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ABSTRACT

Explainable AI (xAI) methods are important for establishing trust

in using black-box models. However, recent criticism has mounted

against current xAI methods that they disagree, are necessarily

false, and can be manipulated, which has started to undermine the

deployment of black-box models. Rudin (2019) goes so far as to

say that we should stop using black-box models altogether in high-

stakes cases because xAI explanations ‘must be wrong’. However,

strict fidelity to the truth is historically not a desideratum in science.

Idealizations–the intentional distortions introduced to scientific

theories and models–are commonplace in the natural sciences and

are seen as a successful scientific tool. Thus, it is not falsehood qua

falsehood that is the issue. In this paper, I outline the need for xAI

research to engage in idealization evaluation. Drawing on the use

of idealizations in the natural sciences and philosophy of science,

I introduce a novel framework for evaluating whether xAI meth-

ods engage in successful idealizations or deceptive explanations

(SIDEs). SIDEs evaluates whether the limitations of xAI methods,

and the distortions that they introduce, can be part of a successful

idealization or are indeed deceptive distortions as critics suggest.

I discuss the role that existing research can play in idealization

evaluation and where innovation is necessary. Through a qualita-

tive analysis we find that leading feature importance methods and

counterfactual explanations are subject to idealization failure and

suggest remedies for ameliorating idealization failure.
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1 INTRODUCTION

The ideal gas law dating back to 1834, along with its simpler cousin

Boyle’s law from the 1660s, are still used to explain how gases

behave. Boyle’s law captures the inverse relationship between pres-

sure and volume at constant temperatures, which can explain why

a balloon’s inflation level changes amidst elevation changes. The

ideal gas law complicates the picture by adding the influence of tem-

perature changes and molarity to gas behavior. However, both these

laws involve distortions and departures from the truth [27, 78]. Real

gases do not behave ideally. Particles are assumed not to interact

(even though they do), and the actual relationship between pressure

and volume is more complicated than either law lets on. Despite

this, the ideal gas law is still highly successful–a highly successful

idealization (i.e. an intentional distortion introduced to scientific

theories and models).

Contrast this with a more controversial contemporary case. In

2021, RIVM, the Dutch health institute, constructed a model to

measure the spread of nitrogen pollution. In order to reduce com-

putational complexity, the model treated nitrogen deposits com-

ing from roads as spreading only 5km, while the deposits from

farms traveled much longer distances. However, this distortion–

this idealization–was not a success, and was later removed because

it disproportionately put the pollution blame on farms instead of

highways [104]. What makes the ideal gas law a permissible, even

desirable, distortion, but the idealizations in the Dutch nitrogen

model problematic, needing revision? It cannot simply be that the

Dutch nitrogen model contains falsehoods vis a vis an idealization,

or a lack of fidelity to the phenomena, since the ideal gas law does

the same.

Now consider the topic at hand: explainable AI (xAI) methods.

Rudin [85] argues that the increasing trend of using black-box

ML models across science and society is problematic, precisely

because the methods we use to interpret these models provide

us with necessarily wrong explanations of how they work. Other

recent works have painted a picture of mounting criticism that

leading xAI techniques are unreliable, subject to manipulation, and

different techniques often disagree [2, 21, 48, 91, 92]. Some critics

argue that xAI is a ‘false hope’ [31], where methods can engage in

explanation hacking [99] or fairwashing [1], leading users to unduly

trust models [32, 51, 59], and more [30]. This raises the question:

Do the falsehoods and approximations (i.e. idealizations) operating

in xAI have the same secret of success as the ideal gas law? Or are

the critics right that current xAI methods need improvement before

systematic deployment, like the Dutch nitrogen case? When are

deviations from the truth successful idealizations? When are they

deceptive distortions?
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This paper seeks to animate a new research program for the

study of xAI idealizations. Idealization evaluation moves beyond

concepts of falsehood or model fidelity capturing a deeper issue: the

norms and practices surrounding model limitations and their con-

text of appropriate use. I introduce a broad evaluation framework

for idealization evaluation in xAI that aims to separate successful

idealizations from deceptive explanations (SIDEs) (sect. 4). I identify

areas where existing xAI evaluation methods are useful for ideal-

ization evaluation, and where innovation is necessary. To build this

framework, I first take inspiration from the idealization practices

in the natural sciences (sect. 3). I take an off-the-shelf theory of

idealization influential in philosophy of science, the minimalist

view of idealization, and apply it to feature importance (sect. 4)

and counterfactual explanation methods (sect. 5), showing through

a qualitative analysis that idealization failure is common. Lastly,

I consider ways of ameliorating idealization failure and point to

future research directions for building a theory of idealization for

xAI (sect. 6). It is also important to say what this paper does not

do. It does not argue for a new philosophical theory of idealization

or seek to diagnosis exactly what kind of idealization xAI methods

engage in. Instead, I provide a modular framework for and show the

potential for xAI researchers to engage with work on idealization

in philosophy of science. The paper aims to make the following

contributions:

(1) Conceptualizes the field of xAI as solving an idealization

problem

(2) Introduces the SIDEs framework for evaluating idealizations

in xAI, derived from normative foundations of idealization

in the natural sciences and philosophy of science.

(3) Provides a theoretical grounding for novel evaluation meth-

ods for xAI.

(4) Identifies possible novel practices of idealization in xAI that

needs normative analysis.

