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ABSTRACT
Machine learning systems require representations of the real world
for training and testing - they require data, and lots of it. Collecting
data at scale has logistical and ethical challenges, and synthetic
data promises a solution to these challenges. Instead of needing to
collect photos of real people’s faces to train a facial recognition sys-
tem, a model creator could create and use photo-realistic, synthetic
faces. The comparative ease of generating this synthetic data rather
than relying on collecting data has made it a common practice. We
present two key risks of using synthetic data in model development.
First, we detail the high risk of false confidence when using syn-
thetic data to increase dataset diversity and representation. We base
this in the examination of a real world use-case of synthetic data,
where synthetic datasets were generated for an evaluation of facial
recognition technology. Second, we examine how using synthetic
data risks circumventing consent for data usage. We illustrate this
by considering the importance of consent to the U.S. Federal Trade
Commission’s regulation of data collection and affected models. Fi-
nally, we discuss how these two risks exemplify how synthetic data
complicates existing governance and ethical practice; by decoupling
data from those it impacts, synthetic data is prone to consolidat-
ing power away those most impacted by algorithmically-mediated
harm.

CCS CONCEPTS
• Social and professional topics → Governmental surveillance;
Privacy policies; • Computing methodologies→Machine learn-
ing; Computer vision.

KEYWORDS
synthetic data, dataset development, ethical guidelines, responsible
model development, standards

ACM Reference Format:
Cedric DeslandesWhitney and Justin Norman. 2024. Real Risks of Fake Data:
Synthetic Data, Diversity-Washing and Consent Circumvention. In The 2024
ACM Conference on Fairness, Accountability, and Transparency (FAccT ’24),
June 03–06, 2024, Rio de Janeiro, Brazil. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3630106.3659002

This work is licensed under a Creative Commons Attribution International
4.0 License.

FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0450-5/24/06
https://doi.org/10.1145/3630106.3659002

1 INTRODUCTION
Facial recognition technology (FRT) has become commonplace,
used from flight check-in at airports to police crowd-monitoring.
Bias in FRT models has resulted in mis-identification and expanded
surveillance, causing unjust incarceration and other discriminatory
outcomes. Attempts to solve these issues by increasing the accuracy
of FRT run headfirst into problems; for a machine learning-based
computer vision system to be considered robust enough for a given
real-world task, it must “generalize” to images that vary widely
in quality and domain (image granularity, race, age, gender, back-
ground, head pose, hats, glasses, etc.). Datasets with this level of
granular design and annotation, that are also large enough for use
in deep learning, are nearly impossible to find due to logistical and
ethical concerns. As a result, researchers have turned to synthetic
data generation, where data is generated to resemble something
without being a representation of an instance of it — a drawing
of a generic face as compared to a photograph of a real person.
Synthetic data has been used to augment existing datasets and cre-
ate new datasets for better training and evaluation of FRT models.
Logistical and ethical challenges to data collection exist outside of
FRT, and synthetic data usage has become commonplace across
machine learning, from computer vision to large language models.
This paper examines two key risks of using synthetic data.

Synthetic data is fundamentally useful where real data is not
fit to task, necessitating that synthetic data must be both similar
enough to be meaningful, but different enough to mitigate the
reason the real data is not usable [60]. Jordan et al. propose three
attributes of synthetic data that must be met for it to function in
lieu of real data: utility, fidelity, and privacy. This paper focuses on
facial recognition because it clearly articulates the risks of synthetic
data, inherently forcing trade-offs between these attributes. There
is high difficulty in making a picture of a face private but still
usable as training data (privacy vs. utility) — a face which has been
obscured to the point where an identity could not be gleaned is less
useful [25]. Achieving fidelity in facial datasets, a measure of how
well synthetic data matches the real world, is also saliently difficult
in facial recognition use cases, as we examine below.

The first risk we focus on is the high risk of false confidence in the
ability of synthetic datasets to mitigate bias in data distribution and
representation. We demonstrate this through the real-world exam-
ple of using synthetic data for a facial recognition model evaluation.
This paper was motivated by the realization of the under-explored
risks of synthetic data while conducting the evaluation, and we
present it both to provide an example of how synthetic data is used
and to detail the concerns that conducting it made apparent. In brief,
synthetic data offers a way of diversifying datasets, but diversity
in real-world faces often follows from cultural practices that are
qualitative and meaning-laden rather than quantitative. Creating a
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synthetic dataset or adding synthetic data to existing datasets in an
attempt to diversify that dataset runs the risk of diversity-washing
— appearing to resolve valid criticism regarding a dataset’s distribu-
tion and representation but in a way that is superficial. As a result,
using synthetic data risks legitimizing technologies such as FRT
despite potentially continuing to propagate bias by achieving false
fidelity.

The second risk we examine is how using synthetic data risks
circumventing consent for data usage, illustrating the impacts by
considering the importance of consent to the U.S. Federal Trade
Commission’s regulation of data collection and affected models.
Synthetic data provides an avenue for model developers to side-step
thorny issues around collecting large-scale representative facial
datasets. Proper consent to data usage is foundational to the pri-
vacy enforcement tools that the FTC has used to require companies
delete ML models trained on improperly collected data, a key reg-
ulatory hurdle to improper data collection and resulting harmful
model deployment. Using synthetic data risks circumventing and
obfuscating consent, thus complicating deterrence and enforce-
ment.

This paper proceeds as follows: We begin in Section 2 by sum-
marizing related prior work. We first examine work on datasets
and representation, before discussing participation and consent
and power over data and models. Finally, we discuss synthetic data
and its use. We then proceed to the two titular risks of synthetic
data that this paper focuses on — diversity-washing (Section 3)
and the circumvention of consent (Section 4). We draw upon two
real-world examples: a facial recognition evaluation task conducted
using synthetic data, and the FTC’s enforcement actions against
models trained on deceptively collected data to illustrate these risks.
Finally, in Section 5 we expand upon how these two risks are ex-
amples of irresponsible use of synthetic data: consolidating power
in the hands of model creators, and decoupling data from those it
represents and those who are harmed by its improper use. It is our
intention for this research to contribute to the field by presenting
tangible examples and background for the challenges inherent in re-
sponsible use of synthetic data, thus laying foundations for further
work and debate. We call for future work to examine the breadth
and usage of synthetic data and to work towards both mitigating
synthetic data’s risks and enabling its potential for participatory
empowerment.

