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ABSTRACT

Algorithms are increasingly used to automate large-scale decision-
making processes, e.g., online platforms that make instant decisions
in lending, hiring, and education. When such automated systems
yield unfavorable decisions, it is imperative to allow for recourse
by accompanying the instantaneous negative decisions with
recommendations that can help affected individuals to overturn
them. However, the practical challenges of providing algorithmic
recourse in large-scale settings are not negligible: giving recourse
recommendations that are actionable requires not only causal
knowledge of the relationships between applicant features but also
solving a complex combinatorial optimization problem for each
rejected applicant. In this work, we introduce CARMA, a novel
framework to generate causal recourse recommendations at scale.
For practical settings with limited causal information, CARMA
leverages pre-trained state-of-the-art causal generative models
to find recourse recommendations. More importantly, CARMA
addresses the scalability of finding these recommendations by
casting the complex recourse optimization problem as a prediction
task. By training a novel neural-network-based framework,
CARMA efficiently solves the prediction task without requiring
supervision for optimal recourse actions. Our extensive evaluations
show that post-training, running inference on CARMA reliably
amortizes causal recourse, generating optimal and instantaneous
recommendations. CARMA exhibits flexibility, as its optimization
is versatile with respect to the algorithmic decision-making and
pre-trained causal generative models, provided their differentiabil-
ity is ensured. Furthermore, we showcase CARMA in a case study,
illustrating its ability to tailor causal recourse recommendations by
readily incorporating population-level feature preferences based
on factors such as difficulty or time needed.
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1 INTRODUCTION

In societal settings ranging from lending [36] and hiring [40] to
education [53], today’s consequential decision-making tasks are
frequently being automated using powerful algorithms like ma-
chine learning models. For instance, banks and financial institu-
tions can provide instant lending decisions by powering automated
online lending programs with machine learning models. Unfortu-
nately, these models also make decision-making systems complex
and opaque to the individuals subjected to algorithmic decisions.
For example, individuals getting rejected from such opaque au-
tomated online loan application programs perceive a lack of ex-
plainability and transparency, eventually losing trust in these sys-
tems [50]. Hence, to improve the trustworthiness of automated
decision-making systems, these systems must provide explanations
and mechanisms to overturn unfavorable outcomes. Such a mecha-
nism may be ethically desirable [47] or, in some cases, mandated
by regulations [17, 52].

The literature on algorithmic recourse [16, 18, 19, 45] formalized
the problem of overcoming unfavorable algorithmic decisions by
providing individuals with relevant explanations and suggestions.
To ensure recourse suggestions are optimal and actionable in
practice, causal algorithmic recourse [18, 19, 23] emphasized the
necessity of considering the causal relationships between the
features. For instance, in the online loan application scenarios, the
features might be causally related [19] as in Fig. 1a. Accounting
for these causal relations enables the usage of the counterfactual
framework formalized by Pearl [31]. This framework can use the
causal knowledge of the feature relationships to estimate, for any
recourse intervention of an individual, the hypothetical, counter-
factual downstream effect it would entail in the real world. Hence,
with knowledge of the actual causal relationships, causal recourse
suggestions are optimal interventions that can be acted upon in
reality. For online automated systems like the lending application,
these suggestions should be generated quickly [17] to supplement
the instantaneously provided negative decisions. However, for sce-
narios with potentially many features and large populations seeking
recourse, causal recourse deployment remains challenging [19].

To estimate the downstream impact of interventions, the causal
recourse optimization problem needs access to causal knowledge,
i.e., the exact causal relations between features. While we can use
expert insights to find the causal graph for each scenario showing
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the cause-effect links between features [19], knowing the exact
equational forms of the relations is generally impossible [32].
Although prior work [19] explored approximating the causal
relations for recourse, they were not accurate enough to compute
counterfactual estimates for individual recourse suggestions. More-
over, the prior approaches did not focus on the core optimization
problem to ensure the provision of causal recourse at scale.

The issue with the causal recourse optimization problem is its
inherent combinatorial complexity [19] since we need to find i) the
feature combination to target and ii) the targeted features’ value
combination that ensures post-recourse favorable algorithmic
decision. Unfortunately, the complexity is exacerbated by the
unamortized nature of existing causal recourse optimization
approaches [18, 19, 23]: the combinatorial problem needs to be
solved separately for each individual. While this individualized
approach may yield optimal recourse for each person, its inherent
combinatorial complexity results in significant computation time
in large-scale settings, with the time increasing exponentially
with more features. Hence, in scenarios like the online lending
programs, the significant computation time makes it challenging to
provide instantaneous causal recourse recommendations [19], e.g.,
through conversational settings [11, 26, 42]. While some works
on recourse [24, 49] have introduced amortized approaches, they
cannot consider the extensive causal feature relationships required
for providing optimal, actionable recourse interventions [18, 19].

For algorithmic decision-making classifiers deployed in large-
scale settings, this work shows how to practically provide causal
recourse by introducing CARMA, a novel Causal Algorithmic
Recourse framework utilizing neural network Model-based
Amortization. CARMA uses a key insight of causal recourse: all
individuals share the underlying causal structure generating the fea-
tures and the downstream decision-making classifier [18, 19]. This
insight allows CARMA to transform the complex combinatorial
recourse optimization problem into a simpler data-driven predictive
task. CARMA solves the predictive task using an unsupervised
approach, i.e., without relying on access to ground-truth optimal
recourse actions. Furthermore, this problem is solved using a novel
neural network (NN)-based framework. Once trained, CARMA’s
amortization readily uses inference on the NN framework to
provide optimal and instant causal recommendations at scale.

Furthermore, to enable causal recourse in practical settings
with limited causal knowledge, CARMA leverages pre-trained
state-of-the-art causal generative models [15, 20, 38, 39, 55]. Using
only observed data and the causal graph (cause-effect links between
features), these models can accurately estimate the unknown causal
relations and efficiently compute individualized counterfactuals.
Hence, incorporating these pre-trained models helps CARMA
to amortize recourse by efficiently approximating individualized
recourse solutions without complete knowledge of the causal
relations.

By successfully amortizing causal recourse, CARMA enables
large-scale algorithmic systems providing instant decisions to sup-
plement their negative predictions with instantaneous, optimal,
and actionable recourse recommendations. CARMA’s optimization
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remains flexible concerning the downstream algorithmic decision-
making model and the pre-trained causal generative model, pro-
vided we ensure their differentiability. Moreover, CARMA can tai-
lor the amortized recourse recommendations by incorporating
population-level feature preferences regarding recourse based on
factors like difficulty or the time required. To the best of our knowl-
edge, CARMA is the first approach to amortize the causal recourse
optimization problem. Our contributions are as follows.

e We propose CARMA, a novel and efficient recourse method
that uses neural networks to amortize the causal recourse
problem by mapping the complex optimization to a data-
driven predictive problem.

e We show that CARMA is flexible in leveraging recent ad-
vances in deep causal generative models to amortize causal
recourse even without complete causal knowledge about the
features.

e We perform extensive empirical evaluations and show
CARMA can solve for optimal causal recourse, closely match-
ing the oracle’s performance (using perfect causal knowl-
edge) while requiring minimal computation time.

e We show in a case study how a population’s preferences over
different features can be incorporated in CARMA to provide
more tailored and sparse causal recourse suggestions.

2 BACKGROUND
2.1 Causality

Solving causal algorithmic recourse relies on estimating the impact
of the recommendations (causal interventions) on features and
downstream algorithmic decisions. This is achieved by using the
structural causal model framework [31].

A structural causal model (SCM) M = (X, U, F) is defined by
observed (endogenous) features X, unobserved exogenous variables
U and a set of equations F that describe the causal relationship
between features, their causal parents (pa), and the exogenous
variables as f, = (Xpa,» u;). We can also represent the cause-effect
relations through a causal graph G (e.g., Fig. 1a), where the nodes
represent X, and the edges represent the causal links between X.
Following prior work on causality [19, 25, 51], we consider that
features X are related following a directed acyclic graph (DAG).

Importantly, SCMs allow reasoning about hypothetical causal
modifications (interventions) for a given individual. Specifically,
they allow answering counterfactual questions: “What would have
been the features of x, had X; been set to a value 6;, all exogenous
factors being equal?” Interventions can be represented with the
do-operator do(X; = 6;) [31] and lead to a modified SCM M’.
Given an action as a set of interventions a = {{do(X; = 6;)};c1},
the structural counterfactual x°F := x5CF (a,xF) represents the
features that would have been observed in M’, keeping exogenous
variables uf unchanged. For an individual x%, structural counter-
factuals are computed with Pearl’s three steps [31]: i) abduction:
estimating exogenous variables uf from M, ii) action: performing
intervention using do(X; = 0;), iii) prediction: estimating the
counterfactual features x°F using uf and the do-operation. It is
important to note that counterfactual computation using these
three steps requires complete access to the SCM M, which is
infeasible in many practical settings [32].
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2.2 Approximating counterfactuals with causal
generative models

While complete access to the SCM M is usually impractical, expert
knowledge can provide us with the causal graph G [18, 19]. Using
observed (factual) data X¥ and G, recent advancements in causal
generative models have accurately approximated unknown M
(information of unknown U, F in § 2.1) by leveraging deep-learning
methods like graph NNs [39, 55], diffusion models [38], and
normalizing flows [15, 20]. Training these deep-learning-based
models successfully approximate M by approximating causal
abduction (estimating the exogenous U by mapping XF to latent
ZF) and causal prediction (mapping ZF to features XF). Addition-
ally, these trained models estimate causal actions by modeling
interventions on the approximated M to compute counterfactual
XCF, Hence, once trained, these novel causal generative models
can successfully approximate unknown SCMs and efficiently
generate causal counterfactuals using model inference, simplifying
the abduction-action-prediction process [31].

