the promises of AI tech-
nologies asserting that “You can not turn water into gasoline, no
matter what you measure” [11, p. 3], while AI practitioners were
similarly unhappy about the loss of freedom: it was like “being in
first grade again—you are told exactly what to do, and then you
are tested over and over” [11, p. 3]. Despite this lackluster response
from both funders and engineers, the centralized effort to stan-
dardize and measure progress provided by the CTF succeeded in
providing a trusted framework for evaluating AI systems.

Positioned as “objective performance evaluations” [32], CTFmea-
sures became trusted proxies to represent a system’s performance
and general progression against standardized goals. Unlike in the
OCR case in which benchmarking was used to construct internal
validity primarily amongst the research community, the CTF made
the technical work of AI development also accessible to non-experts.
These metrics functioned “to create a basis for mutual accommo-
dation in a context of suspicion and disagreement" between AI
researchers and funders [45, p. 149]. Funders no longer had to rely
on engineers’ accounts to ascertain whether the research was on
track, while researchers had quantified goals to progress towards to
maintain funding, as well as to compare their progress to other labs
within their field. This shift effectively delegated critical funding
decisions from individuals to quantifications [45].

The standardization of benchmarking culture in AI research also
made regular self-evaluation the norm within research labs. Indeed,
researchers began evaluating their systems every hour on set-aside
evaluation datasets [11]. This created a culture of “algorithmic hill-
climbing” in which researchers could make steady and incremental
progress toward their goals, allowing for cumulative advancements
[32, p. 27]. This self-regulatory practice became so ingrained in
the research methodology that some labs joined the benchmarking
groups even without DARPA funding [11]. In 1992, DARPA and
NIST cemented this culture of collaborative evaluation with the in-
ception of the Text Retrieval Conference (TREC), an annual series of
workshops focusing on common language-based tasks and datasets.
This initiative marked a significant milestone in the evolution of

ML research, establishing a communal culture of collaboration and
comparison that would become a hallmark of the field.

As this case illustrates, what initially started as a centralized
strategy to secure funding and legitimize the scientific community
around AI research ultimately developed into an indispensable cul-
tural and technical component of how progress and performance
for AI systems are measured [48]. Indeed, the development of bench-
marking in AI research, and specifically the CTF, is not just a fea-
ture of technical progress, but also a story of how a field adapts
to external pressures and internal aspirations. As Porter [45] un-
derscores, “the bureaucratic imposition of uniform standards and
measures has been indispensable for the metamorphosis of local
skills into generally valid scientific knowledge” [p. 21]. In the case
of AI benchmarking, such standardized processes and metrics al-
lowed a discipline once marred with skepticism and hyperbole to
redefine itself as rigorous and trustworthy.

5 COMPETITION: THE NETFLIX PRIZE (2000s)
The Netflix Prize, launched in 2006, marked a significant shift in the
culture of competition within machine learning, moving away from
bureaucratic, government-led evaluations to industry-driven chal-
lenges. The Prize was a strategy to address the hurdles encountered
in improving Netflix’s in-house movie recommendation algorithm,
Cinematch. Netflix, still a DVD rental service at the time, asked
users to rate films on a traditional 5-star scale. It would then rec-
ommend films to its users to rent based on their previous ratings.
Netflix viewed its future success as being largely dependent on how
well this system could successfully recommend relevant content
to its user base. Despite Cinematch generating approximately 30
billion predictions a day [9], Netflix engineers faced stagnation in
enhancing the effectiveness of the system. To address this challenge,
Netflix introduced a public competition in October 2006, offering
$1 million for a model that could surpass Cinematch’s accuracy by
10%.

The cornerstone of the competition was the release of a massive
dataset, containing 100 million movie ratings of 17,770 movies from
480,189 customers, collected between October 1998 and December
2005. Netflix claimed that the dataset was representative of the
overall distribution of user ratings [5] and that personal information
had been removed from this data such that individuals could not
be identified [39]. Three million user ratings were set aside for
evaluating models submitted by participants. The aim here was for
Netflix to implement the successful design and thus improve its
recommendations to maintain a satisfied customer base.