2 RELATEDWORK
In this section, first, we focus on the datasets that underpin ma-
chine learning systems, and detail how that work treats the specific
issue of data distribution and representation in those datasets (Sec-
tion 2.1). Next, we discuss prior work on participatory governance,
consent and data privacy, and attempts to capture some power
over dataset creation and usage by those most affected (Section 2.2).
Finally, we provide a summary of work detailing what synthetic
data is and how it is used (Section 2.3).

2.1 Datasets, Diversity and Representation
Datasets are the hidden infrastructure behind machine learning,
most visible when the systems built on them break [58]. Models de-
veloped and dependent on these large datasets can lead to biased and
harmful effects, with models used for bureaucratic categorization in

particular having a long history of harm [4, 20, 95]. The collection
of data is then frequently the starting point for ML-disseminated
discrimination and bias in domains such as hiring [81], advertis-
ing [65], pricing [106], the application of law, and government
allocation of resources [1]; as well as being vital for identifying
and enforcing against discrimination [5]. The stakes of responsible
dataset development, then, are high, and we build on critical previ-
ous work [53, 77, 78] in focusing on the ways that dataset creators
have significant impact on the harms that occur downstream via
their development, usage and deployment [63]. More narrowly, we
hope to bring focus to important risks present when synthetic data
is used in the process of creating and using datasets in machine
learning development.

Datasets used for facial recognition models, where the goal of the
model is matching an image or video of a face to an identity, have
received much scrutiny — specifically for violating privacy [15, 50].
An analysis by Crawford & Paglen [30] of ImageNet, a frequently-
used large dataset, demonstrated active labeling of faces with of-
fensive and derogatory classifications, and Prabhu & Birhane [15]
make the point that beyond obvious privacy harms such as black-
mail, the creation of one of these datasets causes similar datasets
to propagate. The recent identification of CSAM material in the
popular LAION dataset is an example of this [98]. In the case of
synthetic data, where the data is frequently derivative of previously
collected data (as expanded upon below in Section 2.3), this then
risks the continued propagation of non-consensual imagery. The
above highlights the need to focus beyond just the models. Much
of the critical AI literature focuses on vital interventions to change
model outputs that discriminate against protected classes. This
work, instead, more closely follows work such as Buolamwini &
Gebru’s "Gender Shades" [21] that is focused on the data which is
fundamental to AI system development.

To understand the risks posed by using synthetic data to create
and add to datasets used in machine learning development, it is
necessary to understand the landscape of both machine learning
development and the stakeholders impacted by it. We will use the
taxonomy of dataset development stages and subjects presented
by Khan & Hanna [63]. We lean on this taxonomy throughout the
paper, finding it to be clear in its intention of “providing a common
language for conversations across datasets” between practition-
ers, scholars and regulators. Starting from first principles, machine
learning is not rules-based like traditional software development,
but instead consists of a practitioner teaching a model to identify
patterns in a dataset. To begin, Khan & Hanna assert, the task for
which the model is being trained must be formulated and con-
strained. Next, data must be collected, meeting the constraints of
what is necessary to train a model to achieve said task. That data
collection is usually broad, requiring the data be cleaned before it
is annotated. The labels attributed to data by the annotator are of
vital importance to machine learning systems, as the systems are
taught to identify those labels in their training data. After this point,
model training, valuation, implementation, etc. may occur. Khan &
Hannah define multiple stakeholders in the process of creating the
datasets used for ML development: the curator, the data annotator,
the data subject, the copyright holder, and the model subject. The
curator is the entity responsible for dataset creation, while the anno-
tator is (frequently outsourced [45]) responsible for annotating the
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dataset. The data subject is the person whose biometric information
is present within the collected data, the copyright holder may hold
exclusive rights over that data1, and the model subject is the person
who is impacted by the decisions made by the model trained on the
data. The last three categories are fluid, and can consist of the same
person or of two or three distinct entities.

Creating a training dataset that is representative of model sub-
jects is challenging, and when done poorly, results in inaccurate and
frequently harmful outputs; here we consider how such harmmight
arise across different stages. In producing a representative dataset,
different dimensions of identities are frequently missed. Datasets
are frequently biased by necessity to meet a specific intended use of
a model, but when categories are socially constructed (such as race
and gender), the observed, inferred data that dataset curators use to
bound and constrain data collection (and that annotators must use
to label) can clash with how the data subject self-identifies. Biased
data representation is also a concern, with annotation reflecting
social biases and stereotypes across gender, race, and more [88].
This can lead to rampant misrepresentation and miscategorization
of both data and model subjects, producing forms of control. An-
notation work is inherently an interpretive project, but results in
data that is perceived to be ground truth [17]. In reality, as shown
by Recht et al. in work on testing the generalizability of ImageNet,
when attempts to replicate annotation are made, different distribu-
tional properties for the same data emerge [86]. Annotation is also
frequently the cause of artifacts in datasets that allow for models
to overfit to training data when solving a task, with many of the
concerns arising from how human data annotators are instructed to
label [108]. Beyond concerns with annotation, the question of what
data to collect when constructing a dataset to correctly answer a
question is complex. The task of annotation itself presupposes that
the question being asked of a model is one that can be answered
— Aguera y Arcas et al. demonstrate how a model trained on ‘gay-
dar’ data was in reality labeled around stereotyped aesthetic traits,
showcasing an example of labels being generated not because of
any model-pertinent aspects of the data, but rather simply because
the question was being asked [107].

