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ABSTRACT
In standard resource allocation problems, the designer sets the

objective function, which captures the central allocation goal, in

a top-down manner. The agents primarily participate in the allo-

cation mechanism by reporting their preferences over the items;

they cannot influence the objective once the designer sets it. Im-

plicitly, this approach presumes that standard ways of eliciting the

agents’ preferences adequately represent their true preferences—an

assumption which does not hold if agents have preferences not

just over the items they receive but also over the objective being
optimized. For instance, agents may also have social preferences,

such as inequality-aversion, altruism, or similar other-regarding

behavior. We cannot express such preferences through standard

cardinal utilities or ordinal rankings over the items the designer

would typically elicit from the agents.

This work examines how we can use this bottom-up preference

elicitation stage to enable participants to express preferences over

the objectives. We present a versatile framework that elicits agents’

preferences over a possible set of objectives and then minimally

alters the underlying optimization problem to solve for a new objec-

tive that combines both the standard benchmark objective and the

agents’ preferences for other objectives. We show how to evaluate

this new participatory approach against the standard approach,

using our notions of loss and gain in social welfare as well as indi-

vidual tradeoffs.

We illustrate the potency of this framework using a well-studied

fair division problemwhere the designer aims to allocate𝑚 divisible

items to 𝑛 agents. In the standard setting, the designer optimizes for

utilitarian social welfare, i.e., the sum of the agents’ cardinal utilities.

We assume that some agents are also inequality-averse and may,

therefore, have preferences for objectives that minimize inequality.

Using the popular Fehr and Schmidt [31] model, we demonstrate

how to map this fair division question to our framework, where

the participatory approach optimizes both the standard utilitarian

social welfare objective and the agents’ heterogeneous preferences

over the level of inequality. We examine this problem theoretically

to show that there can be large gains in social welfare if the designer

uses this participatory approach. Further, we show that the loss

in social welfare is linear in the level of inequality aversion and

independent of the number of agents. We present a tighter bound
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in both cases under further natural assumptions on the preferences.

We also examine the worst-case cost an individual agent might

incur.

Our results indicate that the loss in social welfare (measured

by the standard objective) and gain in social welfare (measured

by the participatory one) can favor the participatory approach in

several natural settings. Throughout the work, we highlight various

promising avenues for examining this participatory approach in

the specific case study tackled in this paper and a broader range of

resource allocation problems.
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1 INTRODUCTION
In standard use of algorithms and mechanism design for resource

allocation, a central planner determines various aspects of the mech-

anism, including the central objective function we optimize. On

the other hand, the participating agents primarily engage by con-

tributing their preferences over the items. Underlying this setup is

an assumption that standard ways of eliciting preferences—which

often entail reporting their cardinal utilities over the items or their

ranking of the items—can adequately represent the agents’ true pref-

erences. Notably, agents cannot influence the overall objective once

the designer sets it. Naturally, we may assume that enabling agents

to participatorily design the central objective is costly, difficult to

implement, and challenging to study theoretically.

In this work, we identify a possible participatory design frame-

work that balances these competing needs. We present a versatile

framework that minimally alters the underlying optimization prob-

lem in resource allocation to incorporate the agents’ preferences

over the central objective. This framework leverages the natural

bottom-up preference elicitation stage to capture agents’ prefer-

ences not only over the items but also over the set of possible

objectives. We further define notions of loss and gain in social wel-

fare as well as individual tradeoffs incurred by the worst-off agent

https://orcid.org/0000-0003-3750-0159
https://orcid.org/0000-0002-3222-0089
https://orcid.org/0000-0002-5487-9108
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3630106.3658994
https://doi.org/10.1145/3630106.3658994
https://doi.org/10.1145/3630106.3658994


FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Shirali, Finocchiaro, Abebe

to evaluate how this participatory approach stacks up against the

standard approach.

We then illustrate and stress-test this participatory approach us-

ing a well-studied fair division problemwhere the designer wants to

allocate𝑚 divisible items to 𝑛 agents. Under the standard approach,

these multi-objective agents would only report their cardinal utili-

ties𝑢𝑖 over the items and the designer optimizes for utilitarian social

welfare,

∑
𝑖 𝑢𝑖 . For our case study, we assume that some of these

agents are inequality-averse, as modeled by Fehr and Schmidt [31].

This popular behavioral economics model is one of the canonical

social preference models, which generally study other-regarding be-

havior, including altruism, certain fairness concerns, and inequality

aversion [5, 19, 30].

We then study the loss to standard social welfare from the de-

signers’ perspective and the gain to social welfare from the agents’

perspective when we move from the standard to the participatory

approach. We study the gain and loss in various general settings,

finding that the relative loss can, at most, grow linearly in the level

of inequality aversion and is independent of the number of partici-

pants. We also find that the ratio of gain-to-loss can be unbounded

in some natural settings, highlighting potential significant gains.

We provide tighter bounds under further natural assumptions on

the (dis)similarity of the agents’ preferences. We also examine the

worst-case tradeoff any individual may suffer and find that individ-

ual tradeoffs can be linear in the number of participants. Finally,

we address questions of strategy-proofness, by discussing possible

designs to elicit the agents’ true preferences over the objectives.

Our analyses suggest that the participatory approach, which

elicits agents’ preferences for inequality aversion, comes only at a

small cost to efficiency, measured by standard notions of utilitar-

ian welfare. Moreover, it can yield significant gains, measured by

the participatorily designed objective. This suggests that empower-

ing algorithm participants to contribute to shaping the objective

function can drastically improve community-level outcomes. We

contextualize our contribution within the broader research liter-

ature in Appendix B and discuss possible avenues for research

exploration in Section 6.

2 PROBLEM FORMULATION
We begin by introducing our broader framework, specifically in

the context of resource allocation. We then illustrate this frame-

work’s potency using a well-studied fair division problem. While

we present our key technical contributions via this case study, the

framework applies more broadly. We discuss generalizations in

Section 6, where we highlight additional research avenues, and in

Appendix A, where we demonstrate how this framework captures

other existing studies of resource allocation.

Consider a resource allocation problem where a designer wants

to allocate 𝑚 items to 𝑛 agents. Let 𝑥 = [𝑥𝑖 𝑗 ] be the allocation

matrix in the set of feasible allocations X ⊆ R𝑛×𝑚+ . For the case of

divisible items, 𝑥𝑖 𝑗 is the proportion of item 𝑗 allocated to agent 𝑖 .

We begin with a standard formulation, where agents have linear

utilities

𝑢𝑖 (𝑥) =
∑︁
𝑗∈[𝑚]

𝑎𝑖 𝑗 𝑥𝑖 𝑗 . (1)

Here, 𝑢𝑖 is the utility of agent 𝑖 and 𝑎 = [𝑎𝑖 𝑗 ] denotes utility coef-
ficients that parameterize the utility function.We use 𝒖 (𝑥) to denote
the utility profile over the𝑛 agents: 𝒖 (𝑥) = (𝑢1 (𝑥), 𝑢2 (𝑥), . . . , 𝑢𝑛 (𝑥)).
The utility function above can be rewritten more concisely as

𝑢𝑖 (𝑥) = ⟨𝒂𝑖 , 𝒙𝑖 ⟩, where 𝒂𝑖 and 𝒙𝑖 denote the 𝑖th rows of 𝑎 and 𝑥 ,

respectively.
1

In standard resource allocation problems, the designer deter-

mines various aspects of the allocation mechanism—such as the

objective function, resource availability, or fairness constraints—in

a top-down manner. Each agent’s participation is primarily limited

to reporting their utility coefficients 𝒂𝑖 . The standard approach,

therefore, implicitly assumes that such utilities adequately reflect

the agents’ preferences for allocative outcomes.

Agents may, however, have preferences beyond their utility over

the items. In our case study, we consider the setting where agents

have social preferences, i.e., they care not only about their utility for

items they receive but also about others’ utility for their respective

allocations. Examples include preferences over the level of inequal-

ity imposed by the allocation, altruism towards other agents, and

various fairness concerns. Put more simply, the agents’ preferred

objective can be distinct from one another and the objective set by

the designer, and might be more complex than their preference for

their allocation.

Definition 2.1 (The set of objectives). We assume there is a set of

possible objectives H , where each objective ℎ ∈ H : X × [𝑛] → R
maps an allocation 𝑥 into a real value for the respective agent. The

objectives depend on the utility coefficients 𝑎, which we drop from

the notation for brevity.
2

The set of possible objectives can be general. It may include, for

instance, each agent’s utility for their allocation (ℎ(𝑥 ; 𝑖) = ⟨𝒂𝑖 , 𝒙𝑖 ⟩),
their utility for other agents’ allocations, or the minimum utility

over all the agents. In standard resource allocation problems, the

designer selects one of these objectives from this setH . We refer

to this objective as the benchmark objective and denote it by ℎ∗.
Intuitively, we can think of ℎ∗ as the objective defining 𝑢𝑖 .

By contrast, we assume that each agent may have a different pre-

ferred objective, aggregating the objectives in H into a single one.

We will assume that the aggregation function belongs to a specific

function class parameterized by 𝜃 . For example, the aggregation

function may be a weighted linear combination of the objectives in

H , with weights determined by the preference 𝜃 ∈ R |H |
.

Definition 2.2 (Multi-objective agents). A multi-objective agent

has a preference 𝜃 within the space of valid preferences Θ that

determines how to reconcile conflicting objectives in H . More

precisely, there exists a function 𝑣 : R |H | ×Θ → R that aggregates

values for all the objectives inH into a scalar value based on the

agent’s preference 𝜃 . We use the shorthand 𝑣𝑖 (𝑥) to denote agent 𝑖’s
aggregated value: 𝑣𝑖 (𝑥) = 𝑣 ({ℎ(𝑥 ; 𝑖)}ℎ∈H ;𝜃𝑖 ). We also denote the

value profile (𝑣1 (𝑥), 𝑣2 (𝑥), . . . , 𝑣𝑛 (𝑥)) by 𝒗 (𝑥).

1
Note, for the sake of clarity, we consider the case of divisible items and linear utilities,

but it is straightforward to map our formalization to the setting where items are

indivisible, or other assumptions hold on the agents’ utilities.

2
We assume that we can elicit the utility coefficients truthfully, though we will revisit

this assumption in Appendix C.
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Standard resource allocation problems unavoidably elicit the

utility coefficients 𝑎. Although our multi-objective agent formaliza-

tion captures far greater complexity in the agents’ preferences, it

only requires additional elicitation of 𝜃 to determine how an agent

aggregates the objectives.

After associating each agent with a single objective—whether

this is a benchmark objective ℎ∗ chosen by the designer or the

agent’s preferred objective 𝑣𝑖—the next step is for the designer to

define an optimization problem. We assume that the designer has

a social welfare function 𝑓 : R𝑛 → R that, along with the alloca-

tion constraints, defines the optimization problem. To concretely

illustrate our framework, for the rest of this paper, we will use the

utilitarian social welfare, which sums all the individual values with

equal weight.

Using the above notions, we can now define our participatory

approach, which enables agents to express preferences not only

over the items but also over the objectives.

Definition 2.3 (Participatory objective design). In the participatory
approach to resource allocation, a designer first associates each

multi-objective individual 𝑖 with a single objective function 𝑣𝑖 by

eliciting their preference 𝜃𝑖 over the set of possible objectivesH .

The designer then maximizes 𝑓 (𝒗 (𝑥)) :=
∑𝑛
𝑖=1

𝑣𝑖 (𝑥) subject to
𝑥 ∈ X.

This participatory approach is in contrast to the standard ap-
proach, where the designer would optimize over

∑𝑛
𝑖=1

ℎ∗ (𝑥 ; 𝑖).

2.1 Loss and Gain from Participatory Objective
Design

We now introduce notions of loss, gain, and individual tradeoffs

incurred bymoving from the standard approach, where the designer

selects an objective in a top-down manner, to the participatory

approach, where agents influence the overall objective in a bottom-

up fashion.

Specifically, we study loss in social welfare, as measured by the

benchmark objective, and gain in social welfare, as measured by

preferences elicited from the participatory approach. We also look

at individual tradeoffs, which consider the maximum cost to utility

incurred by a single agent.

Central to these notions is the comparison of social welfare

maximizing allocations under the standard and participatory ap-

proaches. Formally, let 𝒉∗ (𝑥) denote the profile of benchmark objec-

tives (ℎ∗ (𝑥 ; 1), . . . , ℎ∗ (𝑥 ;𝑛)), and 𝒗 denote the profile of aggregated

objectives of individuals (𝑣1 (𝑥), . . . , 𝑣𝑚 (𝑥)). We define these two

optimal allocations as

𝑥∗ B arg max

𝑥∈X
𝑓 (𝒉∗ (𝑥)) , (2)

𝑥𝜃 B arg max

𝑥∈X
𝑓 (𝒗 (𝑥)) . (3)

We first consider the notion of loss, which pessimistically mea-

sures the potential reduction in social welfare as measured by the

benchmark objective if we move to the participatory approach.

Definition 2.4 (Loss in social welfare). Suppose ℎ∗ ∈ H is the

benchmark objective and agents may have multi-objective prefer-

ences. We define the loss in social welfare measured by the bench-

mark objective as

𝑙𝑜𝑠𝑠 B 𝑓 (𝒉∗ (𝑥∗)) − 𝑓 (𝒉∗ (𝑥𝜃 )) , (4)

where 𝑓 (𝒉∗ (𝑥∗)) is the optimal social welfare, as measured by the

benchmark objective, and 𝑓 (𝒉∗ (𝑥𝜃 )) measures the same notion of

social welfare under the participatory approach.

We similarly define the gain in social welfare, which measures

the potential improvement in social welfare, as measured by the

participatory approach.

Definition 2.5 (Gain in social welfare). Suppose ℎ∗ ∈ H is the

benchmark objective and agents may have multi-objective pref-

erences. We define the gain in social welfare measured using the

elicited preferences as

𝑔𝑎𝑖𝑛 B 𝑓 (𝒗 (𝑥𝜃 )) − 𝑓 (𝒗 (𝑥∗)) . (5)

Overall, small loss and large gain values indicate that it is favor-

able to move to the participatory approach as doing so does not

incur much loss in social welfare, even by the benchmark objective,
and it can result in an increase in social welfare, as measured by

the participatory approach.

Our notions of loss and gain are similar to the notion of price of

fairness in resource allocation. Price of fairness typically compares

optimal allocations abiding by certain fairness constraints with op-

timal allocations determined without such constraints. In particular,

the loss in this setting is closely related to existing notions of price

of fairness (PoF) when ℎ∗ (𝑥 ; 𝑖) = 𝑢𝑖 (𝑥). For instance:

Bertsimas et al. [6]’s PoF = 𝑙𝑜𝑠𝑠/𝑓 (𝒖 (𝑥∗)) , (6)

Caragiannis et al. [16]’s PoF = 1 + 𝑙𝑜𝑠𝑠/𝑓 (𝒖 (𝑥𝜃 )) . (7)

So far, we have looked at loss and gain, when we look at the over-

all social welfare. We may additionally consider the cost incurred by

a single individual. For a benchmark objective ℎ∗ ∈ H , individual

tradeoffs capture the maximum relative decrease in ℎ∗ that any

single individual would incur when we move to a participatory

approach.

Definition 2.6 (Individual tradeoffs). For a benchmark objectiveℎ∗ ∈
H , the individual tradeoffs (IT) is

𝐼𝑇 (𝜃 ) B max

𝑖

ℎ∗ (𝑥∗; 𝑖)
ℎ∗ (𝑥𝜃 ; 𝑖)

. (8)

A small 𝐼𝑇 suggests that no single agent experiences a significant

drop in social welfare, as measured by the benchmark objective,

when we move to a participatory approach, A large 𝐼𝑇 indicates

that there exists an individual who may experience such a cost. Indi-

vidual tradeoffs might diverge significantly from what we observe

in aggregate, giving us a distinct notion of loss to consider.

2.2 Inequality-Averse Preferences as a Case
Study

The above framework provides a backbone for studying partici-

patory objective design and the tradeoffs incurred when moving
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from a standard, single-objective approach to a participatory, multi-

objective approach. We now illustrate the potency of this frame-

work by turning to a well-studied resource allocation problem with

inequality-averse agents.

Specifically, we consider a fair division problem where agents

have utilities over the items they receive, as well as the overall

inequality of a given allocation. This study of inequality-averse

agents is a special case of other-regarding behavior and is well-

studied empirically and theoretically in behavioral economics [10,

19, 31]. The model of inequality-aversion we study draws on work

by Fehr and Schmidt [31].

Let 𝑢𝑖 (𝑥) be agent 𝑖’s utility for the items, which we take as

the benchmark objective ℎ∗. Suppose the agents are additionally
inequality-averse. Concretely, we letH be the set containing 𝑢𝑖s,

the inequality imposed by being “more wealthy” than others (advan-

tageous inequality), and inequality incurred by being “less wealthy”

than others (disadvantageous inequality).

Let 𝐼+
𝑖
(𝑥) and 𝐼−

𝑖
(𝑥) be agent 𝑖’s perceptions of disadvantageous

and advantageous inequality, respectively. For simplicity, we as-

sume that objectives are aggregated linearly by 𝜃𝑖 := (𝛼𝑖 , 𝛽𝑖 ), for
some 𝛼𝑖 , 𝛽𝑖 ≥ 0.

𝑣𝑖 (𝑥) = 𝑣
(
{𝑢𝑖 (𝑥), 𝐼+𝑖 (𝑥), 𝐼

−
𝑖 (𝑥)};𝜃𝑖 = (𝛼𝑖 , 𝛽𝑖 )

)
= 𝑢𝑖 (𝑥) − 𝛼𝑖 𝐼+𝑖 (𝑥) − 𝛽𝑖 𝐼

−
𝑖 (𝑥) . (9)

We follow the formulation of Fehr and Schmidt [31] for 𝐼+
𝑖
and

𝐼−
𝑖
, which serve as a first-order approximation of general inequality

metrics that are: (1) agent-centric, meaning they only depend on

|𝑢𝑖 (𝑥) − 𝑢𝑖′ (𝑥) | terms for each agent 𝑖 and other agents 𝑖′, and
(2) anonymous, meaning agent 𝑖 perceives similar inequality from

other agents 𝑖′ and 𝑖′′, if 𝑢𝑖′ (𝑥) = 𝑢𝑖′′ (𝑥). This social preference
model by Fehr and Schmidt [31] is well-motivated and broadly-

studied [27, 62].
3

𝐼+𝑖 (𝑥) =
1

𝑛 − 1

∑︁
𝑖′ :𝑢𝑖′ (𝑥 )≥𝑢𝑖 (𝑥 )

(𝑢𝑖′ (𝑥) − 𝑢𝑖 (𝑥)) (10)

𝐼−𝑖 (𝑥) = 1

𝑛 − 1

∑︁
𝑖′ :𝑢𝑖′ (𝑥 )<𝑢𝑖 (𝑥 )

(𝑢𝑖 (𝑥) − 𝑢𝑖′ (𝑥)) (11)

We denote the agents’ profile of 𝛼𝑖 and 𝛽𝑖 by 𝜶 and 𝜷 , respec-
tively. As is common in the literature, we assume that 𝛼𝑖 ≥ 𝛽𝑖 > 0,

and that 𝛽𝑖 and 𝛼𝑖 are of the same order [48]. We examine the

changes in allocation when agents exhibit slight inequality aver-

sion, i.e., the parameters 𝛼𝑖 and 𝛽𝑖 are less than 1/2 and are typically

small, to capture settings where the agents’ true preferred objectives

do not deviate significantly from the benchmark.

Historically, social welfare calculation in resource allocation

has relied on an inequality-agnostic objective for each agent, i.e.,

ℎ∗ (𝑥 ; 𝑖) = 𝑢𝑖 (𝑥), for all 𝑖 ∈ [𝑛]. Different mechanisms have been

developed based on the particular structure of the social welfare

function 𝑓 to elicit agents’ preferences for items and efficiently

allocate resources. Nevertheless, models that do not account for

other-regarding behaviors, like inequality aversion, may fail to

capture agents’ true preferences. Our framework presents one way

3
Under certain axioms, such as weak separability, neutrality, scale invariance, and

minimal increase in payoff, the Fehr and Schmidt model and its variants are the defacto

acceptable choices for modeling social preferences [58].

to capture these preferences, so that they can influence the overall

allocations. It also presents a way to evaluate how this approach

compares to the standard approach using the benchmark objective.

In the rest of the paper, we consider the utilitarian social welfare

and our measures of loss, gain, and individual tradeoffs when the

designer’s benchmark objective of 𝑓 (𝒉∗ (𝑥)) = 𝑓 (𝒖 (𝑥)) is replaced
by the participatory variant which takes inequality-aversion into

account.

3 LOSS IN INEQUALITY-AGNOSTIC SOCIAL
WELFARE

We first study the loss in social welfare as measured by the bench-

mark objective when we move from the standard approach to the

participatory approach. For this analysis, we first consider the case

of two agents and show that the worst-case loss linearly scales with

the level of inequality aversion. We further show that we can obtain

tighter bounds by imposing structures on the agents’ preferences.