The competition attracted an unprecedented level of global par-
ticipation, drawing over 50,000 participants from 186 countries [9].
Approximately 40,000 teams, composed of PhD students, estab-
lished academics, garage hobbyists, and technologists, were formed
in an endeavor to claim the prize. Beyond the obvious financial
draw, researchers were attracted by the wealth of data that had
been made available by Netflix. In 2007, data of this scale was rarely
available outside of proprietary settings. As Jackson [25] states,
Netflix CEO Reed Hastings “was a tech-age Willy Wonka letting
any curious hacker into his digital Chocolate Factory.” Participants
took this opportunity to explore using machine learning techniques
the insights available from large magnitudes of data.
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Models submitted for the competitionwere evaluated against two
test sets: one accessible to researchers and a private one retained by
Netflix to prevent tailoringmodels to the specific test data. Accuracy
scores were calculated for each model and displayed on a publicly
accessible leaderboard that highlighted the time of submission and
progress toward the 10% improvement target. Progression on this
leaderboard, of course, soon became the definingmeasure of success,
in which the ultimate goal transformed into developing the top-
ranking model on the leaderboard. It was a centralized scale and
public endorsement of competition among participants, through
which they could measure their progress in real-time. In the final
hours of the competition, participants reported eagerly refreshing
the leaderboard to check their standings [4].

The Netflix Prize illustrates the naturalization and universaliza-
tion of competition through leaderboards and accuracy metrics [36,
p. 6]. As Mau [36] explains, “In many fields, quantification practices
are actually responsible for the enactment of competition, of a kind
that revolves around numbers” [p. 6]. In this context, numbers and
rankings become the dominant language for evaluating both soci-
etal and technical progress. Indeed, the Netflix Prize leaderboard
didn’t just track progress, it shaped the very conception of success,
prioritizing numerical accuracy scores over all other qualitative
and arguably more practical aspects of evaluation. For instance,
on June 26, 2009, BellKor’s Pragmatic Chaos, a team led by AT&T
researchers, finally reached the 10% improvement threshold and
were crowned the winners of the competition. However, despite
the million-dollar payout, Netflix never actually implemented the
team’s solution. This was primarily because BellKor’s model was
too complex. It consisted of 104 algorithms created by multiple
groups and strung together by a single neural network [10]. As Am-
atriain and Basilico [3] explain, “the additional accuracy gains that
[Netflix] measured did not seem to justify the engineering effort
needed to bring them into a production environment.” In this way,
while benchmarking may measure progress at one specific goal
and the leaderboard may indeed be an accurate representation of
progress on that goal, neither account for the additional resources
necessary to construct these models.

Today, large multimodal AI models continue to be products of
immense human labor, costing millions of dollars to train, a tremen-
dous cost that is alleviated only through the exploitative strategy
of tech companies like OpenAI using underpaid workers from the
Global South [43, 58]. In addition to the necessary human labor re-
quired to develop these models, there is also a tremendous amount
of computing power that enables their development, which also dra-
matically expands the carbon footprint of AI research [52]. Focusing
primarily on benchmark performance and leaderboard rankings
thus flattens these human and environmental costs and quantifies
progress through singular metrics for success. Indeed, embedded
within these leaderboards is the implicit acceptance of the criteria
underpinning quantitative rankings and their resulting outcomes,
which is that higher results – i.e., winning the competition – equal
better performance and progress [36].

The Netflix competition also highlights how datasets are inextri-
cably tied to their contexts of production, which means they can
often become measures of irrelevant tasks that aren’t representa-
tive of shifting expectations in their real-world application. For
instance, when BellKor’s team finally reached the threshold for

victory in 2009, not only was their model financially impractical
to construct, but the state of movie consumption was also very
different from when the competition began. Netflix launched its
immensely popular streaming service in 2007, one year after the
competition started, and this substantially changed the types of
data that Netflix had access to. By 2009, Netflix no longer had to
rely on self-reported ratings for insights into viewers’ watching
habits. Netflix now collected granular data such as when users start,
pause or rewind videos, whether they completed a video and went
on to watch another, and the time of day they consumed content.
This shift in data available to the company redefined the object of
prediction: predicting consumption patterns became much more
essential than predicting self-ratings [3]. The task of content recom-
mendation thus transformed into approximating which titles could
keep users engaged on a platform, as opposed to how they might
rate that content. As Hallinan and Striphas [18] articulate, this par-
adigm shift of data usage and prediction objectives underscores
how the value and relevance of predictive models are ultimately
dependent on how well they actually represent a dynamic real-
world problem. In this way, as Raji et al. [48] have critiqued for
ImageNet and GLUE, construct validity is a major variable in deter-
mining a benchmark’s relevancy that is not necessarily captured in
the competitive epistemologies of leaderboards and benchmarking
cultures.