Beyond the above challenges to creating a representative dataset,
there are ethical issues that are raised by efforts to produce a dataset
that represents a diverse community. Data collection requires infras-
tructure, and that infrastructure is frequently co-constitutive with
surveillance infrastructure. Even when data collection is initiated in
service of providing services to the most disenfranchised, rendering
the members of those communities hyper-visible frequently serves
to hurt those same communities, as decisions are made for them by
others [5]. These decisions can reinforce oppressive norms, such
as visual gender binaries [16, 48], further delegitimizing disenfran-
chised groups in a clear example of administrative violence [95].
Even when categorization schema of data subjects are correct, their
use as prescriptive instead of explanatory can lead to attribution
errors, co-opting classification in a oppressed group as a reason
for that very oppression. Machine learning systems used to predict
recidivism are a prime example [28], where factors like race, which
make a group member more likely to be targeted for discrimination,

1not all data is copyright protected, and even when it is, different legal regimes have
different limitations and exceptions to exclusive intellectual property rights

are frequently used instead as a predictive factor when individuals
are made model subjects.

2.2 Participation, Consent and Privacy
Participatory approaches are frequently fronted as a way of miti-
gating the harm that results from AI systems, both at the dataset
level as described above, and in model training and deployment.
These approaches focus on engaging the public, and build on pol-
icy approaches such as feedback sessions, public hearings and im-
pact assessments [42, 52]. Participatory design methods in par-
ticular focus on co-design to incorporate user context, needs and
values [18, 47, 57, 91], designing systems with those affected instead
of for them. Recently, participatory AI work has explicitly focused
on those for which AI most frequently exacerbates harm [56, 87].
Patel at al. [76] draw from previous work, including Arnstein’s
influential Ladder of Citizen Participation [6], to detail five levels
of participation in data stewardship, including: 1) informing peo-
ple about how their data is used through methods such as model
cards, 2) consulting people through UX research and surveys, 3)
involving people in data governance through panels and public
deliberation, 4) co-design of data governance and consequent tech-
nologies through structures such as data trusts, and 5) enabling
decision-making through citizen-led governance boards. We will
return to Patel’s framework when discussing the risk of synthetic
data circumventing consent (Section 4).

There is a wide — and growing! — diversity of participatory
work in AI. Examples range from crowdsourcing impacts [9, 36]
and data labeling [74] to eliciting preferences for dataset collecting
and design decisions [27]. Peng et al. [78] recommend that dataset
creators make ethically salient information clear and accessible
while actively stewarding the dataset and its future use, and en-
courage retrospective study of datasets due to the difficulties in
understanding issues at the beginning. Hutchinson et al. [53] detail
documentation requirements at each stage of the dataset develop-
ment lifecycle, with different document types for each stage, and
call for frameworks for transparency and accountability. These
fall across the range of Patel et al.’s framework, [76] and critiques
of these methods include characterization of it as ‘participation-
washing’ [41, 92], with Arnstein describing approaches such as
public requests for comment as “tokenizing” and “inadequate in
shifting power” [6]. Sloane et al. [92] argue that these approaches
can function as unrecognized labor, and the line between tokeniza-
tion and participation in cases such as crowdsourcing is quite blurry.
Birhane et al. [14] show examples of community inclusion in anno-
tating datasets, improving documentation and increasing the utility
of large language models for under-served languages, and other ex-
amples include community organizations such as the Detroit URC3
which evaluates potential partnerships between community orga-
nizations and researchers to avoid exploitation [29], and examples
from Indigenous Data Sovereignty [82]. At a large scale however,
there are still major hurdles. Groves et al. investigate the hurdle of
making participatory approaches work in the commercial AI labs
that are the primary site for AI research, and find that “corporate
profit motive and concern around exploitation are at present func-
tioning as significant barriers to the use of participatory methods
in AI” [46, p. 10].
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While the above participatory approaches center shifting decision-
making power to include data subjects and model subjects, these
approaches tend to require model creators to opt in at least for
now. Consent, though enacting a more limited form of participa-
tion, requires model creators to be wary of unfair and deceptive
practices that overstep expressly-informed consent when collecting
and using data. Indeed, consent violation is a legally cognizable
privacy harm, one with potential repercussions. In the U.S., state
information privacy laws do some work to enforce this, with the
Illinois Biometric Privacy Act (BIPA) both resulting in a significant
number of lawsuits alleging violation, and being responsible for the
largest settlement amounts from companies who have breached
BIPA by deploying FRT [96, 109]). For instance, in Vance v. IBM,
the court affirmed that IBM violated BIPA by not receiving written
consent before collecting and disseminating individuals’ images in
their "Diversity in Faces" dataset [43], even though the images used
were public. Publicly accessible personal information comes with an
intended context of use, which can be violated by memorized and
regurgitated data [24]. As will be discussed in Section 4.1, to date,
the Federal Trade Commission’s enforcement power around un-
fair and deceptive data practices has centered upon the absence of
consent. Practically, this instills consent as the most direct way for
data subjects and model subjects to participate in decision-making
around the models which affect them, albeit mostly ex post facto
through their ability to prompt enforcement when discovering that
their consent has been violated.

Consent violations frequently occur through improperly scoped
consent, where data collected for one purpose is repurposed. This
can result in adverse effects beyond the concrete privacy harms [93]
that are most often legally enforced in cases such as data breach,
e.g., identity theft. As an example, data used beyond its consented
purpose leaves data subjects at risk of discrimination harms, facing
miscategorization and expansion of surveillance, as detailed above.
Such data can also be sold and shared with third parties, further
increasing the odds that it is not being used for the purpose it was
collected, and therefore that it is frequently in violation of the con-
sent of data subjects [22]. Even when consent is nominally obtained,
transparency is often in name only, with data subjects overwhelmed
by opaque and all-encompassing digital policies, terms, and condi-
tions [75].

Ultimately, the question of consent is complex. Brown et al. [19]
argue that the current paradigm of training on publicly accessible
data makes it highly challenging to distinguish what public data
was made public with blanket versus contextual consent, and that,
therefore, obtaining informed consent is difficult at best. They make
the case for training solely on data explicitly consented for public
dissemination. We will return to this argument in Section 5, as it
supports using synthetic data generated from properly-consented
real data or responsibly procedurally created data, and criticizes us-
ing synthetic data generated and used in a manner that exacerbates
concerns around consent.