We focus on the state-of-the-art in deep causal estimators, the
causal normalizing flows [15]. Causal flows have been shown to be
highly accurate in their causal approximations while working with
minor assumptions: invertible and differentiable structural func-
tions, acyclic graphs, and causal sufficiency (exogenous variables are
mutually independent). When these assumptions hold, Javaloy et al.
[15] showed that any SCM M can be modeled using autoregressive
Triangular Monotonic Increasing (TMI) maps. Consequently, mod-
eling these maps using autoregressive normalizing flows (ANF) Ty,
allows causal flows to satisfy causal consistency [15] regarding M.

By satisfying causal consistency, causal flows accurately approx-
imate M by isolating the exogenous U. Hence, the latent Z of the
flows model Ty correspond precisely to the exogenous U. Causal
consistency also allows a single invertible flows model to leverage
Z, correspondingly U, to faithfully approximate both the causal ab-
duction and prediction steps (§ 2.1) [31]. To approximate the causal
action step, causal flows implement a different variation of the do-
operator do(X = 7). Instead of modifying features, causal flows
directly modify exogenous factors U (corr. ZF) corresponding to the
respective intervened features 7. Correspondingly, the intervened
exogenous distribution [15] is:

77 = Ha ({xi - 9{}) : Epj(zf) o
i€ j

Here, § is the Dirac delta that sets the exogenous value for each
intervened feature i € 7 such that the intervened value is HZ.I . Effec-
tively, under mild assumptions on M, causal flows can use X¥ and
G to train a single NN model to approximate the three-step causal
counterfactual computation [31]. Hence, using model inference
allows for time-efficient counterfactual generation X°F from 7.

2.3 Finding actionable interventions for
algorithmic recourse

Algorithmic recourse aims to provide individuals who received un-
desired, negative predictions from an algorithmic decision-making
classifier h with a mechanism to overturn the predictions through
meaningful recommendations. While existing works on nearest
counterfactual explanation [24, 27, 41, 49] are related, they assume
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features are independently manipulable. Hence, these methods
do not have the realistic consideration that changing one feature
impacts and automatically changes other features (e.g., increasing
income automatically improves savings, all else remaining the
same). As a result, such recourse methods usually cannot provide
optimal, actionable recourse suggestions that individuals can
follow in reality [18].

To find recourse recommendations that are actionable, optimal,
and successful, recent works [18, 19, 51] have shown that it is im-
perative to consider the causal relationships between the features in
the recourse solution. Such solutions allow individuals to perform
meaningful interventions on their features in a causal algorithmic
recourse mechanism. For any individual with features xt and set of
feasible actions A, causal algorithmic recourse uses the SCM M to
find optimal causal actions a*. Recourse actions are fundamentally
some unknown function of the individual features x* and SCM M.
Based on the causal do-operator a* = do(X; = 67), the actions
change the values of certain features 7 to 87 . Based on these val-
ues, causal recourse uses the three-step abduction-action-prediction
method on M (§ 2.1) to estimate the resulting counterfactual fea-
tures xX°F. Assuming a binary downstream predictive algorithm, to
ensure optimality, a* must lead to counterfactual x“F that ensures
a positive algorithmic prediction h(x“F) = 1 at minimal cost.

a" € argmin cost(a; x}) subj.to h(xCF(a, X)) =1 (2)
ac A(xF)
While this framework can provide optimal solutions in theory,
it has seen limited practical use owing to the complexity of the
underlying optimization problem [19].

2.4 Practical challenges of causal recourse

The first challenge in solving the causal recourse problem (Eq. 2)
is the unavailability of the exact SCM M in most practical
settings [32]. To overcome this challenge and still compute
counterfactual estimates of recourse actions, we solve the recourse
problem using the recent advancements in deep causal generative
models. As shown in § 2.2, using observed data and the causal
graph G, these models accurately approximate SCMs and compute
counterfactuals efficiently !. Hence, if we incorporate these
powerful models into the recourse pipeline, we can deploy recourse
in larger-scale practical settings.

However, even with accurate causal counterfactual estimation,
the main challenge remains the inherent combinatorial complexity
of the recourse problem. Specifically, finding optimal a* in Eq. 2
requires solving a nested combinatorial problem to find i) the feature
combination () for intervention and ii) the values (87) to assign to
these features. Moreover, the recourse problem must be solved for
each individual separately. This unamortized nature of the complex
recourse problem leads to significant computation times (see results
in § 5.2). Consequently, this complexity limits the possibility of
providing instantaneous recourse recommendations [11, 17, 26, 42,
54] in large-scale settings (e.g., online lending programs) with many
features and individuals seeking recourse.

! Although GPs and CVAEs were introduced in [19] to address causal recourse in the
absence of complete knowledge of M, they only solved for interventional sugges-
tions, not counterfactual. Moreover, these approaches were inefficient as they solved
individual combinatorial optimization problems.
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Figure 1: (a) Causal graph for Loan (immutable O : gender G, age A, actionable © :loan amount L, income I, savings S, mutable/non-
actionable @: duration D). (b) CARMA pipeline using deep causal generative models to amortize causal abduction (estimate
exogenous ZF) and prediction (counterfactual XCF). The novel mask and action networks (shaded) amortize causal actions where
the former predicts optimal feature targets 7, and the latter predicts optimal value changes in latent 9% such that A(X®F) = 1.

Practical desiredata. We aim to identify cost-effective causal re-
course suggestions for a downstream algorithmic classification
model. This involves utilizing either gradient access (gradient of pre-
dictions with respect to input features) or white-box access (complete
access to model parameters) [17]. We focus on binary classifiers
in large-scale, real-world scenarios like online automated lending
programs. In such contexts, we aim to deploy a causal recourse
optimization method that: i) is optimal (minimizes cost), ii) ensures
high validity (successful recourse interventions for the majority of
the population), and iii) requires minimal computation time.

3 PROPOSED METHOD

We overcome the complexities of the causal recourse optimization
problem by introducing CARMA, a novel method to solve Causal
Algorithmic Recourse with Model-based Amortization (Fig. 1b).
CARMA casts the combinatorial optimization problem as a predic-
tive task. This approach leverages a fundamental insight of causal re-
course (§ 2.3): since the underlying causal model M generating each
individual’s features, as well as the downstream decision-making
classifier, are common for all individuals, recourse actions can be
predicted from an individual’s features. Given gradient or white-box
access to the downstream algorithmic binary classifier/decision-
making model A(-) and to a pre-trained causal generative model Ty,
CARMA simplifies the combinatorial recourse optimization prob-
lem (§ 2.4) into a predictive task that estimates the function that
maps feature values and causal relations to optimal recourse interven-
tions. Furthermore, by learning this task on ample representative
data, CARMA can amortize and deliver optimal recourse sugges-
tions at scale, demanding minimal compute time as it circumvents
the need for individual optimizations.

3.1 CARMA: Overview

As shown in Fig. 1b, CARMA can accurately compute counter-
factuals even with limited causal information by leveraging deep
causal generative models (§ 2.2). Specifically, we design CARMA
as a flexible framework that can incorporate any recent (or future)
deep causal generative model that is differentiable and provides
exogenous estimates through some latent factors. These state-of-
the-art causal generative models also help CARMA to amortize the
causal abduction and prediction steps [31] by performing efficient
counterfactual computations during inference time.

Moreover, CARMA amortizes causal actions [31] of causal
recourse using a novel NN framework comprising two models
that jointly predict optimal recourse interventions. First, CARMA’s
mask network (§ 3.2) predicts which features 7 to target for
recourse by minimizing the loss function £™5K by leveraging data
features XF and causal knowledge that has been approximated by
the causal generative model Ty, [15, 39] via latent zF = Tq,(XF).
Secondly, the action network (§ 3.3) predicts the interventional

action values in the exogenous latent space as Gé— by minimizing

its loss function £2°°" ysing estimated causal knowledge in ZF

and the mask network’s output 7.

For a downstream binary classifier h, pre-trained causal genera-
tive model Ty, and dataset of the features of individuals rejected
by A, ie., p(XF | R(XF = 0)), we train CARMA’s models with
parameters o, ¢ jointly? by optimizing the loss:

ngf;\irse (XCF’ XF) — mi;; [Lgask (XF) + L;ction (XCF’ XF)
P, o,

intervention loss

+ A - HingeLoss (h(xCF); 1, /3) (3

outcome loss

This loss function follows the overall objective of causal and non-
causal recourse [19, 24, 51]. The recourse “outcome loss” ensures
a positive downstream algorithmic decision that we model follow-
ing [24] with the hinge loss [37]. In this loss, the  hyperparameter
controls the classifier margin distance, with larger values encour-
aging the recourse counterfactual xF to result in larger positive
prediction probabilities. The A parameter balances the “outcome
loss” with the recourse “intervention loss” that controls the inter-
vention’s optimality regarding cost. The intervention loss is opti-
mized by jointly training the primary components of CARMA: the
mask and action networks. Using unsupervised learning, we readily
optimize these NN models requiring no access to ground-truth data
of optimal causal recourse actions>. We next detail these two NN
models of CARMA and their corresponding loss functions.

?Regarding optimization, the mask and action networks are jointly trained and act as
one model (like VAE). Separation is for aiding semantic interpretability.