Taken together, the stories of Highleyman’s dataset, the Com-
mon Task Framework, and the Netflix Prize trace a genealogy of
how a field of research was made scientific through an epistemology
grounded in competition, for which community and standardiza-
tion served as the foundational building blocks. While the Netflix
Prize was foundational for establishing a culture of competition
that persists in contemporary AI research through the material
artifact of centralized leaderboards, it also highlighted the complex-
ities and limitations of competitive benchmarking as a measure of
technological progress. Because accuracy metrics and leaderboards
have become the primary means through which capabilities are
evaluated and technological progress communicated, they are ex-
ploited for the illusion of progress that is taken as an indication of
technological superiority.

Benchmarking thus risks a “thinning” of the world [46], neglect-
ing elements that cannot be easily measured or analyzed numer-
ically. Indeed, this history sheds light on the enticing nature of
competitive science – made possible through the constellation of
artifacts such as benchmark datasets and leaderboards – and the
often problematic ways in which the quantitative gamification of
technological progress can lead practitioners astray from more
pressing and practical modes of intervention. In the final section,
we situate this genealogical analysis and the shifting dynamics
of benchmarking in the contemporary era of generative artificial
intelligence.

6 COMPETITIVE BENCHMARKING IN THE
ERA OF GENERATIVE AI

Traditional benchmarking practices have faced new challenges
with the advent of generative AI systems such as OpenAI’s GPT 1-4
and Google’s Gemini. Like the circulation of Highleyman’s dataset
among OCR researchers, publicly accessible generative AI systems
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have fueled a groundswell of community-driven experimentation
and evaluation. Yet, unlike conventional ML models in which ac-
curacy is measured against a correct label, generative AI systems
operate in a realm where there is often no single ‘right’ answer
[27]. Indeed, these systems are tasked with generating content that
must be coherent and contextually relevant across varied prompts
and situations.

The subjective nature of evaluating outputs such as text and im-
ages further complicates the matter. Users’ artistic interpretations
or specific contextual needs play a significant role in determining
the quality of a generative AI model’s output, making the evalua-
tion process inherently subjective. For instance, a popular online
application of the AI image generator Midjourney has been to pro-
duce new styles of popular franchises such as “Harry Potter by
Balenciaga” [1] or “The Great Hogwarts Rave of 1996” [40]. While
the results showcased online are undoubtedly impressive, it is im-
portant to also note that the impressiveness of these models is
qualitatively different from what might have been considered state-
of-the-art in traditional ML models. The extraordinary quality of
‘DJ Voldemort’ depicted in the “The Great Hogwarts Rave of 1996”
collection [17], for example, is not necessarily a function of scien-
tific accuracy, but rather creative interpretation – it is not that this
particular black and white image of the ‘dark lord’ is ‘accurate’ but
‘creative’ that makes it exciting. Indeed, the character could have
easily been portrayed as an outdoor festival DJ with a backdrop of
colorful neon lights and fireworks, as opposed to the more grungy
underground techno DJ depicted, and viewers could presumably
have been equally as captivated. This expectation of diversity in
responses adds an additional layer of complexity: a generative AI
system is expected to produce varied images even when given the
same prompt.

This qualitative aspect of evaluation has now become integral
to the development and training of these systems, and while some
generative AI systems such as Midjourney and Google’s MusicLM
engage users in the evaluation process by allowing them to select
and rank outputs, such evaluation datasets often remain propri-
etary due to competitive pressures in the industry. In light of these
challenges, we ask: how then does one systematically evaluate the
performance of a generative AI model? The challenge of evaluating
generative AI outputs echoes the shift during the AI winter of the
70s, wherein qualitative judgments of ’usefulness’ and social impact
began to complement pure accuracy metrics.