We then consider the case of 𝑛 agents, where we show that the

worst-case loss is independent of the number of agents, thereby

inheriting the above linear relationship with the level of inequality

aversion. We then consider the case of clustered agents with similar

preferences and independent agents whose utility coefficients for

the items are drawn independently from the same distribution. For

the case of clustered agents, we provide a possibly tighter bound

when the clusters are sufficiently distinguishable. For the case of

independent agents, we prove an improved upper bound that grows

quadratically with the level of inequality aversion.

We provide a summary of our results in Table 1.

3.1 Two-Agent Setting
For the case of two agents, we plug in 𝐼+

𝑖
(𝑥) and 𝐼−

𝑖
(𝑥) into agent 𝑖’s

aggregated value and obtain

𝑣𝑖 (𝑥) = 𝑢𝑖 (𝑥)−𝛼𝑖 ·max{𝑢−𝑖 (𝑥)−𝑢𝑖 (𝑥), 0}−𝛽𝑖 ·max{𝑢𝑖 (𝑥)−𝑢−𝑖 (𝑥), 0} ,

Here, −𝑖 refers to the agent other than agent 𝑖 . The utilitarian social

welfare in this setting is

𝑓 (𝒗 (𝑥)) =𝑢1 (𝑥) + 𝑢2 (𝑥)
− (𝛽1 + 𝛼2) · max{𝑢1 (𝑥) − 𝑢2 (𝑥), 0}
− (𝛼1 + 𝛽2) · max{𝑢2 (𝑥) − 𝑢1 (𝑥), 0} .

(12)

To begin, we characterize 𝑥𝛼,𝛽 = arg max𝑥 𝑓 (𝒗 (𝑥)) as the maxi-

mizer of social welfare under the participatory approach.
4
In essence,

𝑥𝛼,𝛽 assigns all of an item 𝑗 to an agent 𝑖 if her utility for the item is

significantly higher than that of the other agent. What constitutes

a “significant” difference is determined by a function of 𝜶 , 𝜷 , and
the total demand on the item, given by 𝑎𝑖 𝑗 + 𝑎−𝑖 𝑗 .

Lemma 3.1 (Two-agent solution characterization). The
social welfare-maximizing allocation for the sake of two inequality-
averse agents follows

𝑥
𝛼,𝛽

𝑖 𝑗
=


1 ,

𝑎𝑖 𝑗−𝑎−𝑖 𝑗
𝑎𝑖 𝑗+𝑎−𝑖 𝑗 > Δ𝑖 ,

0 ,
𝑎𝑖 𝑗−𝑎−𝑖 𝑗
𝑎𝑖 𝑗+𝑎−𝑖 𝑗 < Δ𝑖 ,

∈ [0, 1] , 𝑎𝑖 𝑗−𝑎−𝑖 𝑗
𝑎𝑖 𝑗+𝑎−𝑖 𝑗 = Δ𝑖 ,

(13)

4
For ease of notation, we denote this solution by 𝑥𝛼,𝛽 instead of 𝑥𝜃 .
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Setting Restriction Upper bound on 𝑙𝑜𝑠𝑠 or E[𝑙𝑜𝑠𝑠]

Two-agent

Unrestricted 𝑚𝑐 (𝜶 , 𝜷)
𝛿-similar agents 𝛿

𝛾-dissimilar agents

Worst-case:𝑚𝑐 (𝜶 , 𝜷) √𝛾𝑚
Uniform:𝑚𝑐 (𝜶 , 𝜷) (𝛾𝑚)4/3

[Corollary D.2]

Independent agents 𝑂

(
𝑐2 (𝜶 , 𝜷) ∑𝑗∈[𝑚] 𝜅 𝑗

)
[Corollary E.3]

Multi-agent

Unrestricted

∑
𝑗∈[𝑚] 𝑐 𝑗 (𝜶 , 𝜷) [Theorem 3.4]

𝐾-cluster 𝑂

(
𝐾𝛿 min{𝑛,𝑚}𝑏 + (𝐾 − 1) (𝛾𝑚)1/2

∑
𝑗∈[𝑚] 𝑐 𝑗 (𝜶 , 𝜷)

)
[Theorem 3.5]

Independent agents 𝑂

(
𝑛 𝑏

∑
𝑗∈[𝑚] 𝑐

2

𝑗
(𝜶 , 𝜷) 𝜅2

𝑗

)
[Theorem 3.6]

Table 1: Summary of upper bounds on 𝑙𝑜𝑠𝑠 or E[𝑙𝑜𝑠𝑠] of allocating𝑚 items to 𝑛 agents. Two-agent: 𝑐 (𝜶 , 𝜷) is 𝑂 (𝛼1 + 𝛼2 + 𝛽1 + 𝛽2).
For 𝛾-dissimilar agents (𝛾𝑚 ≤ 1), we provide both a general worst-case bound and a tighter bound assuming utility coefficients
are distributed uniformly. For independent agents, we introduce 𝜅 𝑗 as a measure of how well the underlying distribution of
item 𝑗 ’s utility coefficients is spread. The bound shows a quadratic improvement in terms of 𝑐 (𝜶 , 𝜷). Multi-agent: Roughly
speaking, 𝑐 𝑗 (𝜶 , 𝜷) is 𝑂 (max𝑖 𝛼𝑖 + 𝛽𝑖 ). For a more accurate definition of 𝑐 𝑗 (𝜶 , 𝜷) refer to Theorem 3.4. All the provided bounds in
the multi-agent setting assume no agent can get more than a 𝑏 proportion of an item.

where Δ𝑖 = −Δ−𝑖 ∈ [−(𝛼𝑖 + 𝛽−𝑖 ), 𝛽𝑖 + 𝛼−𝑖 ] is a bounded slack
variable. When 𝑢𝑖 (𝑥𝛼,𝛽 ) ≥ 𝑢−𝑖 (𝑥𝛼,𝛽 ), we have Δ𝑖 ≥ 0. In particular,
if 𝑢𝑖 (𝑥𝛼,𝛽 ) > 𝑢−𝑖 (𝑥𝛼,𝛽 ), then Δ𝑖 = −Δ−𝑖 = 𝛼−𝑖 + 𝛽𝑖 .

In general, 𝑥
𝛼,𝛽

𝑖 𝑗
depends on the whole matrix of utility coef-

ficients 𝑎. However, Eq. (13) significantly simplifies the problem

by characterizing 𝑥
𝛼,𝛽

𝑖 𝑗
as a function of utility coefficients only

for item 𝑗 , i.e., 𝑎1𝑗 and 𝑎2𝑗 , and a common bounded variable Δ1.

This characterization enables us to study the worst-case alloca-

tion for an item in isolation from the other items. As a direct ap-

plication of Lemma 3.1, we next provide a worst-case bound on

𝑙𝑜𝑠𝑠 := 𝑓 (𝒖 (𝑥∗)) − 𝑓 (𝒖 (𝑥𝛼,𝛽 )).

Theorem 3.2 (Upperbounded loss in an unrestricted two-a-

gent setting). Without loss of generality, suppose that 𝑢1 (𝑥∗) ≥
𝑢2 (𝑥∗). We can upperbound loss as a sum over the terms per item:
𝑙𝑜𝑠𝑠 ≤ ∑

𝑗 :𝑎1𝑗>𝑎2𝑗
𝑙𝑜𝑠𝑠 𝑗 , where

𝑙𝑜𝑠𝑠 𝑗 B (𝑎1𝑗 − 𝑎2𝑗 ) · 1
{
𝑎2𝑗 ≥ 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗

}
, (14)

and 𝑟𝑖 (𝜶 , 𝜷) B (1 − 𝛽𝑖 − 𝛼−𝑖 )/(1 + 𝛽𝑖 + 𝛼−𝑖 ). For a fixed 𝒂1, 𝑙𝑜𝑠𝑠 𝑗
will be maximized when 𝑎2𝑗 = 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 . Without any restriction
on 𝒂2, this gives us a worst-case upper bound of

𝑙𝑜𝑠𝑠 ≤ 𝑐1 (𝜶 , 𝜷)
∑︁

𝑗 :𝑎1𝑗>𝑎2𝑗

𝑎1𝑗 = 𝑂 (𝑚(𝛽1 + 𝛼2)) , (15)

where 𝑐𝑖 (𝜶 , 𝜷) B 1 − 𝑟𝑖 (𝜶 , 𝜷) = 2(𝛽𝑖 + 𝛼−𝑖 )/(1 + 𝛽𝑖 + 𝛼−𝑖 ) =

Θ(𝛽𝑖 + 𝛼−𝑖 ).

For a fixed𝑎1𝑗 , Fig. 1 shows 𝑙𝑜𝑠𝑠 𝑗 as a function of𝑎2𝑗 .When𝑎2𝑗 ≥
𝑎1𝑗 , the item goes to agent 2 and 𝑗 ∉ J1. We can therefore assume

that 𝑙𝑜𝑠𝑠 𝑗 = 0. For 𝑎2𝑗 < 𝑎1𝑗 , as long as Δ𝑎 𝑗 ≤ (𝛽1 + 𝛼2) (𝑎1𝑗 + 𝑎2𝑗 )
or equivalently 𝑎2𝑗 ≥ 𝑟1 (𝜶 , 𝜷), 𝑙𝑜𝑠𝑠 𝑗 scales linearly with 𝑎2𝑗 . The

maximum of 𝑙𝑜𝑠𝑠 𝑗 occurs at 𝑎2𝑗 = 𝑟 (𝜶 , 𝜷) 𝑎1𝑗 . At this point, 𝑙𝑜𝑠𝑠 𝑗 =

𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 , where 𝑐𝑖 (𝜶 , 𝜷) B 1−𝑟𝑖 (𝜶 , 𝜷). For 𝑎2𝑗 < 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 ,

inequality aversion is not strong enough to change the allocation.

Note, for small 𝛼𝑖s and 𝛽𝑖s, we have 𝑟𝑖 (𝜶 , 𝜷) = Θ(1) and 𝑐𝑖 (𝜶 , 𝜷) =
Θ(𝛽𝑖 + 𝛼−𝑖 ).

!!"

!"##.

!#"

−1

"# #, % 	!#" 1

(# #, % 	!#"

Figure 1: 𝑙𝑜𝑠𝑠 𝑗 of Eq. (14) as a function of 𝑎2𝑗 when 𝑎1𝑗 is fixed.

The worst-case upper bound of Eq. (15), or equivalently 𝑙𝑜𝑠𝑠 ≤
𝑐1 (𝜶 , 𝜷) ∥𝒂1∥1, is observed when the agents have aligned prefer-

ences and 𝒂2 is a down-scaled version of 𝒂1. Next, we investigate

whether we can avoid this worst-case scenario and attain better

guarantees by imposing further restrictions on the agents’ prefer-

ences. In particular, we consider three cases: similar agents, dissim-

ilar agents, and independent agents. We briefly discuss these cases

in the following and refer the reader to Appendices D and E for the

complete analysis.

Similar Agents. Since our measure of inequality depends on the

absolute difference of utilities, a natural choice to impose similarity

is to bound ∥𝒂1 − 𝒂2∥1. We say that agents are 𝛿-similar if ∥𝒂1 −
𝒂2∥1 ≤ 𝛿 . For 𝛿-similar agents, an immediate result of Eq. (14)

is 𝑙𝑜𝑠𝑠 ≤ ∑
𝑗 Δ𝑎 𝑗 ≤ 𝛿 . This bound is tight up to a factor of 2

(Proposition F.1).

Dissimilar Agents. We say agents are 𝛾-dissimilar if ⟨𝒂1, 𝒂2⟩ ≤
𝛾 ∥𝒂1∥1∥𝒂2∥1. For agents that are 𝛾-dissimilar, the maximal loss,

which corresponds to 𝒂2 aligning with 𝒂1, occurs only if 𝛾 ≥
∥𝒂1∥2

2
/∥𝒂1∥2

1
. This ratio is lowerbounded by 1/𝑚, which we ob-

tain using Jensen’s inequality. Hence, for 𝛾-dissimilar agents, when

𝛾𝑚 ≪ 1, we anticipate a significantly smaller loss compared to the

worst-case scenario. Intuitively, the dissimilarity constraint pre-

vents the alignment of 𝒂1 and 𝒂2 for many items with large 𝑎1𝑗 ,

resulting in little competition for the items between the agents.
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We upperbound 𝑙𝑜𝑠𝑠 𝑗 for the general case of 𝛾-dissimilar agents

in Theorem D.1. As the theorem states, an item will not contribute

more than 𝑂
(
𝑐1 (𝜶 , 𝜷) · max

{
(𝛾𝑚)1−𝜏 , (𝛾𝑚)𝜏

})
to the loss, where

𝜏 ∈ [0, 1] is an arbitrary constant. Without any assumption on

how utility coefficients are distributed, for the choice of 𝜏 = 0.5,

an immediate result of this theorem is 𝑙𝑜𝑠𝑠 = 𝑂
(
𝑚𝑐1 (𝜶 , 𝜷)

√
𝛾𝑚

)
,

which is an informative bound only if 𝛾𝑚 < 1. The theorem

further states that the loss will be mainly realized from items

with 𝑎1𝑗 < 𝑂
(
(𝛾𝑚)𝜏

)
. Therefore, introducing a prior distribution

over the 𝑎1𝑗 s can improve our bounds. For example, assuming

𝑎1𝑗 ∼ 𝑢𝑛𝑖 𝑓 (0, 1), for 𝜏 = 0.5, no more than 𝑂
(√
𝛾𝑚

)
proportion of

items will contribute to the loss in the worst-case scenario, resulting

in 𝑙𝑜𝑠𝑠 = 𝑂
(
𝑚𝑐1 (𝜶 , 𝜷) 𝛾𝑚

)
. By carefully selecting our 𝜏 , we show

an improved bound of 𝑂
(
𝑚𝑐1 (𝜶 , 𝜷) (𝛾𝑚)4/3

)
in Corollary D.2.

Independent Agents. Let 𝑎1𝑗 and 𝑎2𝑗 be independently and iden-

tically distributed according to distribution 𝑔 𝑗 . Here, 𝑔 𝑗 is the den-

sity function with the corresponding cumulative distribution func-

tion 𝐺 𝑗 . We do not make any assumption on the independence

of items. Looking at Fig. 1, recall that 𝑙𝑜𝑠𝑠 𝑗 ≤ 𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 , and

a positive 𝑙𝑜𝑠𝑠 𝑗 occurs only when 𝑎2𝑗 falls within the interval

[𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 , 𝑎1𝑗 ]. Since agents are independent, for a well-spread
distribution 𝑔 𝑗 , we can argue

Pr(𝑎2𝑗 ∈ [𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 , 𝑎1𝑗 ]) = 𝑂 (𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 ) . (16)

Hence, we expect E[𝑙𝑜𝑠𝑠 𝑗 ] = 𝑂
(
𝑐2

1
(𝜶 , 𝜷) 𝑎2

1𝑗

)
, and consequently

E[𝑙𝑜𝑠𝑠] = 𝑂
(
𝑐2

1
(𝜶 , 𝜷)∥𝒂1∥2

2

)
= 𝑂

(
𝑚𝑐2

1
(𝜶 , 𝜷)

)
. Since we do not

know which agent is doing better a priori when preferences are

random, we can use 𝑐𝑚 (𝜶 , 𝜷) = max𝑖 𝑐𝑖 (𝜶 , 𝜷) in our bounds:

E[𝑙𝑜𝑠𝑠] = 𝑂
(
𝑚𝑐2

𝑚 (𝜶 , 𝜷)
)
. This quadratic bound is a significant

improvement over the worst-case 𝑂 (𝑚𝑐𝑚 (𝜶 , 𝜷)) bound, though
it only holds if 𝑔 𝑗 is well-spread. Refer to Proposition F.2 for a

counterexample.

In Appendix E, we provide bounds for the loss with general distri-

butions. Of particular interest is Corollary E.3 where we introduce

𝜅 𝑗 B sup
0≤𝑎≤1

𝑎 𝑔 𝑗 (𝑎)/𝐺 𝑗 (𝑎) as a measure of how well-spread

distribution 𝑔 𝑗 is. We show that having bounded 𝜅 𝑗 for every item 𝑗

is sufficient to bound the expected loss quadratically in 𝑐𝑚 (𝜶 , 𝜷).
For example, this holds for the uniform distribution, which has a 𝜅

value of 1.

3.2 Multi-Agent Setting
We now consider the general case of 𝑛 agents. Similar to the two-

agent case, we begin with a characterization of the optimal allo-

cation 𝑥𝛼,𝛽 , allowing us to analyze items independently. In this

setting, we add the constraint that no agent can get more than a

𝑏 𝑗 portion of item 𝑗 . An example of such constraint is assigning

students to a class of size 1/𝑏 𝑗 , where no single student can occupy

more than one seat. For 𝑛 = 2 and 𝑏 𝑗 = 1, this is equivalent to the

problem we studied in the two-agent setting.

Lemma 3.3 (Multi-agent solution characterization). Sup-
pose there are𝑚 items and𝑛 inequality-averse agents, where we would
like to maximize social welfare as measured by the multi-objective
preferences (𝑥𝛼,𝛽 ), subject to the constraint that the share of each
agent from any item 𝑗 does not exceed 𝑏 𝑗 .

For any pair of agents 𝑖 and 𝑘 , if agent 𝑖 has not received her
maximum share from item 𝑗 (i.e., 𝑥𝛼,𝛽

𝑖 𝑗
< 𝑏 𝑗 ), then agent 𝑘 can only

get a share of 𝑗 (i.e., 𝑥𝛼,𝛽
𝑘 𝑗

> 0) if 𝑎𝑘 𝑗 ≥ 𝑟𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 , where

𝑟𝑖𝑘 (𝜶 , 𝜷) =
1 − 𝛽𝑖 − (∥𝜶 ∥1 − 𝛼𝑖 )/(𝑛 − 1)
1 + 𝛼𝑘 + (∥𝜷 ∥1 − 𝛽𝑘 )/(𝑛 − 1) . (17)

If, in the limit of many agents,
1

𝑛

∑
𝑖 𝛼𝑖 → 𝛼 and

1

𝑛

∑
𝑖 𝛽𝑖 → ¯𝛽 ,

then 𝑟𝑖𝑘 (𝜶 , 𝜷) →
1−𝛽𝑖−𝛼
1+𝛼𝑘+ ¯𝛽

.

Eq. (17) indicates that in the reallocation of an item from agent 𝑖

to𝑘 , both the society view regarding inequality represented by ∥𝜶 ∥1

and ∥𝜷 ∥1, and inequality aversion of the individuals involved play a

role. For instance, a society moderately averse to (disadvantageous)

inequality (moderate ∥𝜶 ∥1) facilitates reallocation even when the

better-off agent is not averse to (advantageous) inequality (small 𝛽𝑖 ).

As an immediate result of Lemma 3.3 we can upperbound the loss

in the most general case:

Theorem 3.4 (Upperbounded loss in an unrestricted mul-

ti-agent setting). Suppose 1/𝑏 𝑗 ∈ N and let 𝑡𝑜𝑝 𝑗 be the set of
1/𝑏 𝑗 agents with the highest 𝑎𝑖 𝑗 . For the 𝑡𝑜𝑝 𝑗 agents, define average
utility coefficient 𝑎𝑡𝑜𝑝 𝑗 B 𝑏 𝑗

∑
𝑖∈𝑡𝑜𝑝 𝑗 𝑎𝑖 𝑗 , and maximum level of

advantageous inequality aversion 𝛽𝑚,𝑡𝑜𝑝 𝑗 B max𝑖∈𝑡𝑜𝑝 𝑗 𝛽𝑖 . Further,
denote the maximum level of disadvantageous inequality aversion
by 𝛼𝑚 B max𝑖 𝛼𝑖 .

Defining

𝑐 𝑗 (𝜶 , 𝜷) B
𝛽𝑚,𝑡𝑜𝑝 𝑗 + 𝛼𝑚 + (∥𝜶 ∥1 + ∥𝜷 ∥1)/(𝑛 − 1)

1 + 𝛼𝑚 + ∥𝜷 ∥1/(𝑛 − 1) , (18)

we can upperbound the loss as a sum over terms per item:

𝑙𝑜𝑠𝑠 ≤
∑︁
𝑗

𝑙𝑜𝑠𝑠 𝑗 B
∑︁
𝑗

𝑐 𝑗 (𝜶 , 𝜷) 𝑎𝑡𝑜𝑝 𝑗 . (19)

If, in the limit of many agents,
1

𝑛

∑
𝑖 𝛼𝑖 → 𝛼 and

1

𝑛

∑
𝑖 𝛽𝑖 → ¯𝛽 ,

then

𝑙𝑜𝑠𝑠 ≤
∑︁
𝑗

𝛽𝑚,𝑡𝑜𝑝 𝑗 + 𝛼𝑚 + 𝛼 + ¯𝛽

1 + 𝛼𝑚 + ¯𝛽
𝑎𝑡𝑜𝑝 𝑗 . (20)

This result is in stark contrast with similar studies of the price of

fairness. For instance, Caragiannis et al. [16] show in the alloca-

tion of divisible goods enforcing proportionality or envy-freeness,

the price of fairness grows at least with

√
𝑛. This is equivalent to

a relative loss of Ω(1 − 1/
√
𝑛) and approaches 1 asymptotically,

implying that the fair allocation becomes inefficient. In contrast,

we bound the relative loss in our setting by max𝑗 𝑐 𝑗 (𝜶 , 𝜷), which
is a constant.