2.3 Synthetic Data
Synthetic data in machine learning is defined by its driving goal of
mimicking real-world data — it is synthesized to be used as though
it were real data for training machine learning algorithms [59]. It
differs from what is usually referred to as ‘data’, i.e. non-synthetic

data, in that it does not have an explicit 1:1 real-world referent.
When training a computer vision model to recognize a face, the data
traditionally used are representations of real faces, photographs
taken of real people. The same holds true for other forms of data —
scientific data records representations of physical phenomena such
as sensor readings, natural language data is text composed by a real
person, etc. Synthetic data is made to resemble these things, but is
not explicitly a representation of a real thing. Using the example of
a face, a synthetic face could be a drawing that looks for all intents
and purposes like a face, but that is does not represent a specific
person.

In actually creating synthetic data, however, things become mud-
dier. The term encompasses data generated by generative mod-
els, more traditionally augmented data, and procedurally created
data [67]. We differentiate between the first two and the latter cate-
gory based on how derivative of a real-world training dataset they
are. Generated data is the output of generative models: ML systems
that produce a (supposedly novel [24]) output from an input by
abstracting over their training data. One generative model that has
captured popular attention [79] is StableDiffusion, which generates
art from a user-provided input sentence [23]. Augmented data is
fuzzier, but equally derivative of a real-world training dataset; the
term tends to refer to any real-world data to which modifications
have been made. A model creator seeking to increase the perfor-
mance of a model on its specific task may create many versions of
each image sampled from the input dataset, creating augmented
data. This type of synthetic data cannot be considered inherently
private or unbiased, with generative models explicitly being found
to frequently regurgitate memorized training data [8]. At larger
scales, this type of data can be used as training and evaluation
datasets too. As detailed by by Khan & Hanna [63], datasets are
vital components the larger model development cycle, priming syn-
thetic data to reinforce and scale skewed values and requirements
that are embedded within models, datasets, and benchmarks.

Generated and augmented data differs from techniques for proce-
dural creation of data, where dataset designersmake active decisions
to create ‘net-new’ representations of data similar to what might be
found in the natural world. There are some important differences.
The easiest way to visualize how procedural creation works is con-
sidering video game character creation — a player starts with a base
face shape, and adds the features they want. Notably, with proce-
dural creation of faces, the base volumetric face scans that are used
are very far removed from the people that were scanned — they
are low fidelity representations, making data lineage even murkier.
Instead of outputs being generated from, and therefore bound by
training data, procedural creation can result in ‘net-new’ data that
never existed previously. Or, as an example outside of computer
vision and facial recognition, consider procedurally created finance
data which uses agent-based models to mimic real world data gen-
eration by creating representative agents and attempting to model
money laundering [68]. It must be remembered, however, that both
agent- and procedural-based synthetic data are highly determined
by preconfiguration and design. As such, making inferences about
the real world based on procedurally created data is difficult at best.
Recalling Jordan et al.’s framework of synthetic’s data usability, this
type of synthetic data faces utility and fidelity hurdles [60].
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Synthetic data has frequently been explored as a method to avoid
privacy concerns, increase model performance and to reduce model
bias. Privacy concerns have the longest history of motivating syn-
thetic data [60]. Healthcare [44] and financial [7] domains have been
particularly attracted to synthetic solutions due to the sensitivity
of their data. Examples including simulation studies in population
health [70]; synthetic clinical records used for IT development, ed-
ucation, and training [32]; money-laundering detection [68]; and
public release of augmented financial and healthcare datasets to
enable open science and research [49]. In contexts of societal bias,
synthetic data has been explored as a way to remove disparate
impact [40, 61, 111], to suppress imbalance effects and to racially
balance datasets [64], as well as to remove sensitive information
and blind models to race [101]. However, the latter has been found
to not always be effective in practice, with applying a ‘veil of ig-
norance’ not having any notable influence on accuracy of FRT on
under-represented categories [102].

Increasing model performance by using synthetic data has usu-
ally meant enlarging datasets to provide robustness to outliers [31,
39, 104]. Additionally, operating at a slightly different scale of en-
largement (from 0), it has been used in situations where real world
data is difficult to access. Google recently demonstrated Alpha-
Geometry, an AI system purported to solve “Olympiad geometry
problems at a level approaching a human-gold medalist”, trained
solely on a dataset of 100 million synthetic math proofs — a dataset
which could not exist using human generated proofs [99]. Com-
puter vision systems require (often impossibly) large amounts of
labeled training data in a specific domain [15].

Finally, consider the context of facial recognition. Though large,
open datasets specifically developed for facial recognition tasks
exist, such datasets are either extremely basic (i.e. passport pho-
tos with great lighting), too narrow (only contain a biased subset
of race, gender, head/body pose, etc.), or simply contain glaring
and challenging shortcomings [83]. As a result, dataset creators
utilize synthetic data. In FRT, this is either (1) procedurally created
‘synthetic’ data, where a bone structure scan is used as a basis
for volumetric face models, and then textures representing fea-
tures are stretched across that model and swapped out [110], or (2)
the perturbation of existing data to produce more diverse samples
from the existing distribution, including both simple techniques and
advanced techniques such as diffusion models and generative adver-
sarial networks (GANs) [35]. We expand upon the use of synthetic
data for FRT in the following section.

3 RISK 1: DIVERSITY-WASHING
This section presents an example of using synthetic data; first de-
scribing a dataset that is partially-synthetic, a blend of augmented
data and real data, and then describing a dataset that is procedu-
rally created synthetic data. In both cases, we detail how using
synthetic data risks creating datasets — and subsequently training
and evaluating models from that data — that fail to mitigate bias in
data distribution and representation. Furthermore, there is a risk
of propagating harm through a patina of legitimacy, and through
diversity-washing potentially harmful models.

The example we use is a real world example, where one of the
authors had previously created synthetic datasets to evaluate facial
recognition technology (FRT) [73]. We present this example to

illustrate a risk of synthetic data and ground it in a real world
setting — this is not an attempt to present novel work on FRT
evaluation.