3While prior methods also did not require true actions, prior causal approaches needed
the true M and solved individual optimization problems.
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3.2 Mask network: Determining target features
for recourse intervention

CARMA simplifies the first part of the combinatorial recourse prob-
lem (§ 2.4) by using the mask network to amortize finding the in-
tervention targets 7. For amortizing finding 7, the mask network
utilizes the amortized causal abduction capabilities of state-of-the-
art causal generative models. Specifically, the latent ZF of the causal
generative models approximate the causal information and the ex-
ogenous factors (§ 2.2). The mask network leverages this capability,
training on ZF of individuals rejected by the downstream classifier
h to automatically predict 7.

We instantiate the mask network as a deep, feedforward NN
q with parameters w. The model g, is trained with the esti-
mated causal latent ZF (of individuals who received the unfavor-
able algorithmic decision) to predict the mask probability vector
B = {104y - - H, } Where K is the number of actionable fea-
tures. The mask value Hicgyy (correspondingly ﬂk{o}) denotes the
probability of selecting (correspondingly not selecting) the feature
k for recourse intervention. The mask probability is computed from
the raw logit outputs 7 of q,, following the Gumbel trick [14], i.e.,

exp ((log (1) + gi) /7)
1, exp ((log (17) +97) /7)

M, = fori=0,1 (4)

Here, i € {0,1} denotes not selecting or selecting a particular
feature. Parameters g are sampled from the Gumbel distribution and
7 is a temperature hyperparameter that interpolates the estimated
distribution of the target feature selection between a categorical
and uniform one-hot distribution [14].

Estimating the feature selection probability . from ZF is equiv-
alent to using ZF to fit a Bernoulli distribution with p = p. This
probabilistic estimation is typically performed using variational
Bayesian methods [22] that require considering a prior distribution.
We assume a Bernoulli(p) prior over each actionable feature Xj.
Estimating the probabilistic distribution minimizes the divergence
between the prior and the mask network’s estimated posterior.

K
Lgask(xF) — m(;nz [KL (qw(ﬂk | ZF = Tl[}(XF)) || Bernoulli(p))]
k=1

®)
In the general case, we fix the prior of each feature to p = 0.5.
Hence, the prior assumes that selecting each actionable feature
k has a 0.5 probability. As we show later in our case study (§ 5.5),
these prior probabilities may be changed to reflect the population’s
preferences regarding changing different features for recourse.
However, in the case of causal recourse, we can either select a
feature for intervention or not select it; hence, we require a binary
vector . This difficulty is overcome during CARMA’s training with
the Gumbel trick as we can sample the binary I from the probabil-
ities p to determine which features are selected for intervention.
For each feature at index k, 7, ~ o, (g | ZF). However, traditional
gradient-based training used for neural networks does not work
with sampling operations. CARMA circumvents this issue by uti-
lizing the straight-through Gumbel trick [14]. At a high level, in
gradient-based learning, this method allows performing a forward
pass (inference) by sampling a binary 7 while using the probabilis-
tic p for backpropagating the gradients during optimization. This

FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

methodology allows the optimization to learn a biased estimate
while training the mask network model. At test time, the sampling
may be replaced by a simple thresholding on the probability .

3.3 Action network: Predicting interventional
action values

Along with determining the target features 7, solving for recourse
interventions requires predicting the interventional action values
07 for the intervening features 7 (§ 2.4). While our mask network
network automates the estimation of 7, we predict optimal inter-
ventional values through a separate action network. Modeled as
a feedforward NN fy, the action network leverages the amortized
causal abduction capability of recent causal generative models, uti-
lizing the causal information encoded in ZF (of individuals rejected
by classifier k). With ZF, the action network uses the mask network’s
predicted 7 for training to predict the optimal recourse action. The
optimal action is predicted in the causal latent space as QZI . This
output method allows leveraging the amortized causal prediction
capability of the pre-trained causal generative models, efficiently
converting 9% to post-recourse counterfactual features xF.
Hence, for an individual xt, our action network f¢ takes I (fea-
tures targeted for intervention by mask network) and the latent
factors ZF as input to predict the intervened latent Z values GZI ,ie,
9% = fo (I ZF). To ensure that the predicted intervention actions
QZI lead to a favorable decision, we need to compute the resultant
post-recourse counterfactual features x°F, Estimating xCF from our
predicted QZI is straightforward owing to the amortized causal pre-
diction achieved by the pre-trained causal generative models. For ex-
ample, the causal flows [15] input the binary target vector 7 and the
intervened latent factors Hir to estimate counterfactual features x°F
from the inverse of the ANF-based generative model qu 1 [15] (for

other models like VACA, x°F is generated using a separate decoder
model, see Appendix C) as x°F = T, 1(6Z ). Correspondingly, we
minimize the loss regarding the cost of our predicted interventions:

action, ,CF _F\ _ _ . CF _F
.£¢ (x ,x)—rrgncost(x ,x),
where xF = T,V (f3(1;2F): I). (6)

For simplicity, we measure the cost using ¢ norms. Specifi-
cally, for any recourse-seeking individual, we measure cost =

7% 2je I(XE - XJC.F)Z, where K indicates the number of actionable

features, 7 the features targeted for recourse, xCF the feature values
post-recourse. We can also incorporate feature preferences regard-
ing recourse using weights for each feature in the cost function (see
Appendix D and the case study in § 5.5). Our framework is also read-
ily expandable to work with differentiable versions of more complex
cost functions, e.g., distributional effort [10], and percentiles [45].

4 RELATED WORK

Counterfactual explanations and (non-causal) algorithmic
recourse. For algorithmic decision-making systems, the rich
literature on counterfactual explanations has attempted to
provide methods to find “what features describing the individual
would need to change to achieve the desired output” [16]. A
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framework for finding such nearest counterfactual explanations was
defined in [52]. Later, several methods to solve for counterfactual
explanations were proposed that span across techniques like SMT
solvers [16], generative models (e.g., VAEs and GANs) [24, 28, 29],
and evolutionary algorithms [6, 41]. Some methods also proposed
combining the task of finding nearest counterfactuals with other
properties such as sparsity [46], diversity [27], and robustness [44].
In contrast to the concept of counterfactual explanations, Ustun
et al. [45] introduced the ideal of algorithmic recourse in the context
of actionability of features (only certain features can be acted
upon by individuals). Although this work differentiated recourse
from simple explanations, it did not consider the data features to
have causal relations, instead assuming them to be independently
manipulable. Considering the richness and vastness of the field of
recourse and explanations, our discussion here is limited. Hence, we
refer to the foundational surveys [17, 48] that explored many other
aspects of these frameworks. In this context, our work specifically
expands the literature on causal algorithmic recourse [18, 19, 23, 51].

Amortized (non-causal) recourse. Recent studies have explored
the automation of algorithmic recourse and counterfactual expla-
nations, intending to provide solutions in minimal time. The DiCE-
VAE [24] explored amortizing non-causal recourse/counterfactual
explanations using the statistical generative model, VAE. This ap-
proach acts as an amortization baseline in our evaluations. Another
approach, FastCFE [49], used a reinforcement learning pipeline
with proximal policy optimization (PPO) to find counterfactual ex-
planations. FastCFE generated sequential explanations by changing
one feature at a time, albeit with the limitation of discretizing the
feature space to use PPO efficiently. While these methods [24, 49]
incorporated unary/binary constraints for modeling some causal
characters (e.g., monotonicity), unlike CARMA, they did not
leverage the expansive causal mechanisms using an SCM, hindering
their ability to provide actionable causal interventions. Distinct
from other methods, Guo et al. [7] considered solving for recourse
as ad hoc, training a counterfactual explanation solver and the
classifier concurrently. While this method provided amortization,
it did not use causal relations, and only works if we can retrain
the classifiers. In contrast, our work introduces a novel post hoc
amortized recourse method that considers a fixed algorithmic
classifier and incorporates causal information using SCMs to
generate instant and actionable recourse recommendations.

5 EXPERIMENTAL EVALUATION

Our experimental evaluations aim to answer the following ques-
tions regarding CARMA* (more analyses in Appendix F):

(R1): How optimal is CARMA’s amortization of the causal algo-
rithmic recourse optimization problem?

(R2): How does CARMA’s amortized recourse impact the feature
distributions compared to unamortized recourse?

(R3): How flexible is CARMA in using different causal generative
models, and how does it impact performance?

(R4): How can CARMA incorporate population-level feature pref-
erences to provide tailored recourse suggestions?

40ur code is publicly available at: www.github.com/ayanmaj92/carma-recourse/.
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5.1 Setup

Datasets and classifiers. For R1, we design synthetic datasets
(triangle, collider, chain) with linear (LIN) and non-linear (NLIN)
causal relations [39] where three out of four features are actionable.
For R1-R4, we also consider the more complex Loan dataset [19]
(Fig. 1a), modeling the German Credit data [12] with four out of
seven features actionable (education level, loan amount, income,
and savings). Regarding downstream decision-making classifiers,
we train logistic regression classifiers for LIN data and NNs for
NLIN and Loan. Refer to Appendix A and E for more details.

Methods. For our analysis, we train CARMA that uses the
state-of-the-art causal flows [15] model as the deep causal
generative model to estimate causal relations and efficiently
approximate counterfactuals. However, to test R3, we also use the
Graph NN (GNN) based VACA generative model [39] in CARMA.
To compare CARMA in answering our recourse analysis questions,
we compare it to the causal unamortized oracle recourse method
M*[19] that has perfect access to the causal relations, i.e., the
SCM M and computes unamortized recourse. Furthermore, to
analyze the amortization performance (R1), we compare CARMA’s
running time to the amortized but non-causal DiCE-VAE [24].
More details about these baseline recourse methods and their
training setup can be found in Appendix B and E.