2 BACKGROUND AND RELATEDWORK

The ever-growing fingerprint ML has on the production of scien-

tific and social knowledge comes with challenges. One often cited

issue is model opacity [12, 16, 20]. Transparency of ML decisions

is important for building trust [35, 41, 59, 63], it might be legally

required [34, 88], and convincing arguments have been made for a

moral right to explanation in high-impact contexts [106]. This need

for transparency inspired a proliferation of different interpretability

and xAI techniques to solve the problem of opacity by providing

insight into the reasons behind ML classifications. Post-hoc fea-

ture importance methods remain the most influential approach

in xAI. These methods seek to approximate how much particular

features contribute to the model’s decision locally around each

prediction. Examples include LIME [81], SHAP which utilizes coali-

tions game theory [61], and saliency maps that visualize regions

of interest [3, 90]. These methods differ from example-based or

decision-rules [67], and differ from global explanation methods

that seek to capture the behavior of a black-box system as a whole

[40, 52]. However, there are ways to use LIME and SHAP to get close

to a global explanation by aggregating many local explanations.

Counterfactual explanation (CE) methods have recently gained no-

toriety as the leading alternative to feature importance methods

[5, 37, 62, 68, 86, 103, 105, 107]. CE methods seek to answer what-if-

things-had-been-different questions by probing the ML model to see

what minimal changes would reverse the ML decision. There are

a variety of different algorithms for generating or filtering which

counterfactuals would be relevant in different contexts and for

different stakeholders (see [42] for a review). Despite these acheive-

ments there remain conceptual and evaluative challenges to xAI

and explainability.

Conceptual issues for xAI. There are several conceptual contri-

butions that philosophers of science have made in debates around

xAI. Most notably, on the concept of explanation [63]. Central ques-

tions concern what type of information is required to fulfil the defi-

nition of an ‘explanation’ in philosophy of science [15, 28, 63, 70, 72],

such as conforming to a covering-law view of explanation [28]

or having an additional link between the model and the world

[96]. Others focus on ethical considerations regarding whether cer-

tain xAI methods can fulfil moral requirements for explanation

[105, 106], such as a principled reason explanation [5]. These nor-

mative based approaches have exposed various challenges with

xAI. For example, Symons and Alvarado [102] discuss the issue of

epistemic injustice in the context of trying to solve ML opacity.

Others have suggested that CE methods have the potential to hide

bias [1, 5, 100, 101]. While even some argue that xAI methods are

unnecessary and that model evaluation should focus instead on

notions of reliability [24, 25, 36, 60]. Discussions of the norms of ex-

planation are no doubt important and necessary. However, as I hope

to show in this paper, norms of explanation are distinct from the

norms and ideals that govern idealization. However, only recently

has their been a suggestion that the concept of idealization in xAI

may be useful [10, 29]. Nevertheless, here researchers stop short

of discussing how xAI researches could actually use idealization

theory, and how we could evaluate idealizations.

Current approaches to xAI evaluation. Evaluating xAI meth-

ods in computer science include experimental methods, such as

comparisons of accuracy and model fidelity between different al-

gorithms and benchmarks [7, 59], whether methods are robust

under manipulation or perturbations [2, 21, 91, 92], or whether

such methods conform to human expectations [33, 65, 69]. Current

evaluation methods have exposed a number of vulnerabilities. Ac-

curacy tests conducted on feature importance methods, found that

the best performing method only approached 85% agreement with

the black-box model, with LIME often scoring lower [52]. Further-

more, feature importance methods were found to be vulnerable

to adversarial manipulation. Slack et al. [92] were able to create

explanations that hid the most salient feature for classification for

SHAP and LIME. Ghorbani et al. [32] found such methods were

highly sensitive to small changes to input data, with others finding

that they are not able to capture causal notions [59, 76, 85]. Coun-

terfactual explanation methods can also fall prey to manipulation.

Specifically, it was found that hill-climbing CE methods can con-

verge to different local minima resulting in possible manipulation

[91]. They also suffer from the rashomon effect where different

counterfactuals explaining the same decision can be contradictory

[17, 56].

While current methods of xAI evaluation are no doubt insightful,

important gaps remain. Current experimental methods actively
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look for vulnerabilities and look for cases where methods break

down or where new methods show an improvement compared to

benchmarks. However, they stop short of providing an analysis that

evaluates whether the limitations and the distortions xAI methods

introduce are actually problematic or could be a case of a successful

idealization. Instead, several critics simply point to the existence of

possible manipulation and limited model fidelity, as itself a strike

against the method [2, 48, 51, 59, 85]. While others have argued

that current notions of fidelity are ill-equipped to capture cases of

misleading explanation [7, 51]. The potential for misleading expla-

nations has also inspired a user-centered approach to evaluation,

where xAI evaluation is geared toward fulfilling either actual user

preferences, or expected user perceptions of usefulness [41, 84, 109],

including the introduction of normative stakeholder sensitive frame-

works [22, 44, 54, 66, 114]. Again, while this evaluative approach

is important, normative and theory-based evaluations concerning

the potentially positive role a lack of model fidelity could have for

xAI methods are lacking.

Closing Gaps. This paper aims to address the above gaps by

introducing the concept and framework of idealization evaluation.

While model auditing techniques look for vulnerabilities, idealiza-

tion evaluation asks whether such vulnerabilities are problematic

or actually a successful tool. Moreover, idealization evaluation pro-

vides the conceptual tools for identifying the fundamental goals for

xAI more so than just looking at theories of explanation. With this

paper, I hope to show the need for xAI research to build a theory of

idealization and engage directly in idealization evaluation. Without

a proper theory of idealization, it remains difficult to thoroughly

diagnose the success of xAI methods. Idealization is inevitable, but

if done right, idealization is desirable. My approach in this paper

takes inspiration from idealization in the natural sciences and the

philosophy of science to gain insight into how researchers can be-

gin the project of idealization evaluation in xAI. I return to how

idealization evaluation fits within current xAI research in section 4.