To provide a brief background: FRT is created with the aim of
matching images of identifying faces. Companies that sell facial
recognition such as Clearview often tout accuracy rates of their
systems of 97% or more [97] — but these calculations are often made
under ideal conditions. In real world conditions, such as surveillance
camera footage, captured images of faces may be poor quality.
FRT has been shown to be prone to make erroneous matches (i.e.
identifying someone incorrectly as a match) when using low quality
images as input [51]. However, users of these systems, such as the
police, and adjudicators such as judges or members of Congress,
who are not experts in FRT or ML/AI, are at a distinct disadvantage
in evaluating companies’ claims.

3.1 Augmented Partially-Synthetic Dataset
In order to evaluate FRT models in real world settings, first, bench-
mark performance for FRT models needed to be established. This
occurred by stimulating the (highly unreliable) process of a human
identifying an individual from a visual lineup of other humans
with similar characteristics. To do so, a source image of a selected
identity was identified from the base dataset, detailed below, and
a “digital lineup” of (mathematically) similar faces from that base
dataset were created. Augmented data was then created by pro-
gressively degrading the image of the source identity, and then
this augmented data was compared to the similar identities in the
digital lineup, as well as to the source, in order to mimic real world
settings. The success of the evaluated models was defined by the
rate the correct identity was selected with the augmented data, the
degraded source images, as input.

A significant body of knowledge already exists concerning both
the obvious and non-obvious potential harms in gathering image
data containing human subjects, and the real harms of processing
such information through FRT [83]. As such, it was important to
begin with core datasets that had already been evaluated thoroughly
in the literature, rather than collect wholly new human subject data.
As such, CASIA-Webface, one of the two most widely used and
evaluated public datasets [62, 110], was selected as the dataset for
use as both non-augmented data and as the base for augmented (in
this case, degraded) data. This was chosen due to its sourcing from
crawled and scraped publicly available images of celebrities, strict
rules prohibiting commercial use, wide variation in image quality,
large number of identities (depth), and large number of images
per identity (width) — important features for the dataset that was
the provenance for later augmentation. As detailed in Section 2.1,
this choice of base dataset is inherently political despite frequently
being rendered neutral. Using it as the base for the creation of
synthetic data makes it inherently more so due to the downstream
effects of using the base dataset in generating derivative data.

The data augmentation techniques used to generate the aug-
mented portion of this mixed dataset can differentially and un-
predictably scale issues — making images black and white, as an
example, could further segment training data by racial presentation.
Model creators frequently augment data while training models, past
the stages of development where they are considering dataset col-
lection and annotation. This process has a set of well documented



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Whitney and Norman

risks for model fairness. However, in using this process to create
large base datasets, there is a change of framing that re-introduces
these risks. For example, the dataset created for the FRT evalua-
tion (created by augmenting data and combining with real data)
was created with the explicit goal of being more representative of
real world conditions. Datasets are frequently treated as ground
truth [15], hiding the decisions and processes by which they were
created. This risks ignoring issues that can occur from augmenting
data. Even if synthetic data appears ’diverse’, the generation of that
data cannot be unwound from the particular datasets and models
that it is being generated from, and any attendant shortcomings. To
start, any biased representations would at best replicate from the
original dataset. If data augmentation technique(s) impacted some
subjects differently than others, the resulting impact could be unin-
tended bias in the dataset. Since the presence of such relationships
are rarely known, much less understood statistically in datasets, it is
also possible that the sampling strategy used to choose which data
from the dataset will be used in training may actually exacerbate
harm by over-representing biased representations. Deep learning
techniques are generally already susceptible to overfitting, where a
model learns how to predict patterns in a way that pays too much
attention to the training data, and doesn’t generalize to other data
— it learns specific idiosyncrasies and meaningless data artifacts.
Synthetic data seems like it should have the capacity to remedy
overfitting, through careful and bespoke dataset construction that
debiases data distributions. One could assume this would increase fi-
delity and enable better generalization over a more diverse training
space. In reality however, when synthetic data is overfitted, these
idiosyncrasies can go through the entire model training process
unnoticed. As such, synthetic data instead increases the likelihood
of overfitting errors being propagated through, necessitating that
further technical care is taken to prevent overfitting. In our FRT
evaluation example, such preventative measures were taken by
curating the dataset so that visible artifacts such as skin tone were
at parity with acceptable real world dataset distributions. How-
ever, the perils of overfitting are a way in which synthetic data
can struggle to meet the standard of utility necessary to work as a
replacement for real world data [60].

3.2 Procedurally Created Fully Synthetic
Dataset

Beyond the above partially-synthetic dataset, there was a need to
better evaluate performance on specific types of data not present in
the original datasets that the FRT models were trained on. So, a syn-
thetic dataset consisting of procedurally created data, namely mixed
examples of non-degraded and degraded computer-generated faces [11,
80], was developed. As previously detailed, this is a common usage
of synthetic data — needed representative data was not available for
collection, and so generating synthetic data was the easiest method
of proceeding.

The Synthesis.AI software2 used to create the fully synthetic
dataset (as with most procedural synthetic human/object genera-
tion tools) works by providing unprecedented control over how a
dataset and its inherent metadata parameters are specified. This
software employs a combination of classic rendering and generative

2Synthesis AI (https://synthesis.ai)

synthesis to create photo-realistic images of human faces, bodies,
and environments [71]. A user is able to decide how much and
which type of each characteristic (in our case age, race, gender,
hair type, pose, lighting etc.). However, the tool did not make any
suggestions or place any controls based on sociotechnical norms
or demographic data (such as the census etc.) when creating a
synthetic human dataset of any type. When first testing the Synthe-
sis.AI API, a dramatically racially imbalanced dataset was returned,
even though the specification given was for randomization of the
race characteristic. At first glance, the dataset appeared diverse and
was numerically at parity for gender. However, the software lacked
permutations for Asian people, Middle Eastern people and Black
women, leading to a stark racial disparity upon deeper inspection,
and a preponderance of white men and white women despite at-
tempts at balancing racial demographics. Such a system allows any
user to easily create an unintentionally biased dataset, which could
then be used to train a biased model. Instead of mitigating data
distribution and representation concerns, this risks extending them.