5.2 Can CARMA optimally amortize causal
recourse?

We aim to understand if CARMA can optimally approximate the
causal recourse optimization process to provide amortized solutions.
To this end, we compare the recourse performance of CARMA with
the causal unamortized oracle M* and the amortized non-causal
DiCE-VAE in Table 1. In the table, for unseen test samples of differ-
ent datasets, we report how the different recourse methods perform
in terms of the cost (¢, of intervened feature changes), optimization
coverage (percentage of test set for which the optimization can
find recourse solutions), mean number of actions (average features
acted on per individual), mean prediction probability (average post-
recourse classifier probability h(xF)), compute time (average time
to provide recourse solution per datum), and causal validity (for
causal recourse methods what percentage of recourse solutions are
successful when analyzed under the true, hidden SCM).

We observe that across the different setups, CARMA provides
optimal causal recourse suggestions, providing cost as low as and
nearly reaching the perfect (= 100%) coverage of the causal oracle
M*. Hence, even without access to the exact SCM M, CARMA,
when deployed, can find optimal recourse suggestions for almost all
individuals in the unseen test dataset. For instance, for the larger
Loan dataset, CARMA provides amortized recourse suggestions
that incur cost of 7.13 + 1.27, close to the 5.19 cost of M*. When
deployed, in addition to not requiring full causal knowledge on the
SCM, CARMA finds the recourse solutions in significantly lower
time compared to M*, requiring around 1 millisecond (msec) per
individual compared to several seconds for M*. For instance, even
for the simplest linear (LIN) triangle data, M* can take around 8
seconds to solve the recourse problem and provide optimal sugges-
tions, whereas CARMA provides equally optimal suggestions in
0.77 msec. This improvement is more apparent for the larger Loan
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Table 1: Comparing CARMA'’s amortized recourse performance on unseen test data (number of data shown in # test-data)
to causal unamortized oracle M* and amortized non-causal DiCE-VAE across multiple datasets (10 seeds). Metrics include
intervention cost (£;, lower better), optimization coverage/success rate (%, higher better), mean intervened feature count, mean
post-recourse prediction probability, compute time per datum (milliseconds, lower better), and validity under true SCM (%,
higher better). X indicates non-causal.

Dataset #test-data | Method ~ TECOUrse cost optim. mean actions mean predict time per causal
(features) (£2 X 100) coverage (%)  (per datum) probability  datum (msec) validity (%)
triangle-LIN M* 11.62 100.0 1.11 0.59 8294.48 100.0
actionable: 3 2248 DiCE-VAE 33.5742.58 100.0+90.0 3.040.0 0.9340.02 0.3240.17 X
total: 4 CARMA 11.364+4.13 99.92.0.25 1.454033 0.72+0.08 0.77+0.0 99.94,5 5
collider-LIN M* 9.99 100.0 1.48 0.54 9992.56 100.0
actionable: 3 2284 DiCE-VAE 23.9842.03 100.0+0.0 3.040.0 92.23411.61 0.3210.22 X
total: 4 CARMA 10.36+4.06 99.9640.07 2.37+0.47 0.6140.03 0.771+0.1 99.98.1.48
chain-LIN M* 10.39 100.0 1.42 0.55 9456.32 100.0
actionable: 3 2095 DiCE-VAE 25.9842.00 100.0+0.0 3.040.0 0.9240.01 0.3210.22 X
total: 4 CARMA 10.6245.12 99.91.40.27 2.2640.61 0.59+0.02 0.7440.0 99.9143
triangle-NLIN M* 9.82 100.0 1.07 0.72 10741.22 100.0
actionable: 3 2106 DiCE-VAE 24914178 99.9240.23 3.010.0 0.9540.01 0.4210.22 X
total: 4 CARMA 8.9513.13 100.0+0.0 1.9610.64 0.77+0.13 1.0140.0 99.89433
collider-NLIN M* 3.91 100.0 1.88 0.583 14379.07 100.0
actionable: 3 2179 DiCE-VAE 8.7440.73 99.1840.64 3.0+0.0 0.90+0.02 0.43+0.22 X
total: 4 CARMA 4.1941.10 99.7410.64 2.6240.42 0.69+0.05 0.98+0.0 99.7445.06
chain-NLIN M* 9.74 100.0 1.24 0.65 11991.38 100.0
actionable: 3 2320 DiCE-VAE 21.4641.11 99.5640.5 3.040.0 0.9240.01 0.4210.22 X
total: 4 CARMA 11.8142.05 99.99.10.04 2.3240.62 0.76+0.06 1.0540.35 99.98+1.31
Loan M* 6.25 100.0 1.88 0.63 53580.98 100.0
actionable: 4 2364 DiCE-VAE 13.3241.05 99.98.40.02 4.040.0 0.96+0.00 0.4810.2 X
total: 7 CARMA 6.69+1.36 99.94401 2.8940.29 0.85+0.05 117401 99.9512.16

data (1.17 msec compared to M* 1 minute), indicating the clear ad-
vantage of amortization regarding compute time. The computation
times required by CARMA are in the same order of msec compared
to existing amortized methods like DiCE-VAE (takes around 0.48
msec compared to CARMA’s 1.17 msec). But, since DiCE-VAE can-
not incorporate the underlying causal information of the SCM, its
suggestions are sub-optimal, resulting in significantly higher cost.
Similarly, the amortized DiCE-VAE solver is inherently non-sparse,
intervening on all actionable features. In contrast, CARMA, by being
an amortized recourse method that uses approximated causal infor-
mation, intervenes on less features than DiCE-VAE. Hence, unlike
non-causal methods like DiCE-VAE, CARMA can provide sparse
recourse solutions even in the absence of sparsity constraints by lever-
aging the causal information. However, CARMA is not as sparse as
the oracle M*, acting on more features on average across all setups.
Additionally, note that CARMA can provide ~ 100% causal validity.
This means that the approximate recourse suggestions of CARMA are
also successful if the individuals performed them in reality under the
true, unobserved SCM M. Finally, Table 1 also shows that amortized
recourse methods are generally more conservative. So, to ensure
successful recourse for all individuals, the suggestions provided by

amortized methods like CARMA result in higher predicted probabili-
ties (0.85+0.05 for Loan) from the downstream algorithmic classifier
post-recourse when compared to the unamortized oracle M* (0.63
for Loan). Nonetheless, more conservative suggestions (CARMA)
may possess some desirable characteristics in comparison to the un-
amortized minimum-cost suggestions (M™), particularly in terms
of their robustness to minute feature perturbations [3]. A compre-
hensive examination of this aspect is deferred to future work.

The results in Table 1 show that CARMA can be trained
using a sample of observational data and knowledge of just the
causal graph G to be deployed on large populations to provide
instantaneous, amortized recourse suggestions that are optimal
in terms of cost and causally valid under the true, hidden causal
mechanisms defined by the SCM. Next, we compare the impact
of CARMA’s amortized causal interventions on the features to the
oracle M*’s unamortized ones.

5.3 How does causal recourse impact the feature
distributions?
In this section, we explore how performing the recourse interven-

tions shifts the different features for the Loan dataset, comparing
the impact of amortization in CARMA to the unamortized M*. We
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Figure 2: Histograms comparing post-recourse feature shifts (x* — x¥) between CARMA and unamortized causal M*.
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Figure 3: Recourse metrics on Loan across 10 seeds for CARMA using Causal Flows and VACA as the generative model.

visualize our analysis in Fig. 2, where we plot the histograms of
the feature value shifts occurring due to recourse, with the values
(x°F — xF) along the x-axis and the histogram probability of the dis-
tribution along the y-axis. We plot the histograms for our amortized
method CARMA and the ideal oracle M* with blue and orange bins,
respectively. From Fig. 2, we observe how the different features are
shifted due to recourse interventions, with more significant shifts of
(x°F —xF) for CARMA on average. Looking at each feature individ-
ually, for Education, both CARMA and M* induce near zero value
shifts. Hence, although CARMA interventions targeted Education
(§ F.1), these interventions were of minimal values. For Income and
Savings, CARMA and M”* interventions resulted in increasing these
features, with the unamortized CARMA requiring larger shifts. For
Loan amount, CARMA and M" interventions result in decreasing
the value. However, for this feature, there is a difference in how
CARMA and M* intervene. Our amortized method CARMA re-
quires low change for most individuals, with (x°F — xF) ~ —1.5
having higher probabilities, while imposing significant changes
((x°F —=xF) < —3) for very few individuals (probability around 0.05).
On the other hand, while M* interventions result in no change for
most individuals ((x°F — xF) ~ 0 has 0.43 probability), it requires
some individuals to have large changes ((xF — xF) < —3.5 have
probabilities as high as 0.1 to 0.15).

Hence, post-recourse distributional shifts are affected by amor-
tization. For the Loan data, we observed that the unamortized M*
generally induces lower distributional shifts than CARMA. But, in
some cases, in contrast to unamortized methods, amortization may
cause slight changes in a feature for many but large ones for a few.
However, the implication of this differential behavior needs to be an-
alyzed for particular deployment scenarios. Now that we have stud-
ied the nature of amortized recourse interventions, we analyze the
flexibility of CARMA in using different causal generative models.