In simple terms, a loss as severe as Eq. (19) can occur if, for each

item 𝑗 , there is a group 𝑜 𝑗 consisting of at least |𝑡𝑜𝑝 𝑗 | worse-off
agents with closely aligned down-scaled interests to those of 𝑡𝑜𝑝 𝑗 .

Like the two-agent setting, we ask whether having further structure

on agents’ utility coefficients can help avoid the worst-case loss.

We consider two cases: clustered agents and independent agents.

Clustered Agents. Suppose that our agents are in 𝐾 clusters. We

denote the set of agents within cluster 𝑞 ∈ [𝐾] by C𝑞 . For each
cluster 𝑞, define the cluster’s upper and lower representative coef-

ficients: 𝑎𝑞𝑗 B max𝑖∈C𝑞 𝑎𝑖 𝑗 , 𝑎𝑞𝑗 B min𝑖∈C𝑞 𝑎𝑖 𝑗 . We assume that

clusters are easily distinguishable, i.e., agents within a cluster are
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similar to one another and dissimilar agents in other clusters. More

precisely,

(1) Within each cluster 𝑞, suppose ∥𝒂𝑞 − 𝒂𝑞 ∥1 ≤ 𝛿 . We call 𝛿 the

radius of the cluster.

(2) Between distinct clusters 𝑞 and 𝑞′, suppose 𝒂𝑞 and 𝒂𝑖′ are
𝛾-dissimilar for every 𝑖′ ∈ C𝑞′ , i.e., ⟨𝒂𝑞, 𝒂𝑖′ ⟩ ≤ 𝛾 ∥𝒂𝑞 ∥1∥𝒂𝑖′ ∥1.

For small values of 𝛿 and𝛾 , this structure enables us to directly apply

findings from the two-agent setting and derive tighter bounds.

Theorem 3.5 (Upperbounded loss in clustered agents set-

ting). Suppose each agent 𝑖 belongs to one of 𝐾 distinct clusters.
Clusters have a radius of 𝛿 and between clusters dissimilarity of 𝛾 ,
where𝛾𝑚 ≤ 1. Each agent’s share from an item is bounded by𝑏, where
we assume that 1/𝑏 ∈ N for the sake of simplicity. The expected loss
is bounded by

E[𝑙𝑜𝑠𝑠] = 𝑂
(
𝛿 𝑏 𝐾 min{𝑛,𝑚} + (𝐾 − 1) (𝛾𝑚)

1

2

∑︁
𝑗

𝑐 𝑗 (𝜶 , 𝜷)
)
. (21)

If, for 𝑖 ∈ 𝑡𝑜𝑝 𝑗 , the utility coefficients 𝑎𝑖 𝑗 are best explained by
𝐵𝑒𝑡𝑎(𝑠, 1), the exponent of the (𝛾𝑚) term improves to (𝑠 + 1)2/(𝑠 + 2).

For a small 𝛿 , the latter term of Eq. (21) is dominant. This only

improves our bound beyond the unrestricted bound of Theorem 3.4

if the number of clusters is small and clusters are sufficiently dis-

tinguishable.

Independent Agents. Consider 𝑎𝑖 𝑗 ∼ 𝑔 𝑗 independently for each

agent 𝑖 , but note that preferences may not be independent across

items. The following theorem demonstrates that if 𝑏 𝑗 is sufficiently

small, with the number of winners for item 𝑗 (i.e., 1/𝑏 𝑗 ) being
comparable to 𝑛, the loss can be quadratically bounded in the level

of inequality aversion, irrespective of the number of agents.

Theorem 3.6. Suppose each agent 𝑖’s utility coefficients 𝑎𝑖 𝑗 are
drawn independently from the distribution 𝑔 𝑗 , with a corresponding
cumulative distribution 𝐺 𝑗 . Suppose further that 𝑛 → ∞, but 𝑛 𝑏 𝑗 is
bounded. For 𝐺 𝑗 ∈ 𝐶1, define 𝜅 𝑗 B max𝑎>0 𝑎 𝑔 𝑗 (𝑎)/𝐺 𝑗 (𝑎).

If 𝜅 𝑗 ≤ 1/(𝑏 𝑗 𝑛 𝑐 𝑗 (𝜶 , 𝜷)) for every 𝑗 , then

E[𝑙𝑜𝑠𝑠] = 𝑂
(∑︁
𝑗

𝑐2

𝑗 (𝜶 , 𝜷) 𝜅
2

𝑗 𝑏 𝑗𝑛

)
. (22)

4 GAIN IN INEQUALITY-AVERSE SOCIAL
WELFARE

In this section, we study the gain in social welfare, as measured

using elicited preferences over objectives, from moving to a partici-

patory approach. We do so by examining the relationship between

loss and gain using the gain-to-loss ratio. A high gain-to-loss ratio

indicates a relatively higher benefit to moving to a participatory

approach than the loss in social welfare, as measured by the bench-

mark objective.

Specifically, we ask: Is 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 bounded in general? If not,

could we bound this ratio using further assumptions on agents’

preferences?

4.1 Two-Agent Setting
We start from a two-agent setting and present a lower bound on

the gain. The ratio of this lowerbounded gain over the upper-

bounded loss from the previous section will provide a lower bound

on 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 .

Proposition 4.1. Without loss of generality, suppose 𝑢1 (𝑥∗) ≥
𝑢2 (𝑥∗). We can lowerbound gain as a sum over terms per item: 𝑔𝑎𝑖𝑛 ≥∑
𝑗 :𝑎1𝑗>𝑎2𝑗

𝑔𝑎𝑖𝑛 𝑗 , where

𝑔𝑎𝑖𝑛 𝑗 B [(1+𝛽1 +𝛼2)𝑎2𝑗 − (1−𝛽1 −𝛼2)𝑎1𝑗 ] ·1{𝑎2𝑗 > 𝑟1 (Δ1) 𝑎1𝑗 },
(23)

and 𝑟1 (Δ1) B (1 − Δ1)/(1 + Δ1) for Δ1 ∈ [0, 𝛽1 + 𝛼2] as introduced
in Lemma 3.1.
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$%&'.

!#""# Δ# 	!#" 1

(̃# #, % 	!#"

Figure 2: 𝑔𝑎𝑖𝑛 𝑗 from Eq. (23), as a function of 𝑎2𝑗 with 𝑎1𝑗 kept
fixed, is plotted in blue. 𝑙𝑜𝑠𝑠 𝑗 is also depicted in gray.

We now examine 𝑔𝑎𝑖𝑛 𝑗 in Eq. (23) as a function of 𝑎2𝑗 (Fig. 2).

For a fixed 𝑎1𝑗 , the gain is increasing in 𝑎2𝑗 as long as 𝑎2𝑗 < 𝑎1𝑗 .

The maximum gain of 2(𝛽1 +𝛼2) 𝑎1𝑗 will be realized as 𝑎2𝑗 →− 𝑎1𝑗 .

Defining

𝑐𝑖 (𝜶 , 𝜷) B 2(𝛽1 + 𝛼2) , (24)

the maximum gain can be written as 𝑐𝑖 (𝜶 , 𝜷) 𝑎1𝑗 . In Fig. 2, we

have depicted 𝑔𝑎𝑖𝑛 𝑗 along with an upper bound on the loss in gray

(duplicating Fig. 1). There are especially two interesting regimes in

this figure:

(1) For 𝑎2𝑗 →− 𝑎1𝑗 , 𝑔𝑎𝑖𝑛 𝑗/𝑙𝑜𝑠𝑠 𝑗 takes very large values. In this

case, we can also expect large values for 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 .
(2) For 𝑎2𝑗 →+ 𝑟1 (Δ1) 𝑎1𝑗 , the ratio of 𝑔𝑎𝑖𝑛 𝑗/𝑙𝑜𝑠𝑠 𝑗 has small

values. Specifically, when Δ1 → 𝛽1 + 𝛼2, one can verify

𝑔𝑎𝑖𝑛 𝑗 in Eq. (23) goes to zero. But for Δ1 far from 𝛽1 + 𝛼2,

𝑔𝑎𝑖𝑛 𝑗/𝑙𝑜𝑠𝑠 𝑗 can be lowerbounded meaningfully above 0.

The next two propositions formally state the above observations.

Proposition 4.2. Suppose the agents are 𝛿-similar, i.e., ∥𝒂1 −
𝒂2∥1 ≤ 𝛿 , and initially 𝑢1 (𝑥∗) > 𝑢2 (𝑥∗) with no tie for any item.
Then

𝑔𝑎𝑖𝑛

𝑙𝑜𝑠𝑠
≥ 𝑐1 (𝜶 , 𝜷) 𝑓 (𝒖 (𝑥∗))

2𝛿
− 𝑐1 (𝜶 , 𝛽)
𝑐1 (Δ1)

= Ω
(𝑚𝑐1 (𝜶 , 𝜷)

𝛿

)
. (25)

Proposition 4.3. Suppose 𝑢1 (𝑥∗) > 𝑢2 (𝑥∗) and 𝑙𝑜𝑠𝑠 > 0. Then,
𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 ≥ (𝛽1 + 𝛼2)/Δ1 − 1, where Δ1 ≤ 𝛽1 + 𝛼2.

Intuitively, even when the gain-to-loss ratio is small, it can still

be meaningfully above 0.
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4.2 Multi-Agent Setting
The large gain-to-loss ratio is not limited to the two-agent setting.

Consider the allocation of 𝑛 goods to 𝑛 agents with 𝑏 𝑗 = 1 and the

following utility coefficients:

𝑎𝑖 𝑗 =


1 , 𝑖 = 1 ,

1 − 𝜖 , 𝑖 = 𝑗 > 1 ,

𝑟1𝑖 (𝜶 , 𝜷) − 𝜖 o.w.

(26)

As 𝜖 →+
0, it is straightforward to see 𝑥∗

𝑖 𝑗
= 1{𝑖 = 1} and 𝑥𝛼,𝛽

𝑖 𝑗
=

1{𝑖 = 𝑗}. Thus,

𝑙𝑜𝑠𝑠 = (𝑛 − 1)𝜖 , 𝑔𝑎𝑖𝑛 = −(𝑛 − 1)𝜖 + (2 − 𝜖)
∑︁
𝑖>1

(𝛽1 + 𝛼𝑖 ) . (27)

In the limit of 𝜖 →+
0, we have 𝑙𝑜𝑠𝑠 → 0 and 𝑔𝑎𝑖𝑛 → 2

∑
𝑖>1

(𝛽1 +
𝛼𝑖 ). Therefore, 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 → ∞.

Note, although a dissimilarity constraint can potentially upper-

bound the gain, it cannot upperbound the gain-to-loss ratio. The

following proposition shows that, under weak conditions, even ex-

treme dissimilarity cannot guarantee a bounded gain-to-loss ratio.

Proposition 4.4. For any 𝛾 > 0, suppose there exist 𝑛 agents who
are pairwise 𝛾-dissimilar. If there exists an agent 𝑖 for whom either
𝛽𝑖 > 0 or 𝛼𝑘 > 0 for some 𝑘 ≠ 𝑖 , then 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 → ∞.

5 INDIVIDUAL COSTS OF INEQUALITY
AVERSION

The above notions of loss and gain consider aggregate outcomes,

but we may also care about the worst-off individual. To this end,

we wish to bound the worst-case individual tradeoffs

𝐼𝑇 (𝜶 , 𝜷) = max

𝑖

𝑢𝑖 (𝑥∗)
𝑢𝑖 (𝑥𝛼,𝛽 )

. (28)

In this section, we show that 𝐼𝑇 (𝜶 , 𝜷) can approach 𝑛, even for

small levels of inequality aversion. This high individual tradeoff of-

ten stems from competition for items when agents’ preferences are

similar, suggesting this may result from the benchmark allocation

rather than the ill-suitedness of the inequality-averse allocation. We

give an example where 𝐼𝑇 (𝜶 , 𝜷) ≈ 𝑛, yet 𝑓 (𝒖 (𝑥∗)) ≈ 𝑓 (𝒖 (𝑥𝛼,𝛽 )).
However, we can give slightly more optimistic bounds on 𝐼𝑇 (𝜶 , 𝜷)
under mild assumptions on which agent gives up the most utility.

We start by examining individual tradeoffs in the two-agent,

two-good setting. If utilities are normalized. i.e.,

∑
𝑗 𝑎𝑖 𝑗 = 1 for all 𝑖 ,

we can write the utility profile with coefficients

𝑎 =

[
𝑎1 1 − 𝑎1

𝑎2 1 − 𝑎2

]
, (29)

where 𝑎1 (resp. 𝑎2) is howmuch agent 1 (resp. agent 2) values good 1

and 1 − 𝑎1 (resp. 1 − 𝑎2) is how much agent 1 (resp. agent 2) values

good 2. We additionally assume 𝑎𝑖 𝑗 > 0 for all 𝑖, 𝑗 , so that there

exists a complete allocation 𝑥 , i.e.,
∑
𝑖 𝑥𝑖 𝑗 = 1 for all 𝑗 ∈ [𝑚], with

no inequality, 𝐼+
𝑖
(𝑥) = 𝐼−

𝑖
(𝑥) = 0 for all 𝑖 .

Without loss of generality, suppose 𝑎1 > 𝑎2 and 𝑎1 > 1 − 𝑎2.

In this setting, 𝑥∗ is the identity, giving all of good 1 to agent 1

and all of good 2 to agent 2, yet 𝑢1 (𝑥∗) > 𝑢2 (𝑥∗). Moreover, by the

characterization given in Lemma 3.1, assuming inequality aversion

is sufficiently strong, i.e., 𝛽1 + 𝛼2 ≥ (𝑎1 − 𝑎2)/(𝑎1 + 𝑎2), then we

have

𝑥𝛼,𝛽 = 𝑥∗ +
(𝑎1 − (1 − 𝑎2)

𝑎1 + 𝑎2

) [−1 0

1 0

]
. (30)

This allocation gives enough of good 1 to agent 2 to equalize the

agents’ utilities. As agent 1 will be giving up some of her allocations

and agent 2 will be receiving goods from agent 1 relative to 𝑥∗,
agent 1 incurs the maximum cost and

𝐼𝑇 (𝜶 , 𝜷) = max

𝑖

𝑢𝑖 (𝑥∗)
𝑢𝑖 (𝑥𝛼,𝛽 )

=
𝑢1 (𝑥∗)
𝑢1 (𝑥𝛼,𝛽 )

, (31)

with

𝑎 =

[
1 − 𝜖1 𝜖1

1 − 𝜖2 𝜖2

]
,

for 0 < 𝜖1 < 𝜖2 sufficiently small. In particular, the closed form of

𝐼𝑇 (𝜶 , 𝜷) is

max

𝑖

𝑢𝑖 (𝑥∗)
𝑢𝑖 (𝑥𝛼,𝛽 )

=
𝑎1

𝑎1 − 𝑎1−(1−𝑎2 )
𝑎1+𝑎2

=
2 − 𝜖1 − 𝜖2 + 𝜖2

1
+ 𝜖1𝜖2 − 2𝜖1

1 + 𝜖2

1
+ 𝜖1𝜖2 − 2𝜖1

,

which approaches 2 as 𝜖1, 𝜖2 → 0.

We now move to the multi-agent setting. In Proposition 5.1, we

show that in the worst case, individual tradeoff scales linearly with

the number of agents 𝑛.

Proposition 5.1. There exist 𝑛 agents with normalized utility
coefficients for whom 𝐼𝑇 (𝜶 , 𝜷) → 𝑛.

The above bound gets arbitrarily close to 𝑛 when all agents have

similar preferences. However, allocating “almost all of the utility”

to a single agent is optimal. Inequality aversion, in this case, leads

to a significant drop for the single agent despite having a small

loss in social welfare. This leads us to ask what happens if agents

are sufficiently dissimilar. We bound max𝑖
𝑢𝑖 (𝑥∗ )
𝑢𝑖 (𝑥𝛼,𝛽 )

by bounding

𝑢𝑖 (𝑥𝛼,𝛽 ) by a 0-inequality allocation 𝑥𝑒 . This bound enables us to

understand 𝐼𝑇 (𝜶 , 𝜷) in terms of the agent who receives the highest

and lowest utilities under 𝑥∗ (Lemma G.1).

Proposition 5.2. Suppose 𝜶 = 𝜷 = 𝛼1 and let 𝑥𝑒 be an allocation
such that

∑
𝑖 𝐼

+
𝑖
(𝑥𝑒 )+𝐼−

𝑖
(𝑥𝑒 ) = 0. Moreover, let 𝑖 ∈ arg max𝑖′

𝑢𝑖′ (𝑥∗ )
𝑢𝑖′ (𝑥𝛼,𝛽 )

and J𝛼 B {𝑖′ : 𝑢𝑖′ (𝑥𝛼,𝛽 ) ≥ 𝑢𝑖 (𝑥𝛼,𝛽 )}. If
∑
𝑖 𝐼

+
𝑖
(𝑥𝛼,𝛽 ) + 𝐼−

𝑖
(𝑥𝛼,𝛽 ) ≥∑

𝑖′∈J𝛼 (𝑢𝑖′ (𝑥𝛼,𝛽 ) − 𝑢𝑖 (𝑥𝛼,𝛽 )). Then
𝑢𝑖 (𝑥∗)
𝑢𝑖 (𝑥𝛼,𝛽 )

≤ max

𝑖′

𝑢𝑖′ (𝑥∗)
𝑢𝑖′ (𝑥𝑒 )

≤ max𝑖′ 𝑢𝑖′ (𝑥∗)
min𝑖′ 𝑢𝑖′ (𝑥∗)

. (32)

This bound lends itself to a more straightforward interpretation,

as we now have a bound characterized by the best- and worst-off

agents according to 𝒖 (𝑥∗). Consequently, if the worst-off person

in the 𝑥∗ allocation has positive utility, we can bound individual

tradeoffs based on 𝑥∗.

6 DISCUSSION AND CONCLUSION
In this paper, we study the impact of eliciting inequality prefer-

ences from inequality-averse agents on resource allocation. We

upperbound the loss to inequality-agnostic welfare the principal

incurs by eliciting inequality aversion, and upperbound the gain to

inequality-averse welfare by eliciting such preferences. In general,
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these bounds are linear in the inequality aversion 𝛼 , though the

bounds can be tightened with certain assumptions on the struc-

ture of agents’ preferences. Moreover, we show the largest tradeoff

that any one agent might incur to their inequality-agnostic utility

from inequality aversion can be arbitrarily bad even under stronger

assumptions on preferences, growing linearly in the number of

agents.

In our work, we hope to encourage further exploration of pref-

erence elicitation can be used to inform bottom-up approaches to

resource allocation. We assume in inequality-averse allocation the

agents are able to communicate their inequality aversion prefer-

ences. Theremay be cases where a principal can elicit more granular

information such as a partial ranking from agents to estimate 𝛼𝑖
values in settings where agents cannot communicate them exactly.

Extending our results to the allocation of indivisible goods and

other resource allocation problems will require careful consider-

ation. Finally, the tradeoffs noted in this work, which we explore

from a largely theoretical lens, may point to and provide a tool

for understanding empirical behavior in resource allocation set-

tings. For instance, in resource allocation settings that result in

surprising or undesirable outcomes in practice, we wish to see if

we can evaluate if these outcomes are caused by the planner failing

to incorporate inequality-aversion or other social preferences in

the utility model.

ETHICAL CONSIDERATIONS, POSITIONALITY,
AND REFLECTIONS ON ADVERSE IMPACTS
This work is primarily a theoretical proof-of-concept to understand

the potential for preference elicitation to enable a bottom-up ap-

proach to objective design. This is concerned with questions related

to the distribution of power and, in particular, how we can design

objectives through a participatory approach.

The motivation for modeling inequality-averse agents comes

from the behavioral economics literature [10, 31]. Of course, the true

modeling of participant preferences is far more nuanced than what

this model captures. Consequently, trade-offs of how granularly

participants can and should express community-level preferences

should be studied in future work. We believe the results of this

paper—which show potential inefficiencies in standard approaches

compared to our participatory approach—provide further motiva-

tion for this line of work.

While we hope this work leads to a deeper examination of

bottom-up approaches for designing objectives, we also acknowl-

edge that such approaches might be susceptible to adversarial par-

ticipants, such as spoofing attacks. We encourage future research

to scrutinize this potential. Finally, the participatory approach we

present in this work is one of many such approaches andmay not be

appropriate or efficient, depending on the underlying sets of objec-

tives. We encourage future work to examine this broader space of

theoretical possibilities and empirically evaluate these frameworks

in practice.
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A BROADER APPLICATIONS OF MULTI-OBJECTIVE FRAMEWORK
In Section 2, we motivate and discuss a general framework of bottom-up resource allocation with multi-objective agents, then proceed to use

inequality-averse agents as one case study of this model. We now demonstrate some ways in which this framework holds with greater

generality by mapping some existing works on resource allocation where agents’ utilities cannot solely be captured by classical utility

measures.