As a further example, Microsoft’s FaceSynthetics [105] is a pro-
cedurally created synthetic dataset of 100,000 individuals, with
faces derived from representative 511 base scans. However, these
511 base scans include only 30 Black men, and even fewer His-
panic/Arab/Indian men and Black/Hispanic/Arab/Indian women
(borrowing the reported demographic categories), meaning that
the fully diverse population they claim include multiple racial cate-
gories fully defined by the ways in which these <30 faces can be
manipulated through a generative process. These manipulations
include fine-tuning hair, expression, and clothing, but published de-
tails on the process of how these potentially racially-coded aspects
were chosen are sparse. It is not known how those features are
distributed in real faces, and attempting to extrapolate a portion of
a representatively diverse dataset from such a small set of base faces
leads to a risk of statistical diversity without representational diver-
sity, compared to a representative dataset of real images with both
statistical and representational diversity. Synthetic data here falls
flat in addressing these complex, cultural and deeply contextualized
factors.

These tools risk falling into the ‘panacea of legitimization’ that
Frank Pasquale describes [75], where ethical concerns are not only
routed around, but are routed around in such amanner that they can
reify malpractice due to the co-constitutive nature of ML practices
and computing platforms [13]. We point to recent work focused on
toolkits for supporting practitioners in contextualizing ML system
work as an avenue for improving upon this [33].

4 RISK 2: CIRCUMVENTED CONSENT
Consent has become a key component of privacy and data protec-
tion, both via regulatory enforcement and as a necessary foundation
for the participatory approaches that have emerged as ethical prac-
tice for preventing harm. Consent also plays a role in U.S. sectoral
statutes such as HIPPA, U.S. state laws such as California’s Califor-
nia Privacy Rights Act and Illinois’ Biometric Information Privacy
Act, as well as laws in many other countries, with the EU’s GDPR
a notable example. These statutes share a common goal: to pro-
vide people with control over their personal data, via notification,
access, and consent regarding the collection, use, and disclosure
of personal data. This type of privacy regulation is referred to as
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“privacy self-management” by Solove [93], and focuses solely on
whether or not data subjects have consented, rather than on value
judgements of privacy practices. This section will focus on illustrat-
ing the risk that synthetic data poses to consent-based frameworks
by expanding upon how the Federal Trade Commission (FTC) has
functionally used consent as a key aspect of conducting enforce-
ment against companies using ML systems. The analysis is guided
by one author’s experience at the FTC, but draws upon solely public
knowledge.

4.1 Consent, Deception and Model Deletion
The FTC plays a vital role in the current U.S. privacy legal frame-
work. This framework emphasizes individuals’ notice of, and con-
sent to, the collection and use of their data. The FTC is an indepen-
dent agency of the United States government that is tasked with
protecting consumers and promoting competition in the market-
place. In the absence of federal privacy law, the FTC has played
the role of de facto privacy enforcement, primarily based on its
authority to police unfair and deceptive business practices. The Fed-
eral Trade Commission Act, and specifically Section 5, is a broadly
applicable federal statute prohibiting “unfair or deceptive acts and
practices” 3. An unfair practice ”causes or is likely to cause sub-
stantial injury to consumers which is not reasonably avoidable
by consumers themselves and not outweighed by countervailing
benefits to consumers or to competition”, while a deceptive practice
includes “any ‘representation, omission, or practice’ that is (i) mate-
rial, and (ii) likely to mislead consumers who are acting reasonably
under the circumstances” [94]. Notably, deception does not require
any proof of intent. The FTC has brought deception claims against
companies who have violated the terms of their privacy policies,
failed to uphold promises of data security, or have failed to provide
sufficient notice regarding data collection and use [94].

In settling cases against companies that have deceptively col-
lected data, the FTC has required not only that the data in question
be deleted and the affected users be notified, but also that all "af-
fected work product" [66] be deleted as well — including models
trained on that data. This approach is referred to as model deletion.
The FTC posits that this approach is necessary in order to ensure
that companies do not profit from the unfair or deceptive collection
of data, and to prevent them from using the data in the future. Intel-
lectual property is typically a tech company’s most valuable asset; it
is an important factor for securing venture capital funding and the
sale or licensing of IP often comprises tech companies’ core business
models. In forcing a company to delete models, the FTC has also
significantly changed the deterrence calculus for companies: from
paying (relatively) small fines, to potentially losing a vital business
asset [38]. The FTC has used the concept of model deletion in recent
enforcement actions against companies that have collected data de-
ceptively, including Amazon Ring, RiteAid, Everalbum, Clearview
and Kurbo (WeightWatchers) [54].

4.2 Synthetic Data and FTC Enforcement
The use of synthetic data risks undermining the utility of deception-
based enforcement in regulating the collection of data, and therefore

315 U.S.C. Sec. 45(a)

also undermines the regulation of models trained on such synthetic
data. As previously described in Section 2.1, datasets play a foun-
dational role in the models trained on them, and trusting models
trained on deceptively collected datasets to operate without harm
seems foolhardy. Enforcement by the FTC has hinged upon argu-
ments that data was collected and used deceptively — often argued
due to the absence of proper consent. By using synthetic data, how-
ever, it becomes easy for model creators to obfuscate the origins
and consent of the data being used to create models. In the case
of a procedurally created synthetic dataset, consent is no longer
a procedural hook to limit downstream harms flowing from use,
while in other synthetic datasets, unless data lineage is carefully
recorded, traceability to the original data is at risk [89].

Synthetic data also exacerbates existing logistical challenges for
model deletion as an enforcement tool. Synthetic data brings ques-
tions of data lineage to the forefront, as ever-more-complicated sets
of original, augmented, and derivative data are produced based on
new face datasets with millions of people. As a small example, keep-
ing track of whether a single version of a dataset has undergone
ethical testing, or was sectioned off as a test dataset, is a challenge
for FTC enforcers — let alonewhen datasets include different scaling
factors and different degradations, with different subsets of identi-
ties (generated, procedurally created or real) and different levels of
augmentation. One of the key hurdles to model deletion is the re-
quirement for a high level of internal company documentation and
logging. This documentation and logging is essential to identify the
data that was collected illegally or deceptively, as well as the work
product that was developed using that data. However, not all com-
panies have robust internal documentation and logging systems,
which can make it difficult for the FTC to determine the extent of
the harm caused by the illegal or deceptive data collection practices.
Another challenge is authentication and audit. Companies must
demonstrate that they have successfully deleted the affected work
product, and the FTC or other enforcement bodies must have a way
of verifying that the company is being honest. However, this can
be difficult, as it requires a level of trust in the company and its
processes. In a setting where the FTC has to this point relied on
settlement agreements, synthetic data further complicates existing
logistical challenges, presenting important friction to enforcement.