5.4 How does the choice of the causal
generative model affect CARMA?

We designed CARMA to be a flexible amortized recourse framework
capable of utilizing any novel causal generative model that offers
gradient access, latent exogenous estimation, and counterfactual
computation. To study the flexibility and analyze how the choice of

the generative model might impact recourse, we compare CARMA
training with causal flows (state-of-the-art) with another recent
deep-learning-based method, VACA [39]. We compare the two
versions of CARMA in Fig. 3, plotting the metrics cost, causal
validity, average number of actions (features targeted), and compute
time along the x-axes of the plots. We compare the performances of
Causal Flows [15] and VACA [39] using horizontal bars with error
bars representing the variance across random seeds. From Fig. 3, we
see that while CARMA can successfully incorporate VACA, using it
instead of causal flows results in less optimal amortization of causal
recourse across all metrics. When using VACA in the pipeline,
CARMA provides more costly recourse suggestions, intervenes
on more features, and leads to slower amortization, requiring more
compute time (almost twice as much as the Flows model requires).
The variance across seeds also increases when we use VACA,
as indicated by the error bars in the plots for the cost, validity,
and number of actions. The superior performance when using
flows (lower cost and variance) can be attributed to their ability
to recover the exogenous factors [15], leading to more accurate
counterfactual estimation. Likewise, the lower performance when
using VACA can be explained by its inexact exogenous estimation
and higher inaccuracies in counterfactual approximations [15, 39].
Moreover, VACA’s increased compute time stems from its
more computationally complex counterfactual approximation
process (requiring combinatorial complex modification of the
post-intervention adjacency matrix of G) [39]. See Appendix C for
details. The only exception can be seen in the recourse suggestions’
causal validity metric, which remains high for both VACA and
Flows (~ 99%), indicating a good approximation of the SCM.
These results show that CARMA is flexible to incorporate dif-
ferent deep causal generative models to approximate the unknown
causal relations and the counterfactual generation. Hence, future
advancements providing more powerful models can be readily
incorporated in CARMA, provided they allow differentiability or
gradient access. Nonetheless, choosing the proper causal generative
model is vital to accurately approximate causal counterfactuals and
achieve optimal amortized causal recourse. Next, we showcase a
case study highlighting how to incorporate population-level feature
preferences in amortized recourse to tailor the recourse suggestions.
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5.5 Case study: Incorporating population-level
feature preferences

In contrast to previous analyses, we now consider that the popula-
tion’s preferences for changing different features for recourse may
differ due to various factors. One such factor is time-related diffi-
culty [2], where modifying some features (e.g., those higher up in
the graph @) is more challenging since they require more time. For
example, saving a specific amount of money may take less time than
advancing from a Master’s to a Ph.D. education level. Using the Loan
data as a case study, we show how to incorporate such population-
level preferences into CARMA’s amortized causal recourse setup.
Setup. We consider the same actionable features: Education,
Loan amount, Income, and Savings. However, now, we consider that
the population provides different feature preferences, e.g., features
deeper in the causal graph are more difficult to change, requiring
more time [2]. The population provides this preference as feature
weights (higher weight signifying more difficulty): {(Education, 3),
(Loan amount, 2), (Income, 2), (Savings, 1)}. We incorporate this
additional preference knowledge in CARMA'’s learning process.
First, the weights denote the difficulty of feature changes. So, in
CARMA’s action network, we multiply the £, cost of each feature’s
change with the corresponding weight in Eq. 6. Secondly, the
weights denote the likelihood of targeting different features (the
higher the weight, the lower the likelihood). So, in CARMA’s
mask network, we modify the prior Bernoulli(p), reducing p from
default 0.5 when weights are > 1. Using these modifications, we
tune CARMA to find the best model. We note that this best model
provided optimal recourse with low cost (near 0.09 matching the
corresponding M™*) and high causal validity (near 100%) when
measured on the held-out test data. More details on the setup can be
found in Appendix D. For comparing the impact of the preferences
on amortized recourse, we compare CARMA with preferences
(wgt.) to the previous vanilla method using no weights (unw.).

Preferences lead to targeting different and fewer features. To under-
stand the impact of the preferences on amortized recourse, in Fig. 4,
we plot the percentage of test-time interventions targeting differ-
ent feature counts (left) and specific features (right). We compare
CARMA (wgt.) in blue to the vanilla CARMA (unw.) in violet. By in-
corporating preferences, CARMA (wgt.) acts mostly on two features
(~ 57%) and rarely on four. In contrast, CARMA (unw.) intervened
primarily on three and four features. Hence, preferences allow
CARMA to offer sparser suggestions, reducing the average number
of targeted features from 2.89 (unw.) to 2.26 (wgt.). Additionally,
following the preferences, CARMA (wgt.) increasingly targets the
lowest weighted Savings (50% vs. 37% of test-time interventions in

unw.) and infrequently targets the highest weighted Education (11%
in wgt. vs. 42% in unw.). The preference weights also slightly reduce
the percentage of interventions targeting Loan amount and Income.
Thus, CARMA leverages population preferences via the weights to
tailor the recourse suggestions, targeting more preferred features
and, potentially, leading to sparser recourse interventions.

Preferences lead to different shifts in the features. To understand
the impact of the preferences on amortized recourse, in Fig. 5,
we plot histograms with the post-recourse feature value shifts
(xCF —xF) for the actionable features in the test data along the x-axis
and the probability of the distribution of the values along the y-axis.
We compare the recourse suggestions of CARMA with preferences
(wgt. in blue) to the vanilla CARMA (unw. in violet). For more
difficult features like Loan amount and Income, CARMA (wgt.)
incorporates the feature preferences to reduce the shifts (x°F — xF)
compared to unw. For these features, note the comparatively higher
probabilities of the wgt. shifts around zero. For the most difficult
feature Education, we see minimal shifts for both approaches. How-
ever, for the least weighted Savings, CARMA (wgt.) causes more
significant shifts than unw. Since the population marks this feature
as easier, these changes should be easier to perform in practice. In
conclusion, CARMA can integrate population feature preferences in
amortized recourse, tailoring the recourse suggestions to intervene
more and change the easier features (leaf nodes in G) like Savings.

6 DISCUSSION AND REMARKS

To enable CARMA'’s practical deployment, the roles of certain as-
sumptions and ethical factors need further study.

Assumptions. Analyzing the assumptions of the causal gener-
ative model in CARMA is crucial, especially in scenarios involving
confounders or incomplete and inaccurate causal information in
G. While understanding the impact of such errors is vital, we may
be able to tackle them in CARMA by leveraging future advances in
causal generative models. Similarly, the rigorous testing of CARMA
and related causal recourse approaches necessitate the future cu-
ration of larger societal causal datasets. Moreover, though current
recourse solutions assume access to exact feature values, robustness
to uncertainties is pivotal [3]. While we assume stability in the
data distribution and downstream classifier, exploring methods for
robust recourse solutions amidst temporal shifts is essential [35],
e.g., considering feedback dynamics in the decision-making
processes. Additionally, the assumption of gradient access to the
classifier may not hold in certain real-world scenarios, necessitating
exploring alternative approaches, such as leveraging genetic
algorithms [41]. Extending the applicability of causal amortized



FAccT ’24, June 03-06, 2024, Rio de Janeiro, Brazil

> 0.6 ¥

= = 0.9 +

E % 06 04+

S g

—§ 203+ 0.2 T

A 0.0 1 ‘ : 0.0 —+——===
-0.2-0.1 0.0 0.1 -6 -4 -2 0
Education: x°F — xF Loan Amt.: x°F — xF

0.6 T
0.4 T
0.2 T

0.0

Ayan Majumdar and Isabel Valera

gz i 8 CARMA (wgt)
oz 4 00 CARMA (unw.)
f 7 ; + 0.0
0.0 2.5 5.0 7.5 0 5 10 15 20
Income: x°F — xF Savings: x°F — xF

Figure 5: Histograms comparing post-recourse feature shifts between CARMA using preferences (wgt.) and vanilla (unw.).

recourse also requires looking beyond simple £, norms for recourse
cost, incorporating diverse effort functions [10] and the intricate
impacts of time [2, 4]. Integrating more inclusive and realistic
costs can better reflect individual capabilities in the recourse
process [43] and should be explored in the context of amortization.

Other ethical considerations. The interplay of related ethical as-
pects with algorithmic recourse needs to be studied in the amortized
context. First, providing interfaces for recourse has been shown to
have privacy issues [30]. While amortized CARMA can help scale
up recourse fairness auditing [51], designing efficient recourse
mechanisms that are fair, e.g., regarding the costs across social
groups [8, 51] and avoid societal segregation [5, 10] are interesting
directions that need further research. Additionally, while recourse
allows individuals to challenge decisions, it also raises the risk of ex-
ploitation and strategic gaming of the system. Hence, the interplay
of amortized causal recourse with strategic behavior [9, 26] (gaming
the classifier’s prediction) and individual improvement [23] (in the
ground truth) needs thorough exploration. Finally, the long-term
impact of recourse on the utility and fairness of different stakehold-
ers in automated decision-making [13, 21, 34] must also be studied
to ensure optimal and responsible deployment.

7 CONCLUSION

Our work tackled the challenges of implementing causal algorith-
mic recourse in large-scale settings, aiming to deliver instant and
effective recommendations to overcome negative algorithmic deci-
sions. Although previous work highlighted the benefits of causal
recourse, its practicality has been constrained by the need for com-
plete causal information and the computational complexity of exist-
ing approaches. To overcome these issues, we introduced a method
called CARMA, which offers flexibility and efficiency in providing
optimal recourse recommendations.