3 IDEALIZATION IN THE NATURAL

SCIENCES AND PHILOSOPHY OF SCIENCE

Idealizations are the (intentional) distortion of real-world features

that are present in a model or theory. In science idealizations are

many. Examples include the ideal gas law and frictionless planes in

physics, perfectly rational agents in economics, infinite populations

and the absence of genetic drift in biology, etc. The way philoso-

phers of science understand the concept of idealization might be

best illustrated with an example outside of science. The Tube map

of London’s underground has neatly organized lines, and the circle

line resembles a circle. However, the Tube map distorts the actual

layout of the Tube tunnels. In reality, the interconnection of tunnels

is complex and rarely a straight line [80]. The official Tube map does

more than leave out detail; it intentionally distorts the real layout

of tunnel paths. The Tube map idealizes London’s subway structure.

Philosophers of science have sought to understand and conceptu-

alize the nature, function, and epistemic value of idealizations in

scientific inquiry [27, 55, 100].

Table 1: Features of Idealization

Idealization

Features

Description

Purpose The purpose / function of the idealization

(e.g. epistemic purpose, like understanding;

ethical purpose, like recourse and contesta-

bility, etc.)

Idealization

Practice

The set of scientific methods and practices

that categorize a type of idealization, along

with the justification of those practices (e.g.

Minimalist idealization)

Ideals Values and norms underlying an idealization

practice that govern rule development (e.g.

causal-entailment, user feasibility)

Rules The way ideals are operationalized into a

metric of evaluation

User-facing

Explanations

How idealizations are presented as explana-

tions to end-users

Features and types of idealization practices: In a landmark

paper in philosophy of science, Weisberg [110] proposed that ideal-

izations should be categorized by their specific scientific practices

made up of the activity of scientists, the norms or values that govern

these practices, and how these norms are justified. We can trans-

late these aspects of idealization into three features (idealization

practice, ideals, rules) that are important in the natural sciences,

adding two additional features for xAI (See Table 1). Philosophers

of science have conceptualized several different idealization prac-

tices in the natural sciences, like the unique quality of infinite

idealizations [89] and asymptotic idealizations in physics [8, 95],

hypothetical-pattern idealization in biology [83], the practice of

Galilean idealization, multiple-model idealization [110], and more.

In this paper, we restrict discussion to one influential theory of ide-

alization, Strevens’ [93, 94] minimalist view of idealization (MinI).

Below I will discuss how MinI works in a simple physics case, and

in the next section discuss why MinI resembles the idealization

practices in xAI and is a good place to start for evaluating xAI’s

idealizations. In section 6, I discuss alternative idealization practices

that xAI could be engaged in.

Minimalist idealization in physics. The underlying norm

for MinI is that simple models and explanations are better than

more complex ones. Understanding phenomena requires isolat-

ing relevance from irrelevance often requiring idealization. MinI’s

idealization practice consists of devising scientific (or mathe-

matical) methods for reducing the number of features that give rise

to a phenomenon, highlighting the difference-makers, and only dis-

torting the non-difference-makers. As such, the governing ideals

for MinI are simplicity and isolating difference-makers [93, 94]. In

physics, relevance and difference-making is usually a type of causal

or dependency entailment, where some causal consequence can

be (logically) derived from a set of initial conditions along with a

causal law. In cases where the law is non-causal, the entailment is
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a different type of dependency entailment (such as a mathematical

dependency) [53]. While Strevens [93] focuses on causal difference-

making, others have adopted non-causal approaches to MinI [9].

The most discussed example of MinI is the ideal gas law. The

ideal gas law introduces the false assumption that a system consists

of N non-interacting particles so that physicists can clearly see that

phase space is proportional to volume. The justification for adding

the idealization of non-interacting particles is that in contexts of

low pressure and high temperature, particle interactions are virtu-

ally insignificant to the relations between pressure, temperature,

molarity, and volume. The idealization highlights this irrelevancy

in a way that a more accurate representation hides.

However, if we remove the idealization, we can still determine

the irrelevance of particle interactions. We can derive the virial

equation of state directly from statistical mechanics with arbitrary

precision by extending the equation indefinitely, where each added

term is derived from an increasingly detailed and accurate repre-

sentation. However, the contribution of each added term becomes

vanishingly small, again resulting in the ideal gas law [100]. Thus,

the ideal gas law satisfies the inclusion and fidelity rules of MinI

by only removing and distorting aspects that do not affect causal-

entailment (i.e. only distorting non-difference-makers). In cases

where entailment fails and the ideal gas law does not capture gas

behavior (e.g. in high pressure), other laws are required (e.g. Van

der Waals). Importantly, even if it is possible to de-idealize in this

case, MinI is still appropriate. MinI captures the difference-makers

that a more accurate alternative does not. As such, idealized dis-

tortions are permanent fixtures–even if they can in principle be

removed–because they distinguish relevance from irrelevance.

Idealization in xAI?. Machine learning is not the type of prac-

tice that philosophers of science have built their idealization the-

ories around. ML models are complex instead of simple and they

are not constructed with built-in theoretical assumptions where

model equations explicitly represent processes in the target system

[46]. ML models are often used precisely because such theoretical

assumptions are unavailable, or because researchers are interested

in prediction or overlooked patterns of interest. Moreover, in the

case of xAI, the xAI model is an idealization not of the world but

another model (the ML model). Thus, we need to separate between

two questions of xAI and ML idealizations:

• Model-World question: How do black-box ML models

idealize some real-world phenomenon? (e.g. how doMLmod-

els idealize aspects of disease indicators?) [23, 96, 97]

• Model-Model question: How do xAI methods idealize

how a black-box ML model works? How is an xAI method an

idealized representation of the black-box model? (e.g. how

do feature importance methods idealize aspects of the ML

model decision process?)