While this paper examines inequality aversion, this is just one of many well-studied formulations of social preferences [32] . Other

formulations of social preferences, such as altruism [45], can be neatly modeled here. Chen and Kempe [20] model altruistic agents (in

a traffic routing setting) as having cost for their latency plus 𝜃 times the latency they create. In a similar vein, Flanigan et al. [34] model

altruistic voters as having utility for their preferences plus 𝜃 times utility for the “public preference” represented by the population mean,

with valuation 𝑣𝑖 (𝑥) = 𝑢𝑖 (𝑥) + 𝜃
𝑛

∑
𝑖′ 𝑢𝑖′ (𝑥).

There’s also a body of literature that looks at price of fairness, including price of envy-freeness [14, 16, 23], in which fairness is imposed

top-down by the mechanism designer. In reality, this fairness might be valued by multi-objective agents in fair division problems, and might

be resolved bottom-up. Instead of treating envy-freeness as a constraint, we can model multi-objective agents as valuing envy-freeness as

part of the objective. Here, multi-objective agents might have valuations 𝑣𝑖 (𝑥) = 𝑢𝑖 (𝑥) −𝜃 max𝑖′ ⟨𝑎𝑖 , 𝒙𝑖′ −𝒙𝑖 ⟩, with weight 𝜃 on the maximum

envy they have for another agents’ allocation. Moreover, this framework can also capture more recent variations of envy-freeness that

incorporate, for example, positions on social networks [1] by modifying the terms in the summand above.

Finally, we note that our framework extends beyond just social preferences. For example, externalities are well-studied, whereby the

utility individuals have for items they receive might be positively or negatively impacted by whether other agents have those items. One

common example of externalities is the widespread use of cell phones: a user only has high utility for a cell phone if their friends and family

also have one so they can communicate. In this case of externalities, we can model multi-objective agents 𝑣𝑖 (𝒙) = 𝑢𝑖 (𝑥) + 𝜃
∑
𝑖′≠𝑖 1{𝑥𝑖′ = 1},

where utility increases with the number of other people who have the item.

B RELATEDWORK
Participation in Algorithm Design. While research on participatory machine learning has surged in recent years [43], there is little consensus

about how to operationalize participation [9, 26]. In light of this increasing spotlight on participation, Sloane et al. [60] warn about the

temptation to “participation wash,” where algorithm designers boast ingenuine, deceptive, or nonconsensual participation. Similarly, Hitzig

[38] observes the widening of a normative gap between the normative theory of the mechanism design literature and the normative goals of

policymakers, which creates barriers to participation in mechanisms and algorithms in the way policymakers want.

Our work uses inequality-aversion as a case study, which can be contrasted with the fairness literature and work on equity in the resource

allocation literature. In light of this, Mulligan et al. [47] discuss disciplinary-specific conceptualizations of fairness in our era, which can

obscure discussions about values in technology. They call for interdisciplinary discussions and collaborations around the concept of fairness.

Similarly, Finocchiaro et al. [33] emphasize that the approach to fairness has always been restricted to what can be reduced to the field’s

scope. In particular, machine learning traditionally approaches fairness by incorporating a pre-defined metric into optimization, treating

people as data points with no agency. On the other hand, mechanism design, while considering potential strategic behavior, often tends to

measure utility as a proxy for equality. Our framework can be seen as a step towards bridging these views; our proposal is to avoid a fixed

objective function through participatory objective design that can incorporate diverse views on, for example, fairness or inequality aversion.

We also deviate from the conventional notion of selfish agents and utilities, allowing for richer preferences over overall outcomes.

Other-Regarding, or Social, Preferences. The economics literature has studied models of agents who have other-regarding preferences [10,

25, 27, 31], but most often in the context of analyzing equilibrium strategies in various games, rather than evaluating the allocation produced

by a fixed mechanism or game. These social preferences have been empirically validated, whether because of social norms [30], a desire

for reciprocity [5], or a desire to be fair [29], and have been observed in contexts ranging from tax compliance [3] and fair wages [2] to

general games [19]. Fehr and Fischbacher [28] argue that it is impossible to fully understand the effects of market outcomes and competition

without considering social preferences, and Fehr and Fischbacher [29] show that even a few altruists or egoists can drastically affect market

outcomes. Recent work has additionally shown that social preferences can curb distortion in voting [34] and participatory budgeting [4].

Fair Division as a Case Study. As a case study of our framework, we study a classical resource allocation problem of allocating 𝑚

divisible goods among 𝑛 agents, often studied by the fair division literature, which most often studies a top-down approach with different

conceptualizations of fairness. Implicitly much of this literature studies mechanisms that do not directly optimize utilitarian social welfare

(because of its implicit unfairness), but benchmark proposed mechanisms against this metric. For example, the proportionally fair allocation

mechanism of Kelly [42] (equivalent to the Nash Bargaining Solution and CEEI) has become the one of the most widely-used mechanisms for

allocating bandwidth rates on networks, as it maximizes Nash social welfare (products of utilities) for all of the agents, which Caragiannis

et al. [17] observes is envy-free and efficient. Other notions of fairness yield slightly different fair division mechanisms, such as those

of Ghodsi et al. [36], Robertson and Webb [55]. Moreover, Cole and Tao [24] leverages randomization to guarantee ex-ante envy-freeness of

efficient resource allocation mechanisms. Our work diverges from these since much of the fair division literature proposes mechanisms

satisfying some fairness constraints, and possibly benchmarks quality against social welfare. In Section 2.2, we introduce inequality-averse

as our case study for the rest of the paper. The notion of inequality-aversion we adopt is in line with equitable cake-cutting [12, 13]. A
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division of cake is deemed equitable if every agent receiving cake has the same utility for their allocation. Equitable cake cuts cannot be

exactly computed, and even approximations are expensive [53].

An additional line of work on fairness when reporting agents have externalities affecting their utilities has emerged [61, 64], which

is one possible application of our general framework (see Appendix A for more discussion). However, Velez [61] uses money to address

externalities in the allocation of indivisible goods. In contrast, Zhang et al. [64] study cake-cutting (𝑚 = 1) with externalities and proves the

existence of (generalized) envy-free and proportional allocations when agents have utilities for each others’ allocations. However, these

preferences are not about community-level outcomes; rather, they are about others’ individual outcomes, which aligns more with the altruism

literature [20, 45, 63].

Preference Elicitation. Our work also intersects with the literature on preference elicitation. In the canonical principal-agent problem,

informational asymmetries often require a principal to elicit some information from agents — often about their preferences [11, 18, 21, 41]

or predictions about future events [35, 44, 59]. The principal then uses the elicited information to make decisions, such as allocating

resources [15, 46, 50] or making decisions about public goods (e.g., determining the winner of an election, facility placement) [51, 52]. We

defer discussing strategyproofness to § C, and primarily focus more on the question of what bits of information are being collected from

agents, rather than the question of whether or not agents are being truthful. However, Bierbrauer and Netzer [7], Bierbrauer et al. [8] discuss

mechanism design that is (non-)robust to social preferences, albeit in different settings, and only through analyzing the existence of a

dominant strategy equilibrium. Recently, Joren et al. [40] also study participation in machine learning by presenting a system in which

decision subjects can choose what data they provide to a model or ensemble of models in a way that improves expected performance of the

applied model.

In the context of student assignment to schools, our framework aligns with the suggestion of Robertson and Salehi [57] that individual

preferences can serve as valuable signals for promoting justice if they are expanded and made more expressive. This includes offering

more avenues for expressing preferences regarding desirable social outcomes. Moreover, Robertson et al. [56] found that a more expressive

preference language can encourage greater participation by students. These findings reinforce our proposal that preference elicitation across

a broad spectrum of objectives, incorporating fairness considerations, can effectively advance social and distributive justice with meaningful

participation from stakeholders.

Alignment. Our work relates to aligning reinforcement learning agents or large language models using human preferences over sampled

outputs [22, 39, 49]. When directly specifying objectives is difficult for the designer or the human objective is hard to formulate, one approach

is to collect human preferences over a set of model outcomes and learn a reward function to maximize. Recent works have also shown

that alignment of large language models can be achieved indirectly by fine-tuning on collected preferences without explicitly modeling a

human reward function [54]. Our framework follows a similar procedure, allowing agents to specify their objectives as a function of possible

objectives. While alignment discussions mainly focus on single reinforcement learning agents, our work addresses allocating goods to

multiple agents, where a central planner makes final decisions. Unlike common alignment approaches in machine learning that use arbitrary

reward functions, our approach limits options to, for example, those supported by behavioral economics. This restriction enables tractable

optimal allocation and provides theoretical bounds on potential improvement or loss due to preference elicitation. It also limits what aspect

of the problem agents can change, for instance, they can be involved in determining the inequality-efficiency tradeoff.

C ELICITING PREFERENCES OF STRATEGIC AGENTS
Throughout our study, we assumed the planner has access to the agents’ true preferences 𝑎, 𝜶 , and 𝜷 . Next, we briefly discuss possible

strategic manipulations and mechanism design in the presence of inequality-averse agents. For demonstration, we assume 𝜷 = 𝜶 so there is

only a single deviation from the standard setting of mechanism design.

First of all, as long as payments are permitted and agents are quasi-linear, a well-known result is that externality pricing is dominant-

strategy incentive compatible and maximizes social welfare [37, Chapter 8]. A quasi-linear agent 𝑖 cares for 𝑣𝑖 (𝑥) −𝑝𝑖 where 𝑝𝑖 is the payment

made by 𝑖 . Note that 𝑣𝑖 can be a non-linear multi-dimensional function here. For reported utility coefficients 𝑎′ and inequality-aversion

levels 𝜶 ′
, let 𝑣𝑖 (𝑥 ;𝑎′,𝜶 ′) represent agent 𝑖’s valuation of allocation 𝑥 under the reported preferences. The inequality-averse allocation under

the reported preferences is 𝑥 (𝑎′,𝜶 ′) = arg max𝑥 𝑓 (𝒗 (𝑥 ;𝑎′,𝜶 ′)). Externality pricing defines the payment rule

𝑝𝑖 = 𝑣−𝑖 (𝑥 (𝑎′−𝑖 ,𝜶
′
−𝑖 );𝑎

′
−𝑖 ,𝜶

′
−𝑖 ) − 𝑣−𝑖 (𝑥 (𝑎

′,𝜶 ′);𝑎′,𝜶 ′) , (33)

where 𝑣−𝑖 is the sum of valuations for every agent other than 𝑖 . Let us examine this payment rule in the two-agent setting. In the absence of

agent 1, 𝑥2𝑗 (𝑎′
2
, 𝛼 ′

2
) = 1 and 𝑣2 (1;𝑎′

2
, 𝛼 ′

2
) = ∑

𝑗 𝑎
′
2𝑗
. Thus,

𝑝1 =
∑︁
𝑗

𝑎′
2𝑗 [1 − 𝑥2𝑗 (𝑎′,𝜶 ′)]

+ 𝛼2

��∑︁
𝑗

𝑎′
2𝑗𝑥2𝑗 (𝑎′,𝜶 ′) − 𝑎′

1𝑗𝑥1𝑗 (𝑎′,𝜶 ′)
�� . (34)
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For inequality-agnostic agents (i.e., 𝜶 = 0), the above payment rule is equivalent to a second-price auction per item. But in general, allocation

and payments depend on all elements of 𝑎 and 𝜶 . Going beyond truthful mechanisms, it turns out there exists a simple modification of the

standard second-price auction such that significant deviation from truthful reporting cannot be justified.

Proposition C.1. Assume there is a cap of 𝛼𝑚 on the maximum level of inequality aversion one is allowed to report. Given 𝑎′ and 𝜶 ′ are
reported by the two agents, define payment rule 𝑝𝑖 𝑗 = 1{𝑎′𝑖 𝑗 ≥ 𝑟 (𝜶 ′) 𝑎′−𝑖 𝑗 } for item 𝑗 , where 𝑟 (𝜶 ′) B (1 − 𝛼 ′

1
− 𝛼 ′

2
)/(1 + 𝛼 ′

1
+ 𝛼 ′

2
). Then no

agent 𝑖 has any incentive to report 𝑎′
𝑖 𝑗
outside of [𝑟2 (𝛼𝑖 , 𝛼𝑚) 𝑎𝑖 𝑗 , 𝑟−2 (𝛼𝑖 , 𝛼𝑚) 𝑎𝑖 𝑗 ].

Proof. Let 𝑎′
2𝑗

and 𝛼 ′
2
be the agent 1’s belief about agent 2’s report. Also, let 𝑎1𝑗 and 𝛼1 be the true preference of agent 1. There are three

possibilities:

(1) If 𝑎1𝑗 < 𝑟 (𝛼1, 𝛼
′
2
) 𝑎′

2𝑗
, the allocation under truthful report will be 𝑥1𝑗 = 0. Any deviation from truthful reporting that results in 𝑥1𝑗 > 0

requires 𝑎′
1𝑗

≥ 𝑟 (𝛼 ′
1
, 𝛼 ′

2
) 𝑎′

2𝑗
. So, agent 1 needs to pay an extra 𝑎′

2𝑗
and optimistically her overall change of utility will be

−𝑎′
2𝑗 + 𝑎1𝑗 + 𝛼1 (𝑎1𝑗 + 𝑎′2𝑗 ) = 𝑎1𝑗 (1 + 𝛼1) − 𝑎′2𝑗 (1 − 𝛼1)

< 𝑎′
2𝑗 (1 + 𝛼1) [−𝑟 (𝛼1, 0) + 𝑟 (𝛼1, 𝛼2)] ≤ 0 . (35)

Therefore, agent 1 has no beneficial deviation in this case.

(2) If 𝑎1𝑗 > 𝑎
′
2𝑗
/𝑟 (𝛼1, 𝛼

′
2
), the allocation under truthful report is 𝑥1𝑗 = 1 and agent 1 has to pay 𝑎′

2𝑗
. To avoid this payment, agent 1 should

report 𝑎′
1𝑗

< 𝑟 (𝛼 ′
1
, 𝛼 ′

2
). In this case, agent 1 will lose all of item 𝑗 and optimistically her overall change of utility will be

−𝑎1𝑗 + 𝑎′2𝑗 + 𝛼1 (𝑎1𝑗 + 𝑎′2𝑗 ) = −𝑎1𝑗 (1 − 𝛼1) + 𝑎′2𝑗 (1 + 𝛼1)
< 𝑎1𝑗 (1 + 𝛼1) [−𝑟 (𝛼1, 0) + 𝑟 (𝛼1, 𝛼2)] ≤ 0 . (36)

Again, agent 1 has no incentive to deviate.

(3) If 𝑎1𝑗 ∈ [𝑟 (𝛼1, 𝛼
′
2
) 𝑎′

2𝑗
, 𝑎′

2𝑗
/𝑟 (𝛼1, 𝛼

′
2
)], for 𝛼 ′

1
= 𝛼1, deviation of 𝑎′

1𝑗
from 𝑎1𝑗 might be justified up to a scale of 𝑟±2 (𝛼1, 𝛼

′
2
).

Fig. 3 shows the summary of possibilities. Regardless of agent 1’s belief about agent 2, she has no incentive to report𝑎′
1𝑗

∉ [𝑟 (𝛼1, 𝛼𝑚) 𝑎1𝑗 , 𝑎1𝑗/𝑟 (𝛼1, 𝛼𝑚)].
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Figure 3: Bounding deviation from truthfulness.

□

Define 𝑐 (𝜶 ) B 1 − 𝑟 (𝜶 ). Since 𝑟2 (𝜶 ) = 1 −𝑂 (𝑐 (𝜶 )), we don’t expect any bound estimated based on strategically manipulated data to be

relatively wrong by more than 𝑂 (max𝑖 𝑐 (𝛼𝑖 , 𝛼𝑚)). Further, this proposition immediately implies there exists a Bayes Nash equilibrium with

such a property.
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D THE LOSS OF INCORPORATING INEQUALITY AVERSION: TWO 𝛾-DISSIMILAR AGENTS
The next theorem shows how the knowledge of dissimilarity can be helpful in bounding the loss.

Theorem D.1 (Upperbounded loss for two dissimilar agents). For two 𝛾-dissimilar agents and any 𝜏 ∈ [0, 1], the loss can be bounded
by 𝑙𝑜𝑠𝑠 ≤ ∑

𝑗 𝑙𝑜𝑠𝑠 𝑗 , where
(1) If 𝛾 ∥𝒂1∥1 > 1:

𝑙𝑜𝑠𝑠 𝑗 ≤ 𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 . (37)

(2) If 𝛾 ∥𝒂1∥1 ≤ 1:

𝑙𝑜𝑠𝑠 𝑗 ≤


𝑐1 (𝜶 , 𝜷)

(
1 + 2

𝑟1 (𝜶 ,𝜷 )
)
𝛾1−𝜏 ∥𝒂1∥1−𝜏

1
, 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 ,

2𝑐1 (𝜶 , 𝜷)𝛾𝜏 ∥𝒂1∥𝜏
1
, 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 < 𝛾 ∥𝒂1∥1 + 𝛾𝜏 ∥𝒂1∥𝜏

1
,

0 , 𝛾 ∥𝒂1∥1 + 𝛾𝜏 ∥𝒂1∥𝜏
1
≤ 𝑎1𝑗 .

(38)

Proof. For notational convenience, we denote 𝑎2𝑗 by 𝑥 𝑗 in this proof. For fixed 𝒂1, 𝜶 , and 𝜷 , we can rewrite 𝑙𝑜𝑠𝑠 𝑗 in Eq. (14) as

𝑙𝑜𝑠𝑠 𝑗 (𝑥 𝑗 ) = 1{𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 ≤ 𝑥 𝑗 ≤ 𝑎1𝑗 } (𝑎1𝑗 − 𝑥 𝑗 ) . (39)

We will explicitly show the dependence on 𝑥 throughout the proof. Since the 𝑙𝑜𝑠𝑠 𝑗 is discontinuous in 𝑥 𝑗 and hard to analyze, we first
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Figure 4: 𝑙𝑜𝑠𝑠 𝑗 with its quadratic upperbound (Eq. (40)) in red.

upperbound it with two quadratic terms (Fig. 4). Specifically, we require the upperbound to be zero at 𝑥 𝑗 = 0 and 𝑥 𝑗 = 1, and have a

zero derivative at 𝑥 𝑗 = 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 . These constraints uniquely determine the upper bound:

𝑙𝑜𝑠𝑠 𝑗 (𝑥 𝑗 ) ≤ 𝑙𝑜𝑠𝑠 𝑗 (𝑥 𝑗 ) B

−𝑥 𝑗 𝑐1 (𝜶 ,𝜷 )

𝑟1 (𝜶 ,𝜷 )
( 𝑥 𝑗
𝑟1 (𝜶 ,𝜷 ) 𝑎1𝑗

− 2

)
, 𝑥 𝑗 < 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 ,

𝑐1 (𝜶 ,𝜷 ) 𝑎1𝑗

(1−𝑟1 (𝜶 ,𝜷 ) 𝑎1𝑗 )2
(1 − 𝑥 𝑗 ) (𝑥 𝑗 + 1 − 2𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 ) , 𝑥 𝑗 ≥ 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 .

(40)

To find the worst-case upperbounded loss, we need to solve:

max

𝒙
𝑙𝑜𝑠𝑠 (𝒙) B

∑︁
𝑗

𝑙𝑜𝑠𝑠 𝑗 (𝑥 𝑗 )

s.t. 𝑐 (𝒙) = 𝛾 ∥𝒂1∥1

∑︁
𝑗

𝑥 𝑗 −
∑︁
𝑗

𝑎1𝑗𝑥 𝑗 ≥ 0 ,

𝑐 𝑗 (𝒙) = 𝑥 𝑗 ≥ 0 , ∀𝑗
𝑐 𝑗 (𝒙) = 1 − 𝑥 𝑗 ≥ 0 , ∀𝑗 .

(41)

The Lagrangian function of the above optimization problem is

L(𝒙 ; 𝜆,𝝀,𝝀) = 𝑙𝑜𝑠𝑠 (𝒙) + 𝜆𝑐 (𝒙) +
∑︁
𝑗

𝜆 𝑗𝑐 𝑗 (𝒙) +
∑︁
𝑗

𝜆 𝑗𝑐 𝑗 (𝒙) (42)

=
∑︁
𝑗

𝑙𝑜𝑠𝑠 𝑗 (𝑥 𝑗 ) + 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 )𝑥 𝑗 + 𝜆 𝑗𝑥 𝑗 + 𝜆 𝑗 (1 − 𝑥 𝑗 ) , (43)

where 𝜆, 𝝀, and 𝝀 are non-negative Lagrange multipliers. We know for every valid value of the multipliers

max

𝒙
L ≥ max

𝒙
min

𝜆,𝝀,𝝀≥0

L = max
𝒙

s.t. constraints

𝑙𝑜𝑠𝑠 . (44)

So, in the following, we first solve max𝒙 L and then choose appropriate values for multipliers to obtain a good bound.