CARMA uses state-of-the-art causal generative models and
neural networks to provide a novel data-driven predictive approach
that overcomes the limitations of existing methods. It offers optimal
causal recourse interventions with significantly reduced compute
times. Moreover, our case study demonstrated how CARMA can
customize recourse suggestions based on population-level feature
preferences, considering factors like difficulty or time. Based on
the promise of our initial results, we aim for our work to promote
future research toward enhancing the accessibility of recourse
mechanisms for individuals affected by negative automated
decisions, especially in complex, large-scale application scenarios.
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A DATASETS

We list the different datasets used in the evaluations, their causal
graphs in Fig. 6, and the detailed structural equations or functions.
We also detail the dataset generation processes used for training
the different models.

Data sample for training downstream algorithmic classifier. We
generate 20,000 samples for each dataset and split them into train-
validation-test as 0.5, 0.25, 0.25.

Data sample for training causal generative models. We generate
25,000 samples for each dataset and split them into train-validation-
test as 0.8-0.1-0.1. These datasets are then used to train the causal
generative models (causal flows or VACA) used by CARMA.

Data sample for running recourse. We separately generate 20,000
samples for each dataset and split them into train-validation-test as
0.5-0.25-0.25. Then, we utilize the downstream classifier algorithm
to filter the datasets to include only the negatively predicted indi-
viduals. This filtered dataset is used to train the recourse models
CARMA and DiCE-VAE. The oracle M* directly solves for recourse
on the test dataset.

A.1 Synthetic datasets

We created simple synthetic datasets inspired by [15, 39]. These
datasets have 4 variables, where one variable S is a binary non-
actionable feature. The other features Xi, X, X3 are continuous
variables. The causal graphs are in Fig. 6a, 6b, 6¢, showing different
causal relations between the features. The nature of the equations
may be linear (LIN) or non-linear (NLIN). The symbol o(-) repre-
sents the sigmoid function in the following equations. Moreover,
N(a,b) denotes the Gaussian distribution where a is the mean
and b is the variance of the distribution, Vb denoting the standard
deviation.

A.1.1  Synthetic triangle-LIN.

fs : S =Us; Us ~ Bernoulli(0.5)

fi: X1 =S+Up; Up ~MoG(0.5N(~2,1.5) +0.5N (1.5, 1))
f:Xo=X1+Uy; Uy ~ N(0,1)

f:X3=5+0.25X1 +0.5X5 + Us; Us ~ N(0,1)

fr: Y ={o(X1 +0.5X2 + X3 + 0.5U;) > 0.5}

A.1.2  Synthetic triangle-NLIN.

fs : S =Us; Us ~ Bernoulli(0.5)

fi: X1 =S+Up; Up ~ MoG(0.5N(=2,1.5) +0.5N (1.5, 1))

fo: Xo = —1+30(2X1) + Uz; Up ~ N(0,0.1)

X3 =5+0.25(X1)% + 05Xy +Us; Us ~ N(0,1)

fr Y ={o(=1+ 2% +0.75((X2) 3 +0.1(X3)? + 0.5U1) > 0.5}
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A.1.3  Synthetic collider-LIN.

fs: S =Us; Us ~ Bernoulli(0.5)

fi: X1 =S+Up; Uy ~ MoG(0.5N(-2,1.5) + 0.5N(1.5,1))
fo: Xy =055+ Uy; Uy ~ N(0,1)

f5: X3 = 0.055 +0.25X +0.25X3 + Uz; Uz ~ N(0,1)

fr: Y ={o(X1 +0.5X2 + X3 + 0.5U7) > 0.5}

A.1.4  Synthetic collider-NLIN.

fs : S =Us; Us ~ Bernoulli(0.5)

fi 1 X1 =055+ Up; Up ~ MoG(0.5N(~2,1.5) + 0.5N (1.5, 1))
fo: X2 =055+ Uy; Uz ~ N(0,0.1)

£ : X3 =0.255 +0.25(X1)% +0.25(X3)? + Us; Us ~ N(0,1)
fr: Y ={o((X1)® + Xz +3X3 + 0.5U;) > 0.5}

A.1.5  Synthetic chain-LIN.

fs: S =Us; Us ~ Bernoulli(0.5)

fi: X1 =S+Up; Up ~ MoG(0.5N(=2,1.5) +0.5N (1.5, 1))
f2:X2=8405X1+Us; Uy ~ N(0,1)

f5: X3 =0.255+0.5X3 + Us; Us ~ N(0,1)

fr: Y ={o(X1 +0.5X, + X3 + 0.5U;) > 0.5}

A.1.6  Synthetic chain-NLIN.

fs : S =Us; Us ~ Bernoulli(0.5)

fi: X1 = U399, Uy ~ MoG(0.5N (=2, 1.5) + 0.5N/(1.5, 1))
f2: X =S+30(2X7) +Uz; Uz ~ N(0,1)

f3: X3 =0.258 + X2 + Us; Us ~ N(0,1)

fr o Y ={a(X} + Xz +0.75 exp(X3) + 0.5U; — 50) > 0.5}

A.2 Semi-synthetic dataset: Loan

Following [19], we consider the 7-variable Loan dataset modeling
the Credit dataset [12], shown in Fig. 6d. Similar to [19], the equa-
tions are non-linear with non-additive exogenous variables. Using
the usage of [19], Gender G and Age A are non-actionable, loan
amount L, education-level E, income I, and savings S are actionable.
At the same time, loan duration D is non-actionable but mutable
(owing to the downstream impact of interventions on the parents
of D). The equations are as follows. The symbol o(-) represents the
sigmoid function in the following equations. Moreover, N'(a, b)
denotes the Gaussian distribution where a is the mean and b is the
variance of the distribution, Vb denoting the standard deviation.
Finally, Gamma(a, b) denotes the Gamma distribution where a is
the concentration/shape, and b is the scale, 1/b being the rate (used
in PyTorch’s distribution definitions).
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(a) triangle (b) collider
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(c) chain

Figure 6: Causal graphs for synthetic and the semi-synthetic Loan datasets. Non-actionable features are O, actionable features

are Q, and non-actionable but mutable features are @.

fc : G =Ug; Ug ~ Bernoulli(0.5)

fa:A=-35+Uy; Uy ~ Gamma(10,3.5)

fg: E=—05+0(~1+0.5G + 6(0.1A) + Ug); Ug ~ N(0,0.25)
fi:L=1+40.01(A-5(5-A)+(1-G)+Ur; UL ~ N(0,4)
fO:D=-14+0.1A+2(1-G)+L+Up; Up ~ N(0,9)
f1:I1=-4+0.1(A+35)+2G+GE+Uy; Uy ~ N(0,4)
fs:S=—-4+15{I > 0}] + Us; Us ~ N(0,25)
fr:Y=Ko(0.3(-L =D +I+S+alS)) > 0.5}

where a = 1if [[{I > 0} AI{S > 0})] = 1; @ = —1 otherwise.

B RECOURSE SOLVER BASELINES
B.1 Causal Oracle

The causal oracle recourse solver M* is based on the methodology
used in [19, 51]. This methodology assumes that we have access to
the causal knowledge, i.e., the exact nature of the causal relations
between the data features. Access to this knowledge allows the
oracle M* to exactly compute causal counterfactuals with the
abduction-action-prediction steps [31]. However, M* needs to solve
the complex combinatorial optimization problem behind causal
recourse for each individual separately. To do so, M* discretizes
the feature space and applies grid-based search over this space
to find the interventions that lead to minimal cost and ensure
successful recourse. For the synthetic datasets (triangle,collider, and
chain), we discretize using 25 equally-spaced bins. For the more
complex Loan data, we discretize using 15 equally-spaced bins. The
bins are in the range [Xf - 2(xf — min(xF)), xlF + 2(max(xF) - XIF)]
for each individual i with features xF. The search algorithm then
reviews the bins to analyze all possible intervention combinations
for optimal cost and coverage.

B.2 Non-causal amortization using DiCE-VAE

Assuming binary prediction labels y, DiCE-VAE generates x°F given
xF'. It uses the VAE formulation to encode xF to a latent z through
Q(-), then decode to xF such that h(x“F) = 1. It aims to change
all the features X without causal information. Note that the coun-
terfactuals x°F are not causal counterfactuals. Specifically, they
are not computed as interventions on a causal SCM M.

The corresponding evidence lower-bound (ELBO), following the
VAE construction, is:

InPr (XCF | xF) 2 Eg(2)xF) InP (XCF | z, XF)—KL (Q (z | XF) [lp (z))

Then, [24] solves for counterfactual explanations using the VAEs
as:

EQ(zle) [Dist (xF, xCF) + A HingeLoss (h (XCF) , 1, ﬁ)]

wKL(Q(z1:)lIp @) ©

The distance function Dist is £, norm (we use ¢ for a fair compar-
ison to CARMA), and f denotes the hinge margin. A higher § value
leads to better coverage over the entire population but generates
more conservative explanations with higher costs.

Enhancing DiCE-VAE with feature actionability. By default, the
existing DiCE-VAE formulation does not support non-actionability
of features. So, it simply assumes all input features as actionable. To
allow for non-actionability of certain features, we input an action-
ability mask M. Then, the ELBO uses M to generate xF.

InPr (XCF | XF,M) > EQ(leF) InP (XCF | 2, XF,M)

KL(0(z1x) b @) O

The mask M is used by the VAE decoder to generate x°F abiding
by the non-actionability requirements, setting the change for a
feature to 0 if the feature is non-actionable.