Despite these challenges of comprehensively benchmarking gen-
erative models, researchers rely on benchmarks to communicate
progress of generative models. This was particularly highlighted by
the launch of Google’s family of multimodal models, Gemini, which
underscored the continued relevance of benchmarking. According
to the introductory paper accompanying Gemini, this system was
evaluated against over 50 benchmarks as a “holistic harness” to
assess its capabilities [53], and it explicitly claims state-of-the-art
performance on 30 benchmarks covering diverse domains span-
ning image and video understanding, audio processing, coding,
reading comprehension, math, and machine translation tasks. This

declaration of progress in the AI race [55], and the claim of outper-
forming OpenAI’s GPT-4, underscores the continued reliance on
benchmarking to communicate advancements in AI.3

Of particular note is that the Gemini team [53] reports state-of-
the-art performance on the Massive Multitask Language Under-
standing (MMLU) benchmark [19], surpassing ‘human performance’
for the first time. Composed of over 57 subject areas across STEM,
the humanities, the social sciences, and more, this benchmark aims
to evaluate knowledge acquired during pretraining in zero-shot
and few-shot settings, including professional exams. While it is
contestable that standardized tests such as the Graduate Record
Examinations (GRE) or the Law School Admission Test (LSAT) are
effective predictors of an individual’s potential to be a successful
graduate student or a lawyer, they have been undeniably effective in
producing hype for generative large language models (LLMs) such
as ChatGPT: “GPT-4 beats 90% of humans in world’s toughest exam”
[34]. Here we are reminded again of Pierce’s [44] words regarding
hype cycles of automated technologies: “To sell suckers, one uses
deceit and offers glamour.” In this case, however, benchmarking
statistics are used to generate hype, interest, and investment.

The MMLU benchmark thus reflects current trends of employing
standards typically used to evaluate the performance of human
actors on machines. As Wong [59] reports, however, this conflating
of human intelligence with machine intelligence, which is often
(problematically) framed as a step towards what has been loosely
referred to as ‘Artificial General Intelligence’ (AGI), can be under-
stood as a “really sophisticated PR” strategy that “makes the product
seem more powerful.” Indeed, it is not necessarily that professional
exams or other human benchmarks themselves indicate intellectual
prowess, but rather, that the same benchmarks can be used for
machines and humans that serve as the technological spectacle
through which companies such as OpenAI and Google can market
their technologies. The emphasis on outperforming benchmarks
on standardized tests risks a similar trap to the Netflix Prize, where
a narrow focus on metrics can overshadow real-world utility and
broader social implications.

Large releases like Gemini are significant within machine learn-
ing research as they come to shape the evaluation of the next
generation of systems. As mentioned, for future systems to claim
innovation and progress within the field, they are expected to be
evaluated against the same benchmarks as previous state-of-the-
art models. As such, the Gemini release may entrench the power
of benchmarking within the current generation of generative AI
systems.

The emergence of generative AI models has also prompted a
reevaluation of the sorts of qualities that should be reflected in
future benchmarks. Given the influential role of benchmarks in
standardizing goals and driving competition, the selection of bench-
mark datasets and tasks becomes critical. For instance, Samsi et al.
[50] propose benchmarks to measure the environmental impact of
AI systems, focusing on the energy costs of performing prompts on

3Academic researchers have also utilized benchmark datasets for systematic compar-
isons between models like OpenAI GPT and Google Gemini [2] The Gemini team [53],
however, acknowledges the possibility of data contamination in which benchmarking
data is included within large-scale scraped training datasets, which would influence re-
sults. Concerns around contamination will remain an ongoing challenge of evaluating
AI systems that rely on scraped and uncurated training datasets.
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various language models. Similarly, Guo et al. [16] evaluate LLMs
on a suite of benchmarks including testing ethical alignment, bias,
toxicity, truthfulness, and safety, expanding the scope beyond tradi-
tional knowledge and capability testing. These initiatives suggest a
shift towards more holistic and socially responsible benchmarking
practices in AI research. More importantly, however, they also con-
sider whether such factors can be adequately captured by numerical
metrics, to be then co-opted by the established dynamics of compe-
tition. While we underscore the need for new forms of assessment
to encompass the scope of impacts of emerging generative systems,
we also warn against the totalizing frame of competition that quan-
titative benchmarks produce. As Vincent [56, p. 290] argues, “an
obsession with measurement above all else will distort, distract and
destroy what we claim to value.”

Given the nascency of generative AI research, it is still too early
to holistically grasp how benchmarking practices and cultures will
shift. As is evident with the communication accompanying the
release of Google’s Gemini, however, benchmarking will likely con-
tinue to serve as a framework through which technological and
scientific progress is articulated. Here, it will be even more critical
to query whether this competitive epistemology is truly conducive
to this goal. At a time in which Artificial Intelligence is becoming
increasingly intertwined with traditionally subjective areas such as
creativity, art, style, and taste, the quantitatively-focused method-
ologies of competitive benchmarking and evaluation metrics will
inevitably require some sort of transformation. Whether this trans-
formation will be formal, discursive, or conceptual is still up for
question, which is why we believe this marks a pivotal moment for
critical scholars, researchers, and practitioners to think collectively
and creatively about future directions.