As the definition of L suggests, L is separable over items: L =
∑
𝑗 L 𝑗 . Defining

𝛿 𝑗 B 𝜆 𝑗 − 𝜆 𝑗 + 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 ) , (45)



FAccT ’24, June 03–06, 2024, Rio de Janeiro, Brazil Shirali, Finocchiaro, Abebe

we can write L 𝑗 (𝑥 𝑗 ; 𝜆, 𝜆 𝑗 , 𝜆 𝑗 ) B 𝑙𝑜𝑠𝑠 𝑗 (𝑥 𝑗 ) + 𝛿 𝑗𝑥 𝑗 + 𝜆 𝑗 . The separability over items allows us to write max𝒙 L =
∑
𝑗 max𝑥 𝑗 L 𝑗 . As L 𝑗 is a

concave quadratic function of 𝑥 𝑗 , it is necessary and sufficient for the maximizer to satisfy the first-order condition

𝑑L 𝑗

𝑑𝑥 𝑗
=

𝑑

𝑑𝑥 𝑗
𝑙𝑜𝑠𝑠 𝑗 + 𝛿 𝑗 = 0 . (46)

The derivative of 𝑙𝑜𝑠𝑠 𝑗 is positive if and only if 𝑥 𝑗 < 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 , so, there are two possibilities based on the sign of 𝛿 𝑗 :

(1) 𝛿 𝑗 < 0: The first-order condition requires 𝑥∗
𝑗
= arg max𝑥 𝑗

L 𝑗 < 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 . Plugging derivative of 𝑙𝑜𝑠𝑠 𝑗 into Eq. (46) and solving for

𝑥 𝑗 gives

𝑥∗𝑗 = 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 + 𝛿 𝑗
𝑟2

1
(𝜶 , 𝜷) 𝑎1𝑗

2𝑐1 (𝜶 , 𝜷)
. (47)

By evaluating L 𝑗 at 𝑥
∗
𝑗
and simplifying equations, we obtain

L∗
𝑗 (𝜆, 𝜆 𝑗 , 𝜆 𝑗 ) B max

𝑥 𝑗
L 𝑗 = L 𝑗 (𝑥∗𝑗 ; 𝜆, 𝜆 𝑗 , 𝜆 𝑗 ) = 𝑐1 (𝜶 , 𝜷) 𝑎1𝑗

(
1 + 𝑟1 (𝜶 , 𝜷)

2𝑐1 (𝜶 , 𝜷)
𝛿 𝑗
)
2 + 𝜆 𝑗 . (48)

(2) 𝛿 𝑗 ≥ 0: The first-order condition in Eq. (46) requires 𝑥∗
𝑗
= arg max𝑥 𝑗

L 𝑗 ≥ 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 . Plugging derivative of 𝑙𝑜𝑠𝑠 𝑗 and solving for

𝑥 𝑗 gives

𝑥∗𝑗 = 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 + 𝛿 𝑗
(1 − 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 )2

2𝑐1 (𝜶 , 𝜷) 𝑎1𝑗
. (49)

By evaluating L 𝑗 at 𝑥
∗
𝑗
and simplifying equations, we obtain

L∗
𝑗 (𝜆, 𝜆 𝑗 , 𝜆 𝑗 ) = L 𝑗 (𝑥∗𝑗 ; 𝜆, 𝜆 𝑗 , 𝜆 𝑗 ) = 𝑐1 (𝜶 , 𝜷) 𝑎1𝑗

(
1 + 𝑟1 (𝜶 , 𝜷)

𝑐1 (𝜶 , 𝜷)
𝛿 𝑗 +

(1 − 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 )2

4𝑐2

1
(𝜶 , 𝜷) 𝑎2

1𝑗

𝛿2

𝑗

)
+ 𝜆 𝑗 . (50)

Now that we have found L∗ (𝜆,𝝀,𝝀) B max𝒙 L =
∑
𝑗 L∗

𝑗
(𝜆, 𝜆 𝑗 , 𝜆 𝑗 ), the next step is to find appropriate 𝜆, 𝝀, and 𝝀 that minimize L∗

or

make it sufficiently small. Again we consider two cases:

(1) 𝛿 𝑗 < 0: In this case,

𝜕L∗
𝑗

𝜕𝜆 𝑗
= −𝑟1 (𝜶 , 𝜷) 𝑎1𝑗

(
1 + 𝑟1 (𝜶 , 𝜷)

2𝑐1 (𝜶 , 𝜷)
𝛿 𝑗
)
+ 1 > 1 − 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 ≥ 0 . (51)

So, L∗
𝑗
is monotone increasing in 𝜆 𝑗 . The optimal values of 𝜆 𝑗 and 𝜆 𝑗 depend on the sign of 𝛾 ∥𝒂1∥1 − 𝑎1𝑗 :

(a) 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 : We set 𝜆 𝑗 = 0 and 𝜆 𝑗 → 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 )+. For these values, we have 𝛿 𝑗 → 0
−
and

L∗
𝑗 (𝜆, 𝜆 𝑗 → 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 )+, 𝜆 𝑗 = 0) →

[
𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 + 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 )

]+
. (52)

(b) 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 : We set 𝜆 𝑗 = 0 and

𝜆 𝑗 =


0 , 𝜆(𝑎1𝑗 − 𝛾 ∥𝒂1∥1) < 2𝑐1 (𝜶 ,𝜷 )

𝑟1 (𝜶 ,𝜷 ) ,

𝜆(𝑎1𝑗 − 𝛾 ∥𝒂1∥1) − 2𝑐1 (𝜶 ,𝜷 )
𝑟1 (𝜶 ,𝜷 ) o.w.

(53)

For such a choice,

L∗
𝑗 (𝜆, 𝜆 𝑗 = 0, 𝜆 𝑗 ) =

{
𝑐1 (𝜶 , 𝜷) 𝑎1𝑗

(
1 − 𝑟1 (𝜶 ,𝜷 )

2𝑐1 (𝜶 ,𝜷 ) 𝜆(𝑎1𝑗 − 𝛾 ∥𝒂1∥1)
)
2

, 𝜆(𝑎1𝑗 − 𝛾 ∥𝒂1∥1) < 2𝑐1 (𝜶 ,𝜷 )
𝑟1 (𝜶 ,𝜷 ) ,

0 o.w.

(54)

(2) 𝛿 𝑗 ≥ 0: In this case,

𝜕L∗
𝑗

𝜕𝜆 𝑗
= 𝑐1 (𝜶 , 𝜷) 𝑎1𝑗

( 𝑟1 (𝜶 , 𝜷)
𝑐1 (𝜶 , 𝜷)

+ 2

(1 − 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗 )2

4𝑐2

1
(𝜶 , 𝜷) 𝑎2

1𝑗

𝛿 𝑗

)
≥ 0 . (55)

So, L∗
𝑗
is monotone increasing in 𝜆 𝑗 . Again, the optimal values of 𝜆 𝑗 and 𝜆 𝑗 depend on the sign of 𝛾 ∥𝒂1∥1 − 𝑎1𝑗 :

(a) 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 : We set 𝜆 𝑗 = 0 and 𝜆 𝑗 = 𝜆(𝑎1𝑗 − 𝛾 ∥𝒂1∥1). For these values,

L(𝜆, 𝜆 𝑗 = 0, 𝜆 𝑗 = 𝜆(𝑎1𝑗 − 𝛾 ∥𝒂1∥1)) = 𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 . (56)
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(b) 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 : We set 𝜆 𝑗 = 0 and

𝜆 𝑗 =


0 , 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 ) <

2𝑐1 (𝜶 ,𝜷 ) 𝑎1𝑗

1−𝑟1 (𝜶 ,𝜷 ) 𝑎1𝑗
,

𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 ) −
2𝑐1 (𝜶 ,𝜷 ) 𝑎1𝑗

1−𝑟1 (𝜶 ,𝜷 ) 𝑎1𝑗
o.w.

(57)

Evaluating L∗
𝑗
at these values and simplifying equations,

L∗
𝑗 (𝜆, 𝜆 𝑗 , 𝜆 𝑗 = 0) ≤

{
2𝑐1 (𝜶 ,𝜷 ) 𝑎1𝑗

1−𝑟1 (𝜶 ,𝜷 ) 𝑎1𝑗
, 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 ) <

2𝑐1 (𝜶 ,𝜷 ) 𝑎1𝑗

1−𝑟1 (𝜶 ,𝜷 ) 𝑎1𝑗
,

𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 ) o.w.

(58)

= max

{
𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 ),

2𝑐1 (𝜶 , 𝜷) 𝑎1𝑗

1 − 𝑟1 (𝜶 , 𝜷) 𝑎1𝑗

}
(59)

Now for every 𝑎1𝑗 we can choose between 𝛿 𝑗 < 0 and 𝛿 𝑗 ≥ 0 cases and choose 𝜆 𝑗 and 𝜆 𝑗 such that L∗
𝑗
is minimized:

(1) 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 : We choose 𝜆 𝑗 = 0 and 𝜆 𝑗 → 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 )+.
(2) 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 : We set 𝜆 𝑗 = 0 and 𝜆 𝑗 as Eq. (53).

For such a choice:

L∗
𝑗 →


𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 + 𝜆(𝛾 ∥𝒂1∥1 − 𝑎1𝑗 ) , 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 ,

𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 (1 − 𝑟1 (𝜶 ,𝜷 )
2𝑐1 (𝜶 ,𝜷 ) 𝜆(𝑎1𝑗 − 𝛾 ∥𝒂1∥1))2 , 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 < 𝛾 ∥𝒂1∥1 + 1

𝜆

2𝑐1 (𝜶 ,𝜷 )
𝑟1 (𝜶 ,𝜷 ) ,

0 , 𝛾 ∥𝒂1∥1 + 1

𝜆

2𝑐1 (𝜶 ,𝜷 )
𝑟1 (𝜶 ,𝜷 ) ≤ 𝑎1𝑗 .

(60)

Let

𝜆 =

{
0 , 𝛾 ∥𝒂1∥1 ≥ 1 ,
2𝑐1 (𝜶 ,𝜷 )
𝑟1 (𝜶 ,𝜷 )

1

𝛾𝜏 ∥𝒂1 ∥𝜏
1

o.w. ,
(61)

where 1 ≥ 𝜏 ≥ 0. Then

(1) 𝛾 ∥𝒂1∥1 ≥ 1:

L∗
𝑗 → 𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 . (62)

(2) 𝛾 ∥𝒂1∥1 < 1:

L∗
𝑗 ≤


𝛾 ∥𝒂1∥1 (𝑐1 (𝜶 , 𝜷) + 𝜆) , 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 ,

𝑐1 (𝜶 , 𝜷)
(
𝛾 ∥𝒂1∥1 + 1

𝜆

2𝑐 (𝜶 ,𝜷 )
𝑟 (𝜶 ,𝜷 )

)
, 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 < 𝛾 ∥𝒂1∥1 + 1

𝜆

2𝑐1 (𝜶 ,𝜷 )
𝑟1 (𝜶 ,𝜷 ) ,

0 , 𝛾 ∥𝒂1∥1 + 1

𝜆

2𝑐1 (𝜶 ,𝜷 )
𝑟1 (𝜶 ,𝜷 ) ≤ 𝑎1𝑗

(63)

≤


𝑐1 (𝜶 , 𝜷)

[
𝛾 ∥𝒂1∥1 + 2

𝑟1 (𝜶 ,𝜷 )𝛾
1−𝜏 ∥𝒂1∥1−𝜏

1

]
, 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 ,

𝑐1 (𝜶 , 𝜷)
[
𝛾 ∥𝒂1∥1 + 𝛾𝜏 ∥𝒂1∥𝜏

1

]
, 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 < 𝛾 ∥𝒂1∥1 + 𝛾𝜏 ∥𝒂1∥𝜏

1
,

0 , 𝛾 ∥𝒂1∥1 + 𝛾𝜏 ∥𝒂1∥𝜏
1
≤ 𝑎1𝑗

(64)

≤


𝑐1 (𝜶 , 𝜷)

(
1 + 2

𝑟1 (𝜶 ,𝜷 )
)
𝛾1−𝜏 ∥𝒂1∥1−𝜏

1
, 𝛾 ∥𝒂1∥1 > 𝑎1𝑗 ,

2𝑐1 (𝜶 , 𝜷)𝛾𝜏 ∥𝒂1∥𝜏
1
, 𝛾 ∥𝒂1∥1 ≤ 𝑎1𝑗 < 𝛾 ∥𝒂1∥1 + 𝛾𝜏 ∥𝒂1∥𝜏

1
,

0 , 𝛾 ∥𝒂1∥1 + 𝛾𝜏 ∥𝒂1∥𝜏
1
≤ 𝑎1𝑗 .

(65)

□
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Figure 5: Upperbounded 𝑙𝑜𝑠𝑠 𝑗 for 𝛾-dissimilar agents (𝛾 ∥𝒂1∥1 ≤ 1) based on Theorem D.1.
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Fig. 5 shows the upperbounded 𝑙𝑜𝑠𝑠 𝑗 for sufficiently small 𝛾 . The parameter 𝜏 gives us the flexibility to penalize extreme values of 𝑎1𝑗 .

Without any further knowledge on 𝑎1𝑗 , we cannot do better than 𝑙𝑜𝑠𝑠 𝑗 = 𝑂
(
𝑐1 (𝜶 , 𝜷)

√︁
𝛾 ∥𝒂1∥1

)
which can be achieved by choosing 𝜏 = 0.5.

This bound is more informative than 𝑙𝑜𝑠𝑠 ≤ 𝑐1 (𝜶 , 𝜷)∥𝒂1∥1 only if 𝛾 < ∥𝒂1∥1/𝑚2
. Having a prior over 𝑎1𝑗 can result in strictly better bounds.

The next corollary gives an example of 𝑎1𝑗 being drawn from a uniform distribution, even without any assumptions on the independence of

items.

Corollary D.2. Assume 𝛾 ≤ 1/𝑚. For 𝑎1𝑗 ∼ 𝑢𝑛𝑖 𝑓 (0, 1) for all 𝑗 ∈ [𝑚], we have

E[𝑙𝑜𝑠𝑠] = 𝑂
(
𝑚𝑐1 (𝜶 , 𝜷) (𝛾𝑚)

4

3

)
. (66)

Proof. Using Theorem D.1, for 𝜏 ≥ 0.5 we have

E𝒂1
[𝑙𝑜𝑠𝑠 𝑗 ] ≤ E𝒂1

[ 
𝑐1 (𝜶 , 𝜷) (1 + 2

𝑟1 (𝜶 ,𝜷 ) ) (𝛾𝑚)1−𝜏 , 𝑎1𝑗 < 𝛾𝑚 ,

2𝑐1 (𝜶 , 𝜷) (𝛾𝑚)𝜏 , 𝛾𝑚 ≤ 𝑎1𝑗 < 𝛾𝑚 + (𝛾𝑚)𝜏 ,
0 , 𝛾𝑚 + (𝛾𝑚)𝜏 ≤ 𝑎1𝑗

| 𝑎1𝑗

]
= 𝑐1 (𝜶 , 𝜷)

[
(1 + 2

𝑟1 (𝜶 , 𝜷)
) (𝛾𝑚)2−𝜏 + 2(𝛾𝑚)2𝜏

]
. (67)

A good choice of 𝜏 would be a value such that all the terms have the same exponent: 2 − 𝜏 = 2𝜏 ⇒ 𝜏 = 2/3. For 𝜏 = 2/3,

E[𝑙𝑜𝑠𝑠] ≤
𝑚∑︁
𝑗=1

E[𝑙𝑜𝑠𝑠 𝑗 ] ≤ 2𝑚𝑐1 (𝜶 , 𝜷) (1 +
1

𝑟1 (𝜶 , 𝜷)
) (𝛾 𝑚)

4

3 . (68)

□

Since E[∥𝒂1∥1] = Θ(𝑚), this is a tighter bound than the distribution-free bound.

E THE LOSS OF INCORPORATING INEQUALITY AVERSION: TWO INDEPENDENT AGENTS
The following Lemma bounds 𝑙𝑜𝑠𝑠 𝑗 for a general two independent agents setting.

Lemma E.1. For 𝑎 = max{𝑎1𝑗 , 𝑎2𝑗 } with cumulative distribution 𝐺2

𝑗
(·), if 𝐺 𝑗 is continuous,

E[𝑙𝑜𝑠𝑠 𝑗 ] = E𝑎∼𝐺2

𝑗

[
𝑎

∫ 𝑐𝑚 (𝜶 ,𝜷 )

0

[
𝐺 𝑗 (1 − ˆ𝑙 |𝑎) −𝐺 𝑗 (1 − 𝑐𝑚 (𝜶 , 𝜷) |𝑎)

]
𝑑 ˆ𝑙

]
, (69)

where 𝐺 𝑗 (·|𝑎) is defined as 𝐺 𝑗 (𝑎 |𝑎) B 𝐺 𝑗 (𝑎 𝑎)/𝐺 𝑗 (𝑎), and 𝑐𝑚 (𝜶 , 𝜷) = max𝑖 𝑐𝑖 (𝜶 , 𝜷).

Proof. Let 𝑎 = max{𝑎1𝑗 , 𝑎2𝑗 }, 𝑎 = min{𝑎1𝑗 , 𝑎2𝑗 }, 𝑟𝑚 (𝜶 , 𝜷) = min𝑖 𝑟𝑖 (𝜶 , 𝜷), and 𝑐𝑚 (𝜶 , 𝜷) = max𝑖 𝑐𝑖 (𝜶 , 𝜷). For notational convenience,
we drop the dependence on 𝑗 from 𝑔 𝑗 and𝐺 𝑗 as it is clear from the context. Given 𝑎, the distribution of 𝑎 follows 𝑔(𝑎 |𝑎) = 1{𝑎 ≤ 𝑎}𝑔(𝑎)/𝐺 (𝑎).
Define a new variable 𝑎 B 𝑎/𝑎. Given 𝑎, the cumulative distribution of 𝑎 is

𝐺 (𝑎 |𝑎) = 𝐺 (𝑎 𝑎 |𝑎) = 𝐺 (𝑎 𝑎)
𝐺 (𝑎) . (70)

Conditioned on 𝑎, we have

𝑙𝑜𝑠𝑠 𝑗 |𝑎 = 1{𝑎 ≥ 𝑟𝑚 (𝜶 , 𝜷) 𝑎}(𝑎 − 𝑎) = 1{𝑎 ≥ 𝑟𝑚 (𝜶 , 𝜷)}(1 − 𝑎)𝑎 . (71)

Let 𝐿 be the cumulative distribution of 𝑙𝑜𝑠𝑠 𝑗 . Define 𝑙𝑜𝑠𝑠 𝑗 |𝑎 B (𝑙𝑜𝑠𝑠 𝑗/𝑎) |𝑎 with the cumulative distribution of �̂�(ˆ𝑙 |𝑎) = 𝐿(ˆ𝑙 𝑎 |𝑎). For any
ˆ𝑙 ∈ [0, 𝑐𝑚 (𝜶 , 𝜷)], we have 𝑙𝑜𝑠𝑠 𝑗 |𝑎 ≤ ˆ𝑙 if and only if 𝑎 < 𝑟𝑚 (𝜶 , 𝜷) or 𝑎 ≥ 1 − ˆ𝑙 . Therefore, for a continuous 𝐺 , we have

�̂�(ˆ𝑙 |𝑎) = 𝐺 (𝑟𝑚 (𝜶 , 𝜷) |𝑎) + 1 −𝐺 (1 − ˆ𝑙 |𝑎) . (72)

Now we can calculate the expected loss by

E[𝑙𝑜𝑠𝑠 𝑗 ] = E𝑎∼𝐺2

𝑗

[
𝑎 E

�̂�
[𝑙𝑜𝑠𝑠 𝑗 |𝑎]

]
= E𝑎∼𝐺2

𝑗

[
𝑎

∫ 𝑐𝑚 (𝜶 ,𝜷 )

0

[
𝐺 (1 − ˆ𝑙 |𝑎) −𝐺 (𝑟𝑚 (𝜶 , 𝜷) |𝑎)

]
𝑑 ˆ𝑙

]
, (73)

where we used tower property and integration by parts. □

For some classes of distributions, such as uniform and beta distributions, 𝐺 𝑗 (·|𝑎) in Lemma E.1 has no dependence on 𝑎 and Eq. (69) can

be significantly simplified. The next corollary shows this is generally true for 𝑔 𝑗 = 𝐵𝑒𝑡𝑎(𝑠 𝑗 , 1).