XAI mainly concerns the Model-Model question (we return

to Model-World questions for xAI in sect. 5). Like the ideal gas

law, there are several similarities between the xAI project and

MinI. Current work in xAI often describes the ultimate goal of

xAI methods as uncovering how black-box models make decisions,

capturing how various inputs can cause a particular output in the

black-box model [63, 76, 108]. This leaves Fleisher [29] to argue that

feature importance methods are a kind of MinI because they satisfy

simplification, flag difference-makers, and focus on a specific causal

pattern in the black-box model that gives rise to the decision (i.e.

answering the model-model question). For example, LIME uses

linear approximation methods that distort aspects of the black-box

model decision making process, but does so by aiming to find the

features that are the central difference-makers for a given local

decision (e.g. high debt is the largest difference-maker for why

the black-box model recommended loan rejection). But are feature

importance successfully engaging in MinI, like the ideal gas law?

4 TOWARD A FRAMEWORK FOR

IDEALIZATION EVALUATION IN XAI

In this section, I introduce the SIDEs framework. SIDEs consists of a

high-level modular workflow (Figure 1) that can guide researchers

with key questions for reflection and qualitative evaluation of xAI

idealizations. I go through each phase of SIDEs, identifying areas

where existing theories and experimental evaluation techniques

are useful and where innovation is required. If idealizations meet

the standards for each phase, with alignment between phases, then

the idealization is successful. Idealization failure occurs when there

is misalignment or the idealization fails to meet the standards for a

given phase. Throughout this section, leading feature importance

methods, LIME and SHAP, are qualitatively evaluated to illustrate

how SIDEs can identify risks of idealization failure. Section 5 con-

siders CE methods.

Figure 1: SIDEs Workflow

4.1 Purpose

In philosophy of science idealization analysis begins with an ideal-

ization practice. However, xAI calls for starting idealization analysis

with the purposes that researchers are aiming to achieve with ide-

alizations [14]. In the natural sciences, idealizations are discussed

in the context of ideal scientific agents, so the central purpose of

an idealization is presupposed to be epistemic by enabling under-

standing of phenomena [78, 82]. However, xAI methods serve a

variety of purposes beyond epistemic purposes, including ethical

purposes like recourse, where the aim is informing end-users about

actionable changes that could reverse a negative decision [103]. To

capture this difference, the SIDEs workflow starts with identifying

the overall purpose the xAI method serves in a given context.

I want to highlight two potentially conflicting purposes of xAI

methods: epistemic and ethical purposes. However, additional pur-

poses are possible (e.g. legal compliance). While it can be helpful to

discuss purposes of xAI broadly, finer grained aims are more useful

for idealization evaluation. For example, fine-grained epistemic pur-

poses could be understanding the phenomena the model bears on

[96], predictive knowledge [38], user-specific epistemic goals [98],
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and more [13, 73]. Ethical purposes include fairness [4], providing

users with recourse (i.e. actionable interventions) [105], exposing

model bias, etc. Purposes are not necessarily mutually exclusive and

may overlap. A single xAI explanation might aim to satisfy several

purposes at once, such as providing users understanding of the

model and building users’ trust in the model, while also providing a

user with algorithmic recourse. SIDEs does not preclude xAI meth-

ods from serving multiple purposes; however, the bar for successful

idealization could become considerably higher (see section 5).

4.1.1 Evaluating Purpose. The purpose phase in SIDEs asks re-

searchers to reflect on what purposes an xAI method does and

should have in a specific context. There are several existing works

that have identified various purposes that xAI methods serve [49,

59], and there is normative and theory-based work on xAI con-

cerning what purposes xAI should have that can be helpful for

evaluating purpose [44]. A central pitfall for xAI methods is the

risk of idealization failure due to misalignment with purpose. For

example, in the original LIME paper, Ribeiro et al. [81] describe the

motivating purpose behind LIME as establishing user trust. How-

ever, trust could have divergent underlying aims. On the one hand,

trust can serve an ethical purpose. In clinical cases, patients trust of

a doctor’s diagnosis is often not grounded in the patient’s knowl-

edge or understanding of the diagnosis [64, 112]. On the other hand,

there are other contexts where trust is only achieved when users

understand the reasoning behind decisions. This tension between

different functions of trust complicates the picture of whether an

xAI method engages in idealizations that could fulfil these various

purposes. For example, Lakkaraju and Bastani [51] found LIME is

able to manipulate user trust.

4.1.2 Role and limits of current work. Current research directions

in xAI are well-placed to evaluate the purposes that xAI methods do

and should have, with significant work already being done [14, 41,

49, 59, 70]. Re-conceptualizing xAI as an idealization problem relies

on this work as the first fundamental step toward establishing how

model fidelity should be understood and which features of black-

box models can be distorted (i.e. idealized). Idealization evaluation

asks researchers when analyzing purposes of xAI to consider the

extent to which model fidelity matters.

Key questions for the purpose phase are:

• What purpose does an xAI explanation have in a particular

context? What purpose should it have?

• What aspects of the model need to be known for a particular

purpose?

• Example: What notion of trust is an explanation aiming for

in a particular context?

• Success: The purpose of the xAI explanation is appropriate for

the given deployment context.

4.2 Idealization practices

As discussed in section 3, idealization practices consist of the set

of scientific methods and practices along with the justification of

those practices. One central research area in philosophy of science is

conceptualizing different idealization practices across the sciences

into distinguishable types or theories of idealization.

4.2.1 Evaluating Idealization Practices. Evaluating the idealiza-

tion practices phase involves two central aspects. The first is a

descriptive project that systematizes current work in xAI, elucidat-

ing a set of common aims and methodologies. This can be done for

xAI in general or for a specific class of xAI methods. Second, evaluat-

ing idealization practices consists of a justification step that can

ground the legitimacy of the idealization practice. Using MinI as our

working hypothesis, the methodology of MinI consists in omitting

or distorting (causal) influences for the purposes of highlighting

the central (causal) difference-makers or (causal) patterns. MinI is

justified both through a strong conceptual foundations in scientific

understanding, explanation, and (casual) difference-making, and in

its empirical success [55].