4.3 Beyond Deception
In considering enforcement against companies using ML systems,
it is important to note that beyond deception, the FTC has also en-
forced its unfairness authority. This occurred in the case of RiteAid,
where a biased facial recognition model was used to falsely iden-
tify people in certain protected classes as more likely to commit
crime. This case was first-in-kind, but demonstrates that the FTC
is not solely beholden to deceptive data collection as an avenue
for enforcement. However, the details of the case were particularly
egregious, with RiteAid failing to undertake even the most basic
risk assessments, and in part hinged on a violation of a previous
settlement. Additionally, the system was trained on in-store camera
footage without consent from data subjects, and model subjects
were not notified or able to opt-out. Thus if RiteAid had been in-
vestigated for deceptive data collection, harm resulting from this
system could have been prevented at the point where the system
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was trained non-consensually. But what would happen if RiteAid
had trained its FRT model on synthetic data? FTC enforcement
would have to hinge on unfair practice alone. While successful
here, the case against RiteAid was egregious. The Supreme Court’s
neutering of the FTC’s power to levy fines [26], in addition to both
the deception and unfairness enforcements occurring through set-
tlement rather than being decided in court, means the boundaries
of the FTC’s ability to engage in this type of enforcement are still
undefined. As such, the FTC’s ability to intervene both at the data
collection stage (deception) and the model deployment stage (un-
fairness) gives options4. Synthetic data complicates the usage of a
demonstrably useful tool for protecting data subjects and model
subjects, by complicating the use of the deception standard.

Finally, it cannot be forgotten that while risking increased fric-
tion and obfuscation, synthetic datasets composed of augmented
or generated data are demonstrably derivative, inherently based on
real data representing real data subjects. And, despite the veneer
provided by language such as ‘net-new’, procedural creation of
synthetic data is also derivative, and thus suffers from issues of con-
sent and participation too. In the example discussed in Section 3.2,
the procedurally created synthetic dataset for FRT evaluation, the
dataset was generated using Synthesis.AI’s commercial software.
Software tools such as Synthesis.AI often utilize face and body scan-
ning technology as the foundation of their generative processes,
raising concerns around the limits of informed consent. The data
subjects upon which these technologies are trained are rendered
invisible and thus the use of such software is predicated on, at
best [84], ambiguous consent. Similarly, it is important to acknowl-
edge that the data subjects whose likenesses are captured in the
CASIA-Webface, while primarily scraped from public sources, were
not asked for informed consent regarding their data’s use — even
when it has been shown that having your face included in such a
dataset increases the accuracy of facial recognition models on your
specific face [37]. As detailed by Peng et al. [78], using derivatives
of common datasets introduces scaling concerns around propaga-
tion of improperly consented data, and as such, using synthetic
data risks further scaling propagation of this issue. In decoupling
data subjects from their data, this also removes their capacity to
participate. Reconsider the Participatory Data Stewardship Frame-
work mentioned above in Section 2.2; all five levels require that
data subjects have at the very least visibility, and preferably control,
over their data [76]. In further removing the ability for data subjects
to consent, not only is that minimal level of agency reduced, but the
potential for involvement in decision-making that directly effects
them is erased.

5 DISCUSSION
The positioning of synthetic data as a panacea to problems of rep-
resentation and deceptive data collection, furthered by its portrayal
as synthetic, as neutral, as created without lineage, risks placing the
means of fixing those problems in the hands of those who created
them and trusting that they’ll get it right. Instead, the kinds of
racialized misrecognition and bias that Ruha Benjamin, Safiya No-
ble, and others have drawn attention to must be considered when

4While there exists the potential for both unfairness at data collection and deception
at model deployment, cases to-date have lined up in this fashion

determining whether to use synthetic data. As Benjamin argues,
our current machine learning development ecosystem must reckon
with a history of discriminatory design in which racist values and
assumptions are built into our technical systems. The ’new Jim
Code’, as she terms it, works to deepen the production of disparate
harm, even while cloaked in neutrality and the language of innova-
tion [12, 55]. Discriminatory practices are inherent to the current
state of AI system development, privileging whiteness and discrim-
inating against people of color, specifically women of color [72].
Sara Ahmed’s work on the phenomenology of whiteness highlights
the danger of a solution that further enables a reification of non-
whiteness as a space outside. She details that "institutional spaces
are shaped by the proximity of some bodies and not others: white
bodies gather, and cohere to form the edges of such spaces” [3]. Syn-
thetic data as a fix in this racialized context risks further enabling
amplification of racial hierarchies, allowing for those within the
boundaries to actively constitute the exclusionary and weaponized
edges of these spaces: to define a face, train a model based on
that definition, and decide its performance based on labeling racial
boundaries. It risks not alleviating but instead contributing to race
as a technology, designed to “stratify and sanctify” social injustice
in the architecture of everyday life [12]; an added consolidation of
power.

Another example of the risks of consolidation of power through
synthetic data arises when considering the inherent relational as-
pects of data privacy. Solon Barocas and Helen Nissenbaum identify
the risk of a "tyranny of the minority" in big-data analytics when
"the volunteered information of the few can unlock the same in-
formation about the many" [10]. More recently, Salome Viljoen
emphasizes the importance of a relational theory of data gover-
nance [100]. As Viljoen explains, dataflows entail not only ‘vertical’
relations between a particular individual and a data collector, but
also ‘horizontal’ relations between the individual and others shar-
ing relevant population features. Viljoen focuses on the manner
in which informational infrastructures rely on group classification
to make sense of individuals by taking a ‘relevant shared feature,’
generating a prediction based upon that shared feature, and then
applying this prediction. When those shared features are derived
from synthetic data, decoupled from any real context and perhaps
even specifically created to rectify gaps in representation, we hand
power to those creating that synthetic data. We risk imposing de-
signers’ decision-making in lieu of and upon those least likely to
have been represented and most likely to be harmed by both the
diversity-washing and the side-stepping of consent. After all, if
they were represented or able to consent in the first place, there
would be no need for additional synthetic data. Data minimization
and lineage principles [54] are a first step towards mitigating this
issue by requiring documentation and its requisite transparency
into where data has come from. The need for this is also readily
apparent when considering contexts such as the EU’s Right to be
Forgotten [85], where synthetic data further complicates the abil-
ity to be removed from a dataset. In making it harder to decouple
data from its context through the use of synthetic data, there is an
avenue for mitigating consolidation of power and ensuring consent.