Corollary E.2. For 𝑔 𝑗 = 𝐵𝑒𝑡𝑎(𝑠 𝑗 , 1) with 𝑠 𝑗 ≥ 1, we have

E[𝑙𝑜𝑠𝑠] ≤ 𝑐2

𝑚 (𝜶 , 𝜷)
(∑︁
𝑗

𝑠 𝑗
)
. (74)
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Proof. Plugging 𝐺 𝑗 (𝑎) = 𝑎𝑠 𝑗 into 𝐺 𝑗 definition, we have 𝐺 𝑗 (𝑎) = 𝑎𝑠 𝑗 = 𝐺 𝑗 (𝑎). Also, note that 𝐺2

𝑗
will be the cumulative distribution of

𝐵𝑒𝑡𝑎(2𝑠 𝑗 , 1). So, we can simplify and upperbound E[𝑙𝑜𝑠𝑠 𝑗 ] from Eq. (69):

E[𝑙𝑜𝑠𝑠 𝑗 ] = E𝐺2

𝑗
[𝑎]

∫ 𝑐𝑚 (𝜶 ,𝜷 )

0

[
(1 − ˆ𝑙)𝑠 𝑗 − (1 − 𝑐𝑚 (𝜶 , 𝜷))𝑠 𝑗

]
𝑑 ˆ𝑙 (75)

=
2𝑠 𝑗

2𝑠 𝑗 + 1

(
1

𝑠 𝑗 + 1

[1 − (1 − 𝑐𝑚 (𝜶 , 𝜷))𝑠 𝑗+1] − 𝑐𝑚 (𝜶 , 𝜷) (1 − 𝑐𝑚 (𝜶 , 𝜷))𝑠 𝑗
)

(76)

=
𝑠 𝑗

(𝑠 𝑗 + 1/2) (𝑠 𝑗 + 1)

(
1 − (1 + 𝑐𝑚 (𝜶 , 𝜷)𝑠 𝑗 ) (1 − 𝑐𝑚 (𝜶 , 𝜷))𝑠 𝑗

)
(77)

≤
𝑠3

𝑗

(𝑠 𝑗 + 1/2) (𝑠 𝑗 + 1) 𝑐
2

𝑚 (𝜶 , 𝜷) . (78)

We applied (1 − 𝑐)𝑠 ≥ 1 − 𝑠 𝑐 for 𝑐 ≤ 1 and 𝑠 ≥ 1 to obtain the last inequality. This bound is tight for 𝑠 = 1 (uniform distribution). The rest of

the proof is straightforward. □

For general distributions, we can approximate Eq. (69) for small 𝑐𝑚 (𝜶 , 𝜷) and find a sufficient condition to get a 𝑂 (𝑐2

𝑚 (𝜶 , 𝜷)) bound on

loss:

Corollary E.3. For 𝐺 𝑗 ∈ 𝐶1 define 𝜅 𝑗 B sup𝑎>0
𝑎 𝑔 𝑗 (𝑎)/𝐺 𝑗 (𝑎). If 𝜅 𝑗 is finite for every 𝑗 , then

E[𝑙𝑜𝑠𝑠] ≤ 𝑐2

𝑚 (𝜶 , 𝜷)
(∑︁
𝑗

𝜅 𝑗/2

)
+ 𝑜 (𝑐2

𝑚 (𝜶 , 𝜷)) . (79)

Proof. For a small 𝑐𝑚 (𝜶 , 𝜷), we can use the first-order Taylor expansion of 𝐺 around 1 in calculating Eq. (69):∫ 𝑐𝑚 (𝜶 ,𝜷 )

0

[
𝐺 𝑗 (1 − ˆ𝑙 |𝑎) −𝐺 𝑗 (1 − 𝑐𝑚 (𝜶 , 𝜷) |𝑎)

]
𝑑 ˆ𝑙 =

∫ 𝑐𝑚 (𝜶 ,𝜷 )

0

[
𝑔 𝑗 (1|𝑎) (𝑐𝑚 (𝜶 , 𝜷) − ˆ𝑙) + 𝑜 (𝑐𝑚 (𝜶 , 𝜷))

]
𝑑 ˆ𝑙 (80)

=
1

2

𝑔 𝑗 (1|𝑎) 𝑐2

𝑚 (𝜶 , 𝜷) + 𝑜 (𝑐2

𝑚 (𝜶 , 𝜷)) . (81)

Here 𝑔 𝑗 (𝑎 |𝑎) = 𝐺
′
𝑗
(𝑎 |𝑎) = 𝑎 𝑔 𝑗 (𝑎 𝑎)/𝐺 𝑗 (𝑎). Define 𝜅 𝑗 B max𝑎>0 𝑎 𝑔 𝑗 (𝑎)/𝐺 𝑗 (𝑎). We have

E[𝑙𝑜𝑠𝑠 𝑗 ] ≤ E𝐺2

𝑗
[𝑎]

[
1

2

𝜅 𝑗 𝑐
2 (𝜶 ) + 𝑜 (𝑐2

𝑚 (𝜶 , 𝜷))
]
≤ 1

2

𝜅 𝑗 𝑐
2

𝑚 (𝜶 , 𝜷) + 𝑜 (𝑐2

𝑚 (𝜶 , 𝜷)) . (82)

The rest of the proof is straightforward. □

Note that for 𝑔 𝑗 = 𝐵𝑒𝑡𝑎(𝑠 𝑗 , 1), we have 𝜅 𝑗 = 𝑠 𝑗 and for small 𝑐𝑚 (𝜶 , 𝜷), Corollary E.3 gives a slightly tighter bound than Corollary E.2. It

is also worth noting 𝜅 𝑗 is not necessarily finite for all distributions even if 𝑔 𝑗 ∈ 𝐶∞
. For example, for any 𝑠′

𝑗
∈ (0, 1) and 𝑔 𝑗 = 𝐵𝑒𝑡𝑎(𝑠 𝑗 , 𝑠′𝑗 ), we

have 𝑎 𝑔 𝑗 (𝑎)/𝐺 𝑗 (𝑎) → ∞ as 𝑎 → 1
−
.

F ADDITIONAL STATEMENTS
Proposition F.1. There exist two 𝛿-similar agents for whom 𝑙𝑜𝑠𝑠 ≥ 𝛿/2.

Proof. The proof is constructive: For an even number of items𝑚, consider 𝑎1𝑗 = 1 and 𝑎2𝑗 = 1 − 𝛿/𝑚 + 𝜖𝜒{ 𝑗 is odd}, where 𝜖 → 0
+
.

Under 𝑥∗, all items go to agent 1. But for values of 𝜶 such that |𝑟1 (𝜶 , 𝜷) − (1 − 𝛿/𝑚) | < 𝜖 , one can verify 𝑥
𝛼,𝛽

1𝑗
= 1{ 𝑗 is even}. So, in this

example, ∥𝒂1 − 𝒂2∥1 = 𝛿 and 𝑙𝑜𝑠𝑠 = 𝛿/2. □

Proposition F.2. There exist two independent agents for whom E[𝑙𝑜𝑠𝑠 𝑗 ] = Θ(𝑐1 (𝜶 , 𝜷)).

Proof. The proof is constructive. Define 𝑔 𝑗 to be concentrated around two points: 𝑔 𝑗 (𝑎𝑖 𝑗 ) B 0.5𝛿 (𝑎𝑖 𝑗 − 1) + 0.5𝛿 (𝑎𝑖 𝑗 − 𝑟1 (𝜶 , 𝜷)). Here
𝛿 (·) denotes the Dirac delta function. In this example, with the probability of 25% we will have 𝑎1𝑗 = 1 and 𝑎2𝑗 = 𝑟1 (𝜶 , 𝜷) for which the

maximum of 𝑙𝑜𝑠𝑠 𝑗 will be realized. □
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G MISSING PROOFS
G.1 Deferred Proofs from Section 3

Proof of Lemma 3.1. First of all, observe that max𝑥 𝑓 (𝒗 (𝑥)) can be formulated as a linear program

max

𝑥,𝑧
𝑢1 (𝑥) + 𝑢2 (𝑥) − 𝑧

s.t. 𝑐𝑖 𝑗 (𝑥) = 𝑥𝑖 𝑗 ≥ 0 , ∀𝑖, 𝑗 ,

𝑐 𝑗 (𝑥) = 1 −
∑︁
𝑖

𝑥𝑖 𝑗 = 0 , ∀𝑗 ,

𝑐1 (𝑥, 𝑧) = 𝑧 − 2𝛼1 (𝑢1 (𝑥) − 𝑢2 (𝑥)) ≥ 0 ,

𝑐2 (𝑥, 𝑧) = 𝑧 − 2𝛼2 (𝑢2 (𝑥) − 𝑢1 (𝑥)) ≥ 0 ,

where 𝛼1 B (𝛽1 +𝛼2)/2 and 𝛼2 B (𝛼1 + 𝛽2)/2. In the case of linear programming, KKT conditions are necessary and sufficient to characterize

the optimum. In order to write KKT conditions, we first find the gradients of the objective function ℎ(𝑥, 𝑧) B −𝑢1 (𝑥) − 𝑢2 (𝑥) + 𝑧 and
constraints w.r.t. 𝑥𝑖 𝑗 and 𝑧:

∇𝑖 𝑗ℎ = −𝑎𝑖 𝑗 , ∇𝑧ℎ = 1 ,

∇𝑖 𝑗𝑐𝑘𝑙 = 1{𝑖 𝑗 = 𝑘𝑙}, ∇𝑧𝑐𝑘𝑙 = 0 ,

∇𝑖 𝑗𝑐𝑙 = −1{ 𝑗 = 𝑙} , ∇𝑧𝑐𝑙 = 0 ,

∇𝑖 𝑗𝑐𝑘 = −2𝜒{𝑖 = 𝑘}𝛼𝑘𝑎𝑖 𝑗 ,∇𝑧𝑐𝑘 = 1 .

KKT conditions require

∇𝑖 𝑗ℎ = −𝑎𝑖 𝑗 =
∑︁
𝑘,𝑙

𝜆𝑘𝑙∇𝑖 𝑗𝑐𝑘𝑙 +
∑︁
𝑙

𝜆𝑙∇𝑖 𝑗𝑐𝑙 +
∑︁
𝑘

˜𝜆𝑘∇𝑖 𝑗𝑐𝑘 = 𝜆𝑖 𝑗 − 𝜆 𝑗 − 2(𝛼𝑖 ˜𝜆𝑖 − 𝛼−𝑖 ˜𝜆−𝑖 )𝑎𝑖 𝑗 , ∀𝑖, 𝑗 , (83)

∇𝑧ℎ = 1 = ˜𝜆1 + ˜𝜆2 , (84)

𝜆𝑖 𝑗 , ˜𝜆𝑖 ≥ 0 , ∀𝑖, 𝑗 , (85)∑︁
𝑖

𝑥𝑖 𝑗 = 1 , ∀𝑗 , (86)

𝜆𝑖 𝑗𝑐𝑖 𝑗 = 0 , ∀𝑖, 𝑗 , (87)

˜𝜆𝑖𝑐𝑖 = 0 , ∀𝑖 . (88)

Let us define Δ𝑖 B 2𝛼𝑖 ˜𝜆𝑖 − 2𝛼−𝑖 ˜𝜆−𝑖 = −Δ−𝑖 . Eq. (84) and nonnegativity of
˜𝜆𝑖 and ˜𝜆−𝑖 ensure Δ𝑖 ∈ [−2𝛼−𝑖 , 2𝛼𝑖 ].

Using Eq. (83) to find ∇−𝑖 𝑗ℎ − ∇𝑖 𝑗ℎ, we have 𝑎−𝑖 𝑗 (Δ−𝑖 − 1) + 𝑎𝑖 𝑗 (1 − Δ𝑖 ) = 𝜆−𝑖 𝑗 − 𝜆𝑖 𝑗 . If 𝑥𝑖 𝑗 > 0, we need 𝜆𝑖 𝑗 = 0. Then 𝜆−𝑖 𝑗 ≥ 0 requires

Δ𝑖 ≤
𝑎𝑖 𝑗−𝑎−𝑖 𝑗
𝑎𝑖 𝑗+𝑎−𝑖 𝑗 . Further, if 1 > 𝑥𝑖 𝑗 > 0, then 𝜆−𝑖 𝑗 = 0 and Δ𝑖 =

𝑎𝑖 𝑗−𝑎−𝑖 𝑗
𝑎𝑖 𝑗+𝑎−𝑖 𝑗 . This proves Eq. (13).

Finally, if
˜𝜆1, ˜𝜆2 > 0, we need 𝑐1 = 𝑐2 = 0. This only happens if 𝑢1 (𝑥) = 𝑢2 (𝑥). Otherwise, one of ˜𝜆1 or

˜𝜆2 will be zero and Δ𝑖 will be

either 2𝛼𝑖 or −2𝛼−𝑖 . Specifically, if 𝑢𝑖 (𝑥) > 𝑢−𝑖 (𝑥), we will have 𝑐𝑖 (𝑥) = 0 and 𝑐−𝑖 (𝑥) > 0, which gives
˜𝜆𝑖 > 0 and

˜𝜆−𝑖 = 0. So, in this case

Δ𝑖 = 2𝛼𝑖 . □

Proof of Theorem 3.2. Define Δ𝑎 𝑗 B 𝑎1𝑗 −𝑎2𝑗 and J1 B { 𝑗 | 𝑎1𝑗 > 𝑎2𝑗 }. The allocation 𝑥𝛼,𝛽 only reallocates items allocated to agent 1

under 𝑥∗, i.e., J1. Lemma 3.1 shows among items in J1 only
˜J1 (Δ1) = { 𝑗 | 𝑗 ∈ J1,Δ1 ≥ Δ𝑎 𝑗/(𝑎1𝑗 +𝑎2𝑗 )} are subject to reallocation. The loss

due to allocating item 𝑗 ∈ J1 to agent 2 is Δ𝑎 𝑗 . If all items in
˜J1 (Δ1) are allocated to agent 2, the loss will be bounded by

∑
𝑗∈ ˜J1 (Δ1 ) Δ𝑎 𝑗 . Since

˜J1 (·) is a monotone increasing set and Δ1 ≤ 𝛽1+𝛼2, the loss can be bounded by

∑
𝑗∈ ˜J1 (𝛽1+𝛼2 ) Δ𝑎 𝑗 =

∑
𝑗∈J1

Δ𝑎 𝑗 1{𝛽1+𝛼2 ≥ Δ𝑎 𝑗/(𝑎1𝑗 +𝑎2𝑗 )}.
Rearranging the terms in 1{·} completes the proof of Eq. (14). Setting 𝑎2𝑗 = 𝑟 (𝜶 , 𝜷) 𝑎1𝑗 , the rest of the proof is straightforward. □

Proof of Lemma 3.3. Plugging the 𝐼+
𝑖
(𝑥) and 𝐼−

𝑖
from Eqs. (10) and (11) into agent 𝑖’s aggregated value gives

𝑣𝑖 (𝑥) = 𝑢𝑖 (𝑥) −
1

𝑛 − 1

𝛼𝑖

∑︁
𝑘≠𝑖

max{𝑢𝑘 (𝑥) − 𝑢𝑖 (𝑥), 0} −
1

𝑛 − 1

𝛽𝑖

∑︁
𝑘≠𝑖

max{𝑢𝑖 (𝑥) − 𝑢𝑘 (𝑥), 0} . (89)
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Maximization of 𝑓 (𝒗 (𝑥)) = ∑
𝑖 𝑣𝑖 (𝑥) is then equivalent to solving the linear program

max

𝑥,𝑧
− ℎ(𝑥, 𝑧) B

∑︁
𝑖

(
𝑢𝑖 (𝑥) −

1

𝑛 − 1

∑︁
𝑘≠𝑖

𝑧𝑖𝑘

)
s.t. 𝑐𝑖 𝑗 (𝑥) = 𝑥𝑖 𝑗 ≥ 0 , ∀𝑖, 𝑗 ,

𝑐𝑖 𝑗 (𝑥) = 𝑏 𝑗 − 𝑥𝑖 𝑗 ≥ 0 , ∀𝑖, 𝑗 ,

𝑐 𝑗 (𝑥) = 1 −
∑︁
𝑖

𝑥𝑖 𝑗 ≥ 0 , ∀𝑗 ,

𝑐𝑧
𝑖𝑘
(𝑥, 𝑧) = 𝑧𝑖𝑘 − 𝛽𝑖 (𝑢𝑖 (𝑥) − 𝑢𝑘 (𝑥)) ≥ 0 , ∀𝑘 ≠ 𝑖 ,

𝑐𝑧
𝑖𝑘
(𝑥, 𝑧) = 𝑧𝑖𝑘 − 𝛼𝑖 (𝑢𝑘 (𝑥) − 𝑢𝑖 (𝑥)) ≥ 0 , ∀𝑘 ≠ 𝑖 .

In the case of linear programming, KKT conditions are necessary and sufficient to characterize the optimum. Let 𝜆𝑖 𝑗 ,
¯𝜆𝑖 𝑗 , 𝛾 𝑗 , 𝜉

𝑖𝑘
, and

¯𝜉𝑖𝑘 be

corresponding KKT multipliers of 𝑐𝑖 𝑗 , 𝑐𝑖 𝑗 , 𝑐 𝑗 , 𝑐
𝑧
𝑖𝑘
, and 𝑐𝑧

𝑖𝑘
, respectively. KKT conditions require

∇𝑥𝑖 𝑗ℎ = −𝑎𝑖 𝑗 =
∑︁
𝑘,𝑙

𝜆𝑘𝑙∇𝑥𝑖 𝑗 𝑐𝑘𝑙 +
∑︁
𝑘,𝑙

¯𝜆𝑘𝑙∇𝑥𝑖 𝑗 𝑐𝑘𝑙 +
∑︁
𝑙

𝛾𝑙∇𝑥𝑖 𝑗 𝑐𝑙 +
∑︁
𝑖′≠𝑘 ′

𝜉
𝑖′𝑘 ′

∇𝑥𝑖 𝑗 𝑐𝑧𝑖′𝑘 ′ +
∑︁
𝑖′≠𝑘 ′

¯𝜉𝑖′𝑘 ′∇𝑥𝑖 𝑗 𝑐𝑧𝑖′𝑘 ′

= 𝜆𝑖 𝑗 − ¯𝜆𝑖 𝑗 − 𝛾 𝑗 + 𝑎𝑖 𝑗
∑︁
𝑘≠𝑖

(−𝛽𝑖 )𝜉
𝑖𝑘

+ 𝑎𝑖 𝑗
∑︁
𝑘≠𝑖

𝛽𝑘𝜉𝑘𝑖
+ 𝑎𝑖 𝑗

∑︁
𝑘≠𝑖

𝛼𝑖 ¯𝜉𝑖𝑘 + 𝑎𝑖 𝑗
∑︁
𝑘≠𝑖

(−𝛼𝑘 ) ¯𝜉𝑘𝑖 , (90)

∇𝑧𝑖𝑘ℎ =
1

𝑛 − 1

=
∑︁
𝑖′≠𝑘 ′

𝜉
𝑖′𝑘 ′

∇𝑧𝑖𝑘𝑐𝑧𝑖′𝑘 ′ +
∑︁
𝑖′≠𝑘 ′

¯𝜉𝑖′𝑘 ′∇𝑧𝑖𝑘𝑐𝑧𝑖′𝑘 ′ = 𝜉𝑖𝑘 + ¯𝜉𝑖𝑘 , (91)

𝜆, ¯𝜆,𝛾, 𝜉, ¯𝜉 ≥ 0 , (92)

𝜆𝑖 𝑗𝑐𝑖 𝑗 (𝑥) = 0 , ¯𝜆𝑖 𝑗𝑐𝑖 𝑗 (𝑥) = 0 , ∀𝑖, 𝑗 , (93)

𝛾 𝑗𝑐 𝑗 (𝑥) = 0 , ∀𝑗 , (94)

𝜉
𝑖𝑘
𝑐𝑧
𝑖𝑘
(𝑥, 𝑧) = 0, ¯𝜉𝑖𝑘𝑐

𝑧
𝑖𝑘
(𝑥, 𝑧) = 0 , ∀𝑘 ≠ 𝑖 . (95)

Define 𝜉𝑖𝑘 B 𝛼𝑖 ¯𝜉𝑖𝑘 − 𝛽𝑖𝜉𝑖𝑘 and denote its matrix form by 𝜉 . Since 𝜉
𝑖𝑘

and
¯𝜉𝑖𝑘 are nonnegative, Eq. (91) requires 𝜉𝑖𝑘 ∈ [− 𝛽𝑖

𝑛−1
,
𝛼𝑖
𝑛−1

]. Define
𝝈 B (𝜉 − 𝜉T)1, where 1 is a vector of all ones. The range on 𝜉 requires

𝜎𝑖 ∈
[
− 𝛽𝑖 −

1

𝑛 − 1

∑︁
𝑘≠𝑖

𝛼𝑘 , 𝛼𝑖 +
1

𝑛 − 1

∑︁
𝑘≠𝑖

𝛽𝑘
]
. (96)

Note that the inequality aversion levels are less than 1/2, so, |𝜎𝑖 | < 1/2. Using the new definitions, we can rewrite Eq. (90) as

−𝑎𝑖 𝑗 = 𝜆𝑖 𝑗 − ¯𝜆𝑖 𝑗 − 𝛾 𝑗 + 𝜎𝑖𝑎𝑖 𝑗 . (97)