4.2.2 Role and limits of current work. Currently there has been very

little work trying to conceptualize the type of idealization practices

computer scientists are engaged in when developing xAI methods

[29], and these practices are still arguably elusive [59]. However, as

discussed in sect. 3, there are several similarities between current

xAI methods and MinI. XAI aims to cut through the noise of many

feature interactions to arrive at the chief difference-makers for a

decision. For the purposes of this paper, we evaluate xAI methods

as if they are engaging in the idealization practice of MinI. However,

this paper calls for xAI to actively engage in solidifying one or more

idealization practices and to work with philosophers of science on

establishing conceptual foundations that justify these idealization

practices. This is a central area that requires innovation and future

research (see also section 6).

Key questions for the idealization practices phase are:

• What are the specific methods of deriving idealizations (e.g.

introducing certain idealization assumptions, mathematical

operations applied on data that results in distortions of the

phenomena)?

• Does the idealization practice align with the purpose of the

idealized model?

• What justifies this particular idealization practice? Why is it

suitable for the identified purpose?

• Example: Minimalist idealization provides better understand-

ing of the relevant difference-makers.

• Success: The idealization practice is well-grounded and justi-

fied in a specific domain, aligning with purpose.

4.3 Ideals and Rules

Ideals are the norms and values that govern a specific idealization

practice. Rules are the operationalization of these norms and values.

For example, the ideals for MinI are to isolate the minimum number

of difference-makers that capture a phenomenon, while Strevens

[93] describes the fidelity and inclusion rules of MinI as satisfying a

‘causal entailment’ test, where modelers remove (or distort) features,

finding the minimal amount that still entail the desired event.

4.3.1 Evaluating ideals and rules. Evaluating idealizations in the

ideals and rules phase requires validating whether specific rules

embody target ideals, and analyzing trade-offs between different

ways of operationalizing ideals. Idealizations can be experimentally

validated by developing tests that satisfy these rules. Adopting our

working hypothesis that xAI is engaging in MinI means that for
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xAI methods to be a legitimate idealization of a black-box model

and pass the ideals and rules phase, xAI methods must isolate

the difference-makers for the target black-box model’s decision by

undergoing a (causal) entailment test that ensures the xAI method

gives the same results as the target black-box model. Passing an

entailment test would mean, in theory, that the xAI method un-

covers the minimum set of difference-makers that determine the

black-box model’s decision [108], and thus any distortion it makes

in the process is a legitimate one.

However, specifying an adequate (causal) entailment test is not

simple. First, the notion of difference-making in xAI must be clear.

For Strevens [93, 94], MinI aims for causal difference-making, where

the notion of causality is left implicit and entailment more closely

resembles logical deduction. Comparatively, philosophical theories

like an interventionist framework [108, 113] or a counterfactual

framework [45, 58] would result in grounding different causal rules.

Alternatively, MinI need not aim for causal difference-making at all;

other notions of difference-making are consistent withMinI (logical,

probabilistic, mathematical, etc.). Thus, it is necessary to establish

the specific ideals that a given idealization seeks to capture. Second,

even once we settle on a notion of difference-making for MinI, there

are still different possible rules that could capture the norms of MinI

and serve as a basis for idealization evaluation. In this section, I

consider three possible rules based on Strevens view of MinI. My

aims are to 1) illustrate how ideals might be operationalized (see

Table 2); 2) discuss how to think about trade-offs and whether a

certain rule embodies the target ideal; and 3) discuss where existing

evaluation methods in xAI are useful and areas where innovation

is needed.

Table 2: Entailment rules

map elimination prob

∀𝑥 𝑏 (𝑥 ) = 𝑒 (𝑥 ) ∀𝑌 ⊂ 𝐼𝑒 𝑏 (𝑋 − 𝑌 ) = 𝑏 (𝑋 ) ∀𝑥 𝑃 (rule(𝑥 ) ) > 𝑡

First, MinI entailment could be a global entailment where the

xAI model shares the same mapping of model inputs to outputs

as the black-box model. The map rule requires that the mapping

of inputs and outputs for an xAI model, e, is the same as for the

black-box model, b. Map does not look at the features that the xAI

model highlighted as relevant. As long as there is a 1 to 1 input-

output mapping, then this is enough to establish a global notion of

(causal) entailment.Map aligns with some of the current approaches

to xAI evaluation. Accuracy and model fidelity metrics used for

feature importance methods aim to see how well explanations

mirror black-box predictions [51]. The results of these tests have

exposed important vulnerabilities. For example, Lakkaraju et al. [52]

found the best performing method only approached 85% agreement

with the black-box model, with LIME often scoring lower. Even if

we have a 1-1 mapping, an important trade-off to consider with

map is how well it aligns with the purpose for xAI. Usually the

purpose of an xAI method is for users to learn about the reasons

for why the black-box model made its decision, not merely that an

alternative proxy-model (in the case of LIME and SHAP) can derive

the same predictions, which is why Lakkaraju et al. [52] argue that

high-fidelity xAI models aren’t enough.

Second, as an alternative, we could operationalize entailment

more closely with Strevens’ [93] own elimination test for MinI in

the natural sciences. elimination tells us that for all the features

Y that are in the set of putatively irrelevant features I found from

the xAI model e, we can remove those features from the set of all

input features X from the black-box model b and still receive the

same decision. According to elimination, evaluation could occur

for any given local decision to see whether in that instance there

is entailment between the black-box model and the xAI model.