C COUNTERFACTUAL APPROXIMATION
USING VACA

While the causal normalizing flows [15] trained a single autore-
gressive normalizing flows model Ty, to approximate both causal
abduction (mapping XF to ZF) and causal prediction (mapping ZF
to XF), the Graph-NN (GNN) based VACA [39] utilized a different
modeling. VACA approximated causal abduction using two mod-

els: an encoder Tl;nc that uses GNNs to map X to latent ZF and a

decoder T;;C that uses GNNs to map latent ZF to features XF.
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Specifically, VACA assumes a distribution of latent factors Z
where we have one Z; for each feature Xj. Additionally, while
causal flows can model the causal graph ordering using TMI maps,
VACA needs T¢"¢ and T4 also to be provided with the adjacency
matrix A for the causal graph G. As shown in [39], Aisad X d
binary matrix (where d denotes the total number of features in
the data) with A;; = 1 when feature X is a parent of X; ori = j.
Otherwise, the value is 0.

While VACA can utilize GNNs in the encoder-decoder setup to
model the causal data distribution, it cannot satisfy causal consis-
tency like the causal flows. Specifically, as discussed in the original
paper [39], the latent factors Z of VACA do not need to correspond to
the exogenous U, i.e., p(U) # p(Z). Similarly, the VACA decoder does
not aim to approximate the causal structural functions. VACA can
only ensure each latent Z to capture the information in feature
Xy not described by its causal parents.

Nonetheless, Sinchez-Martin et al. [39] showed how VACA, un-
der certain conditions, can be leveraged to compute causal coun-
terfactual features. As discussed in [15], VACA’s interventions are
similar to the traditional method of Pearl [31]. Hence, to compute
counterfactuals, we perform interventions by severing the edges
in every GNN layer whose “endpoints fall in the path” that gener-
ates a particular intervened feature. This technique ensures that
the causal ancestors of the intervened feature do not influence the
downstream computations. Particularly, given factual latent factors
ZF for observed features XF, intervened latent factors 77 after we
intervene on certain features 7, the VACA decoder can use the Al ,
i.e., the adjacency matrix of the post-intervention causal graph to
compute counterfactuals as:

The causal interventional do operator is approximated by generat-
ing the interventional AZ for the interventions on the features I
from the original A, where

AT = {Aij}vigr; U {Aij = Ovier ).

Hence, computing counterfactuals using VACA needs a combina-
torial modification of the adjacency matrix that increases the com-
plexity and the computation times as seen in § 5.4.

Unfortunately, as shown by Javaloy et al. [15], modifying the
adjacency matrix for interventions is not enough to ensure accurate
counterfactuals. Specifically, severing edges in the VACA decoder
may not be faithful in counterfactual estimation since it might re-
quire additional recalibration. This reason might explain the higher
costs reported by CARMA when using VACA compared to causal
flows. We refer the reader to Appendix C.2 in [15] and § 4 in [39]
for more detailed descriptions.

D WEIGHTED COST CAUSAL RECOURSE FOR
POPULATION FEATURE PREFERENCES

We can incorporate the notion of difficulty to change particular
features in the amortized causal recourse framework. In our case,
we show the simplistic method of incorporating it using different
weights in the cost function for the different features. We do this
incorporation in two steps. First, we incorporate the weights in the
£p cost function, where we multiply the cost of feature change with
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the weight, then add across the features.
1 K
_  /F_ _CF\2
wcost; = %Zw] . (xj - X; )4,
=

We set the weights inspired by the notion of time from [2]. Specifi-
cally, we set the weight higher for features higher up in the causal
ordering in the causal graph. As per [2], deeper nodes in the causal
graph might be more challenging to intervene on since these inter-
ventions require more time to achieve. For example, the weights
in the Loan dataset are for Savings 1, Loan-Amount and Income 2,
and Education 3. Note that the weights are precisely equal to the
depth of each feature’s node in the causal graph.

Secondly, we use the weights to set the prior probabilities in
the mask network loss function. This helps more explicitly control
the likelihood of selecting features for interventions. In Eq. 5, the
prior probability p of Bernoulli(p) is set according to the weights.
We keep the same prior p = 0.5 for the feature with the least cost
weight of 1. For any other feature, the prior is set according to the
weight w; as p = 0.5/w;. Hence, for the Loan data, Savings has
p = 0.5, Income and Loan amount have p = 0.25, and Education
has p = 1/6.

E TRAINING DETAILS

E.1 Downstream algorithmic classifiers

For the fixed, downstream algorithmic binary classifiers, we fix the
architectures as follows:

e For synthetic datasets with LIN causal relations, we train
logistic regression classifiers.

e For synthetic datasets with NLIN causal relations, we train
neural network classifiers with a hidden dimension of 16 and
ReLU activation.

e For the larger Loan dataset, we train a neural network with
hidden layers 32 x 32 and ReLU activation.

All the models are trained for 500 epochs with batch size 256, using
the Adam optimizer with a learning rate of 1073, We use PyTorch
to train all the classifiers for easy gradient access to the trained
models.

E.2 Causal generative models

We use the newest two state-of-the-art causal estimators: i) causal
normalizing flows [15] shown to perform the best in terms of dis-
tributional approximation and counterfactual inferences, and ii)
GNN-based VACA [39].

Causal normalizing flows. . For the causal normalizing flows [15],
we use the original work as inspiration and tune the inner di-
mensionality of the flow NN models. All other parameters are
fixed as follows: optimizer was Adam with learning rate 103 and
plateau scheduler, activation ELU, layer type was Masked Autore-
gressive Flows (MAF). For other parameters, we refer to the original
work [15] and GitHub code’.

Swww. github. com/psanch21/causal-flows/
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Table 2: Hyperparameters for Causal Flows. The parameters
were selected after runs on five different seeds. The log-prob
of the observational data distribution estimate was used to
select the best hyperparameters.

Dataset dim-inner ‘ log-prob
triangle-LIN 32 -5.71
collider-LIN 32 -5.7
chain-LIN 64 -5.7

triangle-NLIN | 32x32x32 | -4.56

collider-NLIN | 16 X 16 X 16 -4.56
chain-NLIN 32 X 32X 32 -5.71
Loan 64 -13.6

VACA. For the VACA causal generative model based on GNNs,
the number of layers-pre of the GNN, the model dropout, and the
type of GNN layer (gin, pna, pna-disjoint) were tuned [15]. Based
on [15, 39], the following attributes were fixed: latent dimension for
z of each feature was 4, activation was ReLU, optimizer was Adam
with learning rate 5 x 1073, inner dimension of GNN was 16. Other
parameters can be referred from [15] and the corresponding GitHub
code®. Following [15], we used the log-prob (log probability) of the
approximation of the observed data distribution to select the best
hyperparameters.

Table 3: Hyperparameters for VACA. The parameters were
selected after runs on five different seeds. The log-prob of the
observational data distribution estimate was used to select
the best hyperparameters.

Dataset ‘ GNN layers-pre  dropout layer ‘ log-prob

Loan | 1 0.1 gin | -18.65

From the Tables 2 and 3, it is clear that causal flows can fit the
observational data distribution better since the log-prob values are
always higher than VACA. Remarkably, causal flows achieve better
performance despite requiring significantly less hyperparameter
tuning.

E.3 Recourse solvers

We use the Optuna library [1] for Bayesian hyperparameter tuning.
All hidden layer activations are fixed to ReLU, and the optimizer
is always Adam. We utilize the Modified Differential Method of
Multipliers (MDMM) [33] to work with the multi-objective opti-
mization between the recourse cost and recourse coverage. We use
the default damping coefficient value of 10 to balance the objective
of recourse cost and positive prediction (hinge loss). In our expe-
rience, this parameter’s value was stable and did not significantly
influence the outcome. This also reduces a hyperparameter and al-
lows the learning process to optimize for recourse cost and positive
prediction automatically.

E.3.1 Oracle. For the causal oracle M*, as mentioned before, we
use a simple grid-based search to find the best intervention. This
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search is possible since we assume complete access to the SCM M.
Furthermore, this technique has been used in prior work [19, 51].
For the synthetic datasets with fewer features, we use 25 equi-
spaced bins. For the larger Loan data, we use 15 equi-spaced bins.

E.3.2 DIiCE-VAE. For the DiCE-VAE [24] model, we tune the learn-
ing rate, number of layers and neurons in the neural networks,
epochs, batch size, and the hinge-margin for the coverage loss as
in Eq. 3. As mentioned before, we modify the original model to
incorporate a mask to enable DiCE-VAE to satisfy actionability re-
quirements on the different features. The VAE latent space is always
set to the same dimensionality as the number of observed features
in the corresponding dataset.

E.3.3 CARMA. We tune the mask selector’s learning rate, layers,
neurons, action predictor networks, epochs, batch size, hinge mar-
gin, and the 7 parameter for the mask network’s loss.

Using causal flows. When using causal flows as the causal gener-
ative model, the action-predictor model concatenates all the latent
z (exactly corresponding to the causal u), then concatenates them
with the binary mask selector’s estimated intervention mask 7. The
output dimensionality of the action predictor is simply the number
of features, and each dimension corresponds to the Az for feature
Xk

Using VACA. When using VACA, the latent representations of
the causal generative model are more complex. Specifically, for each
feature, the z dimension is 4, which increases the total dimension-
ality over all the features. As a result, in our experiments, we saw
that we needed a more complex action-predictor architecture to
estimate the causal interventions when using VACA effectively. The
action-predictor model has separate embedding and de-embedding
modules for pre-trained VACA representations. The embedding
module is a single-layer neural network with ReLU activation. This
module concatenates the 4-dimensional z; for each feature X
and the corresponding mask-selector’s estimated binary mask di-
mension J; into a hidden representation. Correspondingly, when
the action-predictor outputs Az, the de-embedding module maps
the action-predictor’s hidden feature to the dimensionality of z
through a 2-layer neural network with activation ReLU.