If 𝑥𝑘 𝑗 > 0, then 𝜆𝑘 𝑗 = 0 and Eq. (97) for agent 𝑘 and item 𝑗 gives 𝛾 𝑗 = (1 + 𝜎𝑘 )𝑎𝑘 𝑗 − ¯𝜆𝑘 𝑗 . Further, if 𝑥𝑖 𝑗 < 𝑏 𝑗 , we have ¯𝜆𝑖 𝑗 = 0. Then

plugging 𝛾 𝑗 into Eq. (97) gives

𝑎𝑘 𝑗 (1 + 𝜎𝑘 ) − 𝑎𝑖 𝑗 (1 + 𝜎𝑖 ) = 𝜆𝑖 𝑗 + ¯𝜆𝑘 𝑗 . (98)

Since both 𝜆 and ¯𝜆 only take non-negative values and 𝜎𝑖 > −1, 𝜎𝑘 > −1, we can write

𝑎𝑘 𝑗 ≥ 𝑎𝑖 𝑗
1 + 𝜎𝑖
1 + 𝜎𝑘

. (99)

Then using Eq. (96) and choosing extreme values for 𝜎𝑖 and 𝜎𝑘 , we have

𝑎𝑘 𝑗 ≥ 𝑎𝑖 𝑗
1 − 𝛽𝑖 − 1

𝑛−1

∑
𝑖′≠𝑖 𝛼𝑖′

1 + 𝛼𝑘 + 1

𝑛−1

∑
𝑘 ′≠𝑘 𝛽𝑘 ′

= 𝑟𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 . (100)

□

Proof of Theorem 3.4. Assume under 𝑥∗, agent 𝑖 receives her full 𝑏 𝑗 share from item 𝑗 . If 𝑥𝛼,𝛽 reallocates agent 𝑖’s share of item 𝑗 to

agent 𝑘 , a loss of 𝑏 𝑗 (𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 ) will be incurred. Lemma 3.3 requires 𝑎𝑘 𝑗 ≥ 𝑟𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 for this reallocation to be possible. Hence, the loss is

bounded by 𝑏 𝑗 (1 − 𝑟𝑖𝑘 (𝜶 , 𝜷)) 𝑎𝑖 𝑗 . Defining

𝑐𝑖𝑘 (𝜶 , 𝜷) B 1 − 𝑟𝑖𝑘 (𝜶 , 𝜷) =
𝛽𝑖 + 𝛼𝑘 + (∥𝜶 ∥1 + ∥𝜷 ∥1 − 𝛼𝑖 − 𝛽𝑘 )/(𝑛 − 1)

1 + 𝛼𝑘 + (∥𝜷 ∥1 − 𝛽𝑘 )/(𝑛 − 1) , (101)
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we can rewrite the loss of reallocating agent 𝑖’s share to agent 𝑘 as 𝑏 𝑗 𝑐𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 . Since inequality aversion levels are less than 1/2,

𝑟𝑖𝑘 (𝜶 , 𝜷) > 0 and 𝑐𝑖𝑘 (𝜶 , 𝜷) < 1. Then a simple argument shows

𝑐𝑖𝑘 (𝜶 , 𝜷) ≤ 𝑐𝑖 (𝜶 , 𝜷) B
𝛽𝑖 + 𝛼𝑚 + (∥𝜶 ∥1 + ∥𝜷 ∥1)/(𝑛 − 1)

1 + 𝛼𝑚 + ∥𝜷 ∥1/(𝑛 − 1) . (102)

Since initially only 𝑡𝑜𝑝 𝑗 agents have a share from item 𝑗 , the loss only incurs if we get some share of agent 𝑖 ∈ 𝑡𝑜𝑝 𝑗 and give it to

agent 𝑘 ≠ 𝑗 . Hence, we can upperbound the loss from reallocation of item 𝑗 by

𝑙𝑜𝑠𝑠 𝑗 ≤
∑︁

𝑖∈𝑡𝑜𝑝 𝑗
𝑏 𝑗 𝑐𝑖 (𝜶 , 𝜷) 𝑎𝑖 𝑗 ≤

(
max

𝑖∈𝑡𝑜𝑝 𝑗
𝑐𝑖 (𝜶 , 𝜷)

) ( ∑︁
𝑖∈𝑡𝑜𝑝 𝑗

𝑏 𝑗𝑎𝑖 𝑗
)

(103)

≤
𝛽𝑚,𝑡𝑜𝑝 𝑗 + 𝛼𝑚 + (∥𝜶 ∥1 + ∥𝜷 ∥1)/(𝑛 − 1)

1 + 𝛼𝑚 + ∥𝜷 ∥1/(𝑛 − 1) 𝑎𝑡𝑜𝑝 𝑗 . (104)

□

Proof of Theorem 3.5. Based on Lemma 3.3, agent 𝑖 ∈ 𝑡𝑜𝑝 𝑗 might give up her share from item 𝑗 to agent 𝑘 ≠ 𝑖 only if 𝑎𝑘 𝑗 ≥ 𝑟𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 .
Therefore, we can bound the possible loss due to a transfer from 𝑖 to 𝑘 by 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) B 𝑏1{𝑎𝑖 𝑗 ≥ 𝑎𝑘 𝑗 ≥ 𝑟𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 }(𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 ). Let J (𝑖)
be the items that agent 𝑖 has a share from. We can upperbound the overall loss by

𝑙𝑜𝑠𝑠 ≤
∑︁
𝑖

∑︁
𝑗∈J(𝑖 )

max

𝑘
𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) . (105)

The max over agents can be upperbounded by the sum of max over agents in each cluster:

𝑙𝑜𝑠𝑠 ≤
∑︁
𝑖

∑︁
𝑗∈J(𝑖 )

∑︁
𝑞∈[𝐾 ]

max

𝑘∈C𝑞
𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) . (106)

• If 𝑖 ∈ C𝑞 , for every 𝑘 ∈ C𝑞 , we have∑︁
𝑗∈J(𝑖 )

max

𝑘∈C𝑞
𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) ≤

∑︁
𝑗∈J(𝑖 )

max

𝑘∈C𝑞
|𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 | ≤

∑︁
𝑗∈J(𝑖 )

|𝑎𝑞𝑗 − 𝑎𝑞𝑗 | ≤ 𝛿 𝑏 min{1, |J (𝑖) |} . (107)

• If 𝑖 ∉ C𝑞 , we break 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) into two terms. Define
¯𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) B 𝑏1{𝑎𝑖 𝑗 ≥ 𝑎𝑘 𝑗 }(𝑎𝑖 𝑗 −𝑎𝑘 𝑗 ) as an upper bound for 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ). Then,

for every 𝑘 ∈ C𝑞 , one can verify

𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) ≤ 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑞𝑗 ) + ¯𝜙 (𝑎𝑞𝑗 ;𝑎𝑘 𝑗 ) . (108)

The proof as follows: If 𝑎𝑞𝑗 ≥ 𝑎𝑖 𝑗 , then 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) ≤ ¯𝜙 (𝑎𝑞𝑗 ;𝑎𝑘 𝑗 ). If 𝑎𝑖 𝑗 > 𝑎𝑞𝑗 ≥ 𝑟𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 , then 𝑎𝑘 𝑗 ≤ 𝑎𝑞𝑗 implies Eq. (108). Finally,

if 𝑟𝑖𝑘 (𝜶 , 𝜷) 𝑎𝑖 𝑗 > 𝑎𝑞𝑗 , then 𝑎𝑘 𝑗 ≤ 𝑎𝑞𝑗 implies 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑘 𝑗 ) = 0, so, Eq. (108) is obvious.

Since cluster 𝑞 has a radius of 𝛿 , we have∑︁
𝑗∈J(𝑖 )

max

𝑘∈C𝑞
¯𝜙 (𝑎𝑞𝑗 ;𝑎𝑘 𝑗 ) ≤

∑︁
𝑗∈J(𝑖 )

max

𝑘∈C𝑞
|𝑎𝑞𝑗 − 𝑎𝑘 𝑗 | ≤

∑︁
𝑗∈J(𝑖 )

|𝑎𝑞𝑗 − 𝑎𝑞𝑗 | ≤ 𝛿 𝑏 min{1, |J (𝑖) |} . (109)

In order to bound

∑
𝑗∈J(𝑖 ) max𝑘∈C𝑞 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑞𝑗 ) =

∑
𝑗∈J(𝑖 ) 𝜙 (𝑎𝑖 𝑗 ;𝑎𝑞𝑗 ), we apply results from the two-agent setting: Since 𝑖 ∉ C𝑞 ,

agent 𝑖 and cluster 𝑞’s upper representative are 𝛾-dissimilar. Applying Theorem D.1 from the two-agent setting requires defining a

single 𝑐𝑖 (𝜶 , 𝜷) for agent 𝑖 . Observe from Eq. (102) that 𝑐𝑖𝑘 (𝜶 , 𝜷) ≤ 𝑐𝑖 (𝜶 , 𝜷). Using a strategy similar to the proof of Corollary D.2

and setting 𝛽 = (𝑠 + 1)/(𝑠 + 2), we obtain:

E
[ ∑︁
𝑗∈J(𝑖 )

𝜙 (𝑎𝑖 𝑗 ;𝑎𝑞𝑗 )
]
= 𝑂

(
𝑏 (𝛾𝑚)

(𝑠+1)2
𝑠+2 |J (𝑖) | 𝑐𝑖 (𝜶 , 𝜷)

)
. (110)

Note that without any distributional assumption, we cannot find a bound better than

𝑂

(
𝑏 (𝛾𝑚)

1

2 |J (𝑖) | 𝑐𝑖 (𝜶 , 𝜷)
)
. (111)

Putting these all together, we have

E[𝑙𝑜𝑠𝑠] ≤
∑︁
𝑖

[
𝛿 𝑏 𝐾 min{1, |J (𝑖) |} +𝑂

(
𝑏 (𝐾 − 1) (𝛾𝑚)

(𝑠+1)2
𝑠+2 |J (𝑖) | 𝑐𝑖 (𝜶 , 𝜷)

)]
(112)

= 𝑂

(
𝛿 𝑏 𝐾 min{𝑛,𝑚} + 𝑏 (𝐾 − 1) (𝛾𝑚)

(𝑠+1)2
𝑠+2

∑︁
𝑖

|J (𝑖) | 𝑐𝑖 (𝜶 , 𝜷)
)
. (113)
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Suppose that in the case of a tie when finding 𝑥∗, a random agent gets the complete share, so that all elements of 𝑥∗ are either 0 or 𝑏. Note

that this assumption has no effect on 𝑓 (𝒖 (𝑥∗)) and only simplifies the analysis by ensuring

∑
𝑖 1{ 𝑗 ∈ J (𝑖)} ≤ 1/𝑏 for every item 𝑗 . Then

using a similar argument as in Eq. (103), we can rewrite the sum over agents in the above equation as∑︁
𝑖

|J (𝑖) | 𝑐𝑖 (𝜶 , 𝜷) =
∑︁
𝑗

∑︁
𝑖∈𝑡𝑜𝑝 𝑗

𝑐𝑖 (𝜶 , 𝜷) ≤
∑︁
𝑗

1

𝑏
𝑐 𝑗 (𝜶 , 𝜷) . (114)

Plugging this into Eq. (113) completes the proof. □

Proof of Theorem 3.6. We start with the proof intuition and then present the formal proof.

Proof Intuition. The idea behind the proof is as follows. Roughly speaking, a loss of at most 𝑏 𝑗 𝑐 𝑗 (𝜶 , 𝜷) 𝑎𝑡𝑜𝑝 𝑗 incurs if an agent 𝑖 ∈ 𝑡𝑜𝑝 𝑗
losses her share to an agent 𝑘 ∉ 𝑡𝑜𝑝 𝑗 , where 𝑎𝑖 𝑗 ≥ 𝑎𝑘 𝑗 ≥ (1− 𝑐 𝑗 (𝜶 , 𝜷))𝑎𝑖 𝑗 . If there were only two agents (𝑏 𝑗 = 1, 𝑎𝑘 𝑗 = 𝑎−𝑖 𝑗 ), we could argue
that if agents are independent and 𝑔 𝑗 is smooth, the probability that 𝑎𝑘 𝑗 lies in this narrow band is 𝑝 𝑗 = 𝑂 (𝑐 𝑗 (𝜶 , 𝜷) 𝑎𝑖 𝑗 ), so the expected loss
from the reallocation of item 𝑗 will be 𝑝 𝑗 𝑐 𝑗 (𝜶 , 𝜷) = 𝑂 (𝑐2

𝑗
(𝜶 , 𝜷)). However, in an 𝑛-agent setting with large 𝑛, this probability is roughly

1 − (1 − 𝑐 𝑗 (𝜶 , 𝜷))𝑛−1 ≈ 1. So, in general, for 1/𝑏 𝑗 winners of item 𝑗 , we cannot hope to get a bound smaller than 𝑐 𝑗 (𝜶 , 𝜷) 𝑎𝑡𝑜𝑝 𝑗 for this item.

But there is another effect neglected: Let 𝑎 (𝑖 ) 𝑗 be the 𝑖
th

largest utility coefficient for item 𝑗 . Lemma 3.3 implies that for 𝑖 ≤ 1/𝑏 𝑗 , an agent

with utility coefficient 𝑎 (𝑖 ) 𝑗 can lose her share to an agent with utility coefficient 𝑎 (𝑘 ) 𝑗 (𝑘 > 1/𝑏 𝑗 ) only if 𝑎 (𝑘 ) 𝑗 ≥ (1 − 𝑐 𝑗 (𝜶 , 𝜷))𝑎 (𝑖 ) 𝑗 . Since
𝑘 > 1/𝑏 𝑗 , this requires 𝑎 (1/𝑏 𝑗 ) 𝑗 ≥ (1 − 𝑐 𝑗 (𝜶 , 𝜷))𝑎 (𝑖 ) 𝑗 . Therefore, for example, if all 1/𝑏 𝑗 agents in the 𝑡𝑜𝑝 𝑗 are going to lose their share, then

𝑎 (1) 𝑗 , . . . , 𝑎 (1/𝑏 ) 𝑗 should all lie in a narrow band with length 𝑐 𝑗 (𝜶 , 𝜷). The number of agents falling in this band follows 𝑍 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝑝 𝑗 ).
Then using Markov’s inequality, the probability to have 1/𝑏 𝑗 or more positive draws is bounded by Pr

(
𝑍 ≥ 1/𝑏 𝑗

)
≤ 𝑏 𝑗 E[𝑍 ] = 𝑛𝑝 𝑗𝑏 𝑗 . So,

roughly speaking, 𝑙𝑜𝑠𝑠 𝑗 in this case is 𝑂 (𝑛𝑝 𝑗𝑏 𝑗𝑐 𝑗 (𝜶 , 𝜷)) which is 𝑂 (𝑐2

𝑗
(𝜶 , 𝜷)) if 𝑛𝑏 𝑗 is a bounded constant. For brevity, we drop the index 𝑗

from 𝑐 𝑗 (𝜶 , 𝜷), 𝑟 𝑗 (𝜶 , 𝜷) B 1 − 𝑐 𝑗 (𝜶 , 𝜷), and 𝑏 𝑗 , when it is clear from the context, and use the shorthands 𝑐 , 𝑟 , and 𝑏 instead. Define 𝑎 (𝑖 ) 𝑗 as
the 𝑖th largest value among all {𝑎𝑘 𝑗 }𝑘 .

Formal Proof. Since 𝑥∗ already allocates item 𝑗 to 𝑡𝑜𝑝 𝑗 , we do not need to consider the reallocation of 𝑗 between 𝑡𝑜𝑝 𝑗 . Lemma 3.3 implies

that the agent with utility coefficient 𝑎 (𝑖 ) 𝑗 (𝑖 ≤ 1/𝑏) can lose her share to an agent with utility coefficient 𝑎 (𝑘 ) 𝑗 (𝑘 > 1/𝑏) only if 𝑎 (𝑘 ) 𝑗 ≥ 𝑟𝑎 (𝑖 ) 𝑗 .
Since 𝑘 > 1/𝑏, this requires 𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (𝑖 ) 𝑗 . Consider 𝑎 (1) 𝑗 , 𝑎 (2) 𝑗 , . . . , 𝑎 (1/𝑏−1) 𝑗 to be fixed. Then the value of 𝑎 (1/𝑏 ) 𝑗 determines the highest

rank agent among 𝑡𝑜𝑝 𝑗 that might lose her share to an agent not it 𝑡𝑜𝑝 𝑗 : 𝑡 = min{𝑖 : 𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (𝑖 ) 𝑗 }. For instance, if 𝑎 (1/𝑏 ) 𝑗 < 𝑟𝑎 (3)
but 𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (4) 𝑗 , we have 𝑡 = 4, so agents 1 to 3 will not lose their share to any agent not in 𝑡𝑜𝑝 𝑗 (though they might exchange goods

between themselves) and agent 4 is the highest rank agent that might do so.

Now suppose agent 𝑖 ∈ 𝑡𝑜𝑝 𝑗 has lost her share to agent 𝑘 ∉ 𝑡𝑜𝑝 𝑗 . The loss of this reallocation is 𝑎𝑖 𝑗 − 𝑎𝑘 𝑗 which will be less than

𝑎 (𝑡 ) 𝑗 − 𝑎𝑘 𝑗 . Let 𝑙𝑜𝑠𝑠𝑘 𝑗 be the random variable describing the loss an agent 𝑘 ∉ 𝑡𝑜𝑝 𝑗 imposes. Using a similar notation as Lemma E.1,

we can write 𝑙𝑜𝑠𝑠𝑘 𝑗 ≤ 𝑏𝑎 (𝑡 ) 𝑗 (𝑙𝑜𝑠𝑠𝑘 𝑗 |𝑎 (𝑡 ) 𝑗 ). Define 𝑙𝑜𝑠𝑠 (𝑖 ) 𝑗 to be the 𝑖th largest value of {𝑙𝑜𝑠𝑠𝑘 𝑗 }𝑘∉𝑡𝑜𝑝 𝑗 . Putting these all together, given

𝑎 (1) 𝑗 , 𝑎 (2) 𝑗 , . . . , 𝑎 (1/𝑏−1) 𝑗 , we can bound 𝑙𝑜𝑠𝑠 𝑗 by

𝑙𝑜𝑠𝑠 𝑗 |𝑎 (1) 𝑗 , · · · , 𝑎 (1/𝑏−1) 𝑗 = 1{𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (1) 𝑗 }[𝑏𝑎 (1) 𝑗
1/𝑏∑︁
𝑖=1

E[𝑙𝑜𝑠𝑠 (𝑖 ) 𝑗 |𝑎 (1) 𝑗 ]] (115)

+ 1{𝑟𝑎 (1) 𝑗 > 𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (2) 𝑗 }[𝑏𝑎 (2) 𝑗
1/𝑏−1∑︁
𝑖=1

E[𝑙𝑜𝑠𝑠 (𝑖 ) 𝑗 |𝑎 (2) 𝑗 ]] (116)

+ · · · + 1{𝑟𝑎 (1/𝑏−1) 𝑗 > 𝑎 (1/𝑏 ) 𝑗 }[𝑏𝑎 (1/𝑏 ) 𝑗E[𝑙𝑜𝑠𝑠 (1) 𝑗 |𝑎 (1/𝑏 ) 𝑗 ]] (117)

≤ 𝑏1{𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (1) 𝑗 }𝑎 (1) 𝑗
1

𝑏
�̂� (118)

+ 𝑏
1/𝑏−1∑︁
𝑘=2

1{𝑟𝑎 (𝑘−1) 𝑗 > 𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (𝑘 ) 𝑗 }𝑎 (𝑘 ) 𝑗 (
1

𝑏
− 𝑘 + 1)�̂� (119)

+ 𝑏1{𝑟𝑎 (1/𝑏−1) 𝑗 > 𝑎 (1/𝑏 ) 𝑗 }𝑎 (1𝑏 ) 𝑗 �̂� . (120)

Here, �̂� B max𝑎 E[𝑙𝑜𝑠𝑠 (1) 𝑗 |𝑎] = 𝑂 (𝑐) (refer to Lemma E.1). We start by approximating the expectation of Eq. (118):

E[1{𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (1) 𝑗 }𝑎 (1) 𝑗 �̂�] ≤ �̂�E[1 −𝐺 (1/𝑏−1)
𝑗

(𝑟 |𝑎 (1) 𝑗 )] . (121)

Here, 𝐺
(1/𝑏−1)
𝑗

can be expanded as

𝐺
(1/𝑏−1)
𝑗

(𝑟 |𝑎 (1) 𝑗 ) =
1/𝑏−2∑︁
𝑡=0

(
𝑛 − 1

𝑡

)
𝐺𝑛−1−𝑡
𝑗 (𝑟 |𝑎 (1) 𝑗 )

(
1 −𝐺 𝑗 (𝑟 |𝑎 (1) 𝑗 )

)𝑡
. (122)
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It is straightforward to show for 1−𝐺 𝑗 (𝑟 |𝑎 (1) 𝑗 ) ≤ 𝜅 𝑗𝑐 ≤ 1/(𝑏𝑛), the above sum has almost all of the important terms of a binomial expansion

and𝐺
(1/𝑏−1)
𝑗

(𝑟 |𝑎 (1) 𝑗 ) = 1−𝑜 (1). Therefore Eq. (118) can be bounded by 𝑜 (�̂�). Next, we approximate expectation of the 𝑘th
term of Eq. (119):

E[𝑏1{𝑟𝑎 (𝑘−1) 𝑗 > 𝑎 (1/𝑏 ) 𝑗 ≥ 𝑟𝑎 (𝑘 ) 𝑗 }𝑎 (𝑘 ) 𝑗 (
1

𝑏
− 𝑘 + 1)�̂�] =

𝑏�̂� ( 1

𝑏
− 𝑘 + 1)E

[
𝑎 (𝑘 ) 𝑗

(
𝐺

(1/𝑏−𝑘 )
𝑗

(𝑟𝑎 (𝑘−1) 𝑗 |𝑎 (𝑘 ) 𝑗 ) −𝐺
(1/𝑏−𝑘 )
𝑗

(𝑟𝑎 (𝑘 ) 𝑗 |𝑎 (𝑘 ) 𝑗 )
) ]
.