As we saw, one general downside of map is that an input-output

pairing does not capture which features xAI methods determine

are (ir)relevant elimination captures this aspect of explainability.

Since elimination can be evaluated per local decision, there is

more flexibility for success. Some local decisions may not satisfy

elimination, while others do. Indeed, in the cases where the xAI

method works well, elimination should be satisfied. But the trade-

off here is that idealization failure would needs to be tested for each

local decision.

Lastly, as yet another alternative, some philosophers of science

have argued only a probabilistic notion of (causal) relevance or

difference-making is necessary for MinI [77]. Prob can apply to

any other rule. It says that the probability that a rule applies to x

is greater than some probability threshold t. That said, prob may

not align well with the ideals for MinI for many xAI purposes,

for example users may not want to know what the most probable

reason for the decision was, but the actual reason for the decision.

However, when using xAI for the purposes of de-bugging or de-

biasing a black-box model, prob could be appropriate.

4.3.2 Role and Limits of CurrentWork. The ideals and rules phase

is the area in xAI idealization evaluation that requires innovation.

In philosophy, Fleisher [29] argues feature importance methods

are a kind of MinI, but he argues this on the level of ideals and

stops short of discussing whether particular xAI methods actually

succeed at MinI instead of merely aiming for MinI. Other works

focus on the norms and ideals of explanations for xAI. Citing one

example, Watson et al. [109] propose the ideal of sufficiency for

xAI methods because they provide potentially more useful and

‘lower cost’ explanations for users. However, the norms and ideals

for explanation are distinct from the norms and ideals that govern

idealization evaluation. Idealization evaluation, first and foremost,

treats xAI models not as explanation tools, but as idealized models

of more complex models. SIDEs evaluates whether the distortions a

given xAI method engages in succeeds at living up to the purpose

and norms of idealization theory.

On the level of rules, there are existing experimental techniques

that have been used to evaluate LIME and SHAP that capture some

of the spirit of our suggested entailment rules for MinI, like map

discussed above. While LIME and SHAP do not satisfy map because

the accuracy rates do not reach perfect alignment between the black-

box model and the xAI model, map’s prob counterpart has some

level of success depending on the probability threshold. However,

even a .8 probability may be too low to establish a strong sense

of causal entailment for MinI. So if the ideal for xAI is a causal

ideal then there is still idealization failure in the leading feature

importance methods. There is no experimental test that captures

elimination that I am aware of. However, feature importance
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methods are vulnerable to adversarial manipulation. Slack et al.

[92] were able to create explanations that hid the most salient

feature for classification for SHAP and LIME. Ghorbani et al. [32]

found such methods were highly sensitive to small changes input

data. Others have found that they are not able to capture causal

notions [59, 76, 85]. This type of manipulation suggests that feature

importance methods are not robustly conforming to elimination.

Moreover, adversarial examples where the adversarial classifier

achieves strong prob(map) but the perturbed instances are different

(see [92]) shows the tension between more global oriented rules

like map and local entailment rules like elimination. This suggests

that in order to fully capture MinI, it may be necessary to satisfy

both map and elimination.

Innovation on new experimental evaluations that instantiate

idealization rules could be promising. In this paper, I took just one

conception of (causal) entailment from Strevens to ground poten-

tially new experimental evaluation tests for xAI. XAI researchers

should consider the idealization norms and ideals they are aim-

ing to achieve and align experimental evaluation tests with these

norms. Existing theories of idealization in philosophy of science

could serve as inspiration for establishing quantitative evaluation

metrics for idealization.

Key questions for the ideals and rule phase are:

• What are the norms and values that govern and justify an

idealization practice?

• What are the possible ways to operationalize ideals to experi-

mentally and formally evaluate whether an idealized model

satisfies the ideals of the idealization practice?

• What are the trade offs between different rules?

• Example: Different possible entailment rules for MinI and the

limitations of each.

• Success: Rules adequately reflect ideals. The xAI method

satisfies the rule by passing an experimental test.

4.4 User-facing explanations

Work on idealization in the natural sciences considers scientists as

stakeholders. The ideal gas law idealization is successful mainly be-

cause the intended audience generally knows enough about physics

to understand where the idealizations lie. XAI, on the other hand,

serves many diverse stakeholders, many of which do not know how

ML works in any detail. Therefore, attention must be paid to the

way idealizations are presented to different stakeholders through

user-facing explanations. Thus, the last step for the SIDEs frame-

work is evaluating user-facing explanations.

4.4.1 Evaluating user-facing explanations. Evaluating the expla-

nations that target users receive involves user testing and user

studies to ensure that explanations align with purpose and do not

mislead users with its idealizations. One general pitfall for align-

ing user-facing explanations with user values is the potential for

‘explanation hacking’ where xAI methods are so flexible to display

only those that are agreeable to users [99], which can result in

fairwashing [1]. Even if the xAI method is a successful idealization

from a scientific or mathematical perspective (i.e. passes the rule

phase), there can be idealization failure if it misleads users through

explanation hacking or fairwashing techniques. Moreover, Mittel-

stadt et al. [65] found that users found LIME and SHAP unintuitive.

Other considerations include doing user-study research not just for

experts, but for a variety of users that have different background

assumptions [26]. Including users from the global south, which are

often ignored [71, 75].

4.4.2 Role and Limits of Current Work. Several existing works ad-

dress issues regarding user-facing xAI. Some provide frameworks

that incorporate stakeholder interests [22, 44, 54, 66, 114], others

explore how different explanation types affect user-trust [41], cogni-

tive bias [11, 18], and understanding [19, 68]. SIDEs adds to this by

highlighting the need for user-facing explanations to align with the

purpose of idealizations, conveying the ideals and norms of the ide-

alizations in the explanations they receive. For example Schneider

and Vlachos [87], used language similar to MinI when describing

the results of their user study, saying that users could tease out

what was relevant and irrelevant to a model decision.