E.4 Computing Hardware

All models were trained using the CPU version of PyTorch 1.13.1
without multiprocessing. The programs, including training and
hyperparameter tuning, were run on a cluster machine with two
Intel Xeon Gold 6134M processors with 3.2GHz clock speed, up
to 768GB of available RAM, and running Linux OS. However, the
training and inference times are very similar even when we run
our models on a personal computing system, e.g., an Apple M1
MacBook Pro with 16GB RAM.

F ADDITIONAL ANALYSIS

We show analyses for the following aspects.

(R5): How does CARMA'’s amortized recourse target different fea-
tures compared to unamortized recourse?

(R6): How does CARMA’s deployment performance vary with the
amount of data available for training?
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Table 4: Hyperparameters for DiCE-VAE model that has been extended to include actionability capabilities. We use the cost and
the coverage to select the best validation runs in Optuna tuning. The hyperparameters are selected based on runs using five

different seeds.

Dataset ‘ learning rate  architecture epochs batch-size hinge-margin
triangle-LIN 5% 1077 64 250 128 0.003
collider-LIN 5% 1077 64 250 128 0.003
chain-LIN 5%107° 64 250 128 0.003
triangle-NLIN | 5x 107> 64 250 128 0.042
collider-NLIN 5%107° 64 250 128 0.003
chain-NLIN 5%107° 64 250 128 0.012
Loan ‘ 5% 1077 64 200 128 0.002

Table 5: Hyperparameters for CARMA using pre-trained causal normalizing flows as the causal generative models for causal
estimation. We use the cost and the coverage to select the best validation runs in Optuna tuning. The hyperparameters are

selected based on runs using five different seeds.

Dataset learning rate mask-selector  action-predictor epochs batch-size hinge-margin Gumbel 7
triangle-LIN 5% 1073 32 8X8X8X38 500 32 0.007 0.55
collider-LIN 5% 1073 32 32X 32X32X%X32 350 256 0.013 0.31
chain-LIN 5x 1073 16 8x8 150 128 0.004 0.87
triangle-NLIN 5% 1073 32X 32X%X32 8X8X8XY 450 256 0.003 0.2
collider-NLIN 1072 16 X 16 X 16 8Xx8x38 250 64 0.002 0.83
chain-NLIN 5x1073 32X32%X32 32X32X32X32 250 256 0.007 0.08
Loan 5% 1073 32X 32 32 X32X32 450 256 0.011 0.45
Loan (weighted case study) 1073 16 X 16X 16 32X 32X 32X32 450 256 0.007 0.33

Table 6: Hyperparameters for CARMA using pre-trained VACA as the causal generative models for causal estimation. We use
the cost and the coverage to select the best validation runs in Optuna tuning. The hyperparameters are selected based on runs

using five different seeds.

Dataset | learning rate mask-selector

action-predictor

epochs batch-size hinge-margin Gumbel 7

Loan | 5x107* 64 X 64 X 64

64 X 64 X 64 X 64 450 256

0.003 0.4

(R7): How does CARMA’s amortized recourse target different fea-
tures in the smaller synthetic datasets?

(R8): How does CARMA’s amortized recourse with preference
weights compare to the unamortized M*?

F.1 How does causal recourse target different
features?

Considering the Loan dataset, this section further explores the na-
ture of the causal recourse interventions, contrasting the amortized
interventions of CARMA to the optimal unamortized M*. We plot
our empirical observations regarding this analysis in Fig. 7. In Fig. 7
(left), we plot the percentage of recourse interventions on the un-
seen test dataset (y-axis) that intervened on a particular number of
actionable features (x-axis). In Fig. 7 (right), we plot the percentage
of test-set recourse interventions (y-axis) that targeted each action-
able feature (x-axis). In both figures, we show the values of CARMA

and M™ using bars with blue and orange colors, respectively. Note
for Fig. 7 that since an intervention can target multiple features,
the bar heights for a particular method will not sum to 100%.

Fig. 7 (left) shows that CARMA intervenes mainly on three fea-
tures while M* acts on one or two features. This result confirms
the increased sparsity of M* compared to CARMA we observed in
§ 5.2. Regarding the recourse interventions, the difference is also
observed in Fig. 7 (right) for the targeted features. M, being an
unamortized method with perfect causal knowledge, seldom inter-
venes on Education (around 5% of test-time interventions), instead
mainly acting on Loan amount (around 60%) or Income (around
80%). In contrast, for each of the actionable features in the Loan data,
the percentage of test-time CARMA interventions targeting them
remains around 40 to 55%. This increased percentage across all
features for CARMA shows why it cannot achieve the perfect opti-
mality of M™ in terms of sparsity and cost. This indicates that the
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Figure 7: Bar graphs showing (left) the percentage of times recourse interventions changed a particular number of features and
(right) the percentage of test-time interventions targeting each feature of the Loan data by recourse methods.
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Figure 8: Variation in CARMA’s ¢, recourse cost, causal validity (%), and mean number of intervened features on Loan across 10

seeds with training data size (different fractions of original data).

amortization process of CARMA for causal recourse optimization
might tradeoff some of these desiderata to ensure high recourse
validity.

F.2 How does reducing the amount of training
data affect CARMA?

Determining the amount of data necessary for training CARMA
that can offer optimal solutions on deployment across large pop-
ulations is crucial. Hence, we study how CARMA'’s performance
regarding different recourse metrics can vary if we have different
amounts of accessible training data. For this study, we fix the
model hyperparameters that we obtained when we used the full
Loan data and assume access to the same pre-trained causal flows
model that we used in our analyses in the main paper. Then, we
vary the fraction of the training data size (0.05, 0.1, 0.25,0.5,0.75)
and train CARMA to report the test-time performance metrics.
We show the visualizations in Fig. 8, where we vary the training
data fraction along the x-axis for all subplots. Along the y-axis, we
report the recourse £, cost (left), the causal validity (in %, center),
and the average number of actions or features targeted (right). We
also show the variance region with shaded color after running for
10 different seeds. Analyzing recourse cost in Fig. 8 (left), reducing
the data fraction from the full 1.0 up to 0.5 does not impact the
performance. However, if we keep reducing it more, the cost
increases. As expected, the cost peaks at extremely low amounts of
training data of 0.05 or 0.1 fractions (around 225 or 450 data points).
Along with increased cost, we also see the variance in the metric
increase across random seeds when we use very low data sizes. We
see a similar trend in variance for recourse causal validity in Fig. 8
< 0.25. The
mean value of the validity metric remains high, roughly around
99.99%. However, note that with varying the training data fractions,

(center), with the variance increasing for fractions

the average number of actions (features targeted for recourse)
shows no clear trend, remaining roughly similar, around 2.6 to 2.9.

In summary, the efficacy of deploying CARMA hinges on the
volume of available training data. Inadequate data may lead to
suboptimal performance characterized by high costs and increased
variance. Optimal performance is achieved with sufficient data,
such as fractions > 0.5 or 2245 data points for Loan. It is essential,
however, to assess data sufficiency for optimal amortized recourse
deployment.

F.3 Visualizing the nature of feature
interventions for synthetic data

For synthetic data, the features targeted depend on the data. The
non-causal DiCE-VAE intervenes on all actionable features. The
oracle M* provides the most sparse interventions, but the targeted
features depend on the dataset’s causal graph and the features’
importance to the label Y. CARMA interventions are not as sparse
as M*, acting on more features on average. However, the features
CARMA target most in each dataset align with the most intervened
feature by the causal oracle M*. For example, in triangle — LIN,
both CARMA and M* maximally intervene on X;. Similarly, while
CARMA interventions are less sparse for chain — NLIN, the most
intervened feature for both CARMA and M* is X,.

F.4 Comparing recourse with preference
weights between CARMA and M*

For the population feature preference evaluation performed in § 5.5,
we also compared the recourse metrics after incorporating the fea-
ture weight preferences between the amortized recommendations
of CARMA and the unamortized recommendations of the causal
optimal oracle solver M*. We show the results in Table 7. From
the metrics in Table 7, we see that CARMA’s amortization of the
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Figure 9: Distribution of feature targets of interventions for synthetic datasets with linear structural equations
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Figure 10: Distribution of feature targets of interventions for synthetic datasets with non-linear structural relations

Table 7: Comparing CARMA’s amortized recourse performance on unseen test data (number of data shown in # test-data) to
causal unamortized oracle M* for Loan data with population-level feature preferences (10 seeds). Metrics include intervention
cost (f2, lower better), optimization coverage/success rate (%, higher better), mean intervened feature count, mean post-recourse
prediction probability, compute time per datum (milliseconds, lower better), and validity under true SCM (%, higher better).

recourse optim. mean mean time causal
Dataset . . .
# test-data | Method  f»-cost  coverage num.actions prediction per datum validity
(features) e
(x100) (per datum)  probability (msec) (%)
Loan (weighted) M* 9.70 100.0 1.86 0.62 53987.80 100.0
actionable: 3 2364
total: 4 CARMA 9.26+1.12 99.9740.05 2.2610.4 0.7640.03 1.19401 99.884+3.5

causal recourse process is near-optimal compared to M*. This is
highlighted by the similar low costs and lower compute times for
CARMA. CARMA also achieves near-perfect causal validity. Simi-
lar to the results in the main paper, we see CARMA’s amortization

leads to recourse recommendations that are slightly more conser-
vative with higher post-recourse prediction probabilities from the
classifier. Similarly, the amortized recourse recommendations are
less sparse than the optimal unamortized M*.
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