(123)

Here, the difference of 𝐺 terms can be approximated by

𝐺
(1/𝑏−𝑘 )
𝑗

(𝑟𝑎 (𝑘−1) 𝑗 |𝑎 (𝑘 ) 𝑗 ) −𝐺
(1/𝑏−𝑘 )
𝑗

(𝑟𝑎 (𝑘 ) 𝑗 |𝑎 (𝑘 ) 𝑗 ) ≈ 𝑔
(1/𝑏−𝑘 )
𝑗

(𝑟𝑎 (𝑘 ) 𝑗 |𝑎 (𝑘 ) 𝑗 )𝑟 (𝑎 (𝑘−1) 𝑗 − 𝑎 (𝑘 ) 𝑗 ) . (124)

Plugging the definition of 𝑔
(1/𝑏−𝑘 )
𝑗

, using 𝑟𝑎 (𝑘 ) 𝑗𝑔(𝑟𝑎 (𝑘 ) 𝑗 |𝑎 (𝑘 ) 𝑗 ) ≤ 𝜅 𝑗 , and summing up the terms for 𝑘 = 2 to 1/𝑏, one can obtain the

following upper bound on Eq. (119):

𝑏�̂�𝑛𝜅 𝑗

1/𝑏−3∑︁
𝑡=0

(𝑡 + 2)
(
𝑛

𝑡

)
E
[
𝐺𝑛−1−𝑡
𝑗 (𝑟 |𝑎 (𝑘 ) 𝑗 )

(
1 −𝐺 𝑗 (𝑟 |𝑎 (𝑘 ) 𝑗 )

)𝑡 (𝑎 (𝑘−1) 𝑗 − 𝑎 (𝑘 ) 𝑗 )
]
. (125)

For a large enough 𝑛, the probability that 𝑎 (𝑘−1) 𝑗 − 𝑎 (𝑘 ) 𝑗 takes a value much larger than 1/𝑛 goes to zero. The (𝑡 + 2) factor inside the sum
can be upperbounded by 1/𝑏. But, if 1/𝑏 > 𝑛𝜅 𝑗𝑐 , then the terms corresponding to large 𝑡s will be negligible and it suffices to sum up only the

first 𝑛𝜅 𝑗𝑐 terms. Upperbounding (𝑡 + 2) factor, the remaining terms can be upperbounded by a binomial expansion of 1. So, putting these all

together, the expectation of Eq. (119) can be bounded with high probability by

𝑂 (𝜅 𝑗 �̂� min{1, 𝑛𝑏𝜅 𝑗𝑐}) . (126)

Finally, Eq. (120) is obviously bounded by 𝑏�̂� . Since 𝑛 → ∞ and the ratio of 𝑛 and 1/𝑏 is constant, 1/𝑏 also goes to infinity and Eq. (120)

becomes negligible. This completes the proof.

□

G.2 Deferred Proofs from Section 4
Proof of Lemma 3.1. Consider an item 𝑗 such that 𝑎1𝑗 > 𝑎2𝑗 . There are three possibilities: 1) If 𝑎2𝑗 > 𝑟1 (Δ1) 𝑎1𝑗 , an immediate result of

Lemma 3.1 is 𝑥2𝑗 = 1. In this case, the loss of overall utility is 𝑎1𝑗 − 𝑎2𝑗 but the inequality is also reduced by 𝑎1𝑗 + 𝑎2𝑗 . So, the social welfare

based on true valuations has increased by (𝛽1 + 𝛼2) (𝑎1𝑗 + 𝑎2𝑗 ) − (𝑎1𝑗 − 𝑎2𝑗 ), which is reflected in Eq. (23). A simple calculation shows this

term is non-negative for any Δ1 ≤ 𝛽1 + 𝛼2. 2) In the case of 𝑎2𝑗 = 𝑟1 (Δ1) 𝑎1𝑗 , for any arbitrary value of 𝑥2𝑗 , the resulting gain is 𝑥2𝑗 times

the gain of full reallocation which is non-negative. 3) The allocation does not change if 𝑎2𝑗 < 𝑟1 (Δ1) 𝑎1𝑗 and gain is zero in this case. So,

overall, Eq. (23) gives a lower bound for the gain that can be realized from reallocation of item 𝑗 . □

Proof of Proposition 4.2. Without loss of generality we assumed agent 1 is better off under 𝑥∗, so
∑
𝑗 :𝑎1𝑗>𝑎2𝑗

𝑎1𝑗 > 𝑓 (𝒖 (𝑥∗))/2, and

Δ1 > 0. Agent 2 can be seen as an adversary with budget 𝛿 minimizing gain. Starting at the point where 𝑎2𝑗 →− 𝑎1𝑗 , 𝑔𝑎𝑖𝑛 𝑗 is as large as

𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 . To reduce this gain, agent 2 might spend 𝑐1 (Δ1) 𝑎1𝑗 B (1 − 𝑟1 (Δ1))𝑎1𝑗 from her dissimilarity budget to make 𝑔𝑎𝑖𝑛 𝑗 zero. The

return rate of agent 2’s investment or equivalently reduction rate in 𝑔𝑎𝑖𝑛 𝑗 is 𝑐1 (𝜶 , 𝜷)/𝑐1 (Δ1). Hence, agent 2’s best strategy is to greedily

spend her money on items with the smallest 𝑎1𝑗 and make 𝑎2𝑗 sufficiently different on those axes. Ideally, this will reduce the total gain by

𝛿 𝑐1 (𝜶 , 𝜷)/𝑐1 (Δ1), resulting in 𝑔𝑎𝑖𝑛 ≥ (∑𝑗 :𝑎1𝑗>𝑎2𝑗
𝑐1 (𝜶 , 𝜷) 𝑎1𝑗 ) − 𝛿 𝑐1 (𝜶 , 𝜷)/𝑐1 (Δ1). On the other hand, we already know the loss in the

case of 𝛿-similar agents is upperbounded by 𝛿 . Putting these together and treating 𝑐1 (𝜶 , 𝜷)/𝑐1 (Δ1) as a constant completes the proof. □

Proof of Proposition 4.3. For any item 𝑗 , there are three possibilities: 1) If 𝑎2𝑗 > 𝑟1 (Δ1) 𝑎1𝑗

min

𝑎2𝑗

𝑔𝑎𝑖𝑛 𝑗

𝑙𝑜𝑠𝑠 𝑗
= lim

𝑎2𝑗→+𝑟1 (Δ1 ) 𝑎1𝑗

[(1 + 𝛽1 + 𝛼2)𝑎2𝑗 − (1 − 𝛽1 − 𝛼2)𝑎1𝑗 ]
𝑎1𝑗 − 𝑎2𝑗

(127)

=
(𝛽1 + 𝛼2) (1 + 𝑟1 (Δ1)) − (1 − 𝑟1 (Δ1))

1 − 𝑟1 (Δ1)
=
𝛽1 + 𝛼2

Δ1

− 1 . (128)

Note that this ratio does not depend on 𝑗 . 2) For𝑎2𝑗 = 𝑟1 (Δ1) 𝑎1𝑗 , for any value of𝑥2𝑗 , we have𝑔𝑎𝑖𝑛 𝑗 = 𝑥2𝑗 [(1+𝛽1+𝛼2)𝑎2𝑗−(1−𝛽1−𝛼2)𝑎1𝑗 ] and
𝑙𝑜𝑠𝑠 𝑗 = 𝑥2𝑗 [𝑎1𝑗−𝑎2𝑗 ]. Therefore, if 𝑥2𝑗 > 0, a similar calculation as above shows𝑔𝑎𝑖𝑛 𝑗/𝑙𝑜𝑠𝑠 𝑗 = (𝛽1+𝛼2)/Δ1−1. 3) For𝑎2𝑗 < 𝑟1 (Δ1) 𝑎1𝑗 , 𝑥2𝑗 = 0

and both 𝑙𝑜𝑠𝑠 𝑗 and 𝑔𝑎𝑖𝑛 𝑗 are zero. Putting these all together, as long as 𝑙𝑜𝑠𝑠 𝑗 is non-zero for at least one item, 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 ≥ (𝛽1+𝛼2)/Δ1−1. □

Proof of Proposition 4.4. We provide a constructive proof. Suppose there exists an agent 𝑖 for which the proposition’s conditions are

met. Without loss of generality, assume 𝑖 = 1. Consider the allocation of 2𝑛 − 1 goods to 𝑛 agents with 𝑏 𝑗 = 1 and the following utility
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coefficient:

𝑎 =



1 + 𝜖 0 0 . . . 0 𝜖 𝜖 . . . 𝜖

0 1 0 . . . 0 𝜖 (1 − 𝜖) 0 . . . 0

0 0 1 . . . 0 0 𝜖 (1 − 𝜖) . . . 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0 0 0 . . . 1 0 0 . . . 𝜖 (1 − 𝜖)


. (129)

For sufficiently small 𝜖 > 0, we have 𝑥∗
𝑖 𝑗

= 1{𝑖 = 𝑗} + 1{ 𝑗 > 𝑛, 𝑖 = 1}, which gives the first 𝑛 items to each agent, and the last 𝑛 − 1 items to

agent 1. Under an inequality-averse allocation, one can verify 𝑥
𝛼,𝛽

𝑖 𝑗
= 1{𝑖 = 𝑗} + 1{ 𝑗 > 𝑛, 𝑖 = 𝑗 − 𝑛 + 1}, which divides the final 𝑛 − 1 goods

between the final 𝑛 − 1 agents. Thus,

𝑔𝑎𝑖𝑛 = −(𝑛 − 1)𝜖2 + 𝜖 (2 − 𝜖)
∑︁
𝑖>1

(𝛽1 + 𝛼𝑖 ) , (130)

𝑙𝑜𝑠𝑠 = (𝑛 − 1)𝜖2 . (131)

Then in the limit of 𝜖 →+
0, although gain and loss both go to zero, their ratio goes infinity. This is happening despite every two agents

being 𝛾-dissimilar with 𝛾 →+
0. Therefore, dissimilarity constraints are not helpful in upperbounding 𝑔𝑎𝑖𝑛/𝑙𝑜𝑠𝑠 . □

G.3 Deferred Proofs from Section 5
Proof of Proposition 5.1. For 0 < 𝜖1 < 𝜖2 ≤ (𝑚 − 1) (1 − 𝜖1), consider the utility profile

𝑎 =


1 − 𝜖1 1 − 𝜖2 1 − 𝜖2 . . . 1 − 𝜖2

𝜖1

𝑚−1

𝜖2

𝑚−1

𝜖2

𝑚−1
. . .

𝜖2

𝑚−1

.

.

.
.
.
.

.

.

.
. . .

.

.

.
𝜖1

𝑚−1

𝜖2

𝑚−1

𝜖2

𝑚−1
· · · 𝜖2

𝑚−1


.

Then the allocation

𝑥𝛼,𝛽 =


1 − 𝑦 𝑦

𝑛−1

𝑦
𝑛−1

. . .
𝑦
𝑛−1

0
1

𝑚−1

1

𝑚−1
. . . 1

𝑚−1

.

.

.
.
.
.

.

.

.
. . .

.

.

.

0
1

𝑚−1

1

𝑚−1
· · · 1

𝑚−1


improves 𝑓 (𝒗 (·)) for some value of 𝑦 (which we will return to), if

2𝛼
𝑛−1

(1 − 𝜖1 − 𝜖2) ≥ 𝑓 (𝑢 (𝑥∗) − 𝑓 (𝑢 (𝑥𝛼,𝛽 )), where 𝛼 =

∑
𝑖 𝐼

+
𝑖 (𝑥∗ )+𝐼 −𝑖 (𝑥∗ )

2(1−𝜖1−𝜖2 ) .

Observe that as 𝜖1, 𝜖2 → 0, this inequality is true for shrinking 𝛼𝑖 = 𝛽𝑖 values.

Given this utility profile, {1} = arg max𝑖
𝑢𝑖 (𝑥∗ )
𝑢𝑖 (𝑥𝛼,𝛽 )

, and 𝜖1 → 0 =⇒ 𝑢𝑖 (𝑥∗) → 1. Moreover, we claim that as 𝜖1, 𝜖2 → 0, that𝑢𝑖 (𝑥𝛼,𝛽 ) → 1

𝑛 ,

which gives the result.

To see that as 𝜖1, 𝜖2 → 0 =⇒ 𝑢𝑖 (𝑥𝛼,𝛽 ) → 1

𝑛 , consider that 𝛼 > 𝑛−1

2
(𝑓 (𝑢 (𝑥∗) − 𝑓 (𝑢 (𝑥𝛼,𝛽 ))) implies

∑
𝑖 𝐼

+
𝑖
(𝑥𝛼,𝛽 ) + 𝐼−

𝑖
(𝑥𝛼,𝛽 ) = 0. In order

for 𝐼 (𝑥𝛼,𝛽 ) = 0, one must have all utilities be the same, and therefore one must have

𝑢1 (𝑥𝛼,𝛽 ) = 𝑢2 (𝑥𝛼,𝛽 )

⇐⇒ (1 − 𝑦) (1 − 𝜖1) =
𝑦

𝑛 − 1

(1 − 𝜖2) +
𝜖2

𝑚 − 1

⇐⇒ 1 − 𝜖1 − 𝑦 + 𝑦𝜖1 =
𝑦

𝑛 − 1

− 𝑦𝜖2

𝑛 − 1

+ 𝜖2

𝑚 − 1

⇐⇒ (𝑛 − 1) (1 − 𝜖1 −
𝜖2

𝑚 − 1

) = 𝑦 (𝑛 − 𝜖2 − 𝜖1𝑛 + 𝜖1)

⇐⇒ 𝑦 =
(𝑛 − 1) (1 − 𝜖1 − 𝜖2

𝑚−1
)

𝑛 − 𝜖2 − 𝑛𝜖1 + 𝜖1

,

which tends to
𝑛−1

𝑛 as 𝜖1, 𝜖2 → 0. Therefore, 𝑢𝑖 (𝑥𝛼,𝛽 ) = (1 − 𝜖1) (1 −
(𝑛−1) (1−𝜖1− 𝜖

2

𝑚−1
)

𝑛−𝜖2−𝑛𝜖1+𝜖1

) → 1

𝑛 , yielding the result. □

LemmaG.1. Suppose𝜶 = 𝜷 = 𝛼1 for some𝛼 ≥ 0. Let𝑥𝑒 be an allocation such that
∑
𝑖 𝐼

+
𝑖
(𝑥𝑒 )+𝐼−

𝑖
(𝑥𝑒 ) = 0. Moreover, let 𝑖 ∈ arg max𝑖′

𝑢𝑖′ (𝑥∗ )
𝑢𝑖′ (𝑥𝛼,𝛽 )

.

If 1

𝑛

∑
𝑗 𝐼 𝑗 (𝑥𝛼,𝛽 ) ≥

∑
𝑖′ :𝑢𝑖′ (𝑥𝛼,𝛽 )≥𝑢𝑖 (𝑥𝛼,𝛽 ) (𝑢𝑖′ (𝑥

𝛼,𝛽 ) − 𝑢𝑖 (𝑥𝛼,𝛽 )), then 𝑢𝑖 (𝑥𝛼,𝛽 ) ≥ 𝑢𝑖 (𝑥𝑒 ).
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Proof. Let 𝐼 (𝑥) = ∑
𝑖 𝐼

+
𝑖
(𝑥) + 𝐼−

𝑖
(𝑥) and J𝛼 = {𝑖′ : 𝑢𝑖′ (𝑥𝛼,𝛽 ) ≥ 𝑢𝑖 (𝑥𝛼,𝛽 )}. Let us consider the contrapositive: if 𝑢𝑖 (𝑥𝛼,𝛽 ) < 𝑢𝑖 (𝑥𝑒 ), then

1

𝑛 𝐼 (𝑥
𝛼,𝛽 ) < ∑

𝑖′∈J𝛼 (𝑢𝑖′ (𝑥𝛼,𝛽 ) − 𝑢𝑖 (𝑥𝛼,𝛽 )). Observe that if

𝑓 (𝑣𝛼 (𝑥𝑒 )) = 𝑛(𝑢𝑖 (𝑥𝑒 )) > 𝑛(𝑢𝑖 (𝑥𝛼,𝛽 )) ≥ 𝑓 (𝑣𝛼 (𝑥𝛼,𝛽 )) , (132)

we contradict the 𝑓 (𝒗 (·))-optimality of 𝑥𝛼,𝛽 . The first equality follows as 𝐼 (𝑥𝑒 ) = 0, and therefore each agent receives the same utility, so the

social welfare is 𝑛 times that utility. Moreover, the strict inequality from the hypothesis of the contrapositive. It remains to show the last

inequality:

𝑓 (𝒗 (𝑥𝛼,𝛽 )) =
∑︁
𝑘

(
𝑢𝑘 (𝑥𝛼,𝛽 ) −

𝛼

𝑛(𝑛 − 1)
∑︁
𝑖′≠𝑘

|𝑢 𝑗 (𝑥𝛼,𝛽 ) − 𝑢𝑖′ (𝑥𝛼,𝛽 ) |
)

(133)

=
∑︁
𝑘

𝑢𝑘 (𝑥𝛼,𝛽 ) −
1

𝑛
𝐼 (𝑥𝛼,𝛽 ) (134)

=
∑︁
𝑘∈J𝛼

𝑢𝑘 (𝑥𝛼,𝛽 ) +
∑︁
𝑘∉J𝛼

𝑢 𝑗 (𝑥𝛼,𝛽 ) −
1

𝑛
𝐼 (𝑥𝛼,𝛽 ) (135)

≤
∑︁
𝑘∈J𝛼

𝑢𝑘 (𝑥𝛼,𝛽 ) + |J𝛼 |𝑢𝑖 (𝑥𝛼,𝛽 ) −
1

𝑛
𝐼 (𝑥𝛼,𝛽 ) (136)

= 𝑛𝑢𝑖 (𝑥𝛼,𝛽 ) +
∑︁
𝑘∈J𝛼

(
𝑢𝑘 (𝑥𝛼,𝛽 ) − 𝑢𝑖 (𝑥𝛼,𝛽 )

)
− 1

𝑛
𝐼 (𝑥𝛼,𝛽 ). (137)

Notably, if

∑
𝑘∈J𝛼

(
𝑢𝑘 (𝑥𝛼,𝛽 ) − 𝑢𝑖 (𝑥𝛼,𝛽 )

)
≤ 1

𝑛 𝐼 (𝑥
𝛼,𝛽 ), then the last line is less than or equal to 𝑛𝑢𝑖 (𝑥𝛼,𝛽 ), and we have shown the last

inequality in the chain, yielding a contradiction on the optimality of 𝑥𝛼,𝛽 . Therefore, if
∑
𝑘∈J𝛼

(
𝑢𝑘 (𝑥𝛼,𝛽 ) −𝑢𝑖 (𝑥𝛼,𝛽 )

)
≤ 1

𝑛 (𝑛−1) 𝐼 (𝑥
𝛼,𝛽 ), then

𝑢𝑖 (𝑥𝛼,𝛽 )) ≥ 𝑢𝑖 (𝑥𝑒 ). □

Proof of Proposition 5.2. By Lemma G.1, we have 𝑢𝑖 (𝑥𝛼,𝛽 ) ≥ 𝑢𝑖 (𝑥𝑒 ). Therefore,

𝐼𝑇 (𝜶 , 𝜷) = 𝑢𝑖 (𝑥∗)
𝑢𝑖 (𝑥𝛼,𝛽 )

≤ 𝑢𝑖 (𝑥∗)
𝑢𝑖 (𝑥𝑒 )

≤ max

𝑖′

𝑢𝑖′ (𝑥∗)
𝑢𝑖 (𝑥𝑒 )

= max

𝑖′

𝑢𝑖′ (𝑥∗)
𝑢𝑖′ (𝑥𝑒 )

≤ max𝑖′ 𝑢𝑖′ (𝑥∗)
min𝑖′ 𝑢𝑖′ (𝑥∗)

. (138)

The last inequality follows as 𝑥𝑒 is an efficient allocation; any re-allocation of goods from 𝑥∗ to 𝑥𝑒 must result in 𝑢𝑖′ (𝑥∗) ≤ 𝑢𝑖′ (𝑥𝑒 ). □
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