Key questions for the user-facing explanation phase are:

• Do users understand the purpose of the explanation?

• How can user-facing explanations convey that the explanation

is an idealization?

• Are user-facing explanations evaluated in terms of the purpose?

Are they evaluated in terms of another purpose?

• Example: A user study asks users about their impressions

regarding the purpose and limits to the explanation.

• Success: User-facing explanations align with purpose and

users acknowledge the limited scope of explanations.

5 EVALUATING COUNTERFACTUAL

EXPLANATION METHODS

In the previous section, I introduced the SIDEs framework and

presented a qualitative evaluation of leading feature importance

methods, LIME and SHAP. In this section, I identify risks of ideal-

ization failure in counterfactual explanation (CE) methods, using

SIDEs. It is important to note that proponents of CE methods boast

that CE cannot be false since counterfactuals are generated from the

black-box model itself [68]. However, such methods still engage in

idealization. CE methods must select which counterfactual scenar-

ios are the most salient from a larger set of possible counterfactuals

and implicitly rely on notions of difference-making that seek to

tease out the relevant counterfactual scenarios from the less rele-

vant. This is one reason why it is important to re-conceptualize xAI

as seeking to solve an idealization problem, instead of the current

frame of xAI aiming at ‘faithful’ explanations.

Misalignment in CE:. Wachter et al. [107] highlight three dif-

ferent purposes for counterfactual explanation methods: i) explain

why a decision was reached, ii) provide grounds to contest the

decision, and iii) provide users with actionable changes to reverse

the decision. SIDEs first requires that the idealizations used align

with each specific purpose. i) has a clear epistemic purpose aimed

at gaining understanding of the black-box model behavior, while

using CE for iii)–known as recourse–has gained considerable atten-

tion regarding its ethical promise [101, 105]. A recourse explanation

is one where users are given feasible actions for them to under-

take to reverse a model decision (e.g. paying down existing debt

to qualify for a loan). Importantly, recourse and purely epistemic

explanatory aims come apart [47, 99]. Since recourse provides users
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with actionable changes that they can make to reverse a decision,

recourse explanations can mask bias and principle-reason expla-

nations [5]. It could be that an immutable feature, like gender or

race, was the biggest difference-maker for why the model made its

decision. Such an explanation cannot, in principle, be a recourse

explanation. This is one reason why Sullivan and Verreault-Julien

[101] suggest conceptualizing recourse as a recommendation to

avoid misleading users.

The type of idealizations that can satisfy MinI for understanding

the decision do not immediately translate to idealizations that are

acceptable if the purpose of the idealization is to provide users with

recourse. For example, for the epistemic purpose of understanding,

CE methods can idealize and distort the underlying causal struc-

ture in the data and idealize away any interdependence between

features–especially if the underlying black-box model ignores in-

terdependence between features. In the epistemic case, satisfying

MinI only requires alignment between the xAI model and the black-

box model (i.e. answering the model-model question). However,

recourse explanations have a different target: the relationship be-

tween model features and the world [42], thereby aiming to answer

a model-world question. For recourse, an idealization that ignores

feature interdependence and the underlying causal structure in

data will likely fail MinI rules that are calibrated to capture as-

pects of real-world causal efficacy. Indeed, works have criticised CE

methods that ignore feature interdependence as creating unrealistic

advice [39].

Figure 2: Recourse Alignment Failure

Purpose-alignment-failure can carry over to the way xAI expla-

nations are conveyed to users in the user-facing explanation

phase. For example, recourse explanations are often presented as

answering a model-model question (i.e. how the black-box model

behaves), with several works evaluating their recourse method on

whether users have similar understanding of the models decision

boundary compared to, e.g. LIME [68, 103, 107]. However, since the

underlying purposes of recourse CE are feasibility and actionability,

evaluating recourse CE should be done in terms of whether users

find the recourse CE feasible. Understanding the model’s decision

is secondary. Figure 2 shows this type of recourse CE alignment

failure, where the explanation is evaluated based on the wrong

purpose. This is not to say that recourse explanations could not

be successful idealizations. SIDEs maintains that omitting or dis-

torting the central reasons for a model’s decision from a recourse

explanation is legitimate so long as the user-facing explanation

is aligned with actionability, while making clear to the user it is

not an epistemic explanation. Of course, it is possible that CE could

satisfy both an epistemic purpose and recourse. However, for an

idealization to achieve both aims there is a considerably higher bar

where the CE method would need to satisfy both difference-making

w.r.t. the model-model question and difference-making w.r.t. the

model-world question. We should expect that this might be possi-

ble in some cases, but not likely in cases where immutable features

are the largest difference-maker for a model’s decision.

Ideal and rule failure. Many of the same issues that come up

with rule evaluation for feature importance methods also appear

with CE methods. However, like the alignment issues discussed

above, recourse CE has unique risks. The governing ideals for

recourse are feasibility and actionability. Thus, a structural causal

model (SCM) that captures how features within a model causally

dependent on each other [6, 50, 74] will be necessary to satisfy MinI,

albeit an idealized SCM. However, SCMs are far from attainable,

requiring a link to the causal realities outside of the model [6, 96].

Thus, the purpose of recourse, coupled with the idealization

practiceMinI, requires a causal rule that can uphold the ideal

of a SCM. However, Karimi et al. [42] find most works on recourse

do not even aim for a SCM. Thus, these methods are engaging in

idealization failure. Karimi et al. [43], on the other hand, employ a

probabilistic approach to try and capture the ideal of a SCM with

imperfect causal knowledge, and thus is a candidate for a prob(scm)

rule, and might indeed be an idealization success, depending on

how the prob(scm) rule isolates difference-makers.