Many of the risks discussed in this paper propagate from the
centralized decision-making nature that synthetic data imposes. Par-
ticipatory governance structures, as mentioned in Section 2, offer a
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potential solution here — synthetic data could be created to repre-
sent concerned groups by those self-same groups, re-establishing
control and mitigating some concerns around consent and contex-
tualization. Many have called for training data to be restricted to
only data that is explicitly consented to be used, though consent is
difficult (if not impossible) to establish and propagate over multiple
degrees of separation [19]. But synthetic data, when generated to
purpose by concerned communities, can provide a potential solu-
tion. Models such as those presented in the field of Indigenous Data
Sovereignty, where there has been effective push back against ex-
ternal categorization schemas [82] show potential for participatory
governance models to address group misrepresentation [5].

Additionally, there are practical considerations that make ’par-
ticipatory synthetic data’ an attractive path forward. Both language
and computer vision models are beginning to contend with a phe-
nomena commonly referred to as ‘garbage-in garbage-out’ [69, 90].
This refers to the advent of generated data becoming commonplace
and public, and the related struggles by those capturing data to
differentiate between that data and real data, leading to data gener-
ated by a system such as ChatGPT becoming its own training data
in the future. Work by Agnew et al. [2] examines the use of these
models to replace participants in industry research, highlighting
how proposals to do so are motivated by cost reduction and data
diversity. They identify these proposals as facing issues in aligning
with the values human participants identify as important, specifi-
cally including inclusion and representation, necessitating further
contextualization and bespoke dataset creation. In such a world,
large tech companies may have business motivations for engaging
with responsibly created synthetic data, and as demonstrated by
Deng et al. [33], methods exist for enabling machine learning prac-
titioners to better contextualize the work they do — a vital aspect
of any future responsible synthetic data work.

Further responsible dataset development frameworks that ex-
plicitly attend to the particulars of synthetic data, as well as tooling
and practice that examines and makes transparent the provenance
of synthetic data, are needed. As examples of this, we propose ’how
could less risky synthetic data be produced?’, as well as ’how could
governance approach consent issues with synthetic data?’ as impor-
tant future research questions. In future work, we hope to follow
the call of Denton et al. [34], contesting machine learning datasets
and focusing on the “contingent, historical, and value-laden work
practices of actual machine learning researchers” to better under-
stand how the practice of using synthetic data is motivated, the
contingent conditions that have lead to its common usage, and
the norms and routines that surround it. In so doing, there is the
opportunity to survey and better understand the use of synthetic
data and create better tools and frameworks for both mitigating its
potential for harmful power consolidation, as well as to envision
how it can be used as a tool for taking power back [103].

6 CONCLUSION
In this paper, we build on prior responsible dataset development
work by focusing on the under-explored impacts of synthetic data
on dataset development. Synthetic data will continue to play an
ever-increasing role in the training of machine learning systems
as real-world data becomes harder to capture, and we must attend

to language that paints it as a panacea. We show two examples of
the risks of synthetic data, diversity-washing and consent circum-
vention, and discuss how it is a complicated tool, gravitationally
prone to consolidation of power, but with potential for being used
to enable participatory governance instead of squashing it.

7 RESEARCHER ETHICS AND SOCIAL
IMPACT

7.1 Researcher Positionality Statement
The first author is a white Latino AI researcher significantly in-
fluenced by their research, which has examined how policy and
technical practice interplay and talk past each other, and how this
dynamic affects those most likely to be harmed by AI systems. They
worked in ML before moving into academia. The second author is
a Black AI researcher with a variety of experiences in government,
industry and now academia. They have access to the resources
necessary to conduct their research, and recognize that that they
have access to resources that many others do not. They strive to be
conscious of their biases and to mitigate their impact on their work
as much as possible. Both authors were motivated to write this
paper by the realization that the risks of a commonplace technical
practice were under-explored when discussing a real world exam-
ple (detailed in this paper), and hoped to provide a starting point
for understanding how using synthetic data could go wrong. Both
researchers are based in the U.S., and that heavily influences both
the examples they draw upon to show risks, the harms that they
find salient, and the Overton window through which they view the
world.

7.2 Ethical Considerations Statement
This work focuses on illustrating risks through the analysis and
description of public-facing information and prior work through
a new lens. As this is an example of RAI work that is focused on
human impact but that does not involve study participants or create
or deploy new technology, the main ethical consideration is in how
this prior work is presented, where we actively attempted to avoid
falling into some of the same traps we discuss — we do not wish to
make the technology seem inevitable or help to legitimize it, while
we also do not want to forestall the opportunity for the risks we
present to be mitigated and it to be used in participatory and ethical
manners. We believe that the FRT evaluation example provided in
this paper, created to assist in preventing unfounded FRT claims
being used in the criminal justice setting, necessitated the creation
of these datasets and the usage of synthetic data, but that is far
from an ever-present conclusion.

7.3 Adverse Impact Statement
The largest adverse impact we are wary of is that these risks could
be taken as playbooks — we hope that nobody comes away thinking
that there is opportunity to take advantage of them. We think that
by making them public we are doing more of a good, as these
examples demonstrate that the potential for these things already
exists, and active exploration and research focused on mitigating
and re-directing potential is the best way forward. We also see
that this work could potentially draw scrutiny to legitimate uses
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of synthetic data, but hope that any added friction there is worth
preventing potential malpractice.
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