7 CONCLUSION
The historical evolution of benchmarking in AI research under-
scores a critical trajectory from the arbitrary beginnings of shared
datasets to the institutionalized and competitive benchmarks that
currently dominate the field. This development, as marked by High-
leyman’s dataset in the 1960s, the Common Task Framework in the
1980s, and the Netflix Prize in the 2000s, reveals the interweaving
of scientific community formation, standardization of evaluation
methods, and a shift towards a competitive culture in AI research.

Initially, benchmark datasets, exemplified by Highleyman’s OCR
dataset, played a key role in community building among AI re-
searchers. This period highlighted the importance of shared datasets
in fostering collaboration and comparative analysis within the sci-
entific community, despite their arbitrary and unintended standard-
ization. The introduction of the CTF by DARPAmarked a significant
shift towards more structured benchmarking practices, which was
instrumental in establishing legitimacy and trust in AI research.
However, this also ushered in a culture where quantitative met-
rics became the primary, sometimes sole, criterion for assessing
AI advancement. The Netflix Prize further entrenched this com-
petitive benchmarking culture, emphasizing numerical accuracy,
leaderboards, and winners. While the competition showcased the
potential of crowdsourcing and global participation in AI research,
it also highlighted the disconnect between progress on benchmarks
and practical utility.

The sporting world has also experienced the tensions that strict
evaluation parameters pose. During a 1981 one-day cricket match,
New Zealand, needing a six to tie a cricket match, was denied the
chance when Australia’s bowler, Trevor Chappell, rolled the ball
along the ground for the final bowl of the match. While this bowl
was technically legal, it was considered not within the spirit of
the game, and underarm bowling was subsequently banned. This
event highlights how strict adherence to rules, or benchmarks,
can sometimes undermine the spirit of fair play and innovation.
In AI benchmarking there is a risk that developers might overly
optimize models to perform well on specific benchmarks without
genuinely advancing the technology in meaningful or responsi-
ble ways. This "gaming" of the system can result in AI models
that perform exceptionally on benchmark tests but fail to address
real-world complexities, much like the technically legal but widely
criticized underarm bowl. As AI has increasingly adopted dynamics
akin to competitive sports, such transgressions are likely to occur.
As the parameters of sports adapt, so too much benchmarking.

In the contemporary era of generative AI, these traditional bench-
marking practices are encountering new challenges. The subjective
nature of outputs from generative models necessitates reevaluat-
ing what constitutes a meaningful and representative benchmark.
The focus on numerical metrics and leaderboard rankings, while
useful for certain comparisons, overlooks broader considerations
such as societal impact, ethical concerns, and practical applicability.
Reflecting on the history of competition within AI research, we
highlight how benchmarking has considerable influence on the
types of progress that are made in AI research. We thus cannot
confidently state whether this means existing benchmarking prac-
tices should be reformed to fit the changing demands of generative
AI, or if an entirely new paradigm of AI evaluation must be es-
tablished. Such is the resilient nature of standards: they are not
only resistant to change, but also nearly impossible to imagine a
world without. Our view is one that understands benchmarking
as a standardized evaluation process that prioritizes actionability
and competition over construct validity, and therefore a standard
that will increasingly become less relevant to the inherently more
interpretive outputs of generative AI systems, with far-reaching
social impacts. As such, we argue that generative AI prompts a
need for a substantial shift towards more holistic, inclusive, and
socially responsible evaluation practices that transcend the com-
petitive epistemologies of traditional quantitative benchmarking,
to encompass the variability and social impact of these systems.

Finally, we also emphasize that these cases do not represent the
entire history of AI benchmarking, but rather present compelling
moments that shaped the competitive dynamics of AI benchmark-
ing today. Importantly, our analysis may have overlooked crucial
histories of domain-specific evaluation and areas of AI research
that do not fit neatly into competitive benchmarking paradigms
such as those related to AI voice synthesis or music generation
systems. Further research is needed to examine the varied impacts
of benchmarking across different fields of AI, including those where
community-driven or collaborative models of evaluation may offer
alternative insights into the development and deployment of AI
systems.
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