All told, researchers need to be mindful that model-world ques-

tions and model-model questions require different idealizations

and have different idealization standards.

6 TURNING IDEALIZATION FAILURE INTO

SUCCESS

In our limited evaluation of feature importance and CE methods we

found that on the working hypothesis that xAI methods are aiming

for MinI there is widespread idealization failure, due to misalign-

ment with purpose and rule failure, suggesting that these methods

may likely distort more than just the non-difference-makers. Where

does this leave us? In this section I discuss possible remedies for

idealization failure and areas for future research.

Adopting a different idealization practice: If it is too difficult

to satisfy one idealization practice, such as MinI, then idealization

success can occur by creating alignment with a different idealiza-

tion practice. Rule failure under one idealization practice does not

entail rule failure under another. Figure 3 shows realignment with

a different idealization practice after rule failure. As we said at the

outset there are a number of idealization practices that philosophers

of science have discussed. One alternative idealization practice that

may be well suited for xAI is multiple-model idealization (MMI)

[110]. For some phenomena there may be several trade-offs that

makes it either impractical or epistemically lacking to rely on just

one model. MMI involves multiple models, with each model cap-

turing one aspect or trade-off for some phenomenon. For example,

chemists use both valence bond and molecular orbital models de-

spite their incompatible assumptions [110]. The underlying justi-

fication for MMI relies on the impossibility (either practically or

necessarily) of a single model capturing maximal goals of represen-

tation, such as accuracy and generality [57]. Furthermore, through



SIDEs: Separating Idealization from Deceptive ‘Explanations’ in xAI FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil

robustness techniques among multiple models, MMI teases out rel-

evance from irrelevance, something that MinI might fail to achieve

in a single model [111]. While each individual model in the MMI

might have drawbacks, the collection of models taken together is

able to provide understanding.

Figure 3: Adopting an alternative idealization practice to

address rule failure

One notable solution to the idealization failure withMinI is to use

LIME, SHAP and CE as part of a MMI instead. Realigning to MMI

means that the rules for each xAI method can be less demanding.

Each model, fulfiling a different ideal or rule explores different

trade-offs, together capturing how a black-box model makes deci-

sions. Moreover, MMI can be a temporary solution to xAI manipu-

lation. Slack et al. [92] found that adversarial attacks designed for

LIME were ineffective against SHAP. Even though they also found

that adversarial attacks designed against SHAP affected LIME, if

the MMI also includes CE methods (or other methods) the vulner-

ability that each will be affected by the same attack diminishes.

Furthermore, MMI can help with the problem of multi-purposes for

xAI models. Users can be provided multiple explanations to fulfil

these multiple purposes. However, MMI is not an simple fix. First, it

is important to develop an aggregation rule for MMI idealizations.

How should we weigh the different and sometimes conflicting mod-

els? This is a considerable undertaking. Second, current work has

discussed that providing users with multiple different explanations

can be counter-productive, creating confusion and cognitive over-

load [79]. Thus, MMI might not be a useful idealization practice

outside of an engineering model-auditing setting.

xAI, a novel idealization practice? In this paper, we looked at

mature theories of idealization from the philosophy of science that

were developed with the natural sciences in mind. It would not be

surprising if those theories are altogether ill-suited for xAI since

xAI and ML research has very different and specific requirements

compared to the natural sciences. For example, one unique aspect

of many xAI methods are their hyper locality. In the natural sci-

ences, idealizations often move away from local particulars to more

global generalities. But current methods of xAI are distorting the

global generalities of the black-box model to zoom in on a particu-

lar local explanation. Perhaps this is a novel hasty generalization

idealization practice. One area for future research is developing

what this potentially novel idealization practice consists of and

how it might be justified and grounded as a legitimate idealization

practice. Importantly, the SIDEs framework cautions against ideal-

ization success simply by fiat (i.e. by claiming a new idealization

practice). SIDEs requires a justification step for motivating why

such a practice is legitimate.

7 CONCLUSION

XAI methods have received their fair share of criticism. However,

with this paper I argued that one type of criticism–that xAI methods

produce false explanations of black-box models–deserves closer

attention. Specifically, this paper seeks to animate a new interdis-

ciplinary research program in xAI that develops a theory of xAI

idealizations and idealization evaluation. It is not simply departure

from the truth that is problematic, but idealization failure. I intro-

duced the SIDEs framework as a way for researchers to separate

successful idealizations from deceptive explanations. SIDEs is a

generalizable and modular conceptual framework that can guide

researchers with key questions for reflection and qualitative evalu-

ation, as well as provide the normative foundation for developing

more concrete evaluative tests and benchmarks for xAI methods.

SIDEs is primarily aimed at xAI researchers when developing and

evaluating their methods (esp. the ideals and rules phase). How-

ever, there is also a place for SIDEs in more downstream uses. Those

who deploy xAI models could use SIDEs in selecting which xAI

method would be more successful for their purpose, such as pro-

viding recourse explanations vs. model auditing. However, this

would require clear guidance on the results of the rest of the SIDEs

workflow from xAI researchers. Moreover, the user-facing expla-

nation phase could be useful for thinking about how to comply

with the right to explanation in AI governance.

Using SIDEs, we found considerable risks of idealization with

leading xAI methods. There are many ways in which current work

in xAI is useful for idealization evaluation, such as identifying the

purpose of xAI methods, developing user-centered studies to evalu-

ate the efficacy of explanations. However, there are central ways

in which innovation is necessary: 1) identifying and solidifying an

idealization practice for xAI, including a justification for that prac-

tice, and 2) developing experimental tests that aim at evaluating

how well an xAI method idealizes the target black-box